小学奥数经典专题点拨:排列与组合

合集下载

北京小学奥数排列组合 例题

北京小学奥数排列组合 例题

排列组合问题教学目标:1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。

5.根据不同题目灵活运用计数方法进行计数。

知识点拨:一.加法原理:做一件事情,完成它有N类办法,在第一类办法中有M1中不同的方法,在第二类办法中有M2中不同的方法,……,在第N类办法中有M n种不同的方法,那么完成这件事情共有M1+M2+……+M n种不同的方法。

二.乘法原理:如果完成某项任务,可分为k个步骤,完成第一步有n1种不同的方法,完成第二步有n2种不同的方法,……完成第k步有nk种不同的方法,那么完成此项任务共有n1×n2×……×nk种不同的方法。

三.两个原理的区别做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。

每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)⏹做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理.任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同⏹这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来.四.排列及组合基本公式1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P mn表示.P mn=n(n-1)(n-2)……(n-m+1)=n!(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m个元素的组合数.用符号C mn表示.C mn = P mn/m!=n!(n-m)!×m!一般当遇到m比较大时(常常是m>时),可用C mn = C n-mn来简化计算。

小学数学中的简单排列和组合问题解析

小学数学中的简单排列和组合问题解析

小学数学中的简单排列和组合问题解析在小学数学的学习中,排列和组合是一种重要的数学运算,它们涉及到数学中的多种概念和方法。

本文将对小学数学中的简单排列和组合问题进行解析,并介绍相关的概念、方法和应用。

一、排列问题排列是指从若干不同的元素中选取若干个元素进行排列的操作。

排列的顺序很重要,因此不同的排列方式会得到不同的结果。

在小学数学中,常见的排列问题包括:选取若干个元素进行排队、选取若干个元素进行站队等。

1. 排队问题排队问题是指将若干个人或物按照一定的顺序进行排队的操作。

假设有5个人(A、B、C、D、E),要求将他们按照一定的顺序排成一队,求出共有多少种不同的排队方式。

根据排列的性质,我们知道第一个人有5种选择,第二个人有4种选择,以此类推,第五个人有1种选择。

因此,总的排队方式为5 × 4 × 3 × 2 × 1 = 120种。

2. 站队问题站队问题是指将若干个人或物按照一定的顺序进行站队的操作。

假设有5个人(A、B、C、D、E),要求将他们按照一定的顺序站成一列,求出共有多少种不同的站队方式。

与排队问题类似,第一个人有5种选择,第二个人有4种选择,以此类推,第五个人有1种选择。

因此,总的站队方式为5 × 4 × 3 × 2 ×1 = 120种。

二、组合问题组合是指从若干不同的元素中选取若干个元素进行组合的操作。

组合的顺序不重要,因此相同的元素组合方式只计算一次。

在小学数学中,常见的组合问题包括:从若干个物品中选取若干个进行搭配、从若干个元素中选取若干个进行组队等。

1. 搭配问题搭配问题是指从若干个物品中选取若干个进行搭配的操作。

假设有3个颜色的帽子(红、黄、蓝)、2种颜色的衣服(白、黑)和2种颜色的鞋子(棕、灰),要求从这些物品中选取一个帽子、一件衣服和一双鞋子进行搭配,求出共有多少种不同的搭配方式。

根据组合的性质,我们知道从3个帽子中选取一个的方式有3种选择,从2种衣服中选取一件的方式有2种选择,从2种鞋子中选取一双的方式有2种选择。

五年级奥数思维排列组合

五年级奥数思维排列组合

五年级奥数思维排列组合
排列组合是一种思维方式,它可以帮助孩子们更好地理解数学知识,提高学习效率。

五年级的孩子们正处在学习数学的关键时期,掌握排列组合的技能对他们来说至关重要。

首先,孩子们要学会排列组合的基本概念,比如排列和组合的定义,以及它们之间的区别。

其次,孩子们要学会如何计算排列组合的结果,比如从一组数字中挑选出三个数字的排列组合有多少种可能。

此外,孩子们还要学会如何利用排列组合来解决实际问题。

比如,如果有三个人要排队,那么他们可以有多少种排列方式?孩子们可以利用排列组合的思维方式来解决这个问题。

最后,孩子们要学会如何利用排列组合来解决更复杂的问题,比如从一组数字中挑选出三个数字,使它们的和等于某个特定的数字,这就是一个更复杂的问题,孩子们可以利用排列组合的思维方式来解决这个问题。

