二次函数的图像与性质
二次函数的图像与性质

二次函数的图像与性质二次函数(quadratic function)是数学中的一类函数,其表达式为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。
这种函数的图像是一条抛物线,其特点是拥有许多有趣的性质和图像的变化规律。
本文将对二次函数的图像与性质进行详细说明。
一、基本形式二次函数的基本形式为y = ax^2,其中a为二次函数的系数,决定了抛物线的开口方向和形状。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
二、顶点二次函数的顶点(vertex)是抛物线的最高点(若开口向下)或最低点(若开口向上)。
顶点可通过求导数或利用抛物线的对称性求得。
顶点的横坐标为x = -b/2a,纵坐标为y = f(x),其中f(x)为二次函数的表达式。
三、对称轴二次函数图像的对称轴(axis of symmetry)是通过抛物线的顶点,并且与抛物线相互对称的一条直线。
对称轴的方程可以通过对抛物线的表达式进行简单计算得到。
四、焦点和准线焦点(focus)和准线(directrix)是二次函数图像的两个重要元素。
焦点是指在平面上向外弯曲的抛物线上的一个特定点。
焦点的横纵坐标可通过复杂的求解方法得到,这里不再详述。
准线是通过焦点以及与对称轴垂直的直线上的特定点构成的直线段。
准线的方程也可通过复杂的计算得到。
五、零点二次函数的零点(zeros)是函数表达式等于零的横坐标。
其求取方法可以通过方程ax^2 + bx + c = 0来求解。
根据求根公式,可得有两个根、一个根或者无实根。
六、图像的变化规律通过改变二次函数的参数a、b、c的数值,可以使得二次函数的图像发生各种变化。
以下是几种常见的变化规律:1. 改变a的值,a越大,抛物线越“扁平”,开口越朝上或者朝下。
2. 改变b的值,b为线性项的系数,可以使抛物线左右平移。
3. 改变c的值,c为常数项的系数,可以使抛物线上下平移。
七、应用二次函数的图像与性质在实际生活中有广泛的应用。
二次函数图像与性质完整归纳

二次函数图像与性质完整归纳二次函数的图像与性质二次函数是高中数学中的重要内容之一,掌握其图像与性质是必不可少的。
二次函数的基本形式是y=ax^2,其中a表示开口方向和抛物线开口大小,x^2表示自变量的平方。
根据a的正负,抛物线的开口方向和顶点的坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(0,0),对称轴为y轴;当a<0时,抛物线开口向下,顶点坐标为(0,0),对称轴为y轴。
在y=ax^2的基础上,加上常数项c可以得到y=ax^2+c的形式,其中c表示抛物线在y轴上的截距。
根据a和c的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,c>0时,抛物线开口向上,顶点坐标为(0,c),对称轴为y轴;当a>0,c0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴;当a<0,c<0时,抛物线开口向下,顶点坐标为(0,c),对称轴为y轴。
除了基本形式和加上常数项的形式,二次函数还有一种顶点式的形式y=a(x-h)^2+k,其中(h,k)表示顶点坐标。
根据a的正负,抛物线的开口方向和顶点坐标可以得到不同的性质。
当a>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
在顶点式的基础上,加上常数项k可以得到y=a(x-h)^2+k的形式。
根据a和k的正负,抛物线的开口方向、顶点坐标和对称轴可以得到不同的性质。
当a>0,k>0时,抛物线开口向上,顶点坐标为(h,k),对称轴为直线x=h;当a>0,k0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h;当a<0,k<0时,抛物线开口向下,顶点坐标为(h,k),对称轴为直线x=h。
二次函数图象的平移二次函数的图像可以通过平移来得到新的图像。
平移的步骤是先确定顶点坐标,然后根据顶点坐标的变化来确定平移方向和距离。
