耦合电容问题
y电容对地共地耦合引起的噪声

y电容对地共地耦合引起的噪声你有没有遇到过这样的情况?突然之间,电路里就开始噼里啪啦地响,或者音响系统发出一种莫名其妙的噪声,就像是电视机信号不好时那种沙沙声。
你想着,究竟哪里出了问题?是电源出问题了?还是线缆接触不良?其实呢,根本不是什么硬件故障,而是电容引起的噪声问题,尤其是你可能没太注意的“共地耦合噪声”。
要知道,电容是个很神奇的东西,常常在电路中充当着平稳电压的角色,就像是调皮捣蛋的小孩子,偶尔它也会突然跳出来搞点小动作,给我们带来麻烦。
特别是当不同电路共用一个地线的时候,这个小家伙就很容易通过“共地”产生一些意想不到的噪声。
简单来说,就是大家伙都站在同一条线上,但这条线的“承载能力”有限,负担重了,就会引起一系列的噪音干扰。
有时候你根本意识不到这些噪声的存在,尤其是在音频设备、无线通讯等对信号精度要求极高的地方。
比如你在听音乐,音响突然发出刺耳的“咔嚓”声,或者无线信号不稳定,背景总是有种嗡嗡的杂音。
虽然表面上看,一切正常,但细细一想,可能就是共地噪声在搞鬼。
想象一下,你正在做一道数学题,周围环境安静极了,你完全可以集中精力思考;可一旦旁边有个人不停地咳嗽,或者时不时发出一些奇怪的声音,突然间你就感觉有点分心了,思维也不那么清晰了。
这种“干扰”就好比共地噪声对电路信号的影响。
它不会直接把电路搞坏,但会让原本清晰的信号变得模糊,甚至让你感受到一种“信号紊乱”的状态。
而这个共地噪声,最常见的原因之一就是电容和地线之间不合适的耦合。
当电路的多个部分共享同一地线时,某个电路中的电容可能会将自己那部分电压波动“传递”到其它电路上,就像是打了个不请自来的“电话”,让整个电路系统都变得有些“杂音”了。
这个过程非常微妙,通常很难通过肉眼看到。
就算你用仪器检测,也很难立刻发现问题的根源,得仔细查找电路之间的联系,才能揭开谜底。
有趣的是,很多人并不意识到这类噪声的存在,直到它变得越来越明显。
问题的症结可能就隐藏在一个不起眼的小电容上,甚至一根接地线的设计不合理,都可能让噪声悄悄潜入,给你带来困扰。
电容耦合 电感耦合

电容耦合电感耦合
电容耦合和电感耦合是电子电路中常见的两种耦合方式,它们用于将一个电路的信号传递到另一个电路中。
下面我将从多个角度来介绍这两种耦合方式。
首先,我们来看电容耦合。
电容耦合是一种通过电容器来传递信号的方式。
在电路中,两个电路之间通过电容器连接,这样就可以传递信号。
电容耦合具有频率响应平坦、传输损耗小等特点,因此在许多放大器和滤波器中被广泛应用。
然而,电容耦合也存在一些缺点,比如对直流信号的传输效果不佳,需要注意选择合适的电容值以及工作频率范围等。
接下来,我们来看电感耦合。
电感耦合是一种通过电感器来传递信号的方式。
在电路中,两个电路之间通过电感器连接,这样就可以传递信号。
电感耦合具有传输损耗小、对直流信号的传输效果好等特点,因此在一些需要传输低频信号的电路中被广泛应用。
然而,电感耦合也存在一些缺点,比如对高频信号的传输效果不佳,需要注意电感器的品质因素、电感值的选择等。
从应用角度来看,电容耦合常用于耦合交流信号,比如在放大
器的输入和输出端之间传递交流信号;而电感耦合常用于耦合直流
信号,比如在直流放大器中传递直流偏置电压。
因此,在实际设计
电子电路时,需要根据具体的应用场景来选择合适的耦合方式。
综上所述,电容耦合和电感耦合都是常见的电子电路耦合方式,它们各自具有特点和适用范围。
