排列组合的计算公式

合集下载

排列组合规律公式

排列组合规律公式

排列组合规律公式排列组合是高中数学中的重要内容,也是生活中经常使用到的知识点。

排列组合涉及许多规律和公式,下面就是一些排列组合的规律公式。

一、排列规律公式排列就是从一些元素中选择若干个进行排列,排列的个数可以用下面的公式表示:A(n,m) = n! / (n-m)!其中,n表示有n个元素,m表示选择m个进行排列,!表示阶乘。

例如,一个班级有20个学生,从中选出5个进行比赛,那么这5个学生的排列方式的总数就是A(20,5) = 20! / (20-5)! = 20*19*18*17*16 = 15,504,000。

二、组合规律公式组合是从一些元素中选择若干个进行组合,组合的个数可以用下面的公式表示:C(n,m) = n! / (m! * (n-m)!)其中,n表示有n个元素,m表示选择m个进行组合,!表示阶乘。

例如,一个班级有20个学生,从中选出5个进行小组合作,那么这5个学生的组合方式的总数就是C(20,5) = 20! / (5! * (20-5)!) =15,504,000 / 120 = 155,04。

三、重复组合规律公式重复组合是从一些元素中选择若干个进行组合,同一个元素可以选多次,组合的个数可以用下面的公式表示:H(n,m) = C(n+m-1,m) = (n+m-1)! / (m! * (n-1)!)例如,一个班级有20个学生,从中选出5个进行班委投票,同一个学生可以被选多次,那么这5个学生的组合方式的总数就是H(20,5) =C(20+5-1,5) = 24,015。

四、二项式定理二项式定理是排列组合中的一个重要定理,它可以用下面的公式表示:(a+b)^n = ∑C(n,k) * a^(n-k) * b^k其中,a和b是实数,n是自然数,C(n,k)表示从n个元素中选择k个进行组合。

例如,计算(1+x)^6,就可以使用二项式定理进行展开:(1+x)^6 = C(6,0) * 1^6 * x^0 + C(6,1) * 1^5 * x^1 + C(6,2) * 1^4 * x^2 + C(6,3) * 1^3 * x^3 + C(6,4) * 1^2 * x^4 + C(6,5) * 1^1 * x^5 + C(6,6) * 1^0 * x^6= 1 + 6x + 15x^2 + 20x^3 + 15x^4 + 6x^5 + x^6综上所述,排列组合涉及许多规律和公式,上面就是一些常用的规律公式,希望能对学习排列组合有所帮助。

排列组合公式 cn an

排列组合公式 cn an

排列组合公式 cn an排列组合(Combinatorics)是数学的一个重要分支,它是研究组合、排列和计数的科学。

它可以被定义为“研究数学中组合和计数方面的规律”。

排列组合把一系列不同元素的可能排列组合方式放在一起,以解决一些实际问题。

排列组合公式cn an 是排列组合的基础。

Cn an 是排列组合的基本公式,可以用来计算从 n 个不同元素中取出 a 个元素的不同排列组合数量。

Cn an 的计算公式为:Cn an=n(n-1)(n-2)...(n-a+1),其中 n>a 。

如果 n=a,则 Cn an = n!,其中 n! 表示 n 的阶乘。

Cn an 用途非常广泛,可以用来解决很多实际问题。

例如,当有三个不同的物品,要从中选择两个来做一件事情,可以使用 C3 2 来计算可能的组合数量。

根据 C3 2 的计算公式,可以知道有 3×2=6 种可能的组合方式。

另外,Cn an 还可以用来解决组队问题,如果有 n 个人要分成 a 个组,就可以使用 Cn an 来计算有多少种可能的分组方式。

例如,如果有 12 个人要分成 4 个小组,则可以使用 C124 来计算有多少种可能的分组方式,根据 C12 4 的计算公式,有 12×11×10×9 种可能的分组方式。

Cn an 也可以用来计算排列组合的问题,如果有 n 个不同的元素,要从中挑选出 a 个元素,按照不同的顺序排列组合,就可以使用 Cn an 来计算有多少种可能的排列组合方式。

例如,如果有四个不同的元素,要从中挑选出三个元素,按照不同的顺序排列组合,可以使用 C4 3 来计算有多少种可能的排列组合方式,根据 C4 3 的计算公式,有 4×3×2 种可能的排列组合方式。

