四川省龙泉驿区2016-2017学年高二上学期期末考试试卷bytian 理科数学 Word版含答案

合集下载

(完整word版)高二上学期数学期末测试题.doc

(完整word版)高二上学期数学期末测试题.doc

高 中 学 生 学 科 素 质 训 练高二 上 学 期 数学期末测试题题号一 二三总分171819202122得分一、选择题(本大题共 12 小题,每题 5 分,共 60 分)1.设会合 A{ x | x 2 10}, B { x | log 2 x 0 |}, 则 AB 等于()A . { x | x 1}B . { x | x 0}C . { x | x1}D . { x | x1或 x 1}2.若不等式 | ax2 | 6 的解集为(- 1, 2),则实数 a 等于()A . 8B . 2C .- 4D .- 83.若点( a , b )是直线 x +2y+1=0 上的一个动点,则 ab 的最大值是()A .11C .1 D .12B .81644.求过直线 2x - y - 10=0 和直线 x+y+1=0 的交点且平行于3x - 2y+4=0 的直线方程()A . 2x+3y+6=0B . 3x - 2y - 17=0C . 2x -3y - 18=0D . 3x - 2y -1=05.圆 (x1)2y21的圆心到直线 y3x 的距离是()3A .13C . 1D .32B .26.假如双曲线的实半轴长为2,焦距为 6,那么该双曲线的离心率为 ()A . 36C . 3D . 7B .2 227.过椭圆x2y21的焦点且垂直于x 轴的直线 l 被此椭圆截得的弦长为()43A .3B .3C. 3D.223 x 4 5cos ,8.椭圆3sin (为参数)的焦点坐标为()yA .( 0, 0),( 0,- 8)B.(0, 0),(- 8, 0)C.( 0, 0),( 0, 8)D.( 0, 0),( 8, 0)9.点P(1,0)到曲线x t 2(此中参数 t R )上的点的最短距离为()y2tA .0B .1C.2D.210.抛物线的极点在原点,对称轴为坐标轴,焦点在直线3x 4 y12 0 上,则抛物线的方程为()A .y216x B.x212 yC.y216x或 x 212 y D.以上均不对11.在同一坐标系中,方程a2 x2b2 y 21与 ax by 20(a b0) 的曲线大概是()12.在直角坐标系 xOy 中,已知△ AOB 三边所在直线的方程分别为x 0, y 0,2 x 3 y30 ,则△ AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是()A.95B.91C.88D. 75二、填空题(本大题共 4 小题,每题 4 分,共 16 分)13.椭圆5x2ky 2 5 的一个焦点是(0,2) ,那么k.14.已知直线 x =a (a>0) 和圆( x -1)2+ y 2 = 4 相切,那么 a 的值是15.如图, F1,F2分别为椭圆x2y21的左、右焦点,点 P 在椭圆上,△ POF2是面积为3 a 2b2的正三角形,则b2的值是.16.函数y lg(| x |x)的定义域是__.1x 2三、解答题(本大题共 6 小题,共74 分)17.解对于x的不等式:log a(4 3x x2) log a(2x 1) log a2,(a0,a 1) .(12分) 18.设A( c,0), B(c,0)(c0) 为两定点,动点P到A点的距离与到 B 点的距离的比为定值a(a 0) ,求P点的轨迹.(12分)19.某厂用甲、乙两种原料生产 A 、 B 两种产品,已知生产1t A 产品, 1t B 产品分别需要的甲、乙原料数,可获取的收益数及该厂现有原料数以下表所示.问:在现有原料下, A 、B产品应各生产多少才能使收益总数最大?列产品和原料关系表以下:产品所需原料原料甲原料( t)乙原料( t)收益(万元)(12 分)A 产品 B 产品总原料( 1t)( 1t)( t)2510 5318 43知抛物线的极点在原点,它的准线经过曲线x2y2x 轴垂直,a1 的右焦点,且与2b2抛物线与此双曲线交于点(3,6 ),求抛物线与双曲线的方程.(12分)221.已知点P到两个定点M ( 1,0) 、N (1,0) 距离的比为 2 ,点N到直线PM的距离为1,求直线 PN 的方程.(12分)y22.已知某椭圆的焦点是F1 ( 4,0) 、 F2 (4,0) ,过并垂直于x 轴的直线与椭圆的一个交点为B,F1O A点 F2 BC且F2x|F1B||F2B| 10,椭圆上不一样的两点B'A( x1 , y1 ) 、 C (x2 , y2 ) 知足条件: | F2 A |、 | F2 B | 、 | F2 C | 成等差数列.(I )求该椭圆的方程;(II )求弦 AC 中点的横坐标.( 14 分)参照答案一.选择题(本大题共12 小题,每题 5 分,共 60 分)题号123456789101112答案A C C B A C C D B C D B 二.填空题(本大题共 4 小题,每题 4 分,共 16 分)13. 114. 315.2316.(-1,0)三.解答题(本大题共 6 小题,共 74分)17. (12分 )[ 分析 ] :原不等式可化为log a( 4 3 x x2 ) log a 2(2x1)2x10x 1 2当 a>1 时有43x x20141x2x43x x22(2x1)3x22(中间一个不等式可省)2 x10x 1 2当 0<a<1 时有43x x201x42x 443x x 22(2 x1)x或x23∴当 a>1 时不等式的解集为12;x2当 0<a<1 时不等式的解集为2x4 18.( 12 分)[分析 ]:设动点 P 的坐标为( x, y).由 |PA|a(a0),得(x c)2y2.|PB|( x c)2a y 2化简得(1a 2)x22 (1a2)x c2(1a2)(1a2)y20.c22c(1a2)221 2a2( 2ac2当a 1时,得x x c y0 ,整理得( x)2.1a2c)2y 2a1 a 1当 a=1 时,化简得 x=0.因此当 a1时,P点的轨迹是以(a21c,0)为圆心,|22ac|为半径的圆;2a1a1当 a=1 时, P 点的轨迹为y 轴.19.( 12 分)[分析 ]:设生产 A 、B 两种产品分别为xt,yt,其收益总数依据题意,可得拘束条件为2x5y10 6x3y18作出可行域如图:x0, y0为 z 万元 ,y25P( -,1)2352x+5y=10 x 6x+3y=18目标函数z=4x+3y,作直线 l0:4x+3y=0,再作一组平行于 l0的直线 l : 4x+3 y =z ,当直线 l 经过 P 点时 z=4x+3y 获得最大值,由2x 5 y 10,解得交点 P (5,1) 6x3y182因此有z P53113(万元 )42因此生产 A 产品 2. 5t, B 产品 1t 时,总收益最大,为13 万元.12 分)[ 分析 ] :由题意可知抛物线的焦点到准线间的距离为2C(即双曲线的焦距).设抛物线的方程为y24cx.∵抛物线过点(3, 6 )64c3c1即a 2 b 2 1①22又知(3) 2( 6)213 2196 1②由①②可得a 2, b 2a 2b 24a 2 b 244∴所求抛物线的方程为y 24x ,双曲线的方程为 4 x24y21321.( 12 分)[ 分析 ] :设点P的坐标为( x, y),由题设有| PM |2 |PN |即(x 1)2y 22(x 1) 2y 2整理得 x2y 26x10 ①由于点 N 到 PM 的距离为1,|MN |2因此∠ PMN30 ,直线PM的斜率为33直线 PM 的方程为y3( x 1)②3将②式代入①式整理得x 24x10解得 x 2 3 , x23代入②式得点P 的坐标为( 23,13)或 (23,13);(23,13)或 (23,13)直线 PN 的方程为y x1或 y x122.( 14 分)[分析 ]:( I)由椭圆定义及条件知2a|F1B| |F2B|10(完好word 版)高二上学期数学期末测试题.doc得 a 5,又 c4 ,因此 b a 2 c 2 3y故椭圆方程为x 2 y 2 1A B259C( II )由点 B (4, y B ) 在椭圆上,得OFF 12| F 2 B | | y B |9B'5解法一:x由于椭圆右准线方程为x 25 ,离心率为 4 .4 54 25 依据椭圆定义,有 | F 24 25x 1 ) , | F 2C |A | (5 (5 44由 | F 2A |, | F 2B |, | F 2C |成等差数列,得4 25x 1 ) (45由此得出 x 1x 2 8.设弦 AC 的中点为 P (x 0 , y 0 ) ,x 1 x 28 4 .则 x 022解法二:x 2 )4 25 x 29 ,5() 245由 | F 2A |,| F 2B |, ||F 2C 成等差数列,得(x 1 4) 2y 12( x 24)2 y 222 9 ,5由 A ( x 1 , y 1 ) 在椭圆x 2y 21上,得 y 129(25 x 12 )25 925因此( x 1 2228x 1 1692)(54 214)y 1x 1(25x 1x 1 )( 25 4x 1 )2555同理可得 (x 2 4)2y 221(25 4x 2 )5将代入式,得 1(25 4 x 1 )1(25 4 x 2 )18 . 5 55因此 x 1 x 2 8 设弦 AC 的中点为 P (x 0 , y 0 )则x ax 1 x 2824 .2。

四川省成都市龙泉中学2016-2017学年高二(下)入学数学试卷(理科)

四川省成都市龙泉中学2016-2017学年高二(下)入学数学试卷(理科)