总之,排列组合是一种重要的思维方式,五年级的孩子们要学会掌握排列组合的技能,以便更好地理解数学知识,提高学习效率。

小学数学排列组合思维训练的案例与经验分享

小学数学排列组合思维训练的案例与经验分享

小学数学排列组合思维训练的案例与经验分享数学排列组合是小学阶段的重要知识点之一,但对于一些学生来说,这部分内容可能会相对较难理解和应用。

因此,本文旨在分享一些小学数学排列组合思维训练的案例和经验,帮助学生更好地掌握和应用这一知识点。

一、概念解释和基础练习在开始介绍实际案例之前,首先需要对排列组合的基本概念进行解释和掌握。

排列是指从一组不同元素中选取若干个元素按照一定的顺序排列,而组合则是从一组不同元素中选取若干个元素,顺序不重要。

理解这两个概念是掌握排列组合的基础,可以通过一些基础练习来加强对概念的理解。

例如,给出3个数字:1、2、3,可以让学生列出所有可能的排列和组合。

通过这种练习,学生可以逐渐熟悉排列和组合的概念,并通过实际操作来加深对其理解。

二、生活实例中的排列组合训练为了让学生更好地理解和应用排列组合知识,在教学中可以引入一些生活实例,通过实际案例进行排列组合思维的训练。

下面举几个例子:1. 电子密码锁的密码设置电子密码锁通常由4个数字键组成,要求设计一个4位数密码。

通过这个案例,可以引导学生思考如何从0至9这10个数字中选择4个来设置密码。

通过计算,学生可以得出10个数字中选择4个的排列数,帮助他们理解和应用排列组合的知识。

2. 出游的服装搭配假设一个学生要进行一次2天的郊游,他希望准备足够的衣服搭配。

现在学生手中有5件上衣和3条裤子可供选择。

通过这个案例,可以让学生思考如何进行衣服的搭配,即从5件上衣和3条裤子中选择两个进行搭配,让学生计算有多少种不同的搭配方式。

三、进一步拓展思维和应用除了以上的基础案例外,还可以通过一些更复杂的排列组合思维训练案例,进一步拓展学生的思维和应用能力。

1. 牛顿和苹果树牛顿坐在苹果树下,苹果树上有7个苹果。

牛顿想要选择3个苹果带回家,问他有多少种不同的选择方式?通过这个案例,可以让学生计算从7个苹果中选择3个的组合数,并进一步计算不同的选择方式的总数。

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解1. 学习目标掌握排列、组合问题的解题策略2.重点(1)特殊元素优先安排的策略:(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略.3.难点综合运用解题策略解决问题.4.学习过程:(1)知识梳理1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法.2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ⨯⨯⨯=...21种不同的方法.特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏.3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列.4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示.5.排列数公式:)、(+∈≤-=+---=N m n n m m n n m n n n n P m n ,)!(!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒:规定0!=16.组合:从n 个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n 个不同元素中取m 个不同元素的一个组合.7.组合数:从n 个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数,用符号m n C 表示.8.组合数公式:)!(!!!)1)...(2)(1(m n m n m m n n n n P P C m m m n m n-=+---== 组合数的两个性质:①m n n m n C C -= ;②11-++=m nm n m n C C C 特别提醒:排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按下列要求站一横排,分别有多少种不同的站法?(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端,乙不站右端.【解析】:(1)方法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有14P 种站法,然后其余5人在另外5个位置上作全排列有55P 种站法,根据分步乘法计数原理,共有站法:)(4805514种=P P方法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有25P 种站法,然后中间4人有44P 种站法,根据分步乘法计数原理,共有站法:(种)4804425=P P 方法三:若对甲没有限制条件共有66P 种站法,甲在两端共有552P 种站法,从总数中减去这两种情况的排列数,即共有站法:)(48025566种=-P P (2)方法一:先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有55P 种站法,再把甲、乙进行全排列,有22P 种站法,根据分步乘法计数原理,共有)(2402255种=P P 方法二:先把甲、乙以外的4个人作全排列,有44P 种站法,再在5个空档中选出一个供甲、乙放入,有15P 种方法,最后让甲、乙全排列,有22P 种方法,共有)(240221544种=P P P(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有44P 种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有25P 种站法,故共有站法为(种)4802544=P P 此外,也可用“间接法”,6个人全排列有66P 种站法,由(2)知甲、乙相邻有2402255=P P 种站法,所以不相邻的站法有)(480240720225566种=-=-P P P .(4)方法一:先将甲、乙以外的4个人作全排列,有44P 种,然后将甲、乙按条件插入站队,有223P 种,故共有(种))(14432244=⨯P P 站法. 方法二:先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有24P 种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有33P 种方法,最后对甲、乙进行排列,有22P 种方法,故共有(种)144223324=P P P 站法. (5)方法一:首先考虑特殊元素,甲、乙先站两端,有22P 种,再让其他4人在中间位置作全排列,有44P 种,根据分步乘法计数原理,共有(种)484422=P P 站法. 方法二:首先考虑两端两个特殊位置,甲、乙去站有22P 种站法,然后考虑中间4个位置,由剩下的4人去站,有44P 种站法,由分步乘法计数原理共有(种)484422=P P 站法. (6)方法一:甲在左端的站法有55P 种,乙在右端的站法有55P 种,甲在左端而且乙在右端的站法有44P 种,故甲不站左端、乙不站右端共有66P -255P +44P =504(种)站法.方法二:以元素甲分类可分为两类:①甲站右端有55P 种站法,②甲在中间4个位置之一,而乙又不在右端有441414P P P 种,故共有55P +441414P P P =504(种)站法.考点二:组合问题 例2. 男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.【解析】:(1)选法为(种)1202436=C C .