可以看出,Cn an 是排列组合中非常常用的公式,它可以用来解决很多实际问题,如选择问题、组队问题和排列组合问题。

掌握 Cn an 的使用方法,可以有效解决实际问题,节省时间和精力,提高效率。

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识

高中数学排列组合公式大全_高中数学排列组合重点知识排列组合是高中数学教学内容中的重要组成部分,在高考试卷中排列组合的占分比越来越高,且出现的形式多种多样。

下面店铺给你分享高中数学排列组合公式大全,欢迎阅读。

高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。

排列与组合综合算式的排列组合计算

排列与组合综合算式的排列组合计算

排列与组合综合算式的排列组合计算排列与组合是概率与组合数学中常见的计算方式,用于解决排列和组合问题。

在计算排列与组合时,我们可以利用排列组合公式或者数学原理来进行计算,下面将具体介绍排列与组合综合算式的排列组合计算方法。

一、排列与组合的概念1. 排列:从n个元素中选取m个元素并按特定顺序排列,称为排列。

排列的计算公式为:P(n,m) = n! / (n-m)!2. 组合:从n个元素中选取m个元素,并不考虑其顺序,称为组合。

组合的计算公式为:C(n,m) = n! / (m! * (n-m)!)其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 1。

二、排列与组合综合算式的计算方法对于排列与组合综合算式的计算,可以通过一系列具体的例子来说明。

例1:从A、B、C、D、E中取出3个字母,有多少种排列方式?解:根据排列的定义和计算公式,可以得到排列的计算方法为P(5,3) = 5! / (5-3)! = 5! / 2! = 60。

因此,从A、B、C、D、E中取出3个字母的排列方式有60种。

例2:从1、2、3、4、5中取出3个数字,有多少种组合方式?解:根据组合的定义和计算公式,可以得到组合的计算方法为C(5,3) = 5! / (3! * (5-3)!) = 5! / (3! * 2!) = 10。

因此,从1、2、3、4、5中取出3个数字的组合方式有10种。

通过以上两个例子,我们可以看到排列与组合的计算方法可以很方便地解决排列与组合问题。

在实际应用中,排列与组合常常用于解决概率、统计和组合优化等问题,具有广泛的应用领域。

三、排列与组合的应用1. 概率计算:排列与组合可以用于计算事件发生的概率。

例如,从1、2、3、4、5中取出3个数字,其中至少包含一个偶数的概率是多少?通过计算组合的方式,可以得到解答。

2. 组合优化:排列与组合可以用于解决组合优化问题,例如制定车辆调度、货物装箱等问题。

排列组合计算公式例题

排列组合计算公式例题

排列组合计算公式例题
排列组合计算公式如下:
1、从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示。

2、从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号C(n,m)表示。

排列就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列组合与古典概率论关系密切。

例题
一.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有C31
然后排首位共有C41
最后排其它位置共有A43
由分步计数原理得C31*C41*A43=288。

排列组合公式大全

排列组合公式大全

排列组合公式大全在组合数学中,排列和组合是两个重要的概念。

排列指的是从一组元素中选择出一些元素按照一定的顺序排列,而组合则是从一组元素中选择出一些元素,不考虑顺序。

排列和组合在概率论、统计学、计算机科学等领域都有广泛的应用。

本文将介绍一些常见的排列和组合公式,供读者参考。

排列公式1. 排列的定义在数学中,从n个元素中选取r个元素进行排列,记为P(n, r)。

排列的结果是有序的,具体的排列方式有nPr种。

2. 全排列公式当r等于n时,即从n个元素中选取n个元素进行排列,这种排列方式称为全排列。

全排列的总数为n!(n的阶乘),即:P(n, n) = n!3. 部分排列公式当r小于n时,即从n个元素中选取r个元素进行排列,这种排列方式称为部分排列。

部分排列的总数为:P(n, r) = n! / (n - r)!4. 循环排列公式循环排列是一种特殊的排列方式,它指的是把元素排列成一个环状。

对于n个元素的循环排列,总数为(n - 1)!。

P(n, 1) = (n - 1)!5. 有限排列公式在排列中,如果元素可以重复使用,则称为有限排列。

从n个元素中选取r个元素进行有限排列的总数为nr。

组合公式1. 组合的定义在数学中,从n个元素中选取r个元素进行组合,记为C(n, r)。

组合的结果是无序的,具体的组合方式有Cnr种。

2. 组合公式组合的总数可以使用下列公式计算:C(n, r) = n! / (r! * (n - r)!)3. 组合与排列的关系组合数与排列数之间存在一定的关系。