2016-2017学年四川省成都市龙泉中学高二(下)入学数学试卷(理科)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合A={x|x2﹣x﹣2<0},且A∪B=A,则集合B可能是()A.{0,1}B.{x|x<2}C.{x|﹣2<x<1}D.R2.已知命题p:∃x0∈R,x02+1<0,则()A.¬p:∀x∈R,x2+1>0 B.¬p:∃x∈R,x2+1>0C.¬p:∀x∈R,x2+1≥0 D.¬p:∃x∈R,x2+1≥03.点P在边长为1的正方形ABCD内运动,则动点P到定点A的距离|PA|<1的概率为()A.B.C.D.π4.设数列{a n}的通项公式,其前n项和为S n,则S2016=()A.2016 B.1680 C.1344 D.10085.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.26.已知=(﹣2,1),=(k,﹣3),=(1,2),若(﹣2)⊥,则||=()A.B.3C.D.7.已知A,B分别为双曲线C:﹣=1(a>0,b>0)的左、右顶点,P是C上一点,且直线AP,BP的斜率之积为2,则C的离心率为()A.B.C.D.8.已知程序框图如图所示,则该程序框图的功能是()A.求数列的前10项和(n∈N*)B.求数列的前10项和(n∈N*)C.求数列的前11项和(n∈N*)D.求数列的前11项和(n∈N*)9.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C10.在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD 相交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为45°,若E是PB的中点,则异面直线DE与PA所成角的余弦值为()A.B.C.D.11.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log2),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.<b<c B.a<c<b C.c<a<b D.c<b<a12.过抛物线y2=2px(p>0)的焦点F作两条相互垂直的射线,分别与抛物线相交于点M,N,过弦MN的中点P作抛物线准线的垂线PQ,垂足为Q,则的最大值为()A.1 B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分.)13.已知向量=(3,1),=(1,3),=(k,﹣2),若(﹣)⊥,则k=.14.若正数x,y满足2x+y﹣3=0,则+的最小值为.15.人造地球卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,卫星近地点、远地点离地面的距离分别是r1,r2,则卫星轨道的离心率=.16.设F1,F2分别是双曲线的左、右焦点,A为双曲线的左顶点,以线段F1,F2为直径的圆O与双曲线的一个交点为P,与y轴交于B,D两点,且与双曲线的一条渐近线交于M,N两点,则下列命题正确的是.(写出所有正确的命题编号)①线段BD是双曲线的虚轴;②△PF1F2的面积为b2;③若∠MAN=120°,则双曲线C的离心率为;④△PF1F2的内切圆的圆心到y轴的距离为a.三、解答题(本部分共计6小题,满分70分.解答应写出文字说明,证明过程或演算步骤,请在指定区域内作答,否则该题计为零分.)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,cosB=.(1)若b=3,求sinA的值;=3,求b,c的值.(2)若△ABC的面积S△ABC=2a n+1.18.设数列{a n}满足:a1=1,a n+1(1)证明:数列{a n+1}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.19.已知双曲线C与椭圆+=1共焦点,且它们的离心率之和为,求双曲线C的标准方程及其渐进线方程.20.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:60,70),80,90),,并绘制出频率分布直方图,如图所示.(Ⅰ)求频率分布直方图中a的值;从该市随机选取一名学生,试估计这名学生参加考试的成绩低于90分的概率;(Ⅱ)设A,B,C三名学生的考试成绩在区间60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N至少有一人被选中的概率;(Ⅲ)试估计样本的中位数与平均数.(注:将频率视为相应的概率)21.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分别是AD,PC的中点.(1)证明:PC⊥平面BEF;(2)求平面BEF与平面BAP所成的锐二面角的余弦值.22.已知椭圆C:C: +=1(a>b>0)的离心率为,左顶点A(﹣2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:x=my+t(t≠﹣a)与椭圆C交于不同两点B,C,且满足AB⊥AC.求证:直线l过定点,并求出定点M的坐标;(Ⅲ)在(Ⅱ)的条件下,过A作AD⊥l,垂足为D,求D的轨迹方程.2016-2017学年四川省成都市龙泉中学高二(下)入学数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合A={x|x2﹣x﹣2<0},且A∪B=A,则集合B可能是()A.{0,1}B.{x|x<2}C.{x|﹣2<x<1}D.R【考点】集合的包含关系判断及应用.【分析】化简集合A,根据集合的基本运算A∪B=A,即可求B.【解答】解:集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},∵A∪B=A,∴B⊆A.考查各选项,{0,1}⊆A.故选A.2.已知命题p:∃x0∈R,x02+1<0,则()A.¬p:∀x∈R,x2+1>0 B.¬p:∃x∈R,x2+1>0C.¬p:∀x∈R,x2+1≥0 D.¬p:∃x∈R,x2+1≥0【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题p:∃x0∈R,x02+1<0的否定是¬p:∀x∈R,x2+1≥0,故选:C3.点P在边长为1的正方形ABCD内运动,则动点P到定点A的距离|PA|<1的概率为()A.B.C.D.π【考点】几何概型;两点间的距离公式.【分析】本题考查的知识点是几何概型,我们要根据已知条件,求出满足条件的正方形ABCD的面积,及动点P到定点A的距离|PA|<1对应平面区域的面积,代入几何概型计算公式,即可求出答案.【解答】解:满足条件的正方形ABCD,如下图示:其中满足动点P到定点A的距离|PA|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1阴影部分的面积故动点P到定点A的距离|PA|<1的概率P==故选:C4.设数列{a n}的通项公式,其前n项和为S n,则S2016=()A.2016 B.1680 C.1344 D.1008【考点】数列的求和.【分析】分别求出a1+a2+a3+a4+a5+a6=﹣1﹣3﹣2++6=3,得到数列的规律,即可求出答案.【解答】解:∵a n=ncos,∴a1=1×cos=1×=,a2=2cos=2×(﹣)=﹣1,a3=3cosπ=﹣3,a4=4cos=4×(﹣)=﹣2,a5=5cos=5×=,a6=6cos2π=6×1=6,∴a1+a2+a3+a4+a5+a6=﹣1﹣3﹣2++6=3,同理可得a7+a8+a9+a10+a11+a12=3,故S2016=×3=1008,故选:D5.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.2【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体是一个四棱锥,其中侧面是正三角形,底面ABCD 是正方形,且底面ABCD⊥侧面PAB.利用体积计算公式即可得出.【解答】解:由三视图可知:该几何体是一个四棱锥,其中侧面是正三角形,底面ABCD 是正方形,且底面ABCD⊥侧面PAB.∴该几何体的体积V==.故选;B.6.已知=(﹣2,1),=(k,﹣3),=(1,2),若(﹣2)⊥,则||=()A.B.3C.D.【考点】数量积判断两个平面向量的垂直关系.【分析】利用平面向量坐标运算法则求出,再由向量垂直的性质求出k,由此能求出结果.【解答】解:∵=(﹣2,1),=(k,﹣3),=(1,2),∴=(﹣2﹣2k,7),∵(﹣2)⊥,∴(﹣2)•=﹣2﹣2k+14=0,解得k=6,∴=(6,﹣3),||==3.故选:A.7.已知A,B分别为双曲线C:﹣=1(a>0,b>0)的左、右顶点,P是C上一点,且直线AP,BP的斜率之积为2,则C的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】利用点P与双曲线实轴两顶点连线的斜率之积为2,建立等式,考查双曲线的方程,即可确定a,b的关系,从而可求双曲线的离心率.【解答】解:设P(x,y),实轴两顶点坐标为(±a,0),则∵点P与双曲线实轴两顶点连线的斜率之积为2,∴•=2,∴=+1,∵﹣=1,∴+1﹣=1,∴b2=2a2,∴c2=a2+b2=3a2,∴c=a,∴e==,故选:B.8.已知程序框图如图所示,则该程序框图的功能是()A.求数列的前10项和(n∈N*)B.求数列的前10项和(n∈N*)C.求数列的前11项和(n∈N*)D.求数列的前11项和(n∈N*)【考点】程序框图.【分析】经过分析本题为考查程序框图当型循环结构,按照循环体的特点先判断出数列,然后根据判断框的语句判断出计算的项数.【解答】解:根据题意,s=s+n=n+2∴数列为又∵K≤10∴计算的是求数列的前10项和(n∈N*)故答案为:B9.设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C【考点】球的体积和表面积.【分析】求出球的体积的表达式,然后球的导数,推出,利用面积的导数是体积,求出球的表面积的增长速度与球半径的比例关系.【解答】解:由题意可知球的体积为,则c=V′(t)=4πR2(t)R′(t),由此可得,而球的表面积为S(t)=4πR2(t),(t)=4πR2(t)=8πR(t)R′(t),所以V表=S′(t)R′(t)=2×4πR(t)R′(t)=即V表=8πR故选D10.在四棱锥P﹣ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD 相交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为45°,若E是PB的中点,则异面直线DE与PA所成角的余弦值为()A.B.C.D.【考点】异面直线及其所成的角.【分析】取AB的中点F,连接EF,DF,则EF∥PA.从而∠DEF为异面直线DE与PA所成角(或补角).由此能求出异面直线DE与PA所成角的余弦值.【解答】解:取AB的中点F,连接EF,DF,∵E为PB中点,∴EF∥PA.∴∠DEF为异面直线DE与PA所成角(或补角).又∵∠PBO=45°,BO=1,∴PO=1,PB=在Rt△AOB中,A O=AB•cos30°==OP,∴在Rt△POA中,PA=2,∴EF=1.∵四边形ABCD为菱形,且∠DAB=60°,∴△ABD为正三角形.∴DF=,∵PB=PD=,BD=2,∴△PBD为等腰直角三角形,∴DE==,∴cos∠DEF==.即异面直线DE与PA所成角的余弦值为.故选:B.11.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log2),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.<b<c B.a<c<b C.c<a<b D.c<b<a【考点】函数奇偶性的性质;对数值大小的比较.【分析】根据题意,由函数的奇偶性分析可得f(﹣x)=f(x),则有2|x﹣m|﹣1=2|﹣x﹣m|﹣1,解可得m的值,即可得f(x)=2|x|﹣1,由此计算可得a、b、c的值,比较可得答案.【解答】解:根据题意,函数f(x)=2|x﹣m|﹣1为偶函数,即f(﹣x)=f(x),则有2|x﹣m|﹣1=2|﹣x﹣m|﹣1,解可得:m=0,即f(x)=2|x|﹣1,所以,,所以c<a<b,故选C.12.过抛物线y2=2px(p>0)的焦点F作两条相互垂直的射线,分别与抛物线相交于点M,N,过弦MN的中点P作抛物线准线的垂线PQ,垂足为Q,则的最大值为()A.1 B.C.D.【考点】抛物线的简单性质.【分析】设|MF|=a,|NF|=b,由抛物线定义,2|PQ|=a+b.再由勾股定理可得|MN|2=a2+b2,进而根据基本不等式,求得|MN|的范围,即可得到答案.【解答】解:设|MF|=a,|NF|=b.由抛物线定义,结合梯形中位线定理可得2|PQ|=a+b,由勾股定理得,|MN|2=a2+b2配方得,|MN|2=(a+b)2﹣2ab,又ab≤,∴(a+b)2﹣2ab≥(a+b)2﹣2,得到|MN|≥(a+b).∴≤=,即的最大值为.故选C.二、填空题(本大题共4小题,每小题5分,满分20分.)13.已知向量=(3,1),=(1,3),=(k,﹣2),若(﹣)⊥,则k=12.【考点】数量积判断两个平面向量的垂直关系.【分析】利用平面向量坐标运算法则先求出=(3﹣k,3),再由(﹣)⊥,利用向量垂直的性质求出k.【解答】解:∵向量=(3,1),=(1,3),=(k,﹣2),∴=(3﹣k,3),∵(﹣)⊥,∴=3﹣k+9=0,解得k=12.故答案为:12.14.若正数x,y满足2x+y﹣3=0,则+的最小值为3.【考点】基本不等式.【分析】利用“乘1法”基本不等式的性质即可得出.【解答】解:,当且仅当x=y=1时取等号.所以的最小值为3.故答案为:315.人造地球卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,卫星近地点、远地点离地面的距离分别是r1,r2,则卫星轨道的离心率=.【考点】椭圆的简单性质.【分析】由题意画出图形,结合椭圆的定义,求出椭圆的长半轴a,半焦距c,即可确定椭圆的离心率.【解答】解:椭圆的离心率:e=∈(0,1),(c,半焦距;a,长半轴)所以只要求出椭圆的c和a,由题意,结合图形可知,a=,c=OF1==,所以e===.故答案为:.16.设F1,F2分别是双曲线的左、右焦点,A为双曲线的左顶点,以线段F1,F2为直径的圆O与双曲线的一个交点为P,与y轴交于B,D两点,且与双曲线的一条渐近线交于M,N两点,则下列命题正确的是②③④.(写出所有正确的命题编号)①线段BD是双曲线的虚轴;②△PF1F2的面积为b2;③若∠MAN=120°,则双曲线C的离心率为;④△PF1F2的内切圆的圆心到y轴的距离为a.【考点】双曲线的简单性质.【分析】根据双曲线的性质分别进行求解判断即可.【解答】解:①以线段F1,F2为直径的圆O的半径R=c,则B(0,c),D(0,c),则线段BD不是双曲线的虚轴;故①错误,②∵三角形PF1F2是直角三角形,∴PF12+PF22=4c2,又PF1﹣PF2=2a,则平方得PF12+PF22﹣2PF1PF2=4c2,即4a2﹣2PF1PF2=4c2,则PF1PF2=2c2﹣2a2=2b2,则△PF1F2的面积为S=PF1PF2=2b2=b2,故②正确,③由得或,即M(a,b),N(﹣a,﹣b),则AN⊥x轴,若∠MAN=120°,则∠MAx=30°,则tan30°==,平方得=,即=,则双曲线C的离心率e=====;故③正确,④设内切圆与x轴的切点是点H,PF1、PF2分与内切圆的切点分别为M1、N1,由双曲线的定义可得|PF1|﹣|PF2|=2a,由圆的切线长定理知,|PM1|=|PN1|,故|M1F1|﹣|N1F2 |=2a,即|HF1|﹣|HF2|=2a,设内切圆的圆心横坐标为x,则点H的横坐标为x,故(x+c)﹣(c﹣x)=2a,∴x=a.即△PF1F2的内切圆的圆心到y轴的距离为a.故④正确,故答案为:②③④三、解答题(本部分共计6小题,满分70分.解答应写出文字说明,证明过程或演算步骤,请在指定区域内作答,否则该题计为零分.)17.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,cosB=.(1)若b=3,求sinA的值;=3,求b,c的值.(2)若△ABC的面积S△ABC【考点】同角三角函数间的基本关系;余弦定理.【分析】(1)先根据cosB求得sinB,进而根据正弦定理求得sinA.(2)先根据三角形的面积求得c,进而利用余弦定理求得b.【解答】解:(1)因为,所以.由正弦定理,得.(2)因为,所以.由余弦定理,得.所以.18.设数列{a n}满足:a1=1,a n=2a n+1.+1(1)证明:数列{a n+1}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.【考点】数列递推式;数列的求和.【分析】(1)利用已知条件推出,说明数列{a n+1}是以2为公比的等比数列.然后求解通项公式.(2)利用错位相减法求和求解即可.+1=(2a n+1)+1=2(a n+1)【解答】解:(1)证明:a n+1于是…即数列{a n+1}是以2为公比的等比数列.因为,所以…(2)①2T n=1•22+2•23+…+(n﹣1)•2n+n•2n+1②…①﹣②得…==﹣2﹣(n﹣1)•2n+1故…19.已知双曲线C与椭圆+=1共焦点,且它们的离心率之和为,求双曲线C的标准方程及其渐进线方程.【考点】椭圆的简单性质.【分析】由椭圆方程求得焦点坐标及离心率,即可求得双曲线的离心率,设双曲线C:,(a>b>0),则c=4,即可求得a,由b2=c2﹣a2=15,即可求得双曲线C 的标准方程及其渐进线方程.【解答】解:椭圆+=1的焦点为(±4,0),a=5,b=3,c=4,离心率为e==,…∴双曲线C的焦点为(±4,0),离心率为e=﹣=4,…设双曲线C:,(a>b>0),则c=4,e==4,∴a=1,则b2=c2﹣a2=15,故双曲线C:,…其渐进线方程为:y=x或y=﹣x.