(2)方法一:至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类计数原理可得总选法数为(种)2461644263436244614=+++C C C C C C C C . 方法二:因“至少1名女运动员”的反面为“全是男运动员”,故可用间接法求解.从10人中任选5人有510C 种选法,其中全是男运动员的选法有56C 种.所以“至少有1名女运动员”的选法(种)24656510=-C C . (3)方法一:可分类求解:“只有男队长”的选法为48C ;“只有女队长”的选法为48C ;“男、女队长都入选”的选法为38C ;所以共有248C +38C =196(种)选法.方法二:间接法:从10人中任选5人有510C 种选法.其中不选队长的方法有58C 种.所以“至少1名队长”的选法为510C -58C =196种.(4)当有女队长时,其他人任意选,共有49C 种选法;不选女队长时,必选男队长,共有48C 种选法,而且其中不含女运动员的选法有45C 种,所以不选女队长时的选法共有4548C C -种选法. 所以既有队长又有女运动员的选法共有191)(454849=-+C C C 种.考点三:综合问题例3.4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?【解析】:(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有种14422132414=P C C C ;(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也就是说另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有24C 种方法;4个球放进2个盒子可分成(3,1)、(2,2)两类: 第一类有序不均匀分组有8221134=P C C 种方法;第二类有序均匀分组有622222224=⨯P P C C 种方法. 故共有842222222422113424=⨯+)(P P C C P C C C 种. 当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )A.70 种B.80种C.100 种D.140 种【解析】:分为2男1女,和1男2女两大类,共有7024151425=+C C C C 种.解题策略:合理分类与准确分步的策略.2.2020年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事司机、导游、翻译、礼仪四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A.48 种B.12种C.18种D.36种【解析】:合理分类,通过分析分为(1)小张和小赵恰有1人入选,先从两人中选1人,然后把这个人在前两项工作中安排一个,最后剩余的三人进行全排列有24331212=P C C 种选法.(2)小张和小赵都入选,首先安排这两个人做前两项工作有222=P 种方法,然后在剩余的3人中选2人做后两项工作,有633=P 种方法.故共有363322331212=+P P P C C 种选法.解题策略:①.特殊元素优先安排的策略.②.合理分类与准确分步的策略.③.排列、组合混合问题先选后排的策略.3.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A.48B.12C.180D.162【解析】:分为两大类:(1)含有0,分步:①从另外两个偶数中选一个,有12C 种方法,②.从3个奇数中选两个,有23C 种方法;③.给0安排一个位置,只能在个、十、百位上选,有13C 种方法;④.其他的3个数字进行全排列,有33P 种排法,根据乘法原理共有10833132312=P C C C 种方法.(2)不含0,分步:①偶数必然是2和4 ;②奇数有23C 种不同的选法,③然后把4个元素全排列,共44P 种排法,不含0 的排法有724423=P C 种.根据加法原理把两部分加一块得108+72=180个4.甲组有5名男同学,3名女同学;乙组有6名男同学,2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种【解析】:4人中恰有1名女同学的情况分为两种,即这1名女同学或来自甲组,或来自乙组,则所有不同的选法共有345121625261315=+C C C C C C 种选法.解题策略:合理分类与准确分步的策略.5.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中至少有1门不相同的选法共有( )A.6B.12C.30D.36【解析】:法一:甲、乙所选的课程中至少有1门不相同的选法可以分为两类:⑴.甲、乙所选的课程中2门均不相同,甲先从4门中任选2门,乙选取剩下的2门,有62224=C C 种.⑵.甲、乙所选的课程中有且只有1门相同,分为2步:①从4门中先任选一门作为相同的课程,有414=C 种选法,②甲从剩余的3门中任选1门,乙从最后剩余的2门中任选1门,有61213=C C 种选法,由分步计数原理此时共有24121314=C C C 种.最后由分类计数原理,甲、乙所选的课程中至少有1门不相同的选法共有6+24=30种. 故选C .法二:可以先让甲、乙任意选择两门,有362424=C C 种方法,然后再把两个人全相同的情况去掉,两个人全相同,可以将甲与乙看成为同一个人,从4门中任选两门有624=C 种选法,所以至少有一门不相同的选法为30242424=-C C C 种不同的选法. 解题策略:正难则反,等价转化的策略.6.用0 到9 这10 个 数字,可以组成没有重复数字的三位偶数的个数为 ( )A.324B.328C.360 D .648【解析】:第一类个位是0,共29P 种不同的排法;第二类个位不是0,共181814C C C 种不同的解法.故共有29P +181814C C C =328(个).解题策略:合理分类与准确分步的策略.7.从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的总数为( )A.85B.56C.49D.28【解析】:合理分类,甲、乙全被选中,有1722C C 种选法,甲、乙有一个被选中,有2712C C 种不同的选法,共1722C C +2712C C =49种不同的选法.解题策略:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略.8.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的总数为( )A.4B.18C.24D.30【解析】:将甲、乙、丙、丁四名学生分成三组,则共有24C 种不同的分法,然后三组进行全排列共33P 种不同的方法;最后再把甲、乙分到同一个班的情况排除掉,共33P 种不同的排法.所以总的排法为24C 33P -33P =30种.注意:这里有一个分组的问题,即四个元素分成三组有几种不同的分法的问题.解题策略:⑴.正难则反、等价转化的策略⑵.相邻问题捆绑处理的策略⑶.排列、组合混合问题先选后排的策略;解排列组合的应用题要注意以下几点:仔细审题,判断是排列还是组合问题,要按元素的性质分类,按事件发生的过程进行分步.深入分析,严密周详,注意分清是乘还是加,要防止重复和遗漏,辩证思维,多角度分析,全面考虑.对限制条件较复杂的排列组合问题,要周密分析,设计出合理的方案,把复杂问题分解成若干简单的基本问题后用两个计数原理来解决.由于排列组合问题的答案一般数目较大,不易直接验证,因此在检查结果时,应着重检查所设计的解决方案是否完备,有无重复和遗漏,也可采用不同的方法求解.看看结果是否相同,在对排列组合问题分类时,分类标准应统一,否则易出现遗漏和重复.初夏早上六点,清亮透明的月儿还躲藏在云朵里,不忍离去,校园内行人稀少,我骑着单车,晃晃悠悠的耷拉着星松的睡眼。