二次函数的图像和性质

二次函数的图像和性质二次函数是数学中的一个重要概念,它在中学数学中占据着重要的地位。
本文将从二次函数的图像和性质两个方面进行论述,旨在帮助中学生和他们的父母更好地理解和应用二次函数。
一、二次函数的图像二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,a不等于0。
我们先来讨论二次函数的图像。
1. 开口方向二次函数的图像可以是开口向上的,也可以是开口向下的。
当a大于0时,二次函数的图像开口向上;当a小于0时,二次函数的图像开口向下。
例如,考虑函数f(x) = x^2 - 2x + 1和g(x) = -x^2 + 2x + 1,它们的图像分别如下所示:(插入图片:开口向上和开口向下的二次函数图像)2. 对称轴和顶点二次函数的图像总是关于一个垂直于x轴的直线对称的。
这条直线称为二次函数的对称轴,它的方程可以通过求解二次函数的x坐标的平方项系数的相反数除以2倍的平方项系数得到。
对称轴上的点称为二次函数的顶点,它的横坐标和纵坐标可以通过代入对称轴的方程求解得到。
例如,考虑函数f(x) = -2x^2 + 4x - 1,它的对称轴方程为x = -b/2a = -4/(2*(-2))= 1。
代入对称轴方程可以求得顶点的坐标为(1, -3)。
3. 判别式和根的性质二次函数的判别式可以通过求解一元二次方程的判别式得到,它的表达式为Δ = b^2 - 4ac。
判别式的正负决定了二次函数的根的性质。
当判别式大于0时,二次函数有两个不相等的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根,但有两个共轭复根。
例如,考虑函数f(x) = x^2 - 2x + 1,它的判别式为Δ = (-2)^2 - 4*1*1 = 0。
由于判别式等于0,该二次函数有两个相等的实根x = 1。
二、二次函数的性质除了图像外,二次函数还有一些重要的性质,我们将在下面进行讨论。
1. 单调性和极值点二次函数的单调性是由二次函数的开口方向决定的。
二次函数的图像与性质(含答案)

九年级数学竞赛专题 ---二次函数的图像与性质一、内容概述二次函数有丰富的内容,下面从四个方面加以总结1.定义: 形如函数2(0)y ax bx c a =++≠称为二次函数,对实际问题二次函数也有定义域.2.图像二次函数的图像为抛物线,一般作二次函数图像,取五个点,先确定顶点的横坐标,再以它为中心向左、向右对称取点.3.性质 对2(0)y ax bx c a =++≠的图像来讲,(1)开口方向:当0a >时,抛物线开口向上;当0a <时,抛物线开口向下。
(2)对称轴方程:2bx a=-(3)顶点坐标:24,24b ac b a a ⎛⎫-- ⎪⎝⎭(4)抛物线与坐标轴的交点情况: 若240bac -<,则抛物线与x 轴没有交点;若240b ac -=,则抛物线与x 轴有一个交点;若240b ac ->,则抛物线与x 轴有两个交点,分别为,;另外,抛物线与y 轴的交点为()0,c .(5)抛物线在x a=(6)y 与x 的增减关系:当0a >,2b x a >-时,y 随x 的增大而增大,2bx a <-时,y 随x 的增大而减小;当0a <,2b x a >-时,y 随x 的增大而减小,2bx a<-时,y 随x 的增大而增大.(7)最值:当0a >时,y 有最小值,当2b x a =-时,244ac b y a -最小值=;当0a <时,y 有最大值,当2b x a =-时,244ac b y a-最大值=(8)若抛物线与x 轴两交点的横坐标为1x 、2x (12x x <),则:当0a >时,12x x x <<时,0y <;12x x x x <>或时,0y >;当0a<时,12x x x <<时,0y >;12x x x x <>或时,0y <.4.求解析式抛物线的解析式常用的有三种形式:(1)一般式:2(0)y ax bx c a =++≠(2)顶点式:2()(0)y a x h k a =-+≠,其中(,)h k 是抛物线的顶点坐标。
二次函数的图象、解析式和性质

二次函数的系数与图象的关系