…20.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:60,70),80,90),,并绘制出频率分布直方图,如图所示.(Ⅰ)求频率分布直方图中a的值;从该市随机选取一名学生,试估计这名学生参加考试的成绩低于90分的概率;(Ⅱ)设A,B,C三名学生的考试成绩在区间60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N至少有一人被选中的概率;(Ⅲ)试估计样本的中位数与平均数.(注:将频率视为相应的概率)【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(I)由频率分布图中小矩形面积之和为1,能求出a=0.015,能由此估计这名学生参加考试的成绩低于90分的概率.(Ⅱ)从这5名学生代表中任选两人的所有选法共有10种,利用列举法能求出学生代表M,N至少一人被选中的概率.(Ⅲ)由频率分布直方图能求出样本的中位数和平均数.【解答】解:(I)a=0.1﹣(0.03+0.025+0.02+0.01)=0.015,估计这名学生参加考试的成绩低于90分的概率为0.85(Ⅱ)从这5名学生代表中任选两人的所有选法共有10种,分别为:AB,AC,AM,AN,BC,BM,BN,CM,CN,MN,代表M,N至少有一人被选中的选法共7种,分别为:AM,AN,BM,BN,CM,CN,MN,设”学生代表M,N至少一人被选中”为事件D,P(D)=∴学生代表M,N至少一人被选中的概率为.(Ⅲ)由频率分布直方图得样本的中位数为:=75,平均数为:55×0.01×10+65×0.02×10+75×0.03×10+85×0.025×10+95×0.015×10=76.5.21.如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,BC=2,E,F分别是AD,PC的中点.(1)证明:PC⊥平面BEF;(2)求平面BEF与平面BAP所成的锐二面角的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(1)以A为坐标原点,AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系.求出相关点的坐标,向量,,,通过计算•=﹣2+4﹣2=0,•=2+0﹣2=0,推出⊥,⊥,然后证明PC⊥平面BEF.(2)由(1)得到平面BEF的一个法向量,求出平面BAP的一个法向量,设平面BEF 与平面BAP的夹角为θ,利用空间向量的数量积求解即可.【解答】(1)证明:如图,以A为坐标原点,AB,AD,AP所在直线分别为x,y,z 轴建立空间直角坐标系.∵AP=AB=2,BC=AD=2,四边形ABCD是矩形,∴A,B,C,D,P的坐标为A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2).又E,F分别是AD,PC的中点,∴E(0,,0),F(1,,1).…∴=(2,2,﹣2),=(﹣1,,1),=(1,0,1).∴•=﹣2+4﹣2=0,•=2+0﹣2=0.…∴⊥,⊥∴PC⊥BF,PC⊥EF.又BF∩EF=F,∴PC⊥平面BEF.…(2)解:由(1)知平面BEF的一个法向量==(2,2,﹣2),…平面BAP的一个法向量==(0,2,0),∴.设平面BEF与平面BAP的夹角为θ,则cosθ=|cos|===,∴平面BEF与平面BAP所成的锐二面角的余弦值为.…22.已知椭圆C:C: +=1(a>b>0)的离心率为,左顶点A(﹣2,0).(Ⅰ)求椭圆C的标准方程;(Ⅱ)设直线l:x=my+t(t≠﹣a)与椭圆C交于不同两点B,C,且满足AB⊥AC.求证:直线l过定点,并求出定点M的坐标;(Ⅲ)在(Ⅱ)的条件下,过A作AD⊥l,垂足为D,求D的轨迹方程.【考点】椭圆的简单性质.【分析】(Ⅰ)椭圆的方程可知:a=2,由e==,求得c=1,即可求得b2=a2﹣c2=3,即可求得椭圆C的标准方程;(Ⅱ)将直线方程代入椭圆方程,由韦达定理求得y1+y2=﹣,y1•y2=,由AB⊥AC.•=0,根据向量数量积的坐标表示,(x1+2)(x2+2)+y1•y2=0,即可求得t的值;(Ⅲ)由(Ⅱ)知直线l恒过定点M(﹣,0),AD⊥l,AD⊥DM,因此可知D的轨迹是以AM为直径的圆(除点A外),即可求得D的轨迹方程为(x+)2+y2=(x ≠﹣2).【解答】解:(Ⅰ)设椭圆C的半焦距为c,a=2,由题意知e==,∴c=1,由b2=a2﹣c2=3,椭圆C的标准方程为;…(Ⅱ)证明:由(Ⅰ)知a=2,A(﹣2,0),设B(x1,y1),C(x2,y2),把x=my+t(t≠﹣a),代入得:(3m2+4)y2+6mty+3(t2﹣4)=0,…△=36m2t2﹣12(3m2+4)×(t2﹣4)=48(3m3+4﹣t2)>0,∴y1+y2=﹣,y1•y2=…若AB⊥AC,•=0,则(x1+2)(x2+2)+y1•y2=(my1+t+2)(my2+t+2)+y1•y2,=(m2+1)y1•y2+m(t+2)(y1+y2)+(t+2)2,=(m2+1)•+m(t+2)(﹣)+(t+2)2,==0…∵Q≠﹣2,t=﹣,∴直线l:x=my+,即直线l恒过定点M(﹣,0).…(Ⅲ)设D(x,y),由(Ⅱ)知直线l恒过定点M(﹣,0),∵AD⊥l,AD⊥DM,∴D的轨迹是以AM为直径的圆(除点A外),则D的轨迹方程为(x+)2+y2=(x≠﹣2).…2017年4月5日。

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(理)试题 Word版含答案

四川省成都市树德中学2016-2017学年高二上学期期末考试数学(理)试题 Word版含答案

树德中学高2015级第三期期末考试数学试题(理科)一、选择题(每小题5分,共60分)1、设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件2、已知双曲线()2222:10,0x y C a b a b-=>>的渐近线方程为y=±2x ,则其离心率为( )A .5B .C .D .3、设某高中的学生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x-85.71,则下列结论中不正确...的是( ) A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该高中某学生身高增加1cm ,则其体重约增加0.85kgD.若该高中某学生身高为170cm ,则可断定其体重必为58.79kg 4、下列说法正确的是 ( )A.命题“若21x >,则1x >”的否命题为“若21x >,则1≤x ”B.命题“若200,1x R x ∃∈>”的否定是“2,1x R x ∀∈<”C.命题“若x y =,则y x cos cos =”的逆否命题为假命题D.命题“若x y =,则y x cos cos =”的逆命题为假命题 5、阅读程序框图,运行相应的程序,输出的结果为( ) A.85B.1311C.138 D.21136、在长为10 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于AC ,CB 的长,则该矩形面积不.小于..9 cm 2的概率为( ) A .910 B .45 C .23 D .127、直线y=kx+3与圆(x ﹣2)2+(y ﹣3)2=4相交于M 、N 两点,若|MN|≥2,则直线倾斜角的取值范围是( )A .566ππ⎡⎤⎢⎥⎣⎦, B .20,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ , C .50,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭, D .233ππ⎡⎤⎢⎥⎣⎦,8、已知集合240(,)00x y x y x y x y ⎧+-≤⎧⎫⎪⎪⎪+≥⎨⎨⎬⎪⎪⎪-≥⎩⎭⎩表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式222x y +≤的概率为( ) A .316π B .16π C .32πD .332π9、已知实数x y ,满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为1-,则实数m 等于( ) A .7B .5C .4D .310、点M 是抛物线y 2=x 上的点,点N 是圆C 1:(x+1)2+(y ﹣4)2=1关于直线x ﹣y+1=0对称的曲线C 上的点,则|MN|的最小值是( ) A .B .C .2D .11、某算法的程序框图如图所示,则执行该程序后输出的S 等于 ( ) A.24 B.26 C.30 D.3212、已知圆C 的方程()2211x y -+=,P 是椭圆=1上一点,过P 作圆的两条切线,切点为A、B ,则的取值范围为( )A .5639⎡⎤⎢⎥⎣⎦,B .5639⎡⎤-⎢⎥⎣⎦,C .6439⎡⎤⎢⎥⎣⎦, D .6439⎡⎤-⎢⎥⎣⎦,二、填空题(每小题5分,共20分)13、某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,_______运动员的发挥更稳定.(填“甲”或“乙”)14、已知圆O 1:x 2+y 2=1,圆O 2: (x +4)2+(y -a )2=25,如果这两个圆有且只有一个公共点,则常数a =______15、已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,椭圆和双曲线的离心率分别为1e 、2e ,则221213e e +=_____ 16、已知直线y =k 14x ⎛⎫+⎪⎝⎭与曲线y =记k 的所有可能取值构成集合A ;椭圆22=163x y +上存在关于直线y =x +m 对称的不同两点,记m 的所有可能取值构成集合B.若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是_______三、解答题17、(10分)设命题p :点(1,1)在圆22222240x y mx my m +-++-=的内部;命题q :直线mx -y +1+2m =0(k ∈R )不经过第四象限,如果p ∨q 为真命题,p ∧q 为假命题,求m 的取值范围.18、(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题: (1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19、(12分)已知抛物线2:2(0)C y px p =>的焦点为F ,(1,)P m 是抛物线C 上的一点,且||2PF =.(1)若椭圆22:14x y C n'+=与抛物线C 有共同的焦点,求椭圆C '的方程; (2)设抛物线C 与(1)中所求椭圆C '的交点为A B 、,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.20、(12分)已知圆C :x 2+y 2﹣4x+3=0, (1)求过()3,2M 点的圆的切线方程;(2)直线:22130l mx y m +--=被圆C 截得的弦长最短时,求直线l 的方程; (3)过原点的直线m 与圆C 交于不同的两点A 、B ,线段AB 的中点P 的轨迹为1C ,直线5()2y k x =-与曲线1C 只有一个交点,求k 的取值范围.21、(12分)已知抛物线x 2=2py (p >0),其焦点F 到准线的距离为1.过F 作抛物线的两条弦AB 和CD (点A 、C 在第一象限),且M ,N 分别是AB ,CD 的中点. (1)若AB CD ⊥,求△FMN 面积的最小值;(2)设直线AC 的斜率为k AC ,直线BD 的斜率为k BD ,且k AC +4k BD =0,求证:直线AC 过定点,并求此定点.22、(12分)在平面直角坐标系中,点O 为坐标原点,动点(),P x y 与定点F (-1,0)的距离和它到定直线2x =-的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与()221:432C x y -+=交于,P Q 两点,求四边形APBQ 面积的最大值.树德中学高2015级第三期期末考试数学试题(理科)参考答案一、选择题 ADDDCB CDBADA二、填空题13、乙 14、±25或0 15、4 16、34三、解答题17、解:命题p 11m ⇔-<<,…………3分 命题q 0m ⇔≥……………6分① p 真q 假时,10m -<<;②p 假q 真时,1m ≥. 故m 的取值范围为10m -<<或1m ≥………10分18、解:(1)分数在[70,80)内的频率为:1-(0.010+0.015+0.015+0.025+0.005)×10=1-0.7=0.3………3分 (2)中位数17373.33≈…………6分 (3)由题意,[60,70)分数段的人数为:0.15×60=9(人);[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a ,b ; 在[70,80)分数段内抽取4人,分别记为c ,d ,e ,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A ,所有基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),(c ,d ),(c ,e ),(c ,f ),(d ,e ),(d ,f ),(e ,f ),共15个…………8分其中事件A 包含(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.……10分 ∴P (A )=815………12分19、解:(1)P 到焦点距离等于P 到准线距离,所以122pPF =+=,2p = 故抛物线的方程为2:4C y x =……………………….3分又由椭圆22:14x y C n '+=, 可知41,3n n -=∴=,故所求椭圆的方程为22143x y +=……………....6分 (2)由2221434x y y x⎧+=⎪⎨⎪=⎩,消去y 得到2316120x x +-=,解得122,63x x ==-(舍去).所以22((,33A B ,则双曲线的渐近线方程为y =……………………8分0y ±=,可设双曲线方程为226(0)x y λλ-=≠.由点(1,)P m 在抛物线2:4C y x =上,解得24,(1,2)m P =±………………...……10分 因为点P 在双曲线上, 642λ∴-==,故所求双曲线方程为: 22312y x -=……………………………………….…………..12分20、解:(1)3x =或3410x y --=………3分(2)直线:22130l mx y m +--=恒过定点3122N ⎛⎫⎪⎝⎭,当直线l CN ⊥时,弦长最短,此时直线的方程为10x y --=………7分(3)设点P (x ,y ),∵点P 为线段AB 的中点,曲线C 是圆心为C (2,0),半径r=1的圆,∴CP ⊥OP ,CP OP=0∙ ∴化简得()2211x y -+=………9分由于点P 在圆内,由得所以1C :()2231122x y x ⎛⎫-+=<≤⎪⎝⎭(注:范围也可写成32x >)………10分k ≤≤或k =………12分21、解:(1)抛物线的方程为x 2=2y ,设AB 的方程为联立,得x 2﹣2kx ﹣1=0,21,2M k k ⎛⎫+⎪⎝⎭,同理2111,2N k k⎛⎫-+ ⎪⎝⎭∴S △FMN =12|FM |·|FN |1≥ 当且仅当k =±1时,△FMN 的面积取最小值1. ……....5分(2)设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为,联立,得x 2﹣2kx ﹣1=0,∴x 1x 2=﹣1,同理,x 3x 4=﹣1 ……....7分故k AC +4k BD ()()22221324132413241324112244x x x x y y y y x x x x x x x x ----=+⋅=+⋅----()()1324122x x x x =++⋅+ ()()13131313111112022x x x x x x x x ⎛⎫⎛⎫=+-⋅+=+-= ⎪ ⎪⎝⎭⎝⎭注意到点A 、C 在第一象限,x 1+x 3≠0,故得x 1x 3=4, ……....10分直线AC 的方程为()2131122x x x y x x +-=-化简得131322x x x x y x +=-即1322x x y x +=- 所以,直线AC 恒经过点(0,﹣2)……....12分22、解:(1=两边平方,化简得x 22+y 2=1.故轨迹C 的方程是.…(3分)(2)因AB 不垂直于y 轴,设直线AB 的方程为x =my -1,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =my -1,x 22+y 2=1得(m 2+2)y 2-2my -1=0. y 1+y 2=2m m 2+2,y 1y 2=-1m 2+2. x 1+x 2=m (y 1+y 2)-2=-4m 2+2,于是AB 的中点为M ⎝ ⎛⎭⎪⎫-2m 2+2,m m 2+2,故直线PQ 的斜率为-m 2,PQ 的方程为y =-m2x ,即mx +2y =0,…....5分圆心与直线mx +2y =0|PQ|=....7分设点A 到直线PQ 的距离为d ,则点B 到直线PQ 的距离也为d ,所以2d =|mx 1+2y 1|+|mx 2+2y 2|m 2+4.因为点A ,B 在直线mx +2y =0的异侧,所以(mx 1+2y 1)(mx 2+2y 2)<0,于是|mx 1+2y 1|+|mx 2+2y 2|=|mx 1+2y 1-mx 2-2y 2|,从而2d =(m 2+2)|y 1-y 2|m 2+4.又因为|y 1-y 2|=(y 1+y 2)2-4y 1y 2=22·1+m 2m 2+2,所以2d =22·1+m2m 2+4.…....10分故四边形APBQ 的面积S =12|PQ |·2d=12∙=令()244m t t +=≥,则S =1104t <≤)当1124t =即m =±max S =…....12分。

