初中数学竞赛辅导资料+例题(含答案)③初二竞赛资料29-40
初中数学竞赛培优讲义 含答案 共70讲 01:数的整除一)

初中数学竞赛培优讲义含答案共70讲01:数的整除(一)装订线初中数学竞赛培优讲义初中数学竞赛练习(1)数的整除(一)一、内容提要:如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. 一些数的整除特征除数2或5 4或25 3或9 能被整除的数的特征末位数能被2或5整除末两位数能被4或25整除各位上的数字和被3或9整除(如771,54324) 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等) 8或125 末三位数能被8或125整除11 7,11,13 从右向左每三位为一段,奇数段的各数和与偶数段的各数和相减,其差能被7或11或13整除.(如1001,22743,17567,21281等) 能被7整除的数的特征:①抹去个位数②减去原个位数的2倍③其差能被7整除。
如1001 100-2=98(能被7整除)又如7007 700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)1 二、例题例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除。
求x,y解:x,y都是0到9的整数,∵5y7能被9整除,∴y=6.∵328+2x9=567,∴x=3例2己知五位数1234x能被12整除,求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X能被3整除时,x=2,5,8当末两位4X能被4整除时,X=0,4,8∴X=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
初二数学竞赛试题7套整理版(含答案)电子教案

初二数学竞赛试题7套整理版(含答案)2009年初中数学(初二组)初赛试卷 01一、 选择题(本大题满分42分,每小题7分)1、下列名人中:①比尔·盖茨 ②高斯 ③袁隆平 ④诺贝尔 ⑤陈景润 ⑥华罗庚 ⑦高尔基⑧爱因斯坦,其中是数学家的是( )A .①④⑦ B.③④⑧ C.②⑥⑧ D.②⑤⑥2、已知111,,b c aa b c a b c +=+=+≠≠则a 2b 2c 2=( ) A.5 B.3.5 C.1 D.0.53、在直角坐标系中,若一点的纵横坐标都是整数,则称该点为整点。
设k 为整数,当直线2y x =-与y kx k =+的交点为整点时,k 的值可以取( )A .4个 B.5个 C.6个 D.7个4、如图,边长为1的正方形ABCD 绕A 逆时针旋转300到正方形AB ‘C ’D ‘,图中阴影部分的面积为( )A.11 D.125、已知()421M p p q =+,其中,p q 为质数,且满足29q p -=,则M =( ) A.2009 B.2005 C.2003 D.2000(第4题图) (第6题图)6、四边形ABCD 中0060,90,DAB B D ∠=∠=∠=1,2BC CD ==,则对角线AC 的长为( )二、 填空题(本大题满分28分,每小题7分)1、如果有2009名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、 1•••的规律报数,那么第2009名学生所报的数是 。
2、已知,,a b c 满足2224222a b a c ac -++++=+,则a b c -+的值为______ 3、已知如图,在矩形ABCD 中,AE BD ⊥,垂足为E ,030ADB∠=且BC =ECD 的面积为_____(第4、有一等腰钝角三角形纸片,若能从一个顶点出发,将其剪成两个等腰三角形纸片,则等腰三角形纸片的顶角为_______度。
三、 简答题(本大题满分20分)1.如图,直线OB 是一次函数2y x =-的图象,点A 使得ACO 为等腰三角形,点C 坐标。
全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。
解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。
代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。
答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。
求△ABC的面积。
解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。
底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。
答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。
解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。
将所有项移到一边得:3x² - 12x + 11 = 0。
对方程进行因式分解得:(x - 1)(3x - 11) = 0。
由此可得x = 1 或 x = 11/3。
答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。
已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。