具体来说,C(n, r)可以通过P(n, r)除以r!来计算,即:C(n, r) = P(n, r) / r!4. 二项式系数公式二项式系数是组合数学中常见的概念,它对应于二项式展开中各项的系数。

n 个元素的二项式系数可以使用组合公式计算:C(n, 0) = 1C(n, n) = 1C(n, r) = C(n - 1, r - 1) + C(n - 1, r)总结本文介绍了一些常见的排列和组合公式。

排列组合展开公式

排列组合展开公式排列组合展开公式1. 排列公式排列是指从一个集合中选择出若干元素按照一定顺序排列的方式,表示为P(n, m),其中n为集合元素总数,m为选取的元素个数。

排列公式为:P(n, m) = n! / (n - m)!•例:有5个球,要从中选出3个球进行排列,求有多少种排列方式?解答:使用排列公式计算,P(5, 3) = 5! / (5 - 3)! = 5! / 2! = 60。

2. 组合公式组合是指从一个集合中选择出若干元素,不考虑其排列顺序的方式,表示为C(n, m),其中n为集合元素总数,m为选取的元素个数。

组合公式为:C(n, m) = n! / (m! * (n - m)!)•例:有5个球,要从中选出3个球进行组合,求有多少种组合方式?解答:使用组合公式计算,C(5, 3) = 5! / (3! * (5 - 3)!) =5! / (3! * 2!) = 10。

乘法公式是指若干个独立事件同时发生的概率等于它们各自发生概率的乘积。

乘法公式为:P(A∩B) = P(A) * P(B)•例:甲、乙、丙三个人依次摸出一副扑克牌的三张牌,求其中有一副红心牌的概率。

解答:设事件A为甲摸到红心牌,事件B为乙摸到红心牌,事件C为丙摸到红心牌。

根据乘法公式,所求概率为P(A∩B∩C) = P(A) * P(B) * P(C) = (26/52) * (25/51) * (24/50) ≈ 。

4. 加法公式加法公式是指若干个互斥事件发生的概率等于它们各自发生概率的和。

加法公式为:P(A∪B) = P(A) + P(B)•例:某班级有男生30人,女生40人,求随机抽取一人为女生或身高大于180cm的概率。

解答:设事件A为随机抽取一人为女生,事件B为随机抽取一人身高大于180cm。

根据加法公式,所求概率为P(A∪B) = P(A) + P(B) - P(A∩B) = 40/70 + 10/70 - 4/70 = 。

排列组合解法公式

排列组合解法公式排列组合在数学中可是个很有趣的部分呢!它能帮我们解决好多生活中的问题。

先来说说排列的公式吧。

排列呢,就是从 n 个不同元素中,取出 m 个元素按照一定的顺序排成一列。

这时候的排列数记作 A(n, m) ,它的计算公式就是 A(n, m) = n! / (n - m)! 。

比如说,从 5 个不同的水果里选3 个排成一排,那就是 A(5, 3) = 5! / (5 - 3)! = 60 种排法。

再讲讲组合的公式。

组合就是从 n 个不同元素中,取出 m 个元素组成一组,不考虑顺序。

组合数记作 C(n, m) ,计算公式是 C(n, m) = n! / [m!×(n - m)!] 。

还是拿水果举例,从 5 个不同的水果里选 3 个组成一组,不考虑顺序,那就是 C(5, 3) = 5! / [3!×(5 - 3)!] = 10 种组合。

我还记得之前给学生们讲这部分知识的时候,发生了一件有趣的事儿。

那是一个阳光明媚的上午,我在黑板上写下了一道排列组合的题目:在一个班级里有 10 个同学,要选出 4 个同学去参加比赛,有多少种选法?我让同学们先自己思考,然后讨论。