2016-2017学年四川省绵阳市高二(上)期末数学试卷(理科)

2016-2017学年四川省绵阳市高二(上)期末数学试卷(理科)

2016-2017学年四川省绵阳市高二(上)期末数学试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共48.0分)1.直线x+y+1=0的倾斜角为()A.150°B.120°C.60°D.30°【答案】A【解析】解:设直线的倾斜角为α(0°<α<180°),则tanα=.所以α=150°.故选A.直接利用倾斜角的正切值等于斜率求解.本题考查了直线的一般式方程,考查了斜率和倾斜角的关系,是基础题.2.高二年级有男生560人,女生420人,为了解学生职业规划,现用分层抽样的方法从该年级全体学生中抽取一个容量为280人的样本,则此样本中男生人数为()A.120 B.160 C.280 D.400【答案】B【解析】解:∵有男生560人,女生420人,∴年级共有560+420=980,∵用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,∴每个个体被抽到的概率是=,∴要从男生中抽取560×=160,故选:B.先根据男生和女生的人数做出年纪大总人数,用要抽取得人数除以总人数得到每个个体被抽到的概率,用男生人数乘以概率,得到结果.本题考查分层抽样方法,本题解题的关键是在抽样过程中每个个体被抽到的概率相等,这是解题的依据,本题是一个基础题.3.如果直线l1:x+ax+1=0和直线l2:ax+y+1=0垂直,则实数a的值为()A.±1B.1C.-1D.0【答案】D【解析】解:∵l1⊥l2,则a+a=0解得a=0.故选D.利用两条直线相互垂直的充要条件即可得出.本题考查了两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.4.已知抛物线C:y2=2x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=()A.1B.2C.4D.8【答案】A【解析】解:抛物线方程为y2=2x,准线方程为x=-,由抛物线的定义,可得|AF|=x0+=x0,解得,x0=1.故选A.求出抛物线的准线方程,由抛物线的定义,解方程,即可得到所求值.本题考查抛物线的方程和性质,考查抛物线的定义及运用,考查运算能力,属于基础题.5.天气预报显示,在今后的三天中,每一天下雨的概率为40%,现用随机模拟的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0-9之间整数值的随机数,并制定用1,2,3,4,5表示下雨,用5,6,7,8,9,0表示不下雨,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数907966191925271932812458569683 431257393027556488730113537989则这三天中恰有两天下雨的概率近似为()A. B. C. D.【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,所求概率为=,故选B.由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有可以通过列举得到共5组随机数,根据概率公式,得到结果.本题考查模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用.6.甲乙两个竞赛队都参加了6场比赛,比赛得分情况的经营如图如图(单位:分)),其中乙队的一个得分数字被污损,那么估计乙队的平均得分大于甲队的平均得分的概率为()A. B. C. D.【答案】C【解析】解:设乙队的一个得分数字被污损的数学为x,甲队平均分为:甲=(38+41+44+46+49+52)=45.乙队平均分为:乙=(31+47+40+x+42+51+54)=,∵x的可能取值的个数是10个,满足>45的x的个数有4个,∴估计乙队的平均得分大于甲队的平均得分的概率p=.故选:C.设乙队的一个得分数字被污损的数学为x,求出甲队平均分为45.乙队平均分为,由x的可能取值的个数是10个,满足>45的x的个数有4个,由此能估计乙队的平均得分大于甲队的平均得分的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意茎叶图及等可能事件概率计算公式的合理运用.7.已知两个丁圆O1和O2,它们的半径分别是2和4,且|O1O2|=8,若动圆M与圆O1内切,又与O2外切,则动圆圆心M的轨迹方程是()A.圆B.椭圆C.双曲线一支D.抛物线【答案】C【解析】解:设动圆圆心为M,半径为R,由题意|MO1|=R-2,|MO2|=R+4,所以|MO2|-|MO1|=6(常数)且6<8=|O1O2|故M点的轨迹为以,O1O2为焦点的双曲线的一支.故选C.由两个圆相内切和外切的条件,写出动圆圆心满足的关系式,由双曲线的定义确定其轨迹即可.本题考查定义法求轨迹方程、两圆相切的条件等知识,考查利用所学知识解决问题的能力.8.执行如图的程序框图.输出的x的值是()A.2B.14C.11D.8【答案】B【解析】解:当x=2,y=1时,满足进行循环的条件,x=5,y=2,n=2,当x=5,y=2时,满足进行循环的条件,x=8,y=4,n=3,当x=8,y=4时,满足进行循环的条件,x=11,y=9,n=4,当x=11,y=9时,满足进行循环的条件,x=14,y=23,n=5,当x=14,y=23时,不满足进行循环的条件,故输出的x值为14,故选:B根据已知中的程序框图可得,该程序的功能是计算并输出变量x的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序框图,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.9.某中学兴趣小组为调查该校学生对学校食堂的某种食品喜爱与否是否与性别有关,随机询问了100名性别不同的学生,得到如下的2×2列联表:附K2=根据以上数据,该数学兴趣小组有多大把握认为“喜爱该食品与性别有关”?()A.99%以上 B.97.5%以上 C.95%以上 D.85%以上【答案】C【解析】解:K2==4>3.841,∴该数学兴趣小组有95%以上把握认为“喜爱该食品与性别有关”.故选C.利用公式求得K2,与临界值比较,即可得到结论.本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.10.已知圆C1:x2+y2=4和圆2:(x-a)2+y2=4,其中a是在区间(0,6)上任意取得一个实数,那么圆C1和圆C2相交且公共弦长小于2的概率为()A. B. C. D.【答案】D【解析】解:a=2时,C1:x2+y2=4,C2:(x-2)2+y2=4,那么圆C1和圆C2相交且公共弦长是2,故满足条件的a的范围是:2<a<4,区间长度是2,故在区间(0,6)上任意取得一个实数,a在(2,4)的概率是p==,故选:D.求出满足条件的a的范围,根据区间长度之比求出满足条件的概率即可.本题考查了几何概型问题,考查圆和圆的位置关系,是一道中档题.11.若关于x的方程=mx+m-1有两个不同的实数根,则实数m的取值范围是()A.(0,)B.[,)C.(,)D.[,)【答案】B【解析】解:令g(x)=mx+m-1,f(x)=,∵方程mx+3m=有两个不同的实数解,∴g(x)=mx+m-1与f(x)=有两个不同的交点,在同一坐标系中作图如下:∵g(x)=mx+m-1为过定点(-1,-1)的直线,当直线g(x)=mx+m-1经过(1,0),即m=时,显然g(x)=mx+m-1与f(x)=有两个不同的交点;当直线g(x)=mx+m-1与曲线f(x)=相切时,,解得m=或m=0(舍),∴m∈[,),故选:B构造函数g(x)=mx+m-1,f(x)=,在同一坐标系中作出二函数的图象,数形结合即可求得实数m的取值范围.本题考查根的存在性及根的个数判断,考查等价转化思想与数形结合思想的综合应用,属于中档题12.已知F1,F2为双曲线C:-=1(a>0)的左右焦点,点A在双曲线的右支上,点P(7,2)是平面内一定点,若对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,则|AP|+|AF2|的最小值为()A.2-6B.10-3C.8-D.2-2【答案】A【解析】解:∵双曲线C:-=1(a>0),∴双曲线的渐近线方程为y=±x,∵对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,∴直线4x+3y+m=0与双曲线的渐近线方程为y=±x,重合或平行,∴a=3,∴c=5,∴F1为(-5,0),∵P(7,2),∴|PF1|==2,∴|AP|+|AF2|=|AP|+|AF1|-6≥|PF1|-6=2-6∴|AP|+|AF2|的最小值为2-6,故选A.利用对任意实数m,直线4x+3y+m=0与双曲线C至多有一个公共点,得出直线4x+3y+m=0与双曲线的渐近线方程为y=±x,重合或平行,求出a,再利用双曲线的定义进行转化,即可得出结论.本题考查双曲线的方程与性质,考查双曲线定义的运用,考查学生的计算能力,正确转化是关键.二、填空题(本大题共4小题,共12.0分)13.空间直角坐标系中,设A(-1,2,-3),B(-1,0,2),点M和点A关于y轴对称,则|BM|= ______ .【答案】3【解析】解:∵空间直角坐标系中,设A(-1,2,-3),B(-1,0,2),点M和点A关于y轴对称,∴M(1,2,3),|BM|==3.故答案为:3.先求出点M(1,2,3),由此利用两点间距离公式能求出|BM|的值.本题考查空间中两点间距离的求法,是基础题,解题时要认真审题,注意两点间距离公式的合理运用.14.如图算法最后输出的结果是______ .【答案】67【解析】解:当i=7时,满足进行循环的条件,S=5,i=5,当i=5时,满足进行循环的条件,S=23,i=3,当i=3时,满足进行循环的条件,S=67,i=1,当i=1时,不满足进行循环的条件,故输出的S值为67,故答案为:67根据已知中的程序语句可得,该程序的功能是计算并输出变量S的值,模拟程序的运行过程,可得答案.本题考查的知识点是程序语句,当程序的运行次数不多或有规律时,可采用模拟运行的办法解答.15.已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆外存在一点P,满足•=0,则椭圆C的离心率e的取值范围是______ .【答案】[,1)【解析】解:椭圆上存在点使•=0,∴⊥,∴△PF1F2是以P为直角顶点的直角三角形,∵丨丨+丨丨=2a,丨丨=2c,,椭圆的离心率e==丨丨丨丨丨丨由(丨丨+丨丨)2≤2(丨丨2+丨丨2)=2丨丨2=8c2,∴e==丨丨≥=,丨丨丨丨由0<e<1∴该椭圆的离心率的取值范围是[,1),故答案为[,1).由题意可知:△PF1F2是以P为直角顶点的直角三角形,则丨丨2+丨丨2=丨丨2,由(丨丨+丨丨)2≤2(丨丨2+丨丨2)=2丨丨2=8c2,e==丨丨≥=,由0<e<1,即可求得椭圆C的离心率e的取值范围.丨丨丨丨本题考查椭圆的标准的标准方程及简单几何性质,考查基本不等式的应用,属于中档题.16.设点M(3,t),若在圆O:x2+y2=6上存在两点A,B,使得∠AMB=90°,则t的取值范围是______ .【答案】-≤t≤【解析】解:由题意MA,MB是圆的切线时,|OM|=2,∴9+t2≤12,∴-≤t≤,故答案为-≤t≤.由题意MA,MB是圆的切线时,|OM|=2,则9+t2≤12,即可求出t的取值范围.本题考查直线与圆的位置关系,考查两点间距离公式的运用,属于中档题.三、解答题(本大题共4小题,共40.0分)17.某模具长新接一批新模型制作的订单,为给订购方回复出货时间,需确定制作该批模型所花费的时间,为此进行了5次试验,收集数据如下:(1)请根据以上数据,求关于的线性回归方程+;(2)若要制作60个这样的模型,请根据(1)中所求的回归方程预测所花费的时间.(注:回归方程=x+中斜率和截距最小二乘估计公式分别为=,=-,参考数据:x i y i=12050,x=5500)【答案】解:(1)由数据得,=(10+20+30+40+50)=30,=(64+69+75+82+90)=76,∴回归直线过样本中心点(30,76),∵x i y i=12050,x=5500,∴=0.65,=56.5,∴y关于x的线性回归方程为=0.65x+56.5.…(8分)(2)当x=60时,=0.65×60+56.5=95.5分钟因此可以预测制作60个这种模型需要花费95.5分钟…(10分)【解析】(1)求出回归系数,可得关于x的线性回归方程=x+;(2)当x=60时,=0.65×60+56.5=95.5分钟,即可得出结论.本题考查线性相关及回归方程的应用,解题的关键是得到样本中心点,为基础题.18.某学习小组20名学生一次数学考试成绩(单位:分)频率直方图如图所示,已知前三个矩形框垂直于横轴的高度成等差数列.(1)求频率分布直方图中a的值;(2)分别求出成绩落在[50,60)与[80,90)中的学生人数;(3)从成绩在[50,60)与[80,90)中的学生中人选2人,求此2人的成绩相差20分以上的概率.【答案】解:(1)由已知前三个长方形的高成等差数列知,第三个长方形的高为8a,于是由频率分布直方图得(2a+5a+8a+3a+2a)×10=1,解得a═0.005.…(2分)(2)由频率分布直方图,知:成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[80,90)中的学生人数为3×0.005×10×20=3.…(4分)(3)记成绩落在中的2人为A1,A2,成绩落在中的3人为B1,B2,B3,则从成绩在与中任选2人的基本事件共有10个:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),…(7分)其中2人的成绩相差20分以上的基本事件有6个:(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),故这2人的成绩相差20分以上的概率P=.…(10分)【解析】(1)由已知前三个长方形的高成等差数列知,第三个长方形的高为8a,再由频率分布直方图能求出a.(2)由频率分布直方图,能求出成绩落在[50,60)与[80,90)中的学生人数.(3)记成绩落在中的2人为A1,A2,成绩落在中的3人为B1,B2,B3,利用列举法能求出这2人的成绩相差20分以上的概率.本题考查等差数列、频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.19.已知圆M的圆心在直线x+y=0上,半径为1,直线l:6x-8y-9=0被圆M截得的弦长为,且圆心M在直线l的右下方.(1)求圆M的标准方程;(2)直线mx+y-m+1=0与圆M交于A,B两点,动点P满足|PO|=|PM|(O为坐标原点),试求△PAB面积的最大值,并求出此时P点的坐标.【答案】解:(1)由已知可设圆心M(a,-a),圆心到直线l的距离为d,则d==,…(1分)于是,整理得|14a-9|=5,解得a=1,或a=.…(3分)∵圆心M在直线l的右下方,∴圆心M是(1,-1),∴圆M的标准方程为(x-1)2+(y+1)2=1.…(4分)(2)直线mx+y-m+1=0可变形为m(x-1)+y+1=0,即过定点(1,-1),∴动直线mx+y-m+1=0恰好过圆M的圆心,∴|AB|=2.…(5分)设P(x,y),则由|PO|=|PM|,可得x2+y2=2[(x-1)2+(y+1)2],整理得(x-2)2+(y+2)2=4,即P点在以(2,-2)为圆心,2为半径的圆上,…(7分)设此圆圆心为N,则N(2,-2).∴要使△PAB的面积最大,点P到直线AB的距离d最大,d max=|PM|=+2=+2,∴△PAB面积的最大值为=.…(8分)∵MN的方程为y=-x,…(9分)代入方程(x-2)2+(y+2)2=4中,可解得x=4,或0(舍去),∴此时P(4,-4).…(10分)【解析】(1)利用直线l:6x-8y-9=0被圆M截得的弦长为,且圆心M在直线l的右下方,求出圆心坐标,即可求圆M的标准方程;(2)要使△PAB的面积最大,点P到直线AB的距离d最大,利用P点在以(2,-2)为圆心,2为半径的圆上,即可得出结论.本题考查圆的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.20.已知椭圆中心在原点,焦点在x轴上,离心率e=,顺次连接椭圆四个顶点所得四边形的面积为2.(1)求椭圆的标准方程;(2)已知直线l与椭圆相交于M,N两点,O为原点,若点O在以MN为直径的圆上,试求点O到直线l的距离.【答案】解:(1)设椭圆方程为(a>b>0),焦距为2c.由e==,得a=c,①∵椭圆顶点连线四边形面积为2,即2ab=2,②又∵a2-c2=b2,③联立①②③解得c=1,a=,b=1.故椭圆的方程为:;…(4分)(2)当直线l的斜率不存在时,点O在以MN为直径的圆上,∴OM⊥ON.根据椭圆的对称性,可知直线OM、ON的方程分别为y=x,y=-x,可求得M(,),N(,-)或M(-,-),N(-,),此时,原点O到直线l的距离为.…(6分)当直线l的斜率存在时,设直线l的方程为y=kx+m,点M(x1,y1),N(x2,y2),由,整理得(2k2+1)x2+4kmx+2m2-2=0,∴x1+x2=-,x1x2=,…(8分)∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•-km(-)+m2=.∵OM⊥ON,∴•=0,即x1x2+y1y2═+==0,即3m2-2k2-2=0,变形得m2=.设原点O到直线l的距离为d,则d====.综上,原点O到直线l的距离为定值.…(10分)【解析】(1)由题意可知:e==,得a=c,2ab=2,a2-c2=b2,即可求得a和b的值,求得椭圆的标准方程;(2)当直线l的斜率不存在时,点O在以MN为直径的圆上,OM⊥ON.求得M和N 的坐标,即可求得原点O到直线l的距离为,当直线l的斜率存在时,设直线l的方程为y=kx+m,代入椭圆方程,由韦达定理求得x1x2=,y1y2=,由•=0,则x1x2+y1y2═0,求得m2=,原点O到直线l的距离为d,则d===.本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,点到直线距离公式的综合应用,考查计算能力,属于中档题.。