解:由题意可推出ABCD为平行四边形,而AE = CD。
根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。
答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。
解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。
初二数学竞赛练习题

初二数学竞赛练习题1. 小明有一段木棍,长为40厘米。
他把这段木棍随机地锯成两段,其中一段的长度是a厘米。
如果b表示另一段木棍的长度(厘米),则b应该满足什么条件?解析:根据题意,一段木棍的长度为40厘米,假设锯断后另一段木棍的长度为b厘米。
根据题意可得到如下方程:40 = a + b因此,b的长度应为:b = 40 - a2. 甲、乙两个人相差3岁,当甲年龄增加10岁,乙也增加了10岁,这时两人相差6岁。
请问他们现在的年龄分别是多少岁?解析:设甲的年龄为x岁,则乙的年龄为x-3岁。
根据题意,当甲年龄增加10岁后,甲和乙之间的年龄差还是3岁,即:x + 10 = (x-3) + 10 + 6化简得: x + 10 = x + 13 + 10 + 6移项得: x - x = 13 + 10 + 6 - 10化简得: 0 = 29显然方程无解,所以题目存在错误,无法确定甲乙的具体年龄。
3. 有一条长为36米的房屋排水沟,沟的一端低于另一端,使得沟中两个点的高度差为3米。
请问这条排水沟的高低两端间的距离是多少米?解析:设两端的高度分别为x米和(x-3)米,根据题意可得到如下方程:x - (x-3) = 36化简得: x - x + 3 = 36化简得: 3 = 36显然方程无解,所以题目存在错误,无法确定排水沟的高度差和距离。
4. 小明有一些苹果,他先吃掉其中的1/4,然后又吃掉剩下的2个。
这时,他手里只剩下了3个苹果。
开始小明有多少个苹果?解析:设开始小明有x个苹果。
根据题意,可以得到下面的方程:x - 1/4x - 2 = 3化简得: 3/4x - 2 = 3移项得: 3/4x = 5乘以4/3得: x = (5 * 4) / 3 = 20/3所以,开始小明有20/3个苹果,即6个苹果。
5. 一母猴带领了一队小猴去采集香蕉,她打算每天采集的总数比前一天多1根,而且第一天给小猴吃2根。
如果采集到第10天,一共采集了多少根香蕉?解析:根据题意,第一天采集了2根香蕉,第二天采集了2 + 1 = 3根香蕉,第三天采集了2 + 1 + 1 = 4根香蕉,以此类推,第十天采集了2 + 1 + 1 + ... + 1 = 2 + (1 + 1 + ... + 1)。
初中数学竞赛试题及答案(免费)20

肇庆市八年级数学竞赛初赛试题一、填空题:每小题2分,共40分。
1、使等式x x x =-成立的的值是 。
2、扇形统计图中扇形占圆的30%,则此时扇形所对的圆心角为。
3、如果点A (3,a )是点B (3,4)关于y 轴的对称点,那么a 的值是。
4、如图1,正方形ABCD 的边长为1cm ,以对角线AC为边长再作一个正方形,则正方形ACEF 的面积是2cm .5、已知四个命题:①1是1的平方根,②负数没有立方根,③无限小数不一定是无理数,一定没有意义;其中正确的命题有 个。
6、已知72π⎡--⎢⎣,,,其中无理数有 个。
7、若A 的算术平方根是 。
(图1)FEDCBA(图2)F GEDCBA8、如图2,在△ABC 中,AB=AC ,G 是三角形的重心,那么图中例行全等的三角形的对数是 对。
9、足球比赛的记分规则是:胜一场记3分,平一场记1分,负一场记0分;一支中学生足球队参加了15场比赛,负了4场,共得29分,则这支球队胜了 场。
10、若方程组4101,43x y k x y k x y +=+⎧<+<⎨+=⎩的解满足则围是 。
11、如图3,在一个正方体的两个面上画两条对角线AB ,AC ,那么这两条对角线的夹角等于 。
12、某班级共48人,春游时到杭州西湖划船,每只小船坐3人,租金16元,每只大船坐5人,租金24元,则该班至少要花租金 元。
13、正三角形△ABC 所在平面内有一点P ,使得△PAB 、△PBC 、△PCA 都是等腰三角形,则这样的P 点有 个。
14、若61m m -表示一个数,则整数可取值的个数是 个。
15、已知x 和y 满足2x+3y=5,则当x=4时,代数式22312x xy y ++的值是 。
16、方程550x x -+-=的解的个数为 个。
17、如图4,△ABC 为等边三角形,且BM=CN ,AM 与BN 相交于点P ,则∠APN= . 18、已知有如下一组,x y z 和的单项式:(图3)(图4)PNM CBA(图5)3232242323117 8 3 9 9 0.325x z x y x yz xy z x zy zy xyz y z xz y z --,,,,,,,,,我们用下面的方法确定它们的先后次序:对任两个单项式,先看x 的次幂,规定x 幂次高的单项式排在x 幂次低的单项式的前面;再先看y 的次幂,规定y 幂次高的单项式排在y 幂次低的单项式的前面;再先看z 的次幂,规定z 幂次高的单项式排在z 幂次低的单项式的前面。
初中数学竞赛辅导资料+例题(含答案)②初二竞赛资料17-28

初中数学竞赛辅导资料(17)奇数 偶数内容提要1. 奇数和偶数是在整数集合里定义的,能被2整除的整数是偶数,如2,0-2…,不能被2整除的整数是奇数,如-1,1,3。