一开始,大家都有点懵,各种答案都有。

有的同学直接用 10 乘以 4 ,有的同学乱写一通。

我看着他们抓耳挠腮的样子,心里偷笑,但也知道这对于他们来说确实是个有点难的知识点。

我开始慢慢引导他们,“同学们,咱们先想想,如果要考虑选出的同学的顺序,那就是排列问题;如果不考虑顺序,那就是组合问题。

那这道题,我们需不需要考虑选出同学的顺序呢?”同学们开始七嘴八舌地讨论起来。

有的说要,有的说不要。

最后,我们一起分析得出,这里不需要考虑顺序,是组合问题。

于是,我们按照组合的公式 C(10, 4) = 10! / [4!×(10 - 4)!] 一起计算,算出结果是 210 种选法。

这时候,同学们恍然大悟,脸上露出了开心的笑容。

排列组合公式

排列组合公式
排列A(和顺序有关)
组合C(和顺序无关)
1、排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。

用符号A(n,m)或A m
n
A(n,m)=A m
n =
!
m
-n
!n


(规定0!=1)
2、组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号C(n,m)或C m
n
C(n,m)=C m
n =
!m
)
m
,n(
A=
!m
)
m
-n(
!n


=
()
[]()!m-n
!
m
-n
-n
!n

= C(n,n-m)。

排列组合公式

排列组合公式排列组合公式/排列组合计算公式公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列组合公式:排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合的计算公式
排列组合是高中数学中的一个重要概念,它涉及到许多实际问题的计算。

排列和组合的计算公式是学习排列组合的基础,下面详细介绍排列组合的计算
公式及其应用。

一、排列的计算公式
排列是一种从n个不同的元素中选出r个进行排成一个有序的序列的方法,用符号A(n,r)表示。

计算公式为:
$A(n,r) = n(n-1)(n-2)\\cdots(n-r+1) = \\dfrac{n!}{(n-r)!}$
其中n表示元素个数,r表示选取元素个数,n>r。

例如,从1, 2, 3, 4, 5中选取3个元素进行排列,可以有5×4×3种不同的排列方式,即A(5,3)=5×4×3=60种。

二、组合的计算公式
组合是一种从n个不同的元素中选取r个元素的方式,不考虑元素的顺序,用符号C(n,r)表示。

计算公式为:
$C(n,r) = \\dfrac{n!}{r!(n-r)!}$
其中n表示元素个数,r表示选取元素个数,n≥r。

例如,从1, 2, 3, 4, 5中选取3个元素进行组合,不考虑元素的顺序,可
以有C(5,3) = 5×4×3/(3×2×1) = 10种不同的组合方式。

三、排列与组合的关系
排列和组合是有很大关系的。

排列中考虑元素的顺序,而组合不考虑元素
的顺序。

由于元素的顺序的变化会导致不同的排列方式,因此排列的计算公式
中是用乘法原理计算的。

而组合只考虑元素的选取,不考虑元素的顺序,因此
组合的计算公式中需要用到除法原理。

如果要从n个不同的元素中选取r个元素进行排列,不考虑元素的顺序,
就是从n个不同的元素中选取r个元素进行组合,注意这样排列的个数一共有
C(n,r)种不同的组合方式。

如果再考虑元素的顺序,则排列的个数是A(n,r)=n×(n-1)×(n-2)×⋯×(n-r+1)=n!/(n-r)! 。

四、应用案例
1. 小明有10个不同的彩球,他想从中选取5个彩球排成一排,问他有多
少种排列方式?
答案:A(10,5)=10×9×8×7×6=30240种。

2. 有10个一模一样的电脑和10个一模一样的显示器,问从这些电脑和显示器中选取4台电脑和4台显示器组成一台电脑和一台显示器的组合数是多少?
答案:C(10,4)×C(10,4)=210×210=44100个不同的组合方式。

3. 有3名男生和2名女生,他们想排成一排,问排列的方式有多少种?
答案:A(5,5)=5!=120种不同的排列方式。

4. 有四个相异的字母a,b,c,d,从中选取三个字母组成不同的三位数,不能重复使用字母,问共有多少不同的三位数?
答案:C(4,3)×3!=4×3×2=24个不同的三位数。

其中,C(4,3)表示从4个字母中选取3个字母组成不同的三位数,然后再乘上3! 表示对3个不同的字母进行排列。

相关文档
最新文档