数学---四川省成都市树德中学2016-2017学年高二(上)期末试卷(理)(解析版)

数学---四川省成都市树德中学2016-2017学年高二(上)期末试卷(理)(解析版)

2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(理科)一、选择题(每小题5分,共60分)1.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.3.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg4.(5分)下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cos x=cos y”的逆否命题为假命题D.命题“若x=y,则cos x=cos y”的逆命题为假命题5.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.6.(5分)在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB 的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.7.(5分)直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.8.(5分)已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.9.(5分)已知实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m等于()A.7 B.5 C.4 D.310.(5分)点M是抛物线y2=x上的动点,点N是圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的曲线C上的一点,则|MN|的最小值是()A.B.C.2 D.11.(5分)某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24 B.26C.30 D.3212.(5分)已知圆C的方程为(x﹣1)2+y2=1,P是椭圆=1上一点,过P作圆的两条切线,切点为A、B,求•的范围为()A.[0,] B.[2﹣3,+∞]C.[2﹣3,] D.[,]二、填空题(每小题5分,共20分)13.(5分)某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,运动员的发挥更稳定.(填“甲”或“乙”)14.(5分)已知圆O1:x2+y2=1,圆O2:(x+4)2+(y﹣a)2=25,如果这两个圆有且只有一个公共点,则常数a=.15.(5分)已知知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=.16.(5分)已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+l 对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题17.(10分)设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p∧q为假命题,求m的取值范围.18.(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C上的一点,且|PF|=2.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.20.(12分)已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l:2mx+2y﹣1﹣3m=0被圆C截得的弦长最短时,求直线l的方程;(3)过原点的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的取值范围.21.(12分)已知抛物线x2=2py(p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD(点A、C在第一象限),且M,N分别是AB,CD的中点.(1)若AB⊥CD,求△FMN面积的最小值;(2)设直线AC的斜率为k AC,直线BD的斜率为k BD,且k AC+4k BD=0,求证:直线AC过定点,并求此定点.22.(12分)在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F(﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与交于P,Q两点,求四边形APBQ面积的最大值.参考答案一、选择题1.A【解析】∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.2.D【解析】∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.3.D【解析】对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.4.D【解析】命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”,故A错误;命题“若”的否定是“∀x∈R,x2≤1”,故B错误;命题“若x=y,则cos x=cos y”是真命题,故其逆否命题为真命题,故C错误;命题“若x=y,则cos x=cos y”的逆命题为命题“若cos x=cos y,则x=y”为假命题,故D正确;故选:D5.B【解析】由上程序框图,当运行程序后,x=1,y=1,z=2<20,满足条件,执行循环;则x=1,y=2,z=3<20,满足条件,执行循环;则x=2,y=3,z=5<20,满足条件,执行循环;则x=3,y=5,z=8<20,满足条件,执行循环;则x=5,y=8,z=13<20,满足条件,执行循环;则x=8,y=13,z=21>20,不满足条件,退出循环,则输出,故选:B.6.A【解析】设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0解得1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率为P==.故选:A.7.C【解析】圆心(2,3)到直线y=kx+3的距离d==.∴|MN|=2==,解得,∴,设直线的倾斜角为θ,则≤tanθ≤.∴θ∈∪.故选:C.8.D【解析】作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D9.B【解析】作出不等式组对应的平面区域如图:由目标函数z=x﹣y的最小值是﹣1,得y=x﹣z,即当z=﹣1时,函数为y=x+1,此时对应的平面区域在直线y=x+1的下方,由,解得,即A(2,3),同时A也在直线x+y=m上,即m=2+3=5,故选:B10.A【解析】圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的圆的圆心坐标(3,0),半径是1;设M的坐标为(y2,y),所以圆心到M的距离:,当y2=时,它的最小值为,则|MN|的最小值是:.故选A.11.D【解析】根据题意,本程序框图为求S的值循环体为“直到“循环结构,其功能是计算椭圆上横坐标分别为:﹣3,﹣2,﹣1,0,1,2,3的点到焦点的距离,如图所示.根据椭圆的定义及对称性,得即S=2a+2a+2a+(a﹣c)=7a﹣c,又椭圆的a=5,b=4,c=3,则执行该程序后输出的S等于S=32.故选D.12.C【解析】设P A与PB的夹角为2α,则|P A|=PB|=,∴y=•=|P A||PB|cos2α=•cos2α=•cos2α.记cos2α=u,则y==﹣3+(1﹣u)+≥2﹣3,∵P在椭圆的左顶点时,sinα=,∴cos2α=,∴•的最大值为=,∴•的范围为[2﹣3,].故选:C.二、填空题13.乙【解析】由某赛季甲、乙两名篮球运动员每场比赛得分记录的茎叶图表知:甲的得分相对分散,乙的得分相对集中,∴从茎叶图的分布情况看,乙运动员的发挥更稳定.故答案为:乙.14.±2或0【解析】∵两个圆有且只有一个公共点,∴两个圆内切或外切,内切时,=4,外切时,=6,∴a=±2或0,故答案为±2或015.4【解析】如图所示,设椭圆与双曲线的标准方程分别为:+=1,﹣=1(a i,b i>0,a1>b1,i=1,2),a12﹣b12=a22+b22=c2,c>0.设|PF1|=m,|PF2|=n.则m+n=2a1,n﹣m=2a2,解得m=a1﹣a2,n=a1+a2,由∠F1PF2=,在△PF1F2中,由余弦定理可得:(2c)2=m2+n2﹣2mn cos,∴4c2=(a1﹣a2)2+(a1+a2)2﹣(a1﹣a2)(a1+a2),化为4c2=a12+3a22,化为=4.故答案为:4.16.【解析】∵y=,∴x=y2,代入y=k(x+)得y=k(y2+),整理得ky2﹣y+=0,直线y=k(x+)与曲线y=恰有两个不同交点,等价为ky2﹣y+=0有两个不同的非负根,即△=1﹣k2>0,且>0,解得0<k<1,∴A={k|0<k<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:.三、解答题17.解:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部,故1+1﹣2m+2m+2m2﹣4<0,解得:﹣1<m<1,故命题p⇔﹣1<m<1,直线mx﹣y+1+2m=0(k∈R)不经过第四象限,故,解得:m≥0,故命题q⇔m≥0;如果p∨q为真命题,p∧q为假命题,则p,q一真一假,①p真q假时,﹣1<m<0;②p假q真时,m≥1.故m的取值范围为﹣1<m<0或m≥1.18.解:(1)分数在[70,80)内的频率为:1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3(2)∵数学成绩在[40,70)内的频率为(0.010+0.015+0.015)×10=0.4,数学成绩在[70,80)内的频率为0.3,∴中位数为70+=.(3)由题意,[60,70)分数段的人数为:0.15×60=9(人),[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A,所有基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个其中事件A包含(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共8个.∴P(A)=.19.解:(1)根据题意,抛物线C:y2=2px中,P到焦点距离等于P到准线距离,所以,p=2故抛物线的方程为C:y2=4x;又由椭圆,可知4﹣n=1,即n=3,故所求椭圆的方程为;(2)由,消去y得到3x2+16x﹣12=0,解得(舍去).所以,则双曲线的渐近线方程为y=±x,由渐近线,可设双曲线方程为6x2﹣y2=λ(λ≠0).由点P(1,m)在抛物线C:y2=4x上,解得m2=4,P(1,±2),因为点P在双曲线上,∴6﹣4=λ=2,故所求双曲线方程为:.20.解:(1)圆C:x2+y2﹣4x+3=0,即(x﹣2)2+y2=1,表示以(2,0)为圆心,半径等于1的圆.当切线的斜率不存在时,切线方程为x=3符合题意.当切线的斜率存在时,设切线斜率为k,则切线方程为y﹣2=k(x﹣3),即kx﹣y﹣3k+2=0,所以,圆心到切线的距离等于半径,即=1,解得k=,此时,切线为3x﹣4y﹣1=0.综上可得,圆的切线方程为x=3或3x﹣4y﹣1=0(2)直线l:2mx+2y﹣1﹣3m=0恒过定点当直线l⊥CN时,弦长最短,此时直线的方程为x﹣y﹣1=0(3)设点P(x,y),∵点P为线段AB的中点,曲线C是圆心为C(2,0),半径r=1的圆,∴CP⊥OP,∴化简得(x﹣1)2+y2=1由于点P在圆内,由得x=所以C1:(注:范围也可写成)圆心到直线的距离d==1,∴,过(,)时,k=因为直线与曲线C1只有一个交点,所以或21.(1)解:(1)抛物线的方程为x2=2y,设AB的方程为y=kx+联立抛物线方程,得x2﹣2kx﹣1=0,,同理∴S△FMN=|FM|•|FN|==≥1当且仅当k=±1时,△FMN的面积取最小值1.(2)证明:设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),设AB的方程为y=kx+,联立抛物线方程,得x2﹣2kx﹣1=0,∴x1x2=﹣1,同理,x3x4=﹣1故k AC+4k BD===注意到点A、C在第一象限,x1+x3≠0,故得x1x3=4,直线AC的方程为,化简得即所以,直线AC恒经过点(0,﹣2)22.解:(1)由已知,得.两边平方,化简得.故轨迹C的方程是;(2)∵AB不垂直于y轴,设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),由,得(m2+2)y2﹣2my﹣1=0.y1+y2=,y1y2=.x1+x2=m(y1+y2)﹣2=,于是AB的中点为M(),故直线PQ的斜率为﹣,PQ的方程为y=﹣x,即mx+2y=0,圆心与直线mx+2y=0的距离为,|PQ|=.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,∴2d=.∵点A,B在直线mx+2y=0的异侧,∴(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1﹣mx2﹣2y2|,从而2d=.∵|y1﹣y2|==,∴2d=.故四边形APBQ的面积S=|PQ|•2d=.令m2+4=t(t≥4),则S=().当,即时,.。

2016-2017年四川省成都市树德中学高二(上)期末数学试卷(理科)及答案

2016-2017年四川省成都市树德中学高二(上)期末数学试卷(理科)及答案

2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(理科)一、选择题(每小题5分,共60分)1.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5B.C.D.3.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg4.(5分)下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题5.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.6.(5分)在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.7.(5分)直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.8.(5分)已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.9.(5分)已知实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m等于()A.7B.5C.4D.310.(5分)点M是抛物线y2=x上的动点,点N是圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的曲线C上的一点,则|MN|的最小值是()A.B.C.2D.11.(5分)某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24B.26C.30D.3212.(5分)已知圆C的方程为(x﹣1)2+y2=1,P是椭圆=1上一点,过P 作圆的两条切线,切点为A、B,求•的范围为()A.[0,]B.[2﹣3,+∞]C.[2﹣3,]D.[,]二、填空题(每小题5分,共20分)13.(5分)某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,运动员的发挥更稳定.(填“甲”或“乙”)14.(5分)已知圆O1:x2+y2=1,圆O2:(x+4)2+(y﹣a)2=25,如果这两个圆有且只有一个公共点,则常数a=.15.(5分)已知知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=.16.(5分)已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题17.(10分)设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p ∧q为假命题,求m的取值范围.18.(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C 上的一点,且|PF|=2.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.20.(12分)已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l:2mx+2y﹣1﹣3m=0被圆C截得的弦长最短时,求直线l的方程;(3)过原点的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的取值范围.21.(12分)已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD(点A、C在第一象限),且M,N分别是AB,CD 的中点.(1)若AB⊥CD,求△FMN面积的最小值;(2)设直线AC的斜率为k AC,直线BD的斜率为k BD,且k AC+4k BD=0,求证:直线AC过定点,并求此定点.22.(12分)在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F (﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与交于P,Q两点,求四边形APBQ面积的最大值.2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.(5分)设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选:A.2.(5分)已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5B.C.D.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.3.(5分)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选:D.4.(5分)下列说法正确的是()A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1”B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题【分析】写出原命题的否命题,可判断A;写出原命题的否定命题,可判断B;判断原命题的真假,进而可判断其逆否命题的真假;写出原命题的逆命题,可判断D.【解答】解:命题“若x2>1,则x>1”的否命题为“若x2≤1,则x≤1”,故A错误;命题“若”的否定是“∀x∈R,x2≤1”,故B错误;命题“若x=y,则cosx=cosy”是真命题,故其逆否命题为真命题,故C错误;命题“若x=y,则cosx=cosy”的逆命题为命题“若cosx=cosy,则x=y”为假命题,故D正确;故选:D.5.(5分)阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.【分析】由上程序框图,当运行程序后,写出每次循环x,y,z的值,当z<20不成立,输出所求结果即可.【解答】解:由上程序框图,当运行程序后,x=1,y=1,z=2<20,满足条件,执行循环;则x=1,y=2,z=3<20,满足条件,执行循环;则x=2,y=3,z=5<20,满足条件,执行循环;则x=3,y=5,z=8<20,满足条件,执行循环;则x=5,y=8,z=13<20,满足条件,执行循环;则x=8,y=13,z=21>20,不满足条件,退出循环,则输出,故选:B.6.(5分)在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为()A.B.C.D.【分析】根据几何概型的概率公式,设AC=x,则BC=10﹣x,由矩形的面积S=x (10﹣x)≥9可求x的范围,利用几何概率的求解公式可求.【解答】解:设AC=x,则BC=10﹣x,矩形的面积S=x(10﹣x)≥9,∴x2﹣10x+9≤0解得1≤x≤9,由几何概率的求解公式可得,矩形面积不小于9cm2的概率为P==.故选:A.7.(5分)直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.【分析】圆心(2,3)到直线y=kx+3的距离d=.利用|MN|=2,可得k的取值范围,由于k=tanθ,解出即可.【解答】解:圆心(2,3)到直线y=kx+3的距离d==.∴|MN|=2==,解得,∴,设直线的倾斜角为θ,则≤tanθ≤.∴θ∈∪.故选:C.8.(5分)已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.【分析】作出不等式组对应的平面区域,求出对应的面积,结合几何概型的概率公式进行求解即可.【解答】解:作出不等式组对应的平面区域如图,则对应的区域为△AOB,由,解得,即B(4,﹣4),由,解得,即A(,),直线2x+y﹣4=0与x轴的交点坐标为(2,0),则△OAB的面积S==,点P的坐标满足不等式x2+y2≤2区域面积S=,则由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=,故选:D.9.(5分)已知实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m等于()A.7B.5C.4D.3【分析】作出不等式组对应的平面区域,利用目标函数z=x﹣y的最小值是﹣1,确定m的取值.【解答】解:作出不等式组对应的平面区域如图:由目标函数z=x﹣y的最小值是﹣1,得y=x﹣z,即当z=﹣1时,函数为y=x+1,此时对应的平面区域在直线y=x+1的下方,由,解得,即A(2,3),同时A也在直线x+y=m上,即m=2+3=5,故选:B.10.(5分)点M是抛物线y2=x上的动点,点N是圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的曲线C上的一点,则|MN|的最小值是()A.B.C.2D.【分析】由题意求出圆的对称圆的圆心坐标,求出对称圆的圆心坐标到抛物线上的坐标的距离的最小值,减去半径即可得到|MN|的最小值.【解答】解:圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的圆的圆心坐标(3,0),半径是1;设M的坐标为(y2,y),所以圆心到M的距离:,当y2=时,它的最小值为,则|MN|的最小值是:.故选:A.11.(5分)某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24B.26C.30D.32【分析】首先分析程序框图,循环体为“直到“循环结构,按照循环结构进行运算,求出满足题意时的S.【解答】解:根据题意,本程序框图为求S的值循环体为“直到“循环结构,其功能是计算椭圆上横坐标分别为:﹣3,﹣2,﹣1,0,1,2,3的点到焦点的距离,如图所示.根据椭圆的定义及对称性,得即S=2a+2a+2a+(a﹣c)=7a﹣c,又椭圆的a=5,b=4,c=3,则执行该程序后输出的S等于S=32.故选:D.12.(5分)已知圆C的方程为(x﹣1)2+y2=1,P是椭圆=1上一点,过P 作圆的两条切线,切点为A、B,求•的范围为()A.[0,]B.[2﹣3,+∞]C.[2﹣3,]D.[,]【分析】利用圆切线的性质:与圆心切点连线垂直;设出一个角,通过解直角三角形求出PA,PB的长;利用向量的数量积公式表示出•,利用三角函数的二倍角公式化简函数,通过换元,再利用基本不等式求出最值.【解答】解:设PA与PB的夹角为2α,则|PA|=PB|=,∴y=•=|PA||PB|cos2α=•cos2α=•cos2α.记cos2α=u,则y==﹣3+(1﹣u)+≥2﹣3,∵P在椭圆的左顶点时,sinα=,∴cos2α=,∴•的最大值为=,∴•的范围为[2﹣3,].故选:C.二、填空题(每小题5分,共20分)13.(5分)某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看,乙运动员的发挥更稳定.(填“甲”或“乙”)【分析】由茎叶图知甲的得分相对分散,乙的得分相对集中,由此能求出结果.【解答】解:由某赛季甲、乙两名篮球运动员每场比赛得分记录的茎叶图表知:甲的得分相对分散,乙的得分相对集中,∴从茎叶图的分布情况看,乙运动员的发挥更稳定.故答案为:乙.14.(5分)已知圆O1:x2+y2=1,圆O2:(x+4)2+(y﹣a)2=25,如果这两个圆有且只有一个公共点,则常数a=±2或0.【分析】两个圆有且只有一个公共点,两个圆内切或外切,分别求出a,即可得出结论.【解答】解:∵两个圆有且只有一个公共点,∴两个圆内切或外切,内切时,=4,外切时,=6,∴a=±2或0,故答案为±2或015.(5分)已知知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则=4.【分析】如图所示,设椭圆与双曲线的标准方程分别为:+=1,﹣=1(a i,b i>0,a1>b1,i=1,2),a12﹣b12=a22+b22=c2,c>0.设|PF1|=m,|PF2|=n.可得m+n=2a1,n﹣m=2a2,∠F1PF2=,在△PF1F2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos,化简整理由离心率公式即可得出.【解答】解:如图所示,设椭圆与双曲线的标准方程分别为:+=1,﹣=1(a i,b i>0,a1>b1,i=1,2),a12﹣b12=a22+b22=c2,c>0.设|PF1|=m,|PF2|=n.则m+n=2a1,n﹣m=2a2,解得m=a1﹣a2,n=a1+a2,由∠F1PF2=,在△PF1F2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos,∴4c2=(a1﹣a2)2+(a1+a2)2﹣(a1﹣a2)(a1+a2),化为4c2=a12+3a22,化为=4.故答案为:4.16.(5分)已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.【分析】根据直线和圆锥曲线的位置关系求出集合A,B,然后根据几何概型的概率公式即可得到结论.【解答】解:∵y=,∴x=y2,代入y=k(x+)得y=k(y2+),整理得ky2﹣y+=0,直线y=k(x+)与曲线y=恰有两个不同交点,等价为ky2﹣y+=0有两个不同的非负根,即△=1﹣k2>0,且>0,解得0<k<1,∴A={k|0<k<1}.P1(x1,y1)关于直线y=x+1的对称点为P(y1﹣1,x1+1),P是椭圆+=l上一动点,∴﹣4≤y1﹣1≤4,即﹣1≤≤1,设b=,则﹣1≤b≤1,∴B={b|﹣1≤b≤1}.∴随机的从集合A,B中分别抽取一个元素λ1,λ2,则λ1>λ2等价为,则对应的图象如图:则λ1>λ2的概率是,故答案为:.三、解答题17.(10分)设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q为真命题,p ∧q为假命题,求m的取值范围.【分析】分别求出p,q为真时的m的范围,通过讨论p,q的真假,得到关于m的不等式,取并集即可.【解答】解:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部,故1+1﹣2m+2m+2m2﹣4<0,解得:﹣1<m<1,故命题p⇔﹣1<m<1,直线mx﹣y+1+2m=0(k∈R)不经过第四象限,故,解得:m≥0,故命题q⇔m≥0;如果p∨q为真命题,p∧q为假命题,则p,q一真一假,①p真q假时,﹣1<m<0;②p假q真时,m≥1.故m的取值范围为﹣1<m<0或m≥1.18.(12分)某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为 6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.【分析】(1)利用频率分布直方图中小矩形的面积之和为1,能求出分数在[70,80)内的频率.(2)利用频率分布直方图能求出中位数.(3)[60,70)分数段的人数为9人,[70,80)分数段的人数为18人.需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.由此利用列举法能求出从中任取2人,恰有1人在分数段[70,80)的概率.【解答】解:(1)分数在[70,80)内的频率为:1﹣(0.010+0.015+0.015+0.025+0.005)×10=1﹣0.7=0.3…(3分)(2)∵数学成绩在[40,70)内的频率为(0.010+0.015+0.015)×10=0.4,数学成绩在[70,80)内的频率为0.3,∴中位数为70+=.…(6分)(3)由题意,[60,70)分数段的人数为:0.15×60=9(人),[70,80)分数段的人数为:0.3×60=18(人).∴需在[60,70)分数段内抽取2人,分别记为a,b;在[70,80)分数段内抽取4人,分别记为c,d,e,f.设“从样本中任取2人,恰有1人在分数段[70,80)内”为事件A,所有基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f),共15个…(8分)其中事件A包含(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b,f),共8个.…(10分)∴P(A)=.…(12分)19.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C 上的一点,且|PF|=2.(1)若椭圆与抛物线C有共同的焦点,求椭圆C'的方程;(2)设抛物线C与(1)中所求椭圆C'的交点为A、B,求以OA和OB所在的直线为渐近线,且经过点P的双曲线方程.【分析】(1)根据题意,由抛物线的定义可得,即p=2,可得抛物线的方程,结合题意可得椭圆中有4﹣n=1,解可得n的值,代入椭圆的标准方程即可得答案;(2)联立抛物线、椭圆的方程,消去y得到3x2+16x﹣12=0,解可得x的值,即可得A、B的坐标,进而可得双曲线的渐近线方程,由此设双曲线方程为6x2﹣y2=λ(λ≠0),结合抛物线的几何性质可得λ的值,即可得答案.【解答】解:(1)根据题意,抛物线C:y2=2px中,P到焦点距离等于P到准线距离,所以,p=2故抛物线的方程为C:y2=4x;又由椭圆,可知4﹣n=1,即n=3,故所求椭圆的方程为;(2)由,消去y得到3x2+16x﹣12=0,解得(舍去).所以,则双曲线的渐近线方程为y=±x,由渐近线,可设双曲线方程为6x2﹣y2=λ(λ≠0).由点P(1,m)在抛物线C:y2=4x上,解得m2=4,P(1,±2),因为点P在双曲线上,∴6﹣4=λ=2,故所求双曲线方程为:.20.(12分)已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l:2mx+2y﹣1﹣3m=0被圆C截得的弦长最短时,求直线l的方程;(3)过原点的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的取值范围.【分析】(1)由圆的方程求出圆心和半径,易得点A在圆外,当切线的斜率不存在时,切线方程为x=3.当切线的斜率存在时,设切线的斜率为k,写出切线方程,利用圆心到直线的距离等于半径,解出k,可得切线方程;(2)当直线l⊥CN时,弦长最短,可求直线l的方程;(3)求出轨迹C1,利用直线与曲线C1只有一个交点,求k的值.【解答】解:(1)圆C:x2+y2﹣4x+3=0,即(x﹣2)2+y2=1,表示以(2,0)为圆心,半径等于1的圆.当切线的斜率不存在时,切线方程为x=3符合题意.当切线的斜率存在时,设切线斜率为k,则切线方程为y﹣2=k(x﹣3),即kx﹣y﹣3k+2=0,所以,圆心到切线的距离等于半径,即=1,解得k=,此时,切线为3x﹣4y﹣1=0.综上可得,圆的切线方程为x=3或3x﹣4y﹣1=0…(3分)(2)直线l:2mx+2y﹣1﹣3m=0恒过定点当直线l⊥CN时,弦长最短,此时直线的方程为x﹣y﹣1=0…(7分)(3)设点P(x,y),∵点P为线段AB的中点,曲线C是圆心为C(2,0),半径r=1的圆,∴CP⊥OP,∴化简得(x﹣1)2+y2=1…(9分)由于点P在圆内,由得x=所以C1:(注:范围也可写成)…(10分)圆心到直线的距离d==1,∴,过(,)时,k=因为直线与曲线C1只有一个交点,所以或…(12分)21.(12分)已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F作抛物线的两条弦AB和CD(点A、C在第一象限),且M,N分别是AB,CD 的中点.(1)若AB⊥CD,求△FMN面积的最小值;(2)设直线AC 的斜率为k AC ,直线BD 的斜率为k BD ,且k AC +4k BD =0,求证:直线AC 过定点,并求此定点.【分析】(1)求出M ,N 的坐标,可得S △FMN =|FM |•|FN |==,利用基本不等式求△FMN 面积的最小值;(2)利用k AC +4k BD =0,得出x 1x 3=4,可得直线AC 的方程,即可得出结论.【解答】(1)解:(1)抛物线的方程为x 2=2y ,设AB 的方程为y=kx +联立抛物线方程,得x 2﹣2kx ﹣1=0,,同理∴S △FMN =|FM |•|FN |==≥1 当且仅当k=±1时,△FMN 的面积取最小值1.…(5分)(2)证明:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4),设AB 的方程为y=kx +,联立抛物线方程,得x 2﹣2kx ﹣1=0,∴x 1x 2=﹣1, 同理,x 3x 4=﹣1 …(7分)故k AC +4k BD === 注意到点A 、C 在第一象限,x 1+x 3≠0,故得x 1x 3=4,…(10分)直线AC 的方程为, 化简得即所以,直线AC 恒经过点(0,﹣2)…(12分)22.(12分)在平面直角坐标系中,点O 为坐标原点,动点P (x ,y )与定点F(﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P 的轨迹C 的方程;(2)过F 作曲线C 的不垂直于y 轴的弦AB ,M 为AB 的中点,直线OM 与交于P,Q两点,求四边形APBQ面积的最大值.【分析】(1)由题意列关于P的坐标的函数关系式,整理可得动点P的轨迹C 的方程;(2)设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),联立直线系方程和椭圆方程,得到关于y的一元二次方程,利用根与系数的关系求得A、B中点的坐标,得到直线PQ的,求出圆心与直线mx+2y=0的距离为,得到|PQ|.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,可得2d=.结合题意化简可得2d=.代入得2d=.代入四边形面积公式,换元后利用配方法求得四边形APBQ面积的最大值.【解答】解:(1)由已知,得.两边平方,化简得.故轨迹C的方程是;(2)∵AB不垂直于y轴,设直线AB的方程为x=my﹣1,A(x1,y1),B(x2,y2),由,得(m2+2)y2﹣2my﹣1=0.y1+y2=,y1y2=.x1+x2=m(y1+y2)﹣2=,于是AB的中点为M(),故直线PQ的斜率为﹣,PQ的方程为y=﹣x,即mx+2y=0,圆心与直线mx+2y=0的距离为,|PQ|=.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,∴2d=.∵点A,B在直线mx+2y=0的异侧,∴(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1﹣mx2﹣2y2|,从而2d=.∵|y1﹣y2|==,∴2d=.故四边形APBQ的面积S=|PQ|•2d=.令m2+4=t(t≥4),则S=().当,即时,.。