如果n 是整数,那么2n 是偶数,2n -1或2n+1是奇数。
如果n 是正整数,那么2n 是正偶数,2n-1是正奇数。
2. 奇数、偶数是整数的一种分类。
可表示为:整数⎩⎨⎧偶数奇数 或 整数集合 就不是整数。
3. 奇数偶数的运算性质:奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数奇数×奇数=奇数 奇数×偶数=偶数,偶数×偶数=偶数奇数的正整数次幂是奇数,偶数的正整数次幂是偶数,两个連续整数的和是奇数,积是偶数。
例题例1 求证:任意奇数的平方减去1是8的倍数证明:设k 为整数,那么2k -1是任意奇数,(2k -1)2-1=4k 2-4k +1-1=4k(k -1)∵k(k -1)是两个連续整数的积,必是偶数 ∴4k(k -1)是8的倍数即任意奇数的平方减去1是8的倍数例2 已知:有n 个整数它们的积等于n ,和等于0求证:n 是4的倍数证明:设n 个整数为x 1,x 2,x 3,…x n 根据题意得 ⎪⎩⎪⎨⎧=++++=②①0321321n n x x x x n x x x x 如果n 为正奇数,由方程(1)可知x 1,x 2,x 3,…x n 都只能是奇数,而奇数个奇数的和必是奇数,这不适合方程(2)右边的0,所以n 一定是偶数;当n 为正偶数时,方程(1)左边的x 1,x 2,x 3,…x n 中,至少有一个是偶数,而要满足方程(2)右边的0,左边的奇数必湏是偶数个,偶数至少有2个。
所以n 是4的倍数。
例3己知:a,b,c 都是奇数求证:方程ax 2+bx+c=0没有整数解证明:设方程的有整数解x ,若它是奇数,这时方程左边的ax 2,bx ,c 都是奇数,而右边0是偶数,故不能成立;若方程的整数解x 是偶数,那么ax 2,bx,都是偶数,c 是奇数,所以左边仍然是奇数,不可能等于0。
全国初中数学竞赛试题及答案.pdf
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 22||()||a a b c a b c −++−+可以化简为( ).(A )2c a − (B )22a b − (C )a − (D )a 1(乙).如果22a =−11123a+++的值为( ).(A )2− (B 2 (C )2 (D )222(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a − (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).OAB CED(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q −−=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )XXXX (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215, E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
2021年全国初中数学联合竞赛初二年级试题及参考答案
全国初中数学联合竞赛初二说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分) 1.若0x >,0y >=)A. 1B. 2C. 3D. 4【答】 B.已知等式可化为150x y -=,即0=,所以25x y =,于是58229yy===. 2.已知△ABC 中,2AB AC ==,点D 在BC 边的延长线上,4AD =,则BD CD ⋅=( ) A .16 B .15 C .13 D .12 【答】 D.作AH BC ⊥于点H ,则H 为BC 的中点,所以22()()()()BD CD BH DH DH CH DH CH DH CH DH CH ⋅=+-=+-=-22224212AD AC =-=-=.3.已知,x y 为整数,且满足22441111211()()()3x y x y x y++=--,则x y +的可能的值有 ( ) A. 1个 B. 2个 C. 3个 D. 4个 【答】 C .由已知等式得2244224423x y x y x y xy x y x y++-⋅=⋅,显然,x y 均不为0,所以x y +=0或32()xy x y =-. 若32()xy x y =-,则(32)(32)4x y +-=-.又,x y 为整数,可求得12,x y =-⎧⎨=⎩,或21.x y =-⎧⎨=⎩,所以1x y +=或1x y +=-.因此,x y +的可能的值有3个.4.用1g 、3g 、6g 、30g 的砝码各一个,在一架没有刻度的天平上称量重物,如果天平两端均可放置砝码,那么,可以称出的不同克数的重物的种数为 ( )A .21B .20C .31D .30 【答】 C.可以称出的重物的克数可以为1、2、3、4、5、6、7、8、9、10、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40,共31种.5.已知实数,,x y z1()2x y z =++,则xyz 的值为 ( )A .6B .4C .3D .不确定 【答】 A .由1()2x y z =++可得2221)1)1)0++=,所以2,3,1x y z ===,6xyz =.6.