二次函数的解析式为y=ax^2+bx+c,其中a、b、c为系数 a的符号决定了抛物线的开口方向,a>0时开口向上,a<0时开口向下 a的绝对值决定了抛物线的开口大小,|a|越大,开口越小 b和c决定了抛物线的位置,b和c的值越大,抛物线越往y轴正方向移动
二次函数的开口大小与二次项系数的关系
XX
二次函数的图象、解析式和性质
单击添加副标题
汇报人:XX
目录
01
单击添加目录项标题
02
03
二次函数的解析式
04
二次函数的图象 二次函数的性质
01
添加章节标题
02
二次函数的图象
二次函数的标准形式
二次函数的一般形式为y=ax^2+bx+c 二次函数的标准形式是y=ax^2+c,其中a和c是常数,且a≠0 二次函数的开口方向由系数a决定,a>0时开口向上,a<0时开口向下 二次函数的顶点坐标为(0,c),对称轴为y轴
b和c决定了抛物线的位置,其中 b和c的值可以根据具体的函数表 达式来确定。
添加标题
添加标题
添加标题
添加标题
a的符号决定了抛物线的开口方向, 当a>0时,抛物线开口向上;当 a<0时,抛物线开口向下。
二次函数的顶点坐标可以通过配 方的方法求得,顶点的横坐标为 x=-b/2a,纵坐标为y=(4acb^2)/4a。
感谢观看
汇报人:XX
二次函数的开口方向
二次函数的一般形式为y=ax^2+bx+c,其中a决定了开口方向 当a>0时,开口向上 当a<0时,开口向下 开口方向与函数的极值和最值有关
二次函数的图像和性质总结

二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。
当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。
(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。
当k 0时向上平移;当k0时向下平移。
(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。
当h0时向左平移;当h0时向右平移。
(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。
当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。
3.二次函数的最值公式:形如y =ax + bx + c的二次函数。
当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。
6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。
二次函数的图像与性质
二次函数的图像与性质二次函数在数学中占有重要的地位,它的图像和性质可以帮助我们更好地理解和应用数学知识。
本文将从图像和性质两个方面来探讨二次函数的特点。
一、二次函数的图像二次函数的标准形式为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
我们先来讨论a的取值对图像的影响。
1. 当a大于0时,二次函数的图像开口向上。
这表明两侧的函数值随着自变量的增大而增大,函数的最低点为最值点。
2. 当a小于0时,二次函数的图像开口向下。
这表明两侧的函数值随着自变量的增大而减小,函数的最高点为最值点。
接下来,我们来探讨二次函数图像的平移和缩放效果。
1. 平移:对于二次函数y = ax^2 + bx + c,向右平移h个单位,可以得到y = a(x - h)^2 + b(x - h) + c。
向左平移h个单位,则为y = a(x +h)^2 + b(x + h) + c。
这里h为实数。
2. 缩放:对于二次函数y = ax^2 + bx + c,通过改变a的绝对值可以得到不同的缩放效果。
当|a|大于1时,图像会被纵向拉伸;当0<|a|<1时,图像会被纵向压缩。
二、二次函数的性质除了图像外,二次函数还有许多重要的性质,我们将逐一介绍。
1. 零点:零点是指二次函数的图像与x轴的交点。
二次函数的零点可以通过求解方程ax^2 + bx + c = 0得到。
当判别式b^2 - 4ac大于0时,二次函数有两个不同的实根;当判别式等于0时,二次函数有两个相等的实根;当判别式小于0时,二次函数没有实根。