四川省成都市龙泉二中2016-2017学年高二上学期10月月考数学试卷(文科)Word版含解析

2016-2017学年四川省成都市龙泉二中高二(上)10月月考数学试卷(文科)一、选择题:本大题共12小题每小题5分,共60分.每小题只有一个选项符合题意1.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=7,c=5,则的值是()A.B.C.D.2.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1 B.2 C.3 D.43.二进制数10101化为十进制数的结果为()(2)A.15 B.21 C.33 D.414.过抛物线y2=4x的焦点F的直线交该抛物线于点A.若|AF|=3,则点A的坐标为()A.(2,2)B.(2,﹣2)C.(2,±2)D.(1,±2)5.如图,要测出山上石油钻井的井架BC的高,从山脚A测得AC=60m,塔顶B的仰角α=45°,塔底C的仰角15°,则井架的高BC为()A.m B.m C.m D.m6.若不等式x2﹣ax+1≤0和ax2+x﹣1>0对任意的x∈R均不成立,则实数a的取值范围是()A.B.C.D.7.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β8.如图,ABCD﹣A1B1C1D1为正方体,则以下结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1其中正确结论的个数是()A.0 B.1 C.2 D.39.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与古老的算法﹣﹣“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6102,b=2016时,输出的a=()A.6 B.9 C.12 D.1810.四个实数﹣9,a1,a2,﹣1成等差数列,五个实数﹣9,b1,b2,b3,﹣1成等比数列,则b2(a2﹣a1)等于()A.8 B.﹣8 C.±8 D.11.已知一个圆柱的底面半径和高分别为r和h,h<2πr,侧面展开图是一个长方形,这个长方形的长是宽的2倍,则该圆柱的表面积与侧面积的比是()A.B.C.D.12.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为.14.命题p:∀x∈R,x2+1>0的否定是.15.已知点P为双曲线﹣=1(a>0,b>0)右支上一点,F1,F2分别为双曲线的左、右焦点,I为△F1PF2的内心,若2(S﹣S)=S,则该双曲线的离心率是.16.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据可以估计出该不规则图形的面积为平方米.17.如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.设直线l1:(a﹣1)x﹣4y=1,l2:(a+1)x+3y=2,l3:x﹣2y=3.(1)若直线l1的倾斜角为135°,求实数a的值;(2)若l2∥l3,求实数a的值.19.在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量(2)利用公式(公式见卷首)求y对x的回归直线方程;(3)预测所挂物体重量为8g时的弹簧长度.20.已知曲线C上任意一点M满足|MF1|+|MF2|=4,其中F1(,F2(,(Ⅰ)求曲线C的方程;(Ⅱ)已知直线与曲线C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.21.如图为了测量河对岸A、B两点的距离,在河的这边测定,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点的距离.22.如图1,已知四边形ABFD为直角梯形,AB∥DF,∠ADF=,BC⊥DF,△AED为等边三角形,AD=,DC=,如图2,将△AED,△BCF分别沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF,DF,设G为AE上任意一点.(1)证明:DG∥平面BCF;(2)若GC=,求的值.23.以下茎叶图记录了某篮球队内两大中锋在六次训练中抢得篮板球数记录,由于教练一时疏忽,忘了记录乙球员其中一次的数据,在图中以X表示.(1)如果乙球员抢得篮板球的平均数为10时,求X的值和乙球员抢得篮板球数的方差;(2)如果您是该球队的教练在正式比赛中您会派谁上场呢?并说明理由(用数据说明).2016-2017学年四川省成都市龙泉二中高二(上)10月月考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题每小题5分,共60分.每小题只有一个选项符合题意1.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知a=7,c=5,则的值是()A.B.C.D.【考点】正弦定理.【分析】根据题意和正弦定理直接求出的值.【解答】解:由题意得,a=7,c=5,由正弦定理得,==,故选:A.2.设S n是公差不为0的等差数列{a n}的前n项和,且S1,S2,S4成等比数列,则等于()A.1 B.2 C.3 D.4【考点】等差数列的前n项和.【分析】由S1,S2,S4成等比数列,根据等比数列的性质得到S22=S1S4,然后利用等差数列的前n项和的公式分别表示出各项后,代入即可得到首项和公差的关系式,根据公差不为0,即可求出公差与首项的关系并解出公差d,然后把所求的式子利用等差数列的通项公式化简后,把公差d的关系式代入即可求出比值.【解答】解:由S1,S2,S4成等比数列,∴(2a1+d)2=a1(4a1+6d).∵d≠0,∴d=2a1.∴===3.故选C3.二进制数10101(2)化为十进制数的结果为()A.15 B.21 C.33 D.41【考点】进位制.【分析】本题考查的知识点是算法的概念,由二进制转化为十进制的方法,我们只要依次累加各位数字上的数×该数位的权重,即可得到结果.=1×20+0×21+1×22+0×23+1×24=21,【解答】解:10101(2)故选:B.4.过抛物线y2=4x的焦点F的直线交该抛物线于点A.若|AF|=3,则点A的坐标为()A.(2,2)B.(2,﹣2)C.(2,±2)D.(1,±2)【考点】抛物线的简单性质.【分析】确定抛物线y2=4x的准线方程,利用抛物线的定义,可求A点的横坐标,即可得出A的坐标.【解答】解:抛物线y2=4x的准线方程为x=﹣1,F(1,0).设A(x,y),∵|AF|=3,∴根据抛物线的定义可得|AF|=3=x+1,∴x=2,∴y=,∴A的坐标为(2,).故选:C,5.如图,要测出山上石油钻井的井架BC的高,从山脚A测得AC=60m,塔顶B的仰角α=45°,塔底C的仰角15°,则井架的高BC为()A.m B.m C.m D.m【考点】正弦定理;任意角的三角函数的定义.【分析】由图和测得的仰角求出∠BAC和∠ABC,放在△ABC中利用正弦定理求出BC的长度.【解答】解:由题意得,∠BAC=45°﹣15°=30°,∠ABC=α=45°,且AC=60m,在△ABC中,由正弦定理得,,即,解得BC=30(m),故选B.6.若不等式x2﹣ax+1≤0和ax2+x﹣1>0对任意的x∈R均不成立,则实数a的取值范围是()A.B.C.D.【考点】函数恒成立问题.【分析】题目可化为:不等式x2﹣ax+1>0和ax2+x﹣1≤0对任意的x∈R均成立,进而得到答案.【解答】解:若不等式x2﹣ax+1≤0对任意的x∈R均不成立,即不等式x2﹣ax+1>0对任意的x∈R均成立,即△=a2﹣4<0,解得:a∈(﹣2,2);若不等式ax2+x﹣1>0对任意的x∈R均不成立,即不等式ax2+x﹣1≤0对任意的x∈R均成立,即,解得:a∈(﹣∞,],故a∈(﹣2,],故选:D.7.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【考点】空间中直线与平面之间的位置关系.【分析】本题考查的知识点是直线与平面之间的位置关系,逐一分析四个答案中的结论,发现A,B,D中由条件均可能得到l∥β,即A,B,D三个答案均错误,只有C满足平面平行的性质,分析后不难得出答案.【解答】解:若l⊥α,α⊥β,则l⊂β或l∥β,故A错误;若l∥α,α∥β,则l⊂β或l∥β,故B错误;若l⊥α,α∥β,由平面平行的性质,我们可得l⊥β,故C正确;若l∥α,α⊥β,则l⊥β或l∥β,故D错误;故选C8.如图,ABCD﹣A1B1C1D1为正方体,则以下结论:①BD∥平面CB1D1;②AC1⊥BD;③AC1⊥平面CB1D1其中正确结论的个数是()A.0 B.1 C.2 D.3【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系;直线与平面垂直的判定.【分析】①由正方体的性质得BD∥B1D1,所以结合线面平行的判定定理可得答案;②由正方体的性质得AC⊥BD,再由三垂线定理可得答案.③由正方体的性质得BD∥B1D1,并且结合②可得AC1⊥B1D1,同理可得AC1⊥CB1,进而结合线面垂直的判定定理得到答案.【解答】解:由正方体的性质得,BD∥B1D1,所以结合线面平行的判定定理可得:BD∥平面CB1D1;所以①正确.由正方体的性质得AC⊥BD,因为AC是AC1在底面ABCD内的射影,所以由三垂线定理可得:AC1⊥BD,所以②正确.由正方体的性质得BD∥B1D1,由②可得AC1⊥BD,所以AC1⊥B1D1,同理可得AC1⊥CB1,进而结合线面垂直的判定定理得到:AC1⊥平面CB1D1 ,所以③正确.故选D.9.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与古老的算法﹣﹣“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6102,b=2016时,输出的a=()A.6 B.9 C.12 D.18【考点】程序框图.【分析】模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.【解答】解:模拟程序框图的运行过程,如下;a=6102,b=2016,执行循环体,r=54,a=2016,b=54,不满足退出循环的条件,执行循环体,r=18,a=54,b=18,不满足退出循环的条件,执行循环体,r=0,a=18,b=0,满足退出循环的条件r=0,退出循环,输出a的值为18.故选:D.10.四个实数﹣9,a1,a2,﹣1成等差数列,五个实数﹣9,b1,b2,b3,﹣1成等比数列,则b2(a2﹣a1)等于()A.8 B.﹣8 C.±8 D.【考点】等比数列的性质;等差数列的性质.【分析】设等差数列的公差为d,比数列的公比为q,由题意可得d和q,代入要求的式子化简可得.【解答】解:设等差数列的公差为d,等比数列的公比为q,则有﹣9+3d=﹣1,﹣9•q4=﹣1,解之可得d=,q=,∴b2(a2﹣a1)=﹣9××=﹣8故选B.11.已知一个圆柱的底面半径和高分别为r和h,h<2πr,侧面展开图是一个长方形,这个长方形的长是宽的2倍,则该圆柱的表面积与侧面积的比是()A.B.C.D.【考点】棱柱、棱锥、棱台的侧面积和表面积.【分析】由已知可得h=πr,计算出圆柱的表面积和侧面积,可得答案.【解答】解:∵圆柱的底面半径和高分别为r和h,h<2πr,若侧面展开图的长是宽的2倍,则h=πr,故圆柱的表面积为:2πr(r+h)=2πr(r+πr),圆柱的侧面积为:2πrh=2πr•πr,故该圆柱的表面积与侧面积的比为,故选:A12.已知A,B为双曲线E的左,右顶点,点M在E上,△ABM为等腰三角形,顶角为120°,则E的离心率为()A.B.2 C.D.【考点】双曲线的简单性质.【分析】设M在双曲线﹣=1的左支上,由题意可得M的坐标为(﹣2a,a),代入双曲线方程可得a=b,再由离心率公式即可得到所求值.【解答】解:设M在双曲线﹣=1的左支上,且MA=AB=2a,∠MAB=120°,则M的坐标为(﹣2a,a),代入双曲线方程可得,﹣=1,可得a=b,c==a,即有e==.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知△ABC 得三边长成公比为的等比数列,则其最大角的余弦值为 . 【考点】余弦定理;等比数列的性质.【分析】根据三角形三边长成公比为的等比数列,根据等比数列的性质设出三角形的三边为a , a ,2a ,根据2a 为最大边,利用大边对大角可得出2a 所对的角最大,设为θ,利用余弦定理表示出cos θ,将设出的三边长代入,即可求出cos θ的值.【解答】解:根据题意设三角形的三边长分别为a , a ,2a ,∵2a >a >a ,∴2a 所对的角为最大角,设为θ,则根据余弦定理得:cos θ==﹣.故答案为:﹣14.命题p :∀x ∈R ,x 2+1>0的否定是 ∃x ∈R ,x 2+1≤0 .【考点】命题的否定.【分析】本题中的命题是一个全称命题,其否定是一个特称命题,由规则写出否定命题即可【解答】解:∵命题“∀x ∈R ,x 2+1>0”∴命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”故答案为:∃x ∈R ,x 2+1≤0.15.已知点P 为双曲线﹣=1(a >0,b >0)右支上一点,F 1,F 2分别为双曲线的左、右焦点,I 为△F 1PF 2的内心,若2(S﹣S )=S ,则该双曲线的离心率是 2 .【考点】双曲线的简单性质.【分析】由I 为△F 1PF 2的内心,可知I 到三角形三边距离都相等,由2(﹣)=,根据三角形的面积公式可得2(丨PF 1丨•r ﹣丨PF 2丨•r )=丨F 1F 2丨•r ,求得2(丨PF 1丨﹣丨PF 2丨)=丨F 1F 2丨,根据双曲线的定义可得:丨PF 1丨﹣丨PF 2丨=2a ,丨F 1F 2丨=2c ,则c=2a ,利用离心率公式e=即可求得双曲线的离心率.【解答】解:∵I 为△F 1PF 2的内心,∴I 到三角形三边距离都相等,设内切圆半径r ,∴2(﹣)=,∴2(丨PF 1丨•r ﹣丨PF 2丨•r )=丨F 1F 2丨•r ,2(丨PF 1丨﹣丨PF 2丨)=丨F 1F 2丨,∵丨PF 1丨﹣丨PF 2丨=2a ,丨F 1F 2丨=2c ,∴2a=c ,即c=2a ,∴离心率e==2,故答案为:2.16.如图,一不规则区域内,有一边长为1米的正方形,向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,以此实验数据为依据可以估计出该不规则图形的面积为平方米.【考点】几何概型.【分析】本题考查的知识点是根据几何概型的意义进行模拟试验计算不规则图形的面积,关键是掌握P=【解答】解:∵向区域内随机地撒1000颗黄豆,数得落在正方形区域内(含边界)的黄豆数为375颗,记“黄豆落在正方形区域内”为事件A∴P(A)===平方米∴S不规则图形故答案为:17.如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为.【考点】茎叶图;众数、中位数、平均数.【分析】由已知的茎叶图,求出甲乙两人的平均成绩,然后求出乙的平均成绩不小于甲的平均成绩的概率,得到答案.【解答】解:由已知中的茎叶图可得甲的5次综合测评中的成绩分别为88,89,90,91,92,则甲的平均成绩:(88+89+90+91+92)=90设污损数字为x则乙的5次综合测评中的成绩分别为83,83,87,99,90+X则乙的平均成绩:(83+83+87+99+90+x)=88.4+,当x=9,甲的平均数<乙的平均数,即乙的平均成绩超过甲的平均成绩的概率为,当x=8,甲的平均数=乙的平均数,即乙的平均成绩不小于均甲的平均成绩的概率为,甲的平均成绩超过乙的平均成绩的概率为1﹣=故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.设直线l1:(a﹣1)x﹣4y=1,l2:(a+1)x+3y=2,l3:x﹣2y=3.(1)若直线l1的倾斜角为135°,求实数a的值;(2)若l2∥l3,求实数a的值.【考点】直线的一般式方程与直线的平行关系;直线的倾斜角.【分析】(1)直线化为斜截式,利用直线l1的倾斜角为135°,得,即可求实数a的值;(2)若l2∥l3,则,即可求实数a的值.【解答】解:(1)l1的方程可化为,由直线l1的倾斜角为135°,得=﹣1,解得a=﹣3.(2)∵l2∥l3,∴,即.19.在物理实验中,为了研究所挂物体的重量x对弹簧长度y的影响.某学生通过实验测量(2)利用公式(公式见卷首)求y对x的回归直线方程;(3)预测所挂物体重量为8g时的弹簧长度.【考点】回归分析的初步应用.【分析】(1)利用所给数据,可得散点图;(2)利用公式计算b,a,可得y对x的回归直线方程;(3)利用(2)的结论,可以预测所挂物体重量为8g时的弹簧长度.【解答】解:(1)散点图,如图所示(2)∵,=4,,∴=1.2,a=4﹣1.2×3=0.4∴=1.2x+0.4;(3)当x=8g时,=1.2×8+0.4=10cm.∴预测所挂物体重量为8g时的弹簧长度为10cm.20.已知曲线C上任意一点M满足|MF1|+|MF2|=4,其中F1(,F2(,(Ⅰ)求曲线C的方程;(Ⅱ)已知直线与曲线C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(Ⅰ)利用曲线C上任意一点M满足|MF1|+|MF2|=4,其中F1(,F2(,求出几何量,即可得到椭圆的方程;(Ⅱ)直线方程代入椭圆方程,利用韦达定理,及x1x2+y1y2=0,即可求得结论.【解答】解:(Ⅰ)设椭圆的焦半距为c,则由题设,得a=2,c=,所以b2=a2﹣c2=4﹣3=1,故所求椭圆C的方程为.(Ⅱ)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点A(x1,y1),B(x2,y2),将直线l的方程代入,并整理,得.(*)则,.因为以线段AB为直径的圆恰好经过坐标原点O,所以,即x1x2+y1y2=0.又,于是,解得,经检验知:此时(*)式的△>0,符合题意.所以当时,以线段AB为直径的圆恰好经过坐标原点O.21.如图为了测量河对岸A、B两点的距离,在河的这边测定,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点的距离.【考点】余弦定理;正弦定理.【分析】在△BCD中,利用正弦定理,可求BC,在△ABC中,由余弦定理,可求AB.【解答】解:由题意,AD=DC=AC=,在△BCD中,∠DBC=45°,∴∴在△ABC中,由余弦定理AB2=AC2+BC2﹣2AC•BCcos45°,∴答:A、B两点距离为km.22.如图1,已知四边形ABFD为直角梯形,AB∥DF,∠ADF=,BC⊥DF,△AED为等边三角形,AD=,DC=,如图2,将△AED,△BCF分别沿AD,BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,连接EF,DF,设G为AE上任意一点.(1)证明:DG∥平面BCF;(2)若GC=,求的值.【考点】构成空间几何体的基本元素.【分析】(1)根据题意证明CD⊥平面AED,CD⊥平面BCF,得出平面AED∥平面BCF,即可证明DG∥平面BCF;(2)根据空间中的垂直关系,利用直角三角形的边角关系,即可求出的值.【解答】解:(1)由题意可知AD⊥DC,因为平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,所以CD⊥平面AED,同理CD⊥平面BCF,所以平面AED∥平面BCF;又DG⊂平面AED,所以DG∥平面BCF;(2)取AD的中点O,连接OE,则OE⊥AD,过G作GH⊥OA,垂足为G,设GH=h;∵∠EAD=60°,∴;∵GC2=GH2+HD2+DC2,∴,化简得h2﹣5h+6=0,∴h=3或h=2;又∵,当h=3时,在Rt△AOE中,,∴;当h=2时,同理可得,综上所述,的值为或.23.以下茎叶图记录了某篮球队内两大中锋在六次训练中抢得篮板球数记录,由于教练一时疏忽,忘了记录乙球员其中一次的数据,在图中以X表示.(1)如果乙球员抢得篮板球的平均数为10时,求X的值和乙球员抢得篮板球数的方差;(2)如果您是该球队的教练在正式比赛中您会派谁上场呢?并说明理由(用数据说明).【考点】极差、方差与标准差.【分析】(1)由茎叶图数据,根据平均数公式,构造关于X方程,解方程可得答案.(2)分别计算两人的均值与方差,作出决定.【解答】解:乙球员抢得篮板球的平均数为10,,解得x=9,乙球员抢得篮板球数的方差= [(9﹣10)2+(8﹣10)2+(9﹣10)2+(8﹣10)2+(14﹣10)2+(12﹣10)2]=5(2)由(1)得=10,=5,,= [(6﹣10)2+(9﹣10)2+(9﹣10)2+(14﹣10)2+(11﹣10)2+(11﹣10)2]=6∵∴由数据结果说明,乙球员发挥地更稳定,所以选派乙球员上场.…2017年1月6日。