已知△ABC 的三边长分别为2,3,4,M 为三角形内一点,过点M 作三边的平行线,交各边于D 、E 、F 、G 、P 、Q (如图),如果DE FG PQ x ===,则x = ( ) A .1813 B .2013 C .2213D .2413 【答】 D.设,,BC a AC b AB c ===,,,ME m MF n MP k ===. 由平行线的性质可得DE BC AE AC =,PQ CQ AB AC =,即()x b x n a b--=,x b n c b -=,所以11)1n x a b b +=+(,1x nc b=-,两式相加,得111)2x a b c ++=(,所以222411*********x a b c ===++++.二、填空题:(本题满分28分,每小题7分)1.如果关于x 的方程|3||2||1|x x x a -+---=恰好只有一个解,则实数a = . 【答】 1-.4,1,63,12,()|3||2||1|2,23,4,3,x x x x f x x x x x x x x -≤⎧⎪-<≤⎪=-+---=⎨-<≤⎪⎪-≥⎩结合函数的图象知:当且仅当1a =-时,关于x 的方程|3||2||1|x x x a -+---=恰好只有一个解. 2.使得不等式981715n n k <<+对唯一的整数k 成立的最大正整数n 为 . 【答】144. 由条件得7889k n <<,由k 的唯一性,得178k n -≤且189k n +≥,所以2118719872k k n n n +-=-≥-=,所以144n ≤.当144n =时,由7889k n <<可得126128k <<,k 可取唯一整数值127. 故满足条件的正整数n 的最大值为144.3.已知P 为等腰△ABC 内一点,AB BC =,108BPC ∠=︒,D 为AC 的中点,BD 与PC 交于点E ,如果点P 为△ABE 的内心(三角形的三条内角平分线的交点),则PAC ∠= .GP C B【答】48︒.由题意可得PEA PEB CED AED ∠=∠=∠=∠, 而180PEA PEB AED ∠+∠+∠=︒,所以60PEA PEB CED AED ∠=∠=∠=∠=︒, 从而可得30PCA ∠=︒.又108BPC ∠=︒,所以12PBE ∠=︒,从而24ABD ∠=︒. 所以902466BAD ∠=︒-︒=︒, 11()(6630)1822PAE BAD CAE ∠=∠-∠=︒-︒=︒, 所以183048PAC PAE CAE ∠=∠+∠=︒+︒=︒.4.已知n 为正整数,且432261225n n n n ++++为完全平方数,则n = . 【答】8.易知1n =,2n =均不符合题意,所以3n ≥,此时一定有22432432(2)2544261225n n n n n n n n n n ++=++++<++++, 22432432(4)29816261225n n n n n n n n n n ++=++++>++++,而432261225n n n n ++++为完全平方数,所以一定有43222261225(3)n n n n n n ++++=++,整理得26160n n --=,解得8n =(负根2n =-舍去).第二试一、(本题满分20分)设b 为正整数,a 为实数,记221145224M a ab b a b =-++-+,在,a b 变动的情况下,求M 可能取得的最小整数值,并求出M 取得最小整数值时,a b 的值.解 222233(2)2(2)121(21)(1)44M a b a b b b a b b =-+-+++++=-++++,………………5分 注意到b 为正整数,所以2319(11)44M ≥++=,所以M 可能取得的最小整数值为5. ……………………10分当5M =时,223(21)(1)54a b b -++++=,故2217(21)(1)4a b b -+++=.…………………15分 因为b 为正整数,所以2(1)b +是整数且不小于4,所以一定有12b +=,且21(21)4a b -+=,所以1b =,12a =或32a =. ……………………20分二.(本题满分25分)在直角△ABC 中,D 为斜边AB 的中点,E 、F 分别在AC 、BC 上,90EDF ∠=︒,已知4CE =,2AE =,32BF CF -=,求AB . 解 延长ED 到点M ,使DM ED =,连接MB 、MF .D又因为D 为AB 的中点,所以△BDM ≌△ADE . …………5分所以AE BM =,A ABM ∠=∠,所以AC //BM ,所以18090CBM C ∠=︒-∠=︒,故△BMF 是直角三角形,于是有222BM BF MF +=. ……………………10分又在直角△CEF 中,有222CE CF EF +=.又由90EDF ∠=︒和DM ED =可得EF MF =, ……………………15分 于是可得222222CE CF BM BF AE BF +=+=+,所以222212BF CF CE AE -=-=,即()()12BF CF BF CF +-=. ……………………20分 又32BF CF -=,所以8BF CF +=,即8BC =. 因此2222268100AB AC BC =+=+=,所以10AB =. ……………………25分 三.(本题满分25分)设不全相等的非零实数,,a b c 满足2221222bc ac aba bcb ac c ab++=+++,求a b c ++的值.