2. 对称轴:对称轴是指二次函数图像的中心对称线。
对称轴的方程可以通过求解方程x = -b/2a得到,即二次函数的顶点坐标为(-b/2a, f(-b/2a))。
3. 首项系数a的正负性:首项系数a的正负性决定了二次函数的开口方向。
当a大于0时,函数图像开口向上,最值点为最低点;当a小于0时,函数图像开口向下,最值点为最高点。
一般式二次函数的图像和性质
二次函数与三角函数结合,可以用来解决周期性运动 等问题。
与微积分结合
在微积分中,二次函数是最简单的一类函数,可以用 来理解和学习其他更复杂的函数。
与线性代数结合
二次函数常常出现在线性代数中,如矩阵的特征值、 行列式等。
谢谢观看
二次函数的根的性质
总结词
二次函数的根的乘积等于常数项除以系数a, 根的和等于系数b除以系数a。
详细描述
根据Vieta定理,二次函数$ax^{2} + bx + c = 0$的两个根$x_{1}$和$x_{2}$满足$x_{1}
cdot x_{2} = frac{c}{a}$,$x_{1} + x_{2} = frac{b}{a}$。
一般式二次函数的图像和性质
目录
• 二次函数的一般形式 • 二次函数的图像 • 二次函数的性质 • 二次函数的增减性 • 二次函数的根的性质 • 二次函数的应用
01
二次函数的一般形式
二次函数的一般定义
总结词
二次函数是形式为$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
对称轴与系数关系
对称轴的x坐标可以通 过系数a、b、c计算得 出,对称轴的位置与二 次项系数a的正负有关。
03
二次函数的性质
二次函数的开口方向
开口方向
由二次项系数a决定。a>0时,开口向上;a<0时,开口向下 。
总结词
二次函数的开口方向由系数a的正负决定,影响函数的增减性 。
二次函数的开口大小
详细描述
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a$、$b$和$c$是常数, 且$a neq 0$。$a$、$b$和$c$被称为 二次函数的系数。
二次函数的图象和性质
二次函数的图象和性质
汇报人:XX
目录
CONTENTS
01 添加目录标题
02 二次函数的图象
03 二次函数的性质
04 二次函数的应用
添加章节标题
二次函数的图象
二次函数的标准形式
二次函数的一 般形式为
y=ax^2+bx+ c
二次函数的标 准形式是
y=ax^2+c, 其中a和c是常
数,且a≠0
二次函数的对称性
二次函数图像的 对称轴是直线 x=-b/2a
二次函数图像的 顶点坐标为(b/2a, f(-b/2a))
二次函数图像的对 称性取决于系数a 的符号,当a>0时, 图像开口向上,具 有最小值;当a<0 时,图像开口向下, 具有最大值
二次函数图像的 对称性可以通二次函数的开 口方向:向上 或向下决定了 函数的最大值
或最小值
二次函数的顶 点:顶点的横 坐标为对称轴, 纵坐标为最大
值或最小值
二次函数的开口 大小:开口大小 决定了函数在最 大值或最小值附
近的波动幅度
二次函数的系数: 系数的大小决定 了函数在最大值 或最小值附近的
波动频率
感谢您的耐心观看
汇报人:XX
经济中的成本 与收益分析
生活中的最优 化问题
科学实验的数 据分析
利用二次函数解决实际问题的方法和步骤
建立数学模型:根据实际问题,将问题抽象为二次函数模型。 求解函数:利用二次函数的性质和公式,求解函数的最值或零点。 实际应用:将求解的结果应用到实际问题中,解决实际问题。 验证结果:对求解的结果进行验证,确保其在实际问题中的可行性和正确性。
常见二次函数问题的解题思路
二次函数图像与性质
x=0时,y最大值=c
抛物线y=ax2 +c (a≠0)的图象的对称轴都是y轴,顶 点都在y轴上。
x y=x2 y=x2-2
….. …… ……
-2 4
-1 1
0 0
1 1
2 4
…… ……
2
-1
8
y
0
-1
2
……
函数y=x2-2的图象 可由y=x2的图象 沿y轴向下平移2 个单位长度得到. 相同
-10 -5
y 轴右侧,y随x增大而增大
8 6
4
不同点:a 值越大,抛物线的开 口越小. 2 -4 -2 2 4
探究
2 画出函数 y x , y
线有什么共同点和不同点.