小学奥数排列组合教案

小学奥数排列组合教案

小学奥数-排列组合教案一、教学目标1. 让学生理解排列组合的概念,掌握排列组合的基本算法。

2. 培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3. 激发学生的学习兴趣,培养学生的耐心和细心。

二、教学内容1. 排列的概念和排列数公式2. 组合的概念和组合数公式3. 排列组合的综合应用三、教学重点与难点1. 教学重点:排列组合的概念,排列数和组合数的计算方法。

2. 教学难点:排列组合的综合应用,解决实际问题。

四、教学方法1. 采用直观演示法,让学生通过实际操作理解排列组合的概念。

2. 采用案例教学法,分析典型例题,引导学生运用排列组合知识解决实际问题。

3. 采用讨论法,鼓励学生提问、交流、探讨,提高学生的逻辑思维能力。

五、教学安排1. 课时:每课时约40分钟2. 教学步骤:引入新课讲解概念举例讲解练习巩固课堂小结3. 课后作业:布置相关练习题,巩固所学知识。

教案一、引入新课1. 老师:同学们,你们平时喜欢做游戏吗?今天我们就来玩一个有趣的游戏,请大家观察这些数字(出示数字卡片),看看你能发现什么规律?2. 学生观察数字卡片,发现规律。

二、讲解概念1. 老师:同学们观察得很仔细,这些数字卡片其实就是我们今天要学习的内容——排列组合。

什么是排列呢?2. 学生回答:排列是指从n个不同元素中取出m(m≤n)个元素的所有可能的排列的个数。

3. 老师:很好,那什么是组合呢?4. 学生回答:组合是指从n个不同元素中取出m(m≤n)个元素的所有可能的组合的个数。

5. 老师:同学们掌握得很好,我们来学习排列数和组合数的计算方法。

三、举例讲解1. 老师:我们以n=5,m=3为例,来计算排列数和组合数。

2. 学生计算排列数:5×4×3=60,计算组合数:C(5,3)=10。

3. 老师:同学们计算得很好,这些排列和组合在实际生活中有哪些应用呢?四、排列组合在实际生活中的应用1. 老师:比如说,我们有一排5个位置,要从中选出3个位置来安排3个同学,就有60种排列方式,10种组合方式。