解 由2221222bc ac aba bcb ac c ab++=+++得2221111222111a b c bc ac ab++=+++. 设22a x bc =,22b y ac=,22c z ab =,则8xyz =,且1111111x y z ++=+++,…………………10分 通分即得(1)(1)(1)(1)(1)(1)(1)(1)(1)y z x z x y x y z ++++++++=+++,展开后整理得2xyz x y z =+++,所以6x y z ++=. …………………15分即2222226a b c bc ac ab ++=,所以3333a b c abc ++=,分解因式得 222()[()()()]0a b c a b b c c a ++-+-+-=.又,,a b c 不全相等,所以222()()()0a b b c c a -+-+-≠,故0a b c ++=. ………………25分。
初中数学竞赛试题(初二组)
初中数学竞赛试题(初二组)一、选择题:(本大题8小题,每小题5分,共40分)下面每小题给出的四个选项中, 只有一个是正确的。
1.以下银行标志中,是轴对称图形的是( )。
A B C D2.下列各数中,属于无理数的是( )。
A .41 B .π C .2.∙16∙1 D .03.等腰三角形的两边长是5cm 和3cm ,那么它的周长是( )。
A. 11 cm 或13 cmB. 11 cmC. 8cmD. 13 cm 4. 如图,OP 平分∠AOB ,PA ⊥OA ,PB ⊥OB ,垂足分别为A 、B .下列结论中不一定成立的是( )。
A .PA =PB B .AB 垂直平分OPC .OA =OBD .PO 平分∠APB5. 计算21-+32-+23-+52-+…+1099-结果为( )。
A .10B .9C .8D .76.某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为( )。
A .20kg B .25kg C .28kg D .30kg 7. 下列等式不成立的是( )。
A.2(0)a a =-≤ Ba =C.33=- D.2π=-3 8. 等腰三角形有一个外角是110°,则其顶角度数是( )。
A.70°B. 70°或40°C.70°或55°D. 55° 二、填空题(本大题8小题,每小题5分,共40分)9. 一个两位自然数等于它的十位数字与个位数字的和的3倍,那么这个两位数是 。
C E BFDA 第18题= 。
11.已知函数25y x =+,x 在什么条件下 ,>0y ”。
12. 因式分解:(a 2+b 2)2-4a 2b 2= _____________ 。
13.有A 、B 、C 三种不同型号的电池,它们的价格各不相同,有一笔钱可买A 型4只,B 型18只,C 型16只;或A 型2只,B 型15只,C 型24只;或A 型6只,B 型12只,C 型20只。
初中奥林匹克数学竞赛知识点总结及训练题目-圆
初中数学竞赛辅导讲义---圆与圆圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:【例题求解】【例1】如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC 交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.思路点拨直径、公切线、O2的特殊位置等,隐含丰富的信息,而连O2O l必过A点,先求出∠D O2A的度数.注:(1)两圆相切或相交时,公切线或公共弦是重要的类似于“桥梁”的辅助线,它可以使弦切角与圆周角、圆内接四边形的内角与外角得以沟通.同时,又是生成圆幂定理的重要因素.(2)涉及两圆位置关系的计算题,常作半径、连心线,结合切线性质等构造直角三角形,将分散的条件集中,通过解直角三角形求解.【例2】如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB 与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( )A.2:5 B.1:2 C.1:3 D.2:3思路点拨添加辅助线,要探求两半径之间的关系,必须求出∠CO l O2 (或∠DO2O l)的度数,为此需寻求∠CO1B、∠CO1A、∠BO1A的关系.【例3】如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.思路点拨(1)连AB,充分运用与圆相关的角,证明∠PAE=∠PEA;(2)PB·PC=PD·PA,探寻PN、PD、PA对应三角形的联系.【例4】如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.思路点拨(1)设大圆半径为R,则小圆半径为R-2,建立R的方程;(2)证明△EBC∽△ECF;(3)过B、F、C三点的圆的圆心O′,必在BF上,连OˊC,证明∠O′CE=90°.注:本例以同心圆为背景,综合了垂径定理、直径所对的圆周角为直角、切线的判定、勾股定理、相似三角形等丰富的知识.作出圆中基本辅助线、运用与圆相关的角是解本例的关键.【例5】 如图,AOB 是半径为1的单位圆的四分之一,半圆O 1的圆心O 1在OA 上,并与弧AB 内切于点A ,半圆O 2的圆心O 2在OB 上,并与弧AB 内切于点B ,半圆O 1与半圆O 2相切,设两半圆的半径之和为x ,面积之和为y . (1)试建立以x 为自变量的函数y 的解析式; (2)求函数y 的最小值.