1 2 x , y 2 x 2 的图象,并考虑这些抛物 2
x
· · · -4
· · · -8
-3 -4.5
-1.5 -4.5
3. 对称轴,都是y轴, 可以怎么表示
4. 增减性和谁有关系,以谁为分界线, 可以怎么表示, 两种表示。 5. 还可以发现,|a|越大,则开口越小; |a|越小,则开口越大
探究2:观察y=x2,y=-x2的图象,它们整体上给你一种什么感觉?
8
y
6
4
2
-2
o
5
X
-4
-6
-8
探究2:观察y=x2,y=-x2的图象,它们整体上给你一种什么感觉?
y ax2 过(2,2)
-4
-2
2
4
函数
有什么共同点和不同点? 相同点:开口; 顶点; 最值; 对称轴;
的图象与函数 y=x2
的图象相比,
8 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学情分析:
本节内容是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习的函数知识,是函数知识螺旋发展的一个重要环节.二次函数曲线——抛物线,也是人们最为熟悉的曲线之一.喷泉的水流、标枪的投掷等都形成抛物线路径.同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等.本节课研究最简单的二次函数y=±x2的图象,是学生学习函数知识的过程中的一个重要环节,既是前面所学知识的延续,又是探究其它二此函数的图象及其性质的基础,起到承上启下的作用.
教学目标:
1. 知识与技能目标
(1)能够利用描点法作出函数y=x2的图象,并能根据图象认识和理解二次函数y= ax2的性质.
(2)猜想并能作出y=- x2的图象,能比较它与y= x2的图象的异同.
2.过程与方法目标
(1)经历探索二次函数y= x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.
(2)由函数y= x2的图象及性质,对比地学习y=- x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.
3.情感、态度与价值观目标
(1)经历探索的过程发现抛物线的性质,体会探索发现的乐趣,增强学习数学的自信心.
(2)通过小组交流、讨论、比较,研究二次函数y= x2和y=- x2的图象,培养学生合作意识和交流能力.
教学重点:
经历探索二次函数y=±x2的图象的作法和性质的过程,理解二次函数y=a x2的性质.
教学难点:
描点法画y= x2的图象,体会数与形的相互联系。
教学过程:
一、创设情境,提出问题
学生观察:喷泉的水流、篮球的投掷形成的路径,抛物线型拱桥、抛物线型隧道,都与抛掷一个物体形成的路径的曲线类似,由此导入课题.紧接着提出两个问题:1.我们已经学过哪些函数?研究函数问题的一般步骤是怎样的?
2.一次函数、反比例函数的图象各是怎样的图形?
(设计意图:让学生回顾已学的函数类型、图象及研究函数问题的一般思路,以便学生运用类比的方法研究二次函数的相关问题.)
二、合作交流,探究新知
1.认识抛物线
问题:一次函数的图象是一条直线,二次函数的图象是什么形状呢?让我们先来研究最简单的二次函数y=x2的图象.大家还记得画函数图象的一般步骤吗?(设计意图:通过这个问题让学生回忆起用描点法画图的一般步骤,以便于学生下一步的画图.)
画一画:你能试着用描点法画二次函数y= x2的图象吗?
(两名学生上台板演,其他学生在下面尝试画图.在学生画图时,教师溶入到学生中,了解并搜集学生可能出现的各种问题.比如:学生可能会画成折线、半个抛物线、没画出延伸的趋势等情形,这时正好针对问题鼓励小组间互相讨论、相互比较,交流各自的观点.)
问题:通过刚才的分析你认为在画y= x2的图象时:
(1)列表取值应注意什么问题?(取对称的7或5个点)
(2)点和点之间用什么样的线连接? (用平滑曲线按自变量从小到大或从大到小的顺序连接)
(学生尝试描述y= x2的图象,建立和实际问题的联系.再通过投篮的动态演示,形象的描述并体会y= x2的图象的形状是抛物线,并且与开始的引例相呼应.)(设计意图:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了.事实上,数学学习应该与学生的生活经验融合起来,让他们在生活中去发现数学、发现生活中的数学、探究数学、认识并掌握数学.)