数学中的排列与组合问题解析

数学中的排列与组合问题解析在数学中,排列与组合是一类常见的问题类型。

它们涉及到从给定的元素集合中选择若干个元素,并对其进行不同的排列或组合。

这些问题在数学、计算机科学、概率统计等领域中都有广泛的应用。

本文将对排列与组合问题进行详细的解析和讨论。

一、排列问题排列是指从给定的元素集合中选择若干个元素,并按照一定的顺序进行排列。

在排列中,元素的顺序是重要的,不同的顺序会得到不同的结果。

下面我们来看一个经典的排列问题。

例子1:从A、B、C三个字母中选择两个字母进行排列,列出所有可能的结果。

解析:我们可以使用树状图的方式来解决这个问题。

首先,我们选择第一个字母,可以选择A、B或C,然后在第一个字母的基础上选择第二个字母,仍然可以选择A、B或C。

因此,我们可以得到以下的树状图:```A B C/ \ / \ / \A B A B A B/ \ / \ / \B C C A B C```从树状图中可以看出,共有6个不同的排列结果,分别是AB、AC、BA、BC、CA和CB。

排列问题的解法可以通过递归、循环或数学公式来实现。

递归是一种常见的解法,它通过不断缩小问题规模,将大问题转化为小问题来求解。

循环则是通过循环遍历所有可能的选择来求解。

数学公式则是通过计算排列的总数来求解。

二、组合问题组合是指从给定的元素集合中选择若干个元素,并不考虑元素的顺序。

在组合中,元素的选择是重要的,但是元素的顺序不重要。

下面我们来看一个经典的组合问题。

例子2:从A、B、C三个字母中选择两个字母进行组合,列出所有可能的结果。

解析:我们可以使用树状图的方式来解决这个问题。

首先,我们选择第一个字母,可以选择A、B或C,然后在第一个字母的基础上选择第二个字母,但是需要排除掉已经选择过的字母。

因此,我们可以得到以下的树状图:```A B C/ \ /B C C```从树状图中可以看出,共有3个不同的组合结果,分别是AB、AC和BC。

组合问题的解法可以通过递归、循环或数学公式来实现。

小学奥数 排列之捆绑法 精选例题练习习题(含知识点拨)