在实际应用中,需要根据具体的需
求来选择合适的耦合方式,以达到最佳的传输效果。
详细解析耦合电容的原理

详细解析耦合电容的原理
耦合电容是一种用于将两个电路(或电子元件)之间的信号进行传输和耦合的元件。
它包含两个电极和介质,介质的特性决定了电容元件的特性。
当两个电路中的一个电路的变化信号(例如电压变化)传入耦合电容,耦合电容会储存这个变化信号的能量。
然后,这个能量会传递到另一个电路中,从而实现两个电路之间的信号传输和耦合。
耦合电容的原理基于电容器的特性。
电容器的两个电极之间存在电场,当电压或电荷在电容器的电极之间发生变化时,电场会储存或释放能量。
耦合电容的工作原理如下:
1. 当一个电路的信号传入耦合电容时,耦合电容会储存这个电路的变化信号的能量。
这是因为电压变化会导致电容器电极之间的电场发生变化,进而导致电容器储存或释放能量。
2. 储存的能量随后会传递到另一个电路中。
这是因为电容器两个电极之间的电场变化会导致变化信号的传输。
耦合电容在电子电路中有着广泛的应用。
例如,在放大器电路中,耦合电容用于将输入信号传递到放大器的输入端。
同样,在调音台中,耦合电容用于将不同的音频信号输入到不同的放大器中。
总结:
耦合电容是一种用于将两个电路之间的信号进行传输和耦合的元件。
它的工作原理基于电容器的特性,即电压或电荷的变化会导致电场的变化,进而导致能量的传输。
耦合电容在电子电路中有广泛的应用。
耦合电容的选择

耦合电容的选择笔者在制作电路时,使用耦合电容发现很多问题,下面跟大家分享我的经验,由于实际电路拍照比较困难,所以这里只能贴仿真图了,不过它跟实际差不多(在真实硬件上测过)。
电路中常常要用到耦合电容,那么耦合电容应该选多大呢??耦合电容的选择必须电路中的输入信号电压大小、频率及负载电阻来选择,比如电压为5V 那么电容耐压就不能小于5V了,不过本文的重点是讨论容量大小的选择。
那么耦合电容的容量大小应如何选择呢???本质:耦合电容与下一级的输入电阻构成了RC高通滤波器,为了保成输入信号下限频率能通过这一“RC高通滤波器”,RC高通滤波器的下限频率不能高于输入信号的频率。
相当于选择适当的电容来设计一个高通滤波器,以保证输入信号通不衰减通过,所以电容C可用公式计算出来,下面会给出公式。
我们来看下面一个实验,电路图如下所示,输入信号为频率为1Hz,大小为10mv.可见此输入信号有两个特点,频率很低,幅度又很小。
按照常识,电容容量越大,信号的频率就可以越低,现在的输入信号频率为1Hz,那么耦合电容的容量越大越好吗???请看下面的实验。
实验结果:1.输入信号频率为1Hz,幅度10mV,负载电阻300K,耦合电容先0.4uF测得输入输出波形如下图所示,黄色为输入,绿色为输出。
可见输入信号经过耦合电容后,幅度被严重衰减,由此可知耦合电容选择过小。
耦合电容选择0.1uF-0.5uF期间,输入信号衰减比较严重。
结论:如果电路要求信号耦合之后不能衰减,那么耦合电容就不能小于0.5uF2.输入信号频率为1Hz,幅度10mV,负载电阻300K,耦合电容大于等于0.5uF输出波形如下图所示,可见只要电容大于0.5uF,信号耦合之后就不会有幅度衰减。
那么是不是选择越大越好呢???请看实验33.输入信号频率为1Hz,幅度10mV,负载电阻300K,耦合电容为100uF幅度不出现衰减,但电路反应变得非常缓慢,输入信号后等待10多秒才有输出信号。
电容的耦合