四川省成都市龙泉中学、温江中学等五校联考2016-2017学年高二上学期期中数学试卷(理科) 含解析

2016—2017学年四川省成都市龙泉中学、温江中学等五校联考高二(上)期中数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,则点B1的坐标是()A.(1,0,0)B.(1,0,1) C.(1,1,1) D.(1,1,0)2.双曲线=1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x 3.与直线l:3x﹣5y+4=0关于原点对称的直线的方程为()A.3x+5y+4=0 B.3x﹣5y﹣4=0 C.5x﹣3y+4=0 D.5x+3y+4=04.设变量x,y满足约束条件,则目标函数z=3x﹣4y的最大值和最小值分别为()A.3,﹣11 B.﹣3,﹣11 C.11,﹣3 D.11,35.设点A(﹣2,3),B(3,2),若直线ax+y+2=0与线段AB没有交点,则a的取值范围是()A.(﹣∞,﹣]∪[,+∞)B.(﹣,)C.[﹣,]D.(﹣∞,﹣]∪[,+∞)6.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线7.如果椭圆+=1的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.x+2y﹣4=0 C.2x+3y﹣12=0D.x+2y﹣8=08.一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣ C.﹣或﹣ D.﹣或﹣9.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.10.以下四个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;④过定圆C上一点A作圆的动弦AB,O为原点,若则动点P的轨迹为椭圆.其中正确的个数是()A.1个B.2个 C.3个 D.4个11.已知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.B.2 C.D.312.已知圆C的方程(x﹣1)2+y2=1,P是椭圆=1上一点,过P作圆的两条切线,切点为A、B,则的取值范围为( )A.B.C.D.二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.若三点P(1,1),A(2,﹣4),B(x,﹣9)共线,则x= .14.不论k为何实数,直线(2k﹣1)x﹣(k+3)y﹣(k ﹣11)=0恒通过一个定点,这个定点的坐标是.15.已知直线L经过点P(﹣4,﹣3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是.16.已知A(1,2),B(﹣1,2),动点P满足,若双曲线=1(a>0,b>0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是.三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)17.已知直线l1:2x+y+2=0,l2:mx+4y+n=0(1)若l1⊥l2,求m的值,;(2)若l 1∥l2,且它们的距离为,求m、n的值.18.某研究所计划利用“神十”宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:每件每件产产品A品B研制成本、搭载费用之和(万元)2030计划最大资金额300万元产品重量(千克)105最大搭载重量110千克预计收益(万元)8060分别用x,y表示搭载新产品A,B的件数.总收益用Z表示(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.19.已知圆心在直线y=4x上,且与直线l:x+y﹣2=0相切于点P(1,1).(Ⅰ)求圆的方程;(II)直线kx﹣y+3=0与该圆相交于A、B两点,若点M在圆上,且有向量(O为坐标原点),求实数k.20.已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,(Ⅰ)求C的方程;并求其准线方程;(II)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由.21.已知椭圆E:的左、右焦点分别为F1、F2,离心率,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为1.(Ⅰ)求椭圆E的方程;(Ⅱ)已知直x﹣y+m=0与椭圆E交于不同的两点A,B,且线AB的中点不在圆内,求m的取值范围.22.如图,O为坐标原点,椭圆C1: +=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:﹣=1的左、右焦点分别为F3,F4,离心率为e2,已知e1e2=,且|F2F4|=﹣1.(Ⅰ)求C1、C2的方程;(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB 的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.2016—2017学年四川省成都市龙泉中学、温江中学等五校联考高二(上)期中数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分) 1.如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,则点B1的坐标是()A.(1,0,0) B.(1,0,1)C.(1,1,1)D.(1,1,0)【考点】空间中的点的坐标.【分析】由正方体的棱长为1,结合题中的坐标系求出点B1在x轴、y轴、z轴上射影点的坐标,即可得到点B1的坐标.【解答】解:根据题意,可得∵正方体ABCD﹣A1B1C1D1的棱长为1,∴点B1在x轴上的射影点为A(1,0,0),可得B1的横坐标为1;点B1在y轴上的射影点为C(0,1,0),可得B1的纵坐标为1;点B1在z轴上的射影点为D1(0,0,1),可得B1的竖坐标为1.由此可得点B1的坐标是(1,1,1).故选:C2.双曲线=1的渐近线方程是()A.y=±x B.y=±x C.y=±x D.y=±x【考点】双曲线的简单性质.【分析】根据双曲线的渐近线方程的求法,直接求解即可.【解答】解:双曲线的渐近线方程是,即.故选C.3.与直线l:3x﹣5y+4=0关于原点对称的直线的方程为()A.3x+5y+4=0 B.3x﹣5y﹣4=0 C.5x﹣3y+4=0 D.5x+3y+4=0【考点】与直线关于点、直线对称的直线方程.【分析】令坐标(x,y)关于原点对称为(﹣x,﹣y),带入直线方程可得答案.【解答】解:直线l:3x﹣5y+4=0关于原点对称,设坐标(x,y)是所求直线方程上的点,那么:坐标(x,y)关于原点对称为(﹣x,﹣y)在直线l上,则有:﹣3x+5y+4=0,化简可得:3x﹣5y﹣4=0.故选B.4.设变量x,y满足约束条件,则目标函数z=3x﹣4y的最大值和最小值分别为()A.3,﹣11 B.﹣3,﹣11 C.11,﹣3 D.11,3【考点】简单线性规划.【分析】①作出可行域②z为目标函数纵截距负四倍③画直线3x﹣4y=0,平移直线观察最值.【解答】解:作出满足约束条件的可行域,如右图所示,可知当直线z=3x﹣4y平移到点(5,3)时,目标函数z=3x﹣4y取得最大值3;当直线z=3x﹣4y平移到点(3,5)时,目标函数z=3x﹣4y取得最小值﹣11,故选A.5.设点A(﹣2,3),B(3,2),若直线ax+y+2=0与线段AB没有交点,则a的取值范围是()A.(﹣∞,﹣]∪[,+∞) B.(﹣,) C.[﹣,]D.(﹣∞,﹣]∪[,+∞)【考点】两条直线的交点坐标.【分析】直线ax+y+2=0过定点(0,﹣2),直线ax+y+2=0与线段AB没有交点转化为过定点(0,﹣2)的直线与线段AB无公共点,作出图象,由图求解即可.【解答】解:直线ax+y+2=0恒过点M(0,﹣2),且斜率为﹣a,∵k MA==﹣,k MB==,由图可知:﹣a>﹣且﹣a<,∴a∈(﹣,),故选B.6.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线【考点】轨迹方程.【分析】根据线段AN的垂直平分线交MA于点P可知|PA|=|PN|,进而可知PM|+|PA|=6,根据椭圆的定义可知点P的轨迹为椭圆.【解答】解:∵|PA|=|PN|,∴|PM|+|PN|=|PM|+|PA|=|MA|=6>|MN|.故动点P的轨迹是椭圆.故选B7.如果椭圆+=1的弦被点(4,2)平分,则这条弦所在的直线方程是()A.x﹣2y=0 B.x+2y﹣4=0 C.2x+3y﹣12=0D.x+2y﹣8=0【考点】椭圆的应用;直线与圆锥曲线的综合问题.【分析】设这条弦的两端点为A(x1,y1),B(x2,y2),则,两式相减再变形得,又由弦中点为(4,2),可得k=,由此可求出这条弦所在的直线方程.【解答】解:设这条弦的两端点为A(x1,y1),B(x2,y2),斜率为k,则,两式相减再变形得又弦中点为(4,2),故k=,故这条弦所在的直线方程y﹣2=(x﹣4),整理得x+2y ﹣8=0;故选D.8.一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣ C.﹣或﹣ D.﹣或﹣【考点】圆的切线方程;直线的斜率.【分析】点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),可设反射光线所在直线的方程为:y+3=k(x﹣2),利用直线与圆相切的性质即可得出.【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.9.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.【考点】双曲线的简单性质.【分析】先根据条件求出店A的坐标,再结合点A到抛物线C1的准线的距离为p;得到=,再代入离心率计算公式即可得到答案.【解答】解:取双曲线的其中一条渐近线:y=x,联立⇒;故A(,).∵点A到抛物线C1的准线的距离为p,∴+=p;∴=.∴双曲线C 2的离心率e===.故选:C.10.以下四个关于圆锥曲线的命题中:①双曲线与椭圆有相同的焦点;②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的;③设A、B为两个定点,k为常数,若|PA|﹣|PB|=k,则动点P的轨迹为双曲线;④过定圆C上一点A作圆的动弦AB,O为原点,若则动点P的轨迹为椭圆.其中正确的个数是( )A.1个B.2个 C.3个 D.4个【考点】曲线与方程.【分析】对4个选项分别进行判断,即可得出结论.【解答】解:①双曲线的焦点坐标为(±5,0),椭圆的焦点坐标为(±5,0),所以双曲线与椭圆有相同的焦点,正确;②不妨设抛物线为标准抛物线:y2=2px (p>0 ),即抛物线位于Y轴的右侧,以X轴为对称轴.设过焦点的弦为PQ,PQ的中点是M,M到准线的距离是d.而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.又M到准线的距离d是梯形的中位线,故有d=,由抛物线的定义可得:==半径.所以圆心M到准线的距离等于半径,所以圆与准线是相切,正确.③平面内与两个定点F1,F2的距离的差的绝对值等于常数k(k<|F1F2|)的点的轨迹叫做双曲线,当0<k<|AB|时是双曲线的一支,当k=|AB|时,表示射线,所以不正确;④设定圆C的方程为x2+y2+Dx+Ey+F=0,点A(m,n),P(x,y),由则可知P为AB的中点,则B(2x﹣m,2y﹣n),因为AB为圆的动弦,所以B在已知圆上,把B的坐标代入圆x2+y2+Dx+Ey+F=0得到P的轨迹仍为圆,当B与A重合时AB不是弦,所以点A除外,所以不正确.故选B.11.已知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.B.2 C.D.3【考点】点到直线的距离公式.【分析】设出抛物线上一点P的坐标,然后利用点到直线的距离公式分别求出P到直线l1和直线l2的距离d1和d2,求出d1+d2,利用二次函数求最值的方法即可求出距离之和的最小值.【解答】解:设抛物线上的一点P的坐标为(a2,2a),则P到直线l2:x=﹣1的距离d2=a2+1;P到直线l1:4x﹣3y+6=0的距离d1=则d1+d2=a2+1=当a=时,P到直线l1和直线l2的距离之和的最小值为2故选B12.已知圆C的方程(x﹣1)2+y2=1,P是椭圆=1上一点,过P作圆的两条切线,切点为A、B,则的取值范围为()A.B.C.D.【考点】椭圆的简单性质.【分析】由圆切线的性质,即与圆心切点连线垂直设出一个角,通过解直角三角形求出PA,PB的长;利用向量的数量积公式表示出,利用三角函数的二倍角公式化简函数,通过换元,再利用基本不等式求出最值.【解答】解:设PA与PB的夹角为2α,则|PA|=PB|=,∴y==||||cos2α=•cos2α=•cos2α.记cos2α=u,则y==﹣3+(1﹣u)+≥2﹣3,∵P在椭圆的左顶点时,sinα=,∴cos2α=,∴的最大值为=,∴的范围为[2﹣3,],故选:A.二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.若三点P(1,1),A(2,﹣4),B(x,﹣9)共线,则x= 3 .【考点】向量的共线定理.【分析】三点共线等价于以三点为起点终点的两个向量共线,利用向量坐标公式求出两个向量的坐标,利用向量共线的充要条件列出方程求出x.【解答】解:三点P(1,1),A(2,﹣4),B(x,﹣9)共线,,,⇒1×(﹣10)=﹣5(x﹣1)⇒x=3故答案为314.不论k为何实数,直线(2k﹣1)x﹣(k+3)y﹣(k ﹣11)=0恒通过一个定点,这个定点的坐标是(2,3).【考点】恒过定点的直线.【分析】直线方程即k(2x+y﹣1)+(﹣x+3y+11)=0,一定经过2x﹣y﹣1=0和﹣x﹣3y+11=0 的交点,联立方程组可求定点的坐标.【解答】解:直线(2k﹣1)x﹣(k+3)y﹣(k﹣11)=0即k(2x﹣y﹣1)+(﹣x﹣3y+11)=0,根据k的任意性可得,解得,∴不论k取什么实数时,直线(2k﹣1)x+(k+3)y ﹣(k﹣11)=0都经过一个定点(2,3).故答案为:(2,3).15.已知直线L经过点P(﹣4,﹣3),且被圆(x+1)2+(y+2)2=25截得的弦长为8,则直线L的方程是x=﹣4和4x+3y+25=0 .【考点】直线与圆相交的性质.【分析】求出圆心与半径,利用圆心到直线的距离、半径、半弦长满足勾股定理,求出弦心距,通过直线的斜率存在与不存在,利用圆心到直线的距离求解,求出直线的方程即可.【解答】解:圆心(﹣1,﹣2),半径r=5,弦长m=8设弦心距是d则由勾股定理r2=d2+()2d=3若l斜率不存在,是x=﹣4圆心和他距离是﹣3,符合y+3=k(x+4)kx﹣y+4k﹣3=0则d==39k2﹣6k+1=9k2+9k=﹣所以x+4=0和4x+3y+25=0故答案为:x=﹣4和4x+3y+25=016.已知A(1,2),B(﹣1,2),动点P满足,若双曲线=1(a>0,b>0)的渐近线与动点P 的轨迹没有公共点,则双曲线离心率的取值范围是(1,2) .【考点】双曲线的简单性质.【分析】设P(x,y),由动点P满足AP⊥BP,即有x2+(y ﹣2)2=1,求出双曲线的渐近线方程,运用圆心到直线的距离大于半径,得到3a2>b2,再由a,b,c的关系和离心率公式,即可得到范围.【解答】解:设P(x,y),由于点A(1,2)、B(﹣1,2),动点P满足,则(x﹣1,y﹣2)•(x+1)(y﹣2)=0,即(x﹣1)(x+1)+(y﹣2)2=0,即有x2+(y﹣2)2=1,设双曲线﹣=1的一条渐近线为y=x,由于这条渐近线与动点P的轨迹没有公共点,则d=>1,即有3a2>b2,由于b2=c2﹣a2,则c2<4a2,即c<2a,则e=<2,由于e>1,则有1<e<2.故答案为:(1,2).三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)17.已知直线l1:2x+y+2=0,l2:mx+4y+n=0(1)若l1⊥l2,求m的值,;(2)若l 1∥l2,且它们的距离为,求m、n的值.【考点】直线的一般式方程与直线的垂直关系;两条平行直线间的距离.【分析】(1)求出直线的斜率,根据直线垂直的关系,得到关于m的方程,求出m的值即可;(2)根据直线平行,求出m的值,根据点到直线的距离求出n的值即可.【解答】解:(1)直线l1:y=﹣2x﹣2,斜率是﹣2,直线l2:y=﹣x﹣,斜率是:﹣,若l1⊥l2,则﹣2•(﹣)=﹣1,解得:m=﹣2;(2)若l1∥l2,则﹣2=﹣,解得:m=8,∴直线l1:y=﹣2x﹣2,直线l2:y=﹣2x﹣,在直线l1上取点(0,﹣2),则(0,﹣2)到l2的距离是:d==,解得:n=28或﹣12.18.某研究所计划利用“神十"宇宙飞船进行新产品搭载实验,计划搭载若干件新产品A、B,该所要根据该产品的研制成本、产品重量、搭载实验费用和预计产生的收益来决定具体搭载安排,有关数据如下表:每件每件产产品A品B研制成本、搭载费用之和(万元)2030计划最大资金额300万元产品重量(千克)105最大搭载重量110千克预计收益(万元)8060分别用x,y表示搭载新产品A,B的件数.总收益用Z 表示(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别搭载新产品A、B各多少件,才能使总预计收益达到最大?并求出此最大收益.【考点】简单线性规划.【分析】(Ⅰ)由题意,列出关于x,y的不等式组,由不等式组得到平面区域即可;(Ⅱ)列出目标函数,根据(Ⅰ)的约束条件以及可行域,结合目标函数的几何意义求最大值即可.【解答】解:(Ⅰ)解:由已知x,y满足的数学关系式为,且x∈N,y∈N,该二元一次不等式组所表示的区域为图中的阴影部分.…(Ⅱ)解:设最大收益为z万元,则目标函数z=80x+60y.作出直线l a:4x+3y=0并平移,由图象知,当直线经过M点时,z能取到最大值,由解得且满足x∈N,y∈N,即M(9,4)是最优解,所以z max=80×9+60×4=960(万元),答:搭载A产品9件,B产品4件,能使总预计收益达到最大值,最大预计收益为960万元.…19.已知圆心在直线y=4x上,且与直线l:x+y﹣2=0相切于点P(1,1).(Ⅰ)求圆的方程;(II)直线kx﹣y+3=0与该圆相交于A、B两点,若点M在圆上,且有向量(O为坐标原点),求实数k.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆心与半径,即可求圆的方程;(II)直线与圆联立:得:(1+k2)x2+6kx+7=0,利用韦达定理,M代入圆方程:,即可得出结论.【解答】解:(Ⅰ)设圆的方程为(x﹣a)2+(y﹣4a)2=r2因为直线相切,圆心到直线的距离,且圆心与切点连线与直线l垂直可得a=0,r=,所以圆的方程为:x2+y2=2…(II)直线与圆联立:得:(1+k2)x2+6kx+7=0,△=8k2﹣28>0,解得.设A(x1,y1),B(x2,y2),,M代入圆方程:,求得k=…20.已知抛物线C:y2=2px(p>0),上的点M(1,m)到其焦点F的距离为2,(Ⅰ)求C的方程;并求其准线方程;(II)已知A (1,﹣2),是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L 的方程;若不存在,说明理由.【考点】抛物线的简单性质.【分析】(I)由抛物线的定义可知:|MF|=1﹣(﹣)=2,解得p=2,则抛物线方程可得,进而根据抛物线的性质求得其准线方程.(II)先假设存在符合题意的直线,设出其方程,与抛物线方程联立,根据直线与抛物线方程有公共点,求得t的范围,利用直线AO与L的距离,求得t,则直线l的方程可得.【解答】解:(Ⅰ)抛物线y2=2px(p>0)的准线方程为x=﹣,由抛物线的定义可知:|MF|=1﹣(﹣)=2,解得p=2,因此,抛物线C的方程为y2=4x;其准线方程为x=﹣1.…(Ⅱ)假设存在符合题意的直线l,其方程为y=﹣2x+t,(OA的方程为:y=﹣2x)由,得y2+2 y﹣2 t=0.…因为直线l与抛物线C有公共点,所以得△=4+8 t,解得t≥﹣1/2.…另一方面,由直线OA与l的距离d=,可得,解得t=±1.…因为﹣1∉[﹣,+∞),1∈[﹣,+∞),所以符合题意的直线l 存在,其方程为2x+y﹣1=0.…21.已知椭圆E:的左、右焦点分别为F1、F2,离心率,P为椭圆E上的任意一点(不含长轴端点),且△PF1F2面积的最大值为1.(Ⅰ)求椭圆E的方程;(Ⅱ)已知直x﹣y+m=0与椭圆E交于不同的两点A,B,且线AB的中点不在圆内,求m的取值范围.【考点】椭圆的简单性质.【分析】(Ⅰ)由已知列关于a,b,c的方程,联立方程求得a,b的值,则椭圆方程可求;(Ⅱ)联立直线方程和椭圆方程,利用一元二次方程的根与系数的关系求得AB的中点坐标,再由AB的中点不在圆内结合判别式可得m的取值范围.【解答】解:(Ⅰ)由,得,又a2=b2+c2,且,联立解得:,c=1.∴椭圆的标准方程为;(Ⅱ)联立,消去y整理得:3x2+4mx+2m2﹣2=0.则△=16m2﹣12(2m2﹣2)=8(﹣m2+3)>0,解得.设A(x1,y1),B(x2,y2),则,,即AB的中点为().又AB的中点不在圆内,∴,解得:m≤﹣1或m≥1.综上可知,或1.22.如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率为e1;双曲线C2:﹣=1的左、右焦点分别为F3,F4,离心率为e 2,已知e1e2=,且|F2F4|=﹣1.(Ⅰ)求C1、C2的方程;(Ⅱ)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.【考点】圆锥曲线的综合;直线与圆锥曲线的综合问题.【分析】(Ⅰ)由斜率公式写出e1,e2,把双曲线的焦点用含有a,b的代数式表示,结合已知条件列关于a,b的方程组求解a,b的值,则圆锥曲线方程可求;(Ⅱ)设出AB所在直线方程,和椭圆方程联立后得到关于y的一元二次方程,由根与系数的关系得到AB 中点M的坐标,并由椭圆的焦点弦公式求出AB的长度,写出PQ的方程,和双曲线联立后解出P,Q的坐标,由点到直线的距离公式分别求出P,Q到AB的距离,然后代入代入三角形面积公式得四边形APBQ 的面积,再由关于n的函数的单调性求得最值.【解答】解:(Ⅰ)由题意可知,,且.∵e 1e2=,且|F2F4|=﹣1.∴,且.解得:.∴椭圆C1的方程为,双曲线C2的方程为;(Ⅱ)由(Ⅰ)可得F1(﹣1,0).∵直线AB不垂直于y轴,∴设AB的方程为x=ny﹣1,联立,得(n2+2)y2﹣2ny﹣1=0.设A(x1,y1),B(x2,y2),M(x0,y0),则,.则==.∵M在直线AB上,∴.直线PQ的方程为,联立,得.解得,代入得.由2﹣n2>0,得﹣<n<.∴P,Q的坐标分别为,则P,Q到AB的距离分别为:,.∵P,Q在直线A,B的两端,∴.则四边形APBQ的面积S=|AB|.∴当n2=0,即n=0时,四边形APBQ面积取得最小值2.2016年12月9日。