1.使学生正确理解排列的意义;2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列;3.掌握排列的计算公式;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等.一、排列问题在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.排列的基本问题是计算排列的总个数.从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P .根据排列的定义,做一个m 元素的排列由m 个步骤完成:步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; ……步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.二、排列数一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅()(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅()() .在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.【例 1】 4个男生2个女生6人站成一排合影留念,有多少种排法?如果要求2个女生紧挨着排在正中间有多少种不同的排法?【考点】排列之捆绑法 【难度】2星 【题型】解答教学目标例题精讲知识要点7-4-2.排列之捆绑法【解析】 ⑴ 4男2女6人站成一排相当于6个人站成一排的方法,可以分为六步来进行,第一步,确定第一个位置的人,有6种选择;第二步,确定第二个位置的人,有5种选择;第三步,排列第三个位置的人,有4种选择,依此类推,第六步,最后一个位置只有一种选择.根据乘法原理,一共有654321720⨯⨯⨯⨯⨯=种排法.⑵ 根据题意分为两步来排列.第一步,先排4个男生,一共有432124⨯⨯⨯=种不同的排法;第二步,将2个女生安排完次序后再插到中间一共有2种方法.根据乘法原理,一共有24248⨯=种排法.【答案】⑴720 ⑵48【巩固】 4男2女6个人站成一排合影留念,要求2个女的紧挨着有多少种不同的排法? 【考点】排列之捆绑法 【难度】2星 【题型】解答 【解析】 分为三步:第一步:4个男得先排,一共有432124⨯⨯⨯=种不同的排法; 第二步:2个女的排次序一共有2种方法;第三步:将排完次序的两名女生插到排完次序的男生中间,一共有5个位置可插. 根据乘法原理,一共有2425240⨯⨯=种排法.【答案】240【例 2】 将A 、B 、C 、D 、E 、F 、G 七位同学在操场排成一列,其中学生B 与C 必须相邻.请问共有多少种不同的排列方法?【考点】排列之捆绑法 【难度】2星 【题型】解答 【关键词】2007年,台湾,第十一届,小学数学世界邀请赛 【解析】 (法1)七人排成一列,其中B 要与C 相邻,分两种情况进行考虑.若B 站在两端,B 有两种选择,C 只有一种选择,另五人的排列共有55P 种,所以这种情况有5521240P ⨯⨯=种不同的站法.若B 站在中间,B 有五种选择,B 无论在中间何处,C 都有两种选择.另五人的排列共有55P 种,所以这种情况共有55521200P ⨯⨯=种不同的站法. 所以共有24012001440+=种不同的站法.(法2)由于B 与C 必须相邻,可以把B 与C 当作一个整体来考虑,这样相当于6个元素的全排列,另外注意B 、C 内部有2种不同的站法, 所以共有6621440P ⨯=种不同的站法.【答案】1440【巩固】6名小朋友、、、、、A B C D E F 站成一排,若,A B 两人必须相邻,一共有多少种不同的站法?若、A B 两人不能相邻,一共有多少种不同的站法?【考点】排列之捆绑法 【难度】3星 【题型】解答 【解析】 若A 、B 两人必须站在一起,那么可以用“捆绑”的思想考虑,甲和乙两个人占据一个位置,但在这个位置上,可以甲在左乙在右,也可以甲在右乙在左.因此站法总数为2525P P ⨯=2×120=240(种) A 、B 两个人不能相邻与A 、B 两个人必须相邻是互补的事件,因为不加任何条件的站法总数为66P =720(种),所以A 、B 两个人不能相邻的站法总数为720-240=480(种).【答案】480【例 3】 某小组有12个同学,其中男少先队员有3人,女少先队员有4人,全组同学站成一排,要求女少先队员都排一起,而男少先队员不排在一起,这样的排法有多少种?【考点】排列之捆绑法 【难度】3星 【题型】解答 【解析】 把4个女少先队员看成一个整体,将这个整体与不是少先队员的5名同学一块儿进行排列,有66654321720P =⨯⨯⨯⨯⨯=(种)排法.然后在七个空档中排列3个男少先队员,有3776P =⨯5210⨯=(种)排法,最后4个女少先队员内部进行排列,有44432124P =⨯⨯⨯=(种)排法.由乘法原理,这样的排法一共有720210243628800⨯⨯=(种).【答案】3628800【例 4】 学校乒乓球队一共有4名男生和3名女生.某次比赛后他们站成一排照相,请问:(1)如果要求男生不能相邻,一共有多少不同的站法?(2)如果要求女生都站在一起,一共有多少种不同的站法?【考点】排列之捆绑法 【难度】3星 【题型】解答 【解析】 (1)要求男生不能相邻,则可以先排女生,然后把男生插进女生之间的空位里.因为有3名女生,考虑到两端也可以放人,所以一共有四个空位.则站法总数为: 3434P P 624144⨯=⨯=(种)(2)根据题意,采用捆绑法,将所有女生看成一个整体,则站法总数为: 5353P P 1206720⨯=⨯=(种).【答案】(1) 144 (2) 720【例 5】 书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果只要求童话书和漫画书不要分开有多少种排法?【考点】排列之捆绑法 【难度】3星 【题型】解答 【解析】 ⑴每种书内部任意排序,分别有4321⨯⨯⨯,54321⨯⨯⨯⨯,321⨯⨯种排法,然后再排三种类型的顺序,有321⨯⨯种排法,整个过程分4步完成.432154321321321103680⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=种,一共有103680种不同排法.⑵方法一:首先将漫画书和童话书全排列,分别有432124⨯⨯⨯=、54321120⨯⨯⨯⨯=种排法,然后将漫画书和童话书捆绑看成一摞,再和3本故事书一起全排列,一共有54321120⨯⨯⨯⨯=种排法,所以一共有24120120345600⨯⨯=种排法.方法二:首先将三种书都全排列,分别有24、120、6种排法,然后将排好了顺序的漫画书和童话书,整摞得先后插到故事书中,插漫画书时有4个地方可以插,插童话书时就有5个地方可插,所以一共有24120654345600⨯⨯⨯⨯=种排法.【答案】⑴103680 ⑵345600【例 6】 四年级三班举行六一儿童节联欢活动.整个活动由2个舞蹈、2个演唱和3个小品组成.请问:如果要求同类型的节目连续演出,那么共有多少种不同的出场顺序?【考点】排列之捆绑法 【难度】2星 【题型】解答 【解析】 要求同类型的节目连续演出,则可以应用“捆绑法”.先对舞蹈、演唱、小品三种节目做全排列, 再分别在各类节目内部排列具体节目的次序.因此出场顺序总数为: 32233223P P P P ⨯⨯⨯=144(种).【答案】144【例 7】 停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案?【考点】排列之捆绑法 【难度】2星 【题型】解答 【解析】 把4个空车位看成一个整体,与8辆车一块进行排列,这样相当于9个元素的全排列,所以共有99362880P =.【答案】362880【例 8】 a ,b ,c ,d ,e 五个人排成一排,a 与b 不相邻,共有多少种不同的排法? 【考点】排列之捆绑法 【难度】2星 【题型】解答 【解析】 解法一:插空法,先排c ,d ,e ,有33P 种排法.在c ,d ,e 三个人之间有2个空,再加上两端,共有4个空,a ,b 排在这4个空的位置上,a 与b 就不相邻,有24P 种排法.根据分步计数乘法原理,不同的排法共有3234P P 72=(种).解法二:排除法,把a ,b 当作一个人和其他三个人在一起排列,再考虑a 与b 本身的顺序,有4242P P 种排法.总的排法为55P .总的排法减去a 与b 相邻的排法即为a 与b 不相邻的排法,应为542542P P P 72-=(种).【答案】72【巩固】 8人围圆桌聚餐,甲、乙两人必须相邻,而乙、丙两人不得相邻,有几种坐法? 【考点】排列之捆绑法 【难度】3星 【题型】解答【解析】n 人的环状排列与线状排列的不同之处在于:123n a a a a 、231n a a a a 、3412n a a a a a 、…、11n n a a a -在线状排列里是n 个不同的排列,而在环状排列中是相同的排列.所以,n 个不同的元素的环状排列数为11P P nn n n n--=.甲、乙两人必须相邻,可把他们看作是1人(当然,他们之间还有顺序),总排列数为2626P P .从中扣除甲、乙相邻且乙、丙也相邻(注意,这和甲、乙、丙三人相邻是不同的.如甲在乙、丙之间合于后者,但不合于前者)的情况2525P P 种.所以,符合题意的排法有26252625P P P P 1200-=(种).【答案】1200。