电容的耦合电容是一种用于储存电荷的器件,它由两个金属板和介质组成。
当电容器中加上电压时,金属板上会产生正负电荷,形成电场。
电容的耦合就是指通过电容器将电场传递到其他电路中,实现信号的耦合传递。
电容的耦合在电子电路中起到非常重要的作用。
它可以实现不同电路之间的信号传递,实现各种功能和应用。
下面将分别介绍几种常见的电容耦合应用。
一、耦合电容器在放大电路中的应用在放大电路中,耦合电容器常常用于实现信号的耦合传递。
例如,放大器的输入端和输出端之间使用耦合电容器将信号耦合传递。
这样可以实现输入信号的放大,并将放大后的信号输出到下一级电路中。
耦合电容器的容值选择要合适,以确保信号的传递和放大效果。
二、耦合电容器在滤波电路中的应用滤波电路常常使用耦合电容器来实现对特定频率信号的滤波。
例如,低通滤波器中,输入信号通过一个电容器耦合到滤波器电路中,只有低频信号能够通过,高频信号被滤除。
类似地,高通滤波器和带通滤波器也可以使用耦合电容器实现相应的功能。
三、耦合电容器在功率放大电路中的应用耦合电容器还可以用于功率放大电路中。
例如,功率放大器的输入端和输出端之间使用耦合电容器,将输入信号耦合到功率放大器中,经过放大后的信号再通过耦合电容器输出到负载上。
这样可以实现功率的放大和输出。
四、耦合电容器在信号传输中的应用电容的耦合还可以用于信号传输中。
例如,音频信号的传输中常常使用耦合电容器。
音频信号经过耦合电容器耦合到音频放大器中,再经过放大器放大后,通过耦合电容器输出到扬声器上。
这样可以实现音频信号的传输和放大。
总结起来,电容的耦合在电子电路中有着广泛的应用。
它可以实现信号的耦合传递、滤波、功率放大和信号传输等功能。
不同的电路和应用需要选择合适的耦合电容器和容值,以确保电路的性能和功能。
在实际应用中,还需要考虑电容器的尺寸、成本和可靠性等因素。
因此,在电子电路设计中,对于电容的耦合应用需要进行合理选择和设计,以满足具体的需求。
耦合容和反馈电容的取值范围

耦合容和反馈电容的取值范围嘿,朋友们!咱们今天来聊聊耦合容和反馈电容的取值范围,这可是个有趣又有点复杂的话题呢。
先来说说耦合电容吧。
想象一下,耦合电容就像是电路中的桥梁,连接着不同的部分,让信号能够顺利通过。
那它的取值范围怎么确定呢?这可不能随便瞎搞。
如果取值太小,就好比这座桥太窄啦,信号就像拥挤的人群,过不去,会导致信号衰减得厉害,甚至丢失一些重要的信息。
这难道不糟糕吗?要是取值太大呢,又好像这座桥太宽太浪费,不仅增加成本,还可能引入一些不必要的干扰。
再讲讲反馈电容。
反馈电容就像是电路的调节器,影响着整个系统的稳定性和性能。
取值小了,反馈作用就弱,系统可能变得不稳定,就像失去了缰绳的野马,难以控制。
这能行?取值大了呢,反馈太强,系统又可能反应迟钝,就像被束缚住手脚的运动员,没法发挥出最佳水平。
那怎么才能找到合适的取值范围呢?这得综合考虑好多因素呢!比如电路的工作频率,频率高,电容取值就得小一些,不然跟不上节奏。
这就跟跑步比赛一样,速度快了,步伐就得小而快,不然就乱套啦。
还有输入输出的阻抗,这就好比是道路的宽窄,阻抗大,电容取值就得相应调整。
就像在宽路上开车和在窄路上开车,方向盘的转动幅度可不一样。
另外,信号的幅度和噪声水平也很重要。
信号强,电容可以适当大一点;噪声多,就得小心选择,不然噪声就像调皮的孩子,到处捣乱。
总之,确定耦合容和反馈电容的取值范围可不是一件轻松的事儿,得像侦探一样,仔细分析各种线索,才能找到最合适的答案。