2.探究抛物线y= x2的性质
议一议:请你观察y=x2的图象,你能得到哪些方面的性质,然后分组讨论.
(在学生讨论交流之后,请每组的学生代表一一发表自己的观察结果.在此过程中,教师不能作裁判,而要把评判权交给学生,注意培养学生语言的规范化、条
理化 .待学生发表自己的观点之后系统地总结一下y= x2的图象的性质)
抛物线y=x2的性质
(1)开口:抛物线的开口向上.
(2)对称性:它是轴对称图形,对称轴是y轴(或x=0).
(3)增减性:在对称轴的左侧(x<0时),y随x的增大而减小;在对称轴的右侧(x>0),y随着x的增大而增大.
(4)顶点:图象与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图象的最低点,坐标为(0,0).
(5)最值:因为图象有最低点,所以函数有最小值,当x=0时,y最小=0.
1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y= 2x2 y=
2
(设计意图:在此问题上,不再按课本上的问题一一叠列给学生,而是给学生一个开放的空间,给学生一个交流的平台,一个展现自我的空间.仁者见仁,智者见智,不同的学生肯定会有不同的认识,通过小组讨论与交流,学生可以相互学习,共同提高.)
3.探究抛物线y=-x2的性质
想一想:
(1)二次函数y=- x2的图象是什么形状?先想一想,然后作出它的图象.
(2) 类似的你能说出它的性质吗?
(让学生先猜想再画图验证,在学生画图时可让每一小组部分同学将y= x2与y=-x2的图象画在一个坐标系内,而后学生通过讨论交流得出结论,教师只给以必要的引导.)
1x2的图像,后总结图像的性质类似地:让学生再分组画出函数y=- 2x2 y= -
2
(设计意图:这一问题设计为学生提供思考的空间,培养学生在观察、分析、对比、交流中发展分析能力和从图象中获取信息的能力.)
议一议:函数y=x2与y=-x2的图象及其性质有何异同?
(学生观察图形,通过小组讨论,归纳y=x2与y=-x2的图象及其性质的异同,然后回答,学生想不到的,及时给予引导.)
不同点:开口方向不同:
函数值随自变量的增大的变化趋势而不同:
函数的最值不同:
相同点:
关系:它们的图像关于x轴对称
(设计意图:通过比较y=x2与y=-x2的性质的异同,让学生更充分地理解y =±x2的性质.)
三、变式训练,巩固提高(课堂检测)
1.在二次函数y= x2的图象上,与点A(-5,25)对称的点的坐标是.顶点为:_____
2.点(x1,y1)、 (x2,y2)在抛物线y=-3x2上,且x1> x2>0,则y1_____y2. 3.设边长为x cm的正方形的面积为y cm2,y是x的函数,该函数的图象是下列各图形中()
(设计意图:通过一组简单的练习题,及时巩固所学知识,使学生品尝到成功的喜悦.)
四、总结反思,纳入系统
通过今天的学习,你是否对二次函数y=a x2有了一些新的认识?能谈谈你的想法吗?
(由学生总结本节课所学习的主要内容.在学生归纳的基础上总结它们的区别与
生的素质,并且逐渐培养学生的良好的个性品质.)
五、课后延伸,提升能力
你能类比地画出函数:1
2+
y的图象吗?动手画一下吧!
=x
教学反思:
针对本节课的特点,采用“创设情境—作图探索—总结归纳—知识运用”为主线的教学方法.
把教学的重心放在如何促进学生的“学”上,引导学生采用观察、实验、自主探索、小组活动、集体交流等多样化的学习方式.教学过程中始终坚持学生为主体,教师为主导的方针,使探究知识和培养能力融为一体,让学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.。