小学排列与组合知识点整理

小学排列与组合知识点整理在小学数学中,排列与组合是重要的概念和技巧,它们常常用于解决计数问题。

在这篇文章中,我们将对小学排列与组合的知识点进行整理和解释。

一、排列排列是指从一组元素中选取一部分元素按照一定的顺序进行排列的方法。

小学生学习排列时通常涉及的是不重复的排列,即选取的元素不重复。

以下为小学排列的几个常见概念:1. 重复排列:从n个元素中选取m个元素排列,元素可重复选取。

重复排列的个数为n^m。

2. 不重复排列:从n个元素中选取m个元素排列,元素不可重复选取。

不重复排列的个数为n!/(n-m)!3. 循环排列:所有元素都不重复,但它们的相对位置可以变化。

循环排列的个数为(n-1)!4. 圆排列:所有元素都不重复,它们的相对位置和顺序都不可变。

圆排列的个数为(n-1)!二、组合组合是指从一组元素中选取一部分元素,不考虑元素的顺序进行组合的方法。

小学生学习组合时通常涉及的是不重复的组合,即选取的元素不重复。

以下为小学组合的几个常见概念:1. 重复组合:从n个元素中选取m个元素组合,元素可重复选取。

重复组合的个数为C(n+m-1, m)。

2. 不重复组合:从n个元素中选取m个元素组合,元素不可重复选取。

不重复组合的个数为C(n, m)或也可以表示为n!/(m!(n-m)!)。

三、应用举例以下是一些常见的小学排列与组合的应用举例:1. 排队问题:假设班级中有12个学生,老师要从中选取3位学生排队,问一共有多少种不同的排队方式?这是一个不重复的排列问题,所以排队方式的个数为12!/(12-3)!。

2. 摆放书籍:图书馆有10本书籍,要将其中4本书摆放到书架上,问一共有多少种不同的摆放方式?这是一个不重复的组合问题,所以摆放方式的个数为C(10, 4)。

3. 组队比赛:一个班级中有20位学生,要从中选取4个学生组成一支队伍参加比赛,问一共有多少种不同的队伍组合?这是一个不重复的组合问题,所以队伍组合的个数为C(20, 4)。