[首发]四川省成都市龙泉驿区第一中学校2016-2017学年高二上学期入学考试数学(文)试题

成都龙泉高中高2015级高二(上)入学考试试题数 学(文)(满分150分,时间120分钟)第Ⅰ卷(选择题 共60分)一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项. 1.经过点)3,3(--M 的直线l 被圆021422=-++y y x 所截得的弦长为54,则直线 l 的方程为 ( )A.092=+-y x 或032=++y xB.092=+-y x 或032=++y xC.032=++y x 或092=+-y xD.092=++y x 或032=+-y x 2.△ABC 中,AB=2,AC=3,∠B=30°,则cosC=( )A .B .C .﹣D .±3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( ) A .35 B .﹣3 C .3 D .﹣0.54.对数型函数y=log a x+1(a >0,且a ≠1)的图象过定点( ) A .(0,0) B .(0,1) C .(1,2) D .(1,1) 5.设集合M={x|x 2﹣5x ﹣6>0},U=R ,则∁U M=( )A .[2,3]B .(﹣∞,2]∪[3,+∞)C .[﹣1,6]D .[﹣6,1]6.已知向量=(2,1),=(﹣1,k ),⊥,则实数k 的值为( ) A .2B .﹣2C .1D .﹣17.用二分法求方程x 3﹣2x ﹣5=0在区间[2,3]上的实根,取区间中点x 0=2.5,则下一个有根区间是( )A .[2,2.5]B .[2.5,3]C .D .以上都不对8.如图所示,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,BD ∩AC=0,M 是线段D 1O 上的动点,过点M 做平面ACD 1的垂线交平面A 1B 1C 1D 1于点N ,则点N 到点A 距离的最小值为( )A .B .C .D .19.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为()A.AC⊥BD B.AC=BDC.AC∥截面PQMN D.异面直线PM与BD所成的角为45°10.已知函数f(x)=ln(cosx),则下列说法中,错误的是()①f(x)在定义域上存在最小值;②f(x)在定义域上存在最大值③f(x)在定义域上为奇函数;④f(x)在定义域上为偶函数.A.①③ B.②④ C.①② D.③④11.为了得到函数y=2cos2x的图象,可以将函数y=1+cosx图象上所有的点()A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变12.已知直线l⊥平面α,直线m⊂平面β,下列命题中正确的是()A.α∥β⇒l∥m B.α⊥β⇒l∥m C.l∥m⇒α⊥β D.l⊥m⇒α⊥β第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,满分20分13.已知sinθ+cosθ=,则sin2θ的值为.14.已知函数y=sin(πx+φ)﹣2cos(πx+φ)(0<φ<π)的图象关于直线x=1对称,则sin2φ.15.将一个总体分为A,B,C三个层次,已知A,B,C的个体数之比为5:3:2,若用分层抽样法抽取容量为150的样本,则B中抽取的个体数应该为个.16.已知矩形ABCD中,AB=2,BC=1,在矩形ABCD内随机取一点M,则BM<BC的概率为.三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知全集为实数集,集合A={x|1<x<4},B={x|3x﹣1<x+5}.(1)求集合B及∁R A;(2)若C={x|x≤a},(∁R A)∩C=C,求实数a的取值范围.18.(12分)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.19.(12分)在△ABC中,角A,B,C所对的边长分别为a,b,c,B=.(1)若a=3,b=,求c的值;(2)若f(A)=sinA(cosA﹣sinA),a=,求f(A)的最大值及此时△ABC的外接圆半径.20.(12分)如图所示,圆O的半径为R,A、B、C为圆O上不同的三点,圆心O在线段AC 上.(1)当AB=4,BC=3时,在圆O内任取一点P,求所取点P恰好位于△ABC内的概率;(2)当R=1,B点为圆O上的动点时,此时在圆O内任取一点Q,求点Q位于△ABC内的概率的取值范围.21.(12分)在平面直角坐标系中,O为坐标原点,A、B、C三点满足=+.(Ⅰ)求证:A、B、C三点共线;(3分)(Ⅱ)求的值;(3分)(Ⅲ)已知A(1,cosx)、B(1+cosx,cosx),x∈[0,],f(x)=•﹣(2m+)||的最小值为﹣,求实数m的值.(6分)22.(12分)如图,已知四棱锥P﹣ABCD,PD⊥底面ABCD,且底面ABCD是边长为2的正方形,M、N分别为PB、PC的中点.(Ⅰ)证明:MN∥平面PAD;(Ⅱ)若PA与平面ABCD所成的角为45°,求四棱锥P﹣ABCD的体积V.成都龙泉高中高2015级高二(上)入学考试试题数 学(文)(解析版)(满分120分,时间120分钟)第Ⅰ卷(选择题 共60分)一、选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项. 1.经过点)3,3(--M 的直线l 被圆021422=-++y y x 所截得的弦长为54,则直线 l 的方程为 ( D )A.092=+-y x 或032=++y xB.092=+-y x 或032=++y xC.032=++y x 或092=+-y xD.092=++y x 或032=+-y x 2.△ABC 中,AB=2,AC=3,∠B=30°,则cosC=( A )A .B .C .﹣D .±【解答】解:∵AB=2,AC=3,∠B=30°,∴由正弦定理可得:sinC===,又∵AB <AC ,C 为锐角,∴cosC==.故选:A .3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是( B ) A .35 B .﹣3 C .3 D .﹣0.5【解答】解:∵在输入的过程中错将其中一个数据105输入为15 少输入90,而=3∴平均数少3,∴求出的平均数减去实际的平均数等于﹣3. 故选B .4.对数型函数y=log a x+1(a >0,且a ≠1)的图象过定点( D ) A .(0,0) B .(0,1) C .(1,2) D .(1,1) 【解答】解:对数函数y=log a x (a >0,且a ≠1)的图象过定点(1,0),函数y=log a x+1(a >0,且a ≠1)的图象由对数函数y=log a x (a >0,且a ≠1)的图象向上平移一个单位得到,故函数y=log a x+1(a >0,且a ≠1)的图象过定点(1,1),故选:D.5.设集合M={x|x2﹣5x﹣6>0},U=R,则∁U M=(C)A.[2,3] B.(﹣∞,2]∪[3,+∞)C.[﹣1,6] D.[﹣6,1]【解答】解:x2﹣5x﹣6>0即(x﹣6)(x+1)>0,解得x<﹣1或x>6,∴M=(﹣∞.﹣1)∪(6,+∞),∴∁U M=[﹣1,6],故选:C6.已知向量=(2,1),=(﹣1,k),⊥,则实数k的值为(A)A.2 B.﹣2 C.1 D.﹣1【解答】解:∵;∴;∴k=2.故选:A.7.用二分法求方程x3﹣2x﹣5=0在区间[2,3]上的实根,取区间中点x0=2.5,则下一个有根区间是(A)A.[2,2.5] B.[2.5,3] C. D.以上都不对【解答】解:设f(x)=x3﹣2x﹣5,f(2)=﹣1<0,f(3)=16>0,f(2.5)=﹣10=>0,f(x)零点所在的区间为[2,2.5],方程x3﹣2x﹣5=0有根的区间是[2,2.5],故选A.8.如图所示,正方体ABCD﹣A1B1C1D1的棱长为1,BD∩AC=0,M是线段D1O上的动点,过点M 做平面ACD1的垂线交平面A1B1C1D1于点N,则点N到点A距离的最小值为(B)A. B. C. D.1【解答】解:∵平面ACD1⊥平面BDD1B1,又MN⊥平面ACD1,∴MN⊂平面BDD1B1,∴N∈B1D1过N作NG⊥A1B1,交A1B1于G,将平面A1B1C1D1展开,如图:设NG=x,(0≤x≤1),∴AN===≥,当x=时最小.故选B.9.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为(B)A.AC⊥BD B.AC=BDC.AC∥截面PQMN D.异面直线PM与BD所成的角为45°【解答】解:因为截面PQMN是正方形,所以PQ∥MN、QM∥PN,则PQ∥平面ACD、QM∥平面BDA,所以PQ∥AC,QM∥BD,由PQ⊥QM可得AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故C正确;∵PN⊥PQ,∴AC⊥BD.由BD∥PN,∴∠MPN是异面直线PM与BD所成的角,且为45°,D正确;由上面可知:BD∥PN,PQ∥AC.∴,,而AN≠DN,PN=MN,∴BD≠AC.B错误.故选:B.10.已知函数f(x)=ln(cosx),则下列说法中,错误的是(B)①f(x)在定义域上存在最小值;②f(x)在定义域上存在最大值③f(x)在定义域上为奇函数;④f(x)在定义域上为偶函数.A.①③ B.②④ C.①② D.③④【解答】解:由cosx>0得:x∈(﹣+2kπ, +2kπ),k∈Z,此时f(x)=ln(cosx)≤ln1=0,即f(x)在定义域上存在最大值,无最小值,故①错误,②正确;又由f(x)=ln[cos(﹣x)]=ln(cosx)=f(x),故函数为偶函数,故③错误,④正确,故选:B11.为了得到函数y=2cos2x的图象,可以将函数y=1+cosx图象上所有的点(B)A.横坐标伸长到原来的2倍,纵坐标不变B.横坐标缩短到原来的倍,纵坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.纵坐标缩短到原来的倍,横坐标不变【解答】解:由于函数y=2cos2x=2•=cos2x+1,∴要得到得函数y=2c os2x的图象,可以将函数y=1+cosx图象上所有的点横坐标缩短到原来的倍,纵坐标不变,故选:B.12.已知直线l⊥平面α,直线m⊂平面β,下列命题中正确的是(C)A.α∥β⇒l∥m B.α⊥β⇒l∥m C.l∥m⇒α⊥β D.l⊥m⇒α⊥β【解答】解:直线l⊥平面α,直线m⊂平面β,当α∥β有l⊥β,进而可得l⊥m,故A不正确当α⊥β有l∥m或l与m异面或相交,故B不正确当l∥m有直线m⊥平面α,因为直线m⊂平面β,α⊥β,故C正确,当l⊥m有α∥β或α∩β,故D不正确,故选:C.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,满分20分13.已知sinθ+cosθ=,则sin2θ的值为﹣.【解答】解:将sinθ+cosθ=左右两边平方得:(sinθ+cosθ)2=,整理得:sin2θ+2sinθcosθ+cos2θ=1+sin2θ=,则sin2θ=﹣1=﹣.故答案为:﹣14.已知函数y=sin(πx+φ)﹣2cos(πx+φ)(0<φ<π)的图象关于直线x=1对称,则sin2φ.【解答】解:y=sin(πx+φ)﹣2cos(πx+φ)=sin(πx+φ﹣α),其中sinα=,cosα=.∵函数的图象关于直线x=1对称,∴π+φ﹣α=+kπ,即φ=α﹣+kπ,则sin2φ=sin2(α﹣+kπ)=sin(2α﹣π+2kπ)=sin(2α﹣π)=﹣sin2α=﹣2sin αcosα=﹣2××=,故答案为:15.将一个总体分为A,B,C三个层次,已知A,B,C的个体数之比为5:3:2,若用分层抽样法抽取容量为150的样本,则B中抽取的个体数应该为45个.【解答】解:根据分层抽样原理,抽取容量为150的样本,在B中应抽取的个体数为:150×=45.故答案为:45.16.已知矩形ABCD中,AB=2,BC=1,在矩形ABCD内随机取一点M,则BM<BC的概率为.【解答】解:四边形ABCD的面积为2.BM<BC表示以B为圆心,1为半径的圆在矩形ABCD内部的部分,面积为,∴BM<BC的概率为=.故答案为:.三、解答题(本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知全集为实数集,集合A={x|1<x<4},B={x|3x﹣1<x+5}.(1)求集合B及∁R A;(2)若C={x|x≤a},(∁R A)∩C=C,求实数a的取值范围.【解答】解:(1)∵B={x|3x﹣1<x+5},∴B={x|x<3},又∵A={x|1<x<4},∴∁R A={x|x≤1或x≥4};(2)∵(∁R A)∩C=C,∴C⊆∁R A={x|x≤1或x≥4},又C={x|x≤a},∴a≤1.18.(12分)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:(1)顶点C的坐标;(2)直线BC的方程.【解答】解:(1)设C(m,n),∵AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.∴,解得.∴C(4,3).(2)设B(a,b),则,解得.∴B(﹣1,﹣3).∴k BC==∴直线BC的方程为y﹣3=(x﹣4),化为6x﹣5y﹣9=0.19.(12分)在△ABC中,角A,B,C所对的边长分别为a,b,c,B=.(1)若a=3,b=,求c的值;(2)若f(A)=sinA(cosA﹣sinA),a=,求f(A)的最大值及此时△ABC的外接圆半径.【解答】(本题满分为12分)解:(1)∵b2=a2+c2﹣2accosB,a=3,b=,,∴7=9+c2﹣2×,整理可得:c2﹣3c+2=0,解得:c=1或2…4分(2)由二倍角公式得f(A)=sin2A+cos2A﹣,∴f(A)=sin(2A+)﹣,∴当A=时,f(A)最大值为,此时△ABC为直角三角形,此时△ABC的外接圆半径:…12分20.(12分)如图所示,圆O的半径为R,A、B、C为圆O上不同的三点,圆心O在线段AC 上.(1)当AB=4,BC=3时,在圆O内任取一点P,求所取点P恰好位于△ABC内的概率;(2)当R=1,B点为圆O上的动点时,此时在圆O内任取一点Q,求点Q位于△ABC内的概率的取值范围.【解答】解:(1)记“所求点恰好位于△ABC内”为事件A,∵AC为原O的直径,∴2R==5,半径R=,∴圆O的面积为S圆O=π•=;又∵△ABC的面积为S△ABC=×3×4=6,∴点P恰好位于△ABC内的概率为P(A)===;(2)以O为原点,直线AC为x轴,以过O点并垂直于直线AC的直线为y轴建立直角坐标系,则有A(﹣1,0),C(1,0),设B(x,y);记“所取点Q位于△ABC内”为事件B,则由题设知﹣1<x<1,R2=x2+y2=1,∵=(x+1,y),=(x﹣1,y),∴||==,||==,∴△ABC 的面积为S △ABC =|AB|•||=ו=; 又∵﹣1<x <1,∴0<4﹣4x 2<4,∴0<S △ABC <1;又∵S 圆O =π×12=π,∴P (B )=,∴点Q 位于△ABC 内的概率取值范围为0<P (B )<.21.(12分)在平面直角坐标系中,O 为坐标原点,A 、B 、C 三点满足=+.(Ⅰ)求证:A 、B 、C 三点共线;(3分)(Ⅱ)求的值;(3分)(Ⅲ)已知A (1,cosx )、B (1+cosx ,cosx ),x ∈[0,],f (x )=•﹣(2m+)||的最小值为﹣,求实数m 的值.(6分)【解答】解:(Ⅰ)由已知,即,∴∥.又∵、有公共点A ,∴A ,B ,C 三点共线.(3分)(Ⅱ)∵,∴=∴,∴.(3分)(Ⅲ)∵C 为的定比分点,λ=2,∴,∴∵,∴cosx∈[0,1]当m<0时,当cosx=0时,f(x)取最小值1与已知相矛盾;当0≤m≤1时,当cosx=m时,f(x)取最小值1﹣m2,得(舍)当m>1时,当cosx=1时,f(x)取得最小值2﹣2m,得综上所述,为所求.(6分)22.(12分)如图,已知四棱锥P﹣ABCD,PD⊥底面ABCD,且底面ABCD是边长为2的正方形,M、N分别为PB、PC的中点.(Ⅰ)证明:MN∥平面PAD;(Ⅱ)若PA与平面ABCD所成的角为45°,求四棱锥P﹣ABCD的体积V.【解答】(Ⅰ)证明:∵M、N分别是棱PB、PC中点,∴MN∥BC,又 ABCD是正方形,∵AD∥BC,∴MN∥AD.∵MN⊄平面PAD,AD⊂平面PAD,∴MN∥平面PAD.(Ⅱ)∵PD⊥平面ABCD,∴PA与平面ABCD所成的角为∠PAD,∴∠PAD=45°.∴PD=AD=2,故四棱锥P﹣ABCD的体积V==.。

成都市树德中学2016-2017学年高二上学期期末数学试卷(理科) 含解析

2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(理科)一、选择题(每小题5分,共60分)1.设a∈R,则“a=1"是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为( )A.5 B.C.D.3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg 4.下列说法正确的是( )A.命题“若x2>1,则x>1”的否命题为“若x2>1,则x≤1" B.命题“若”的否定是“∀x∈R,x2<1”C.命题“若x=y,则cosx=cosy”的逆否命题为假命题D.命题“若x=y,则cosx=cosy”的逆命题为假命题5.阅读如图的程序框图,运行相应的程序,输出的结果为()A.B.C.D.6.在长为10cm的线段AB上任取一点C,现作一矩形,邻边长分别等于AC,CB的长,则该矩形面积不小于9cm2的概率为()A.B. C. D.7.直线y=kx+3与圆(x﹣2)2+(y﹣3)2=4相交于M、N两点,若|MN|≥2,则直线倾斜角的取值范围是()A.B.C.D.8.已知集合表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为()A.B.C.D.9.已知实数x,y满足如果目标函数z=x﹣y的最小值为﹣1,则实数m等于( )A.7 B.5 C.4 D.310.点M是抛物线y2=x上的动点,点N是圆C1:(x+1)2+(y﹣4)2=1关于直线x﹣y+1=0对称的曲线C上的一点,则|MN|的最小值是()A.B.C.2 D.11.某算法的程序框图如图所示,则执行该程序后输出的S等于()A.24 B.26 C.30 D.3212.已知圆C的方程为(x﹣1)2+y2=1,P是椭圆=1上一点,过P作圆的两条切线,切点为A、B,求•的范围为()A.[0,] B.[2﹣3,+∞] C.[2﹣3,]D.[,]二、填空题(每小题5分,共20分)13.某赛季甲、乙两名篮球运动员每场比赛得分记录用茎叶图表示,从茎叶图的分布情况看, 运动员的发挥更稳定.(填“甲”或“乙”)14.已知圆O1:x2+y2=1,圆O2:(x+4)2+(y﹣a)2=25,如果这两个圆有且只有一个公共点,则常数a= .15.已知知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,椭圆和双曲线的离心率分别为e1、e2,则= .16.已知直线y=k(x+)与曲线y=恰有两个不同交点,记k的所有可能取值构成集合A;P(x,y)是椭圆+=1上一动点,点P1(x1,y1)与点P关于直线y=x+l对称,记的所有可能取值构成集合B,若随机地从集合A,B中分别抽出一个元素λ1,λ2,则λ1>λ2的概率是.三、解答题17.设命题p:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣4=0的内部;命题q:直线mx﹣y+1+2m=0(k∈R)不经过第四象限,如果p∨q 为真命题,p∧q为假命题,求m的取值范围.18.某校从参加考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如下部分频率分布直方图如图.观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率;(2)估计本次考试的中位数;(精确到0.1)(3)用分层抽样(按[60,70)、[70,80)分数段人数比例)的方法在分数段为[60,80)的学生中抽取一个容量为6 的样本,将该样本看成一个总体,从中任取2人,求恰有1人在分数段[70,80)的概率.19.已知抛物线C:y2=2px(p>0)的焦点为F,P(1,m)是抛物线C 上的一点,且|PF|=2.(1)若椭圆与抛物线C有共同的焦点,求椭圆C’的方程;(2)设抛物线C与(1)中所求椭圆C’的交点为A、B,求以OA 和OB所在的直线为渐近线,且经过点P的双曲线方程.20.已知圆C:x2+y2﹣4x+3=0,(1)求过M(3,2)点的圆的切线方程;(2)直线l:2mx+2y﹣1﹣3m=0被圆C截得的弦长最短时,求直线l 的方程;(3)过原点的直线m与圆C交于不同的两点A、B,线段AB的中点P的轨迹为C1,直线与曲线C1只有一个交点,求k的取值范围.21.已知抛物线x2=2py (p>0),其焦点F到准线的距离为1.过F 作抛物线的两条弦AB和CD(点A、C在第一象限),且M,N分别是AB,CD的中点.(1)若AB⊥CD,求△FMN面积的最小值;(2)设直线AC的斜率为k AC,直线BD的斜率为k BD,且k AC+4k BD=0,求证:直线AC过定点,并求此定点.22.在平面直角坐标系中,点O为坐标原点,动点P(x,y)与定点F(﹣1,0)的距离和它到定直线x=﹣2的距离之比是.(1)求动点P的轨迹C的方程;(2)过F作曲线C的不垂直于y轴的弦AB,M为AB的中点,直线OM与交于P,Q两点,求四边形APBQ面积的最大值.2016-2017学年四川省成都市树德中学高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.设a∈R,则“a=1”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;直线的一般式方程与直线的平行关系.【分析】运用两直线平行的充要条件得出l1与l2平行时a的值,而后运用充分必要条件的知识来解决即可.【解答】解:∵当a=1时,直线l1:x+2y﹣1=0与直线l2:x+2y+4=0,两条直线的斜率都是﹣,截距不相等,得到两条直线平行,故前者是后者的充分条件,∵当两条直线平行时,得到,解得a=﹣2,a=1,∴后者不能推出前者,∴前者是后者的充分不必要条件.故选A.2.已知双曲线﹣=1(a>0,b>0)的渐近线方程为y=±2x,则其离心率为()A.5 B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线渐近线的方程,确定a,b的关系,进而利用离心率公式求解.【解答】解:∵双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,∴,即b=2a,∴,∴离心率e=.故选:D.3.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙泉驿区2016-2017学年度上期期末毕业质量检测
高二数学(理科)试题
第Ⅰ卷
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只
有一项是符合题目要求的)
1、直线20170x的倾斜角为
A.0 B.3 C.2 D.不存在
2、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓请况,对甲乙丙丁四
个社区做分层抽样的调查,驾驶四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人,
若在甲乙丙丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数
N为
A.101 B.808 C.1212 D.2012
3、已知1p:直线1:20lxy与直线2:20lxay平行,:1qa,则p是q的
A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条

4、双曲线221412xy的交点到渐近线的距离为
A.23 B.2 C.3 D.1
5、已知,,OAB三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向
2km
处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地
为一磁场,距离其不超过3km的范围内对测绘仪等电子仪器形成干扰,使测量结果不准确,
则该测绘队员能够得到准确数据的概率是

A.12 B.22 C.312 D.212
6、若点A的坐标为3,2,F是抛物线22yx的焦点,点M在抛物线上移动时使的
MFMA
取得最小值的M的坐标为
A.(0,0) B.(2,2) C.(1,2) D.1(,1)2
7、某班对一模考数学成绩进行分析,利用随机数表法抽取样本时,先将70个同学按
00,01,02,,69
进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的10个

样本中第8个样本的编号为 ( )(注:下表为随机数表的第8行和第9行)

A.07 B.44 C.38 D.51
8、算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是
A.一个算法只能含有一种逻辑结构
B.一个算法最多可以包含两种逻辑结构
C.一个算法必须含有上述三种逻辑结构
D.一个算法可以含有上述三种逻辑结果的任意组合
9、如图,边长为a的正方形最长的网格中,设椭圆123,,CCC的离心率
分别为123,,eee,则
A.123eee B.123eee C.123eee
D.231eee
10、下列说法错误的是
A.命题“若2560xx”则 “2x”的逆否命题是“若2x”则“2560xx”;,
B.若命题:p存在2000,10xRxx,则p:对任意20,10xRxx
C.若,xyR,则xy是“2()2xyxy” 的充要条件
D.已知命题p和q,若“p或q”为假命题,则命题p和q中必一真一假。

11、设变量,xy满足约束条件122xyxyy,则目标函数22zxy的取值范围是
A.2,8 B.4,13 C.2,13 D.15[,13]2
12、已知,EF为双曲线2222:1(0)xyCabab的左右焦点,抛物线22(0)ypxp与双
曲线有公共的焦点F,且与双曲线交于A、B不同两点,若54AFEF,
则双曲线的离心率为
A.47 B.43 C.43 D.47

第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。.
13、若直线240axy与直线20xy互相垂直,那么a的值为

14、已知直线5120xya与圆2220xxy相切,则a的值为
15、如图执行如图所示的程序框图,输入4.5x,则输出的数i

16、下列结论:
①一次试验中不同的基本事件不可能同时发生;

②设3,0kk,则2213xykk与22152xy必有相同的焦点;
③点(,3)Pm在圆22(2)(1)2xy的外部;
④已知0,0abbc,则直线0axbyc通过第一、三、四象限。
其中正确的序号是

三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤
17、(本小题满分12分)
已知ABC的顶点(5,1)A,AB边上的中线CM所在直线方程为250,xyAC边上的高
线BH所在的直线方程为250xy,求:
(1)顶点C的坐标;
(2)直线BC的方程。

18、(本小题满分12分)
“双节”期间,告诉公路车辆较多,某调查公司在一服务区从七座以下的小型汽车中按进服
务区的先后每间隔50辆就抽取一辆的样本方法抽取40名驾驶员进行询问调查,将他们在
某段高速公路的车速(/lmh)分成六段;

60,65,65,70,70,75,75,80,80,85,85,90
后得到如图所示的频率分布直方图。

(1)求这40辆小型汽车车速的众数和中位数的估计值;
(2)若从车速在60,70内的车辆中任抽取2辆,求车速在65,70内的车辆恰有一辆的概
率。

19、(本小题满分12分)
已知点(2,2)P,圆22:80Cxyx,过点P的动直线l与圆C交于A、B两点,线段
AB的中点为,MO为坐标原点。
(1)求M的轨迹方程;
(2)当OPOM时,求直线l方程及POM的面积。

20、(本小题满分12分)
某中学高三年级从甲乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100
分)的茎叶图如图,其中甲班学生的平均分是85,乙班的学生成绩的中位数是83.
(1)求x和y的值,计算甲班7位学生成绩的方差;
(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少一名学生的概率。

21、(本小题满分12分)
已知椭圆2222:1(0)xyCabab的离心率为32,右顶点A是抛物线28yx的焦点,
直线:(1)lykx与椭圆C相较于,PQ两点。
(1)求椭圆C的方程;
(2)如果AMAPAQ,点M关于直线l的对称点N在y轴上,求k的值。

22、(本小题满分12分)
如图,已知抛物线2:4Cyx,过点(1,2)A作抛物线C的弦,APAQ。
(1)若APAQ,证明:直线PQ过定点,并求出定点的坐标;
(2)假设直线PQ过点(5,2)T,请问是否存在以PQ为底边的等腰三角形APQ?,请说明
理由。

相关文档
最新文档