思路点拨 设两圆半径分别为R 、r ,对于(1),)(2122r R y +=π,通过变形把R 2+r 2用“x =R+r ”的代数式表示,作出基本辅助线;对于(2),因x =R+r ,故是在约束条件下求y 的最小值,解题的关键是求出R+r 的取值范围.注:如图,半径分别为r 、R 的⊙O l 、⊙O 2外切于C ,AB ,CM 分别为两圆的公切线,O l O 2与AB 交于P 点,则: (1)AB=2r R ;(2) ∠ACB=∠O l M O 2=90°; (3)PC 2=PA ·PB ; (4)sinP=rR rR +-; (5)设C 到AB 的距离为d ,则dR r 211=+.学力训练1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 . (2003年上海市中考题)3.如图;⊙O l 、⊙O 2相交于点A 、B ,现给出4个命题:(1)若AC 是⊙O 2的切线且交⊙O l 于点C ,AD 是⊙O l 的切线且交⊙O 2于点D ,则AB 2=BC ·BD ;(2)连结AB 、O l O 2,若O l A=15cm ,O 2A=20cm ,AB=24cm ,则O l O 2=25cm ;(3)若CA 是⊙O l 的直径,DA 是⊙O 2 的一条非直径的弦,且点D 、B 不重合,则C 、B 、D 三点不在同一条直线上,(4)若过点A 作⊙O l 的切线交⊙O 2于点D ,直线DB 交⊙O l 于点C ,直线CA 交⊙O 2于点E ,连结DE ,则DE 2=DB ·DC ,则正确命题的序号是 (写出所有正确命题的序号) .4.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .5.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( )A .2B .221+C .231+D .231+6.如图,已知⊙O l 、⊙O 2相交于A 、B 两点,且点O l 在⊙O 2上,过A 作⊙O l l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( )A .5B .52C .52+D .537.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( )A .1B .2C .3D .48.两圆的半径分别是和r (R>r),圆心距为d ,若关于x 的方程0)(222=-+-d R rx x 有两个相等的实数根,则两圆的位置关系是( )A.一定内切B.一定外切C.相交D.内切或外切9.如图,⊙O l和⊙O2内切于点P,过点P的直线交⊙O l于点D,交⊙O2于点E,DA与⊙O2相切,切点为C.(1)求证:PC平分∠APD;(2)求证:PD·PA=PC2+AC·DC;(3)若PE=3,PA=6,求PC的长.10.如图,已知⊙O l和⊙O2外切于A,BC是⊙O l和⊙O2的公切线,切点为B、C,连结BA并延长交⊙O l于D,过D点作CB的平行线交⊙O2于E、F,求证:(1)CD是⊙O l的直径;(2)试判断线段BC、BE、BF的大小关系,并证明你的结论.11.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.12.已知半径分别为1和2的两个圆外切于点P,则点P到两圆外公切线的距离为.13.如图,7根圆形筷子的横截面圆半径为r,则捆扎这7根筷子一周的绳子的长度为.14.如图,⊙O l和⊙O2内切于点P,⊙O2的弦AB经过⊙O l的圆心O l,交⊙O l于C、D,若AC:CD:DB=3:4:2,则⊙O l与⊙O2的直径之比为( )A.2:7 B.2:5 C.2:3 D.1:315.如图,⊙O l与⊙O2相交,P是⊙O l上的一点,过P点作两圆的切线,则切线的条数可能是( )A.1,2 B.1,3 C.1,2,3 D.1,2,3,416.如图,相等两圆交于A、B两点,过B任作一直线交两圆于M、N,过M、N各引所在圆的切线相交于C,则四边形AMCN有下面关系成立( )A.有内切圆无外接圆B有外接圆无内切圆C.既有内切圆,也有外接圆D.以上情况都不对17.已知:如图,⊙O与相交于A,B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P P于点D,E,过点E作EF⊥CE交CB的延长线于F.(1)求证:BC是⊙P的切线;(2)若CD=2,CB=22,求EF的长;(3)若k=PE:CE,是否存在实数k,使△PBD恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.18.如图,⊙A和⊙B是外离两圆,⊙A的半径长为2,⊙B的半径长为1,AB=4,P为连接两圆圆心的线段AB上的一点,PC切⊙A于点C,PD切⊙B于点D.(1)若PC=PD,求PB的长;(2)试问线段AB上是否存在一点P,使PC2+PD2=4?,如果存在,问这样的P点有几个?并求出PB的值;如果不存在,说明理由;(3)当点F在线段AB上运动到某处,使PC⊥PD时,就有△APC∽△PBD.请问:除上述情况外,当点P在线段AB上运动到何处(说明PB的长为多少,或PC、PD 具有何种关系)时,这两个三角形仍相似;并判断此时直线CP与OB的位置关系,证明你的结论.19.如图,D、E是△ABC边BC上的两点,F是BA延长线上一点,∠DAE=∠CAF.