小学数学点知识归纳数的排列与组合

小学数学点知识归纳数的排列与组合数的排列与组合是小学数学中的重要知识点之一。

它涉及到数的排列顺序和组合选择的问题,对于培养学生的逻辑思维和解决问题的能力具有重要作用。

本文将对小学数学中数的排列与组合的概念及其应用进行归纳总结。

一、概念解析1. 数的排列数的排列是指从一组不同的数中按照一定的顺序取出若干个进行组合。

排列的顺序是重要的,不同的顺序会产生不同的排列。

2. 数的组合数的组合是指从一组不同的数中按照一定的规则选择出若干个进行组合,顺序不重要。

组合的顺序不同,但是组合的数目是相同的。

二、数的排列在数的排列问题中,我们常常用到阶乘的概念。

阶乘表示从1到给定正整数之间所有整数的乘积。

例如,阶乘5! = 5 × 4 × 3 × 2 × 1 = 120。

1. 直接排列法直接排列法是指对于给定的一组数,直接按照排列的定义进行计算。

例如,从{1, 2, 3}中取出2位数的排列,可以得到以下6个排列:{1, 2},{1, 3},{2, 1},{2, 3},{3, 1},{3, 2}。

2. 公式法对于从n个不同的数中取出m位数的排列,可以使用排列公式进行计算。

排列公式为:P(n, m) = n! / (n-m)!例如,从{1, 2, 3, 4}中取出3位数的排列,可以计算出:P(4, 3) = 4! / (4-3)! = 24 / 1 = 24。

三、数的组合在数的组合问题中,我们常常用到组合数的概念。

组合数表示从给定的一组数中按照一定规则选择出若干个进行组合的数目。

1. 直接组合法直接组合法是指对于给定的一组数,按照组合的定义进行计算。

例如,从{1, 2, 3}中取出2个数的组合,可以得到以下3个组合:{1, 2},{1, 3},{2, 3}。

2. 公式法对于从n个不同的数中取出m个数的组合,可以使用组合公式进行计算。

组合公式为:C(n, m) = n! / (m! × (n-m)!)例如,从{1, 2, 3, 4}中取出2个数的组合,可以计算出:C(4, 2) = 4! / (2! × (4-2)!) = 24 / (2 × 2) = 6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列与组合
【有条件排列组合】
例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______
个没有重复数字的三位数。

(哈尔滨市第七届小学数学竞赛试题)
讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能
为0,故共有9种不同的取法。

因为百位上已取走一个数字,所以十位上只剩下9个数字了,故十位
上有9种取法。

同理,百位上和个位上各取走一个数字,所以还剩下8个数字,供个
位上取。

所以,组成没有重复数字的三位数共有
9×9×8=648(个)。
例2 甲、乙、丙、丁四个同学排成一排,从左到右数,如果甲不排
在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不
排在第四个位置上,那么不同的排法共有______种。

(1994年全国小学数学奥林匹克初赛试题)
讲析:因每个人都不排在原来的位置上,所以,当乙排在第一位时,
其他几人的排法共有3种;同理,当丙、丁排在第一位时,其他几人的排
法也各有3种。

因此,一共有9种排法。
例3 有一种用六位数表示日期的方法,如890817表示1989年8月
17日,也就是从左到右第一、二位数表示年,第三、四位数表示月,第
五、六位数表示日。如果用这种方法表示1991年的日期,那么全年中六
个数字都不相同的日期共有______天。

(1991年全国小学数学奥林匹克决赛试题)
讲析:第一、二位数字显然只能取9和1,于是第三位只能取0。
第五位数字只能取0、1、2或3,而0和1已取走,当取3时,第六
位上只能取0和1,显然不行。因此,第五位上只能取2。
于是,第四位上只能取3、4、5、6、7、8;第六位上也只能取3、4、
5、6、7、8,且第四、六位上数字不能取同。

所以,一共有 6×5=30(种)。
【环形排列】
例1 编号为1、2、3、4的四把椅子,摆成一个圆圈。现有甲、乙、
丙、丁四人去坐,规定甲、乙两人必须坐在相邻座位上,一共有多少种坐
法?

(长沙市奥林匹克代表队集训试题)
讲析:如图5.87,四把椅子排成一个圆圈。


当甲坐在①号位时,乙只能坐在②或④
号位上,则共有4种排法;同理,当甲分别坐在②、③、④号位上时,
各有4种排法。

所以,一共有16种排列法。
例2 从1至9这九个数字中挑出六个不同的数填在图5.88的六个圆
圈中,使任意相邻两个圆圈内数字之和都是质数,那么最多能找出______
种不同的挑法来。(挑出的数字相同,而排列次序不同的都只算一种)


(北京市第九届“迎春杯”小学数学竞赛试题)
讲析:在1至9这九个自然数中,奇数有1、3、5、7、9五个,偶数
有2、4、6、8四个。要使排列之后,每相邻两个数字之和为质数,则必
须奇数与偶数间隔排列,也就是每次取3个奇数和3个偶数。

从五个奇数中,取3个数共有10种方法;
从四个偶数中,取3个数共有4种方法。
但并不是每一种3个奇数和3个偶数都可以排成符合要求的排列。经
检验,共有26种排法。

相关文档
最新文档