(1)判断△ABD的外接圆与△AEC的外接圆的位置关系,并证明你的结论;(2)若△ABD的外接圆半径是△AEC的外接圆半径的2倍,BC=6,AB=4,求BE的长.20.问题:要将一块直径为2cm的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面.操作:方案一:在图甲中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求,画示意图) .方案二;在图乙中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画示意图);,探究:(1)求方案一中圆锥底面的半径;(2)求方案二中圆锥底面及圆柱底面的半径;(3)设方案二中半圆圆心为O,圆柱两个底面的圆心为O1、O2,圆锥底面的圆心为O3,试判断以O1、O2、O3、O为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛辅导资料(29) 概念的定义 内容提要和例题 1. 概念是反映事物本质属性的思维形态。概念是用词(或符号)表现出来的。例如:水果,人,上午,方程,直线,三角形 ,平行,相等以及符号=≌,∥,⊥等等都是概念。 2. 概念是概括事物的本质,事物的全体,事物的内在联系。例如水果这一概念指的是桃,李,苹果,…… 这一类食物的全体,它们共同的本质属性是有丰富的营养,充足的水份,可食的植物果实,而区别于其他食物(如蔬菜)。 人们在生活,学习,工作中时时接触概念,不断地学习概念,加深对概念的正确认识,同时运用概念进行工作,学习和生活, 3. 正确理解数学概念是掌握数学基础知识的前提。 4. 理解概念就是对名词,符号的含义的正确认识,一般包含两个方面: ① 明确概念所反映的事物的共同本质属性,即概念的内涵; ② 明确概念所指的一切对象的范围,即概念的外延。 例如“代数式”这一概念的内涵是:用运算符号连结数或表示数的字母的式子;概念的外延是一切具体的代数式――单项式,多项式,分式,有理式,根式,无理式。 又如“三角形”的概念内涵是三条线段首尾顺次相接的封闭图形;它的外延是不等边三角形,等腰三角形,等边三角形,直角三角形,钝角三角形,锐角三角形等一切三角形。 就是说要正确理解名词或符号所反映的“质”的特征和“量”的范围。 一般情况是,对概念下定义,以明确概念的内涵;把概念分类,可明确概念的外延。 5. 概念的定义就是用语句说明概念的含义,揭示概念的本质属性。 数学概念的基本定义方式是种属定义法。 在两个从属关系的概念中(如三角形与等腰三角形),外延宽的一个叫上位概念,也叫种概念,(如三角形),外延窄的一个叫下位概念,也叫属概念(如等腰三角形) 种属定义法可表示为: 被定义的概念=种概念+类征(或叫属差) 例如: 方 程=等 式+含未知数 又如: 无理数=小 数+无限不循环 或 无理数=无限小数+不循环 再如 等腰三角形=三角形+有两条边相等 6. 基本概念(即原始概念)是不下定义的概念,因为种属定义法,要用已定义过的上位概念来定义新概念,如果逐一追溯上去,必有最前面的概念是不下定义的概念。如点,线,集合等都是基本概念。 不定义的基本概念一般用描述法,揭示它的本质属性。 例如:几何中的“点”是这样描述的:线与线相交于点。点只表示位置,没有大小,不可再分。“直线”我们用“拉紧的线”和“纸张的折痕”来描述它的“直”,再用“直线是向两方无限延伸的”以说明它的“无限长”的本质属性。 有了点和直线的概念,才能顺利地定义射线,线段,角,三角形等。 7. 概念的定义也可用外延法。即列举概念的全部外延,以揭示概念的内涵。 例如:单项式和多项式统称整式;锐角三角形和钝角三角形合称斜三角形等都是外延定义法。 对同一个概念有时可用几种不同的定义法。例如:“有理数”可定义为 ① 有限小数和无限循环小数叫做有理数。②整数和分数统称有理数。 前者是用上位概念“小数”加上类征“有限,无限循环”来定义下位概念的,这是种属定义法;后者是用下位概念的“整数”、“分数”来定义上位概念的,它是外延法。 8. 正确的概念定义,要遵守几条规则。 ①不能循环定义。例如周角的360分之1叫做1度的角(对),360度的角叫做周角(错,这是循环定义) ② 定义概念的外延与被定义的概念的外延必须一致。例如若用“无限小数叫做无理数”来定义无理数就不对了,因为“无限小数”的外延比“无理数”的外延宽。 ③ 定义用语要简单明确,不要含混不清。 ④ 一般不用否定语句或比喻方法定义。 9. 定义可以反叙。一般地,定义既是判定又是性质。 例如:有两边相等的三角形叫做等腰三角形。这里“等腰三角形“是被定义的概念,而“有两边相等的三角形”是用来定义的概念,这两个概念的外延是相等的,所以两者可易位,即定义可反叙。 所以由定义可得 等腰三角形的判定:如果三角形有两条边相等,那么它是等腰三角形。 等腰三角形的性质:如果一个三角形是等腰三角形,那么它有两条边相等。 10. 数学概念要尽可能地用数学符号表示。 例如:等腰三角形,要结合图形写出两边相等,在△ABC中,AB=AC 直角三角形,要写出哪个是直角, 在Rt△ABC中,∠C=Rt∠ 又如 实数a的绝对值是非负数,记作 a≥0,“≥”读作大于或等于。 11. 运用定义解题是最本质的解题方法
例如:绝对值的定义,可转化为数学式子表示a=)0()0(0)0(aaaaa 含有绝对值符号的所有问题都可以根据其定义,化去绝对值符号后解答。 如:化简:1xx可等于)1)(1()10)(1()0)(1(xxxxxxxxx 解方程:1x=2x+1可化为 当x<-1时, -(x+1)=2x+1; 当x≥-1时, x+1=2x+1。 解不等式 x-1<2 可解两个不等式组:
2)1(0-1xx 2101xx
练习29 1. 叙述下列各概念(名词)的定义,并画出图形,用数学符号表示: ①算术平方根 ②开平方 ③三角形的高 ④线段的中垂线 ⑤点到直线的距离 ⑥两点的距离 2. 叙述下列各概念(名词)的定义,并指出定义中的“种”概念和 “类征”(属差) ①锐角 ②直角三角形 ③平行四边形 ④分式方程 3. 叙述下列各概念(名词)的定义,并举列说明它的外延 ① 整式 ②有理方程 ③梯形 ④平行四边形 4. 试用外延法定义下列各概念 ① 实数 ②有理式 ③非负数 5. 写出下列各概念的定义,并结合图形,把它说成判定和性质。 ① 等边三角形定义是_________________ A 如果△ABC中,AB=BC=AC,那么 ________ 如果△ABC是等边三角形,那么 __________
B C ② 互为余角的定义是__________________ 判定:如果________那么 _________ 性质:______________________ ③ 三角形中线的定义是_________________ 判定:如果△ABC中,_____那么_______ 性质:____________________ 6. 运用定义解题:
① 当a取值为____时,代数式22)1(aa是二次根式。 ② 当x____时,代数式xx33有意义 ③ 若最简根式131x与315y是同类二次根式,则x=__,y=__. ④ 已知7xn-2my与-3x5y2m-1是同类项,那么 m=___,n=___ ⑤ 已知m是整数,且61m与47m是同类二次根式,求m的值。
⑥ 已知21yx是方程ax-3y=5 的一个解,则a=____ ⑦ 已知2是方程5x2+kx-6=0的一个解,求k 值及另一个解 ⑧ 已知锐角△ABC中,两条高AD和BE相交于O,求证:∠CAD=∠CBE
⑨ 解方程 211xx (1990年泉州市初二数学双基赛题)
⑩ 解不等式:12x<3 21x≥5 7.已知方程x=ax+2有一个负根而且没有正根,那么a 的取值范围是( ) (A)a>-1 (B) a=1 (C) a≥1 (D)非以上答案 (1987年全国初中数学联赛题)
初中数学竞赛辅导资料(30) 概念的分类 内容提要 1. 概念的分类是揭示概念的外延的重要方法。当一个概念的外延有许多事物时,按照某一个标准把它分成几个小类,能更明确这一概念所反映的一切对象的范围,且能明确各类概念之间的区别与联系。 2. 概念分类必须用同一个本质属性为标准,把一种概念分为最邻近的类概念。例如三角形可按边的大小分类,也可用角的大小分类;又如整数可按符号性质分为正、负、零,也可以按除以模m的余数分类。 分别表示如下:
整数负整数零正整数整数奇数偶数 整数23133余除以余除以整除能被 整数3424144余除以余除以余除以整除能被 3. 一种概念所分成的各类概念应既不违漏,又不重复。即每一个被分的对象必须落到一个类,并且只能落到一个类。所分的各类概念的外延总和应当与被分的概念的外延总和相等。 例如 正整数按下列分类是正确的
正整数1合数质数 正整数正偶数正奇数 如果只分为质数和合数,则外延总和比正整数的外延小;如果分为奇数和偶数则外延总和比正整数外延大,因此都不对。 又如等腰三角形的定义是:有两条边相等的三角形叫做等腰三角形。 所以三角形按边的大小分类 应是分成两类:不等边三角形和等腰三角形, 而不能是三类:(不等边,等腰,等边)如果这样,三边相等的三角形将落入两类(等腰,等边),所以概念的分类与概念的定义有直接联系。 4. 二分法是常用的分类法。即把一种概念分为具有和不具有某种属性。
例如三角形等腰三角形不等边三角形平面内两条直线位置不相交相交 实数可分为:非负实数和负实数;四边形可分为:平行四边形和非平行四边形等等。 5. 从属关系的概念(上下位概念)是指一个概念的外延包含着另一个概念的外延。种概念与它所分的各类概念之间的关系就是从属关系。 例如:等边三角形从属于等腰三角形,而等腰三角形又从属于三角形 又如:代数式包含有理式和无理式,有理式包含整式和分式,整式包含单项式和多项式。其关系可图示如下:
6.并列关系的概念是两个概念的外延互相排斥,互不相容。由同一种概念分成的各类概念之间的关系是并列关系的概念(同位概念)。 例如:偶数和奇数;有理式和无理式;直角三角形、钝角三角形和锐角三角形,它们之间的关系都是并列关系的概念。可图示如下:
7.交叉关系的概念是指两个概念的外延有一部分重叠。 一种概念用不同的标准分类,所得的各类概念之间的关系 可能就有交叉关系的概念。 例如:正数和整数是交叉关系的概念,既是正数又是整数的数叫做正整数; 等腰三角形和直角三角形也是交叉关系的概念,外延重叠的部分,叫做等腰直角三角形。 图示如下:
例题30 例1.把一元一次不等式ax>b (a,b是实数,x是未知数)的解的集合分类。 解:把实数a,b按正,负,零分类,得不等式解的集合如下:
ax>b的解集时,解集是全体实数b时,解集是空集baab时,b不论何值xaab时,b不论何值xa00000且 例2.一个等腰三角形的周长是15cm,底边与腰长的差为3cm,求这个三角形的各边长。 解:设底边长为xcm,则腰长是2-15xcm
三角形 等腰三角形 等边三角形
代数式
有理式 整式 单项
锐角三角形
钝角
三角形
直角三角形无理式有理式
奇数偶数