朋友们,可别马虎对待,不然电路可能就闹脾气,不好好工作啦!我的观点是,在确定耦合容和反馈电容的取值范围时,一定要综合考量多种因素,反复试验和计算,才能找到那个能让电路稳定高效运行的“黄金范围”。
耦合电容工作原理
耦合电容工作原理
耦合电容是一种用于传输信号的元件,它通过储存电荷来实现信号的耦合和传递。
耦合电容由两个金属板组成,之间有一层绝缘材料隔开,形成电容结构。
当在耦合电容的一个端口施加电压时,电荷会在金属板之间积累,形成电场。
这个电场会影响到另一个与之耦合的电路或器件,从而传递信号。
工作原理可以分为以下几个步骤:
1. 施加电压:在一个端口施加电压,使得其中一个金属板带有正电荷,另一个金属板带有负电荷。
2. 电荷积累:随着电压的施加,电荷会在金属板之间积累,并在电容中形成电场。
3. 电场传递:这个电场会扩散到耦合电容的另一个端口,影响到与之耦合的电路或器件。
可以理解为电场的变化会引起耦合电容的另一端口上的电荷重新分布。
4. 信号耦合:通过这种电场传递,耦合电容将信号从一个电路传递到另一个电路,实现耦合的目的。
这种耦合可以是直接耦合,也可以是通过其他元件间接耦合。
总的来说,耦合电容利用电场的形成和传递来实现信号的耦合
和传递。
它在电路中起到连接和传输信号的作用,常见的应用包括放大器、滤波器和振荡器等。
b级电路电容耦合要求
b级电路电容耦合要求在B级电路设计中,电容耦合是一个重要的考虑因素。
电容耦合主要涉及确定耦合电容的容量和类型、选择适当的耦合路径、设计合适的电路布局、考虑信号频率和阻抗匹配、确定耦合电容的连接方式、注意电源和地线的处理,以及确保信号传输的稳定性等方面。
1. 确定耦合电容的容量和类型首先,需要确定耦合电容的容量和类型。
耦合电容的主要作用是隔离直流和交流信号,以避免它们之间的相互干扰。
因此,在选择耦合电容时,需要考虑信号的频率、幅度和负载等因素。
通常,耦合电容的容量需要根据信号频率进行选择,对于低频信号,可以选择大的容量,而对于高频信号,则需要选择小的容量。
同时,根据不同的应用场合,可以选择不同类型的耦合电容,如薄膜电容、电解电容等。
2. 选择适当的耦合路径其次,需要选择适当的耦合路径。
耦合路径是指信号从一个电路到另一个电路的传输路径。
在选择耦合路径时,需要考虑信号的传输速度、信号质量、电磁兼容性等因素。
通常,为了获得更好的信号质量,需要选择短而直接的耦合路径。
此外,还需要考虑不同电路之间的距离和连接方式,以确定最佳的耦合路径。
3. 设计合适的电路布局第三,需要设计合适的电路布局。
电路布局是指电路中各个元件的位置和排列方式。
在选择电路布局时,需要考虑信号的走向、元件之间的距离和连接方式等因素。
通常,为了获得更好的信号质量,需要将元件排列得更加整齐、有序,并保持适当的距离。
此外,还需要考虑到散热问题,为发热元件预留出足够的位置和空间。
4. 考虑信号频率和阻抗匹配第四,需要考虑信号频率和阻抗匹配问题。
在B级电路设计中,信号频率和阻抗匹配是非常重要的因素。
如果信号频率和阻抗不匹配,将会导致信号的失真和反射等问题。
因此,在选择电路元件时,需要考虑它们的频率特性和阻抗特性,以确保信号的稳定传输。
5. 确定耦合电容的连接方式第五,需要确定耦合电容的连接方式。
耦合电容可以串联或并联连接,具体取决于应用场景和电路要求。
电容耦合原理
电容耦合原理
电容耦合原理是一种常见的信号传输方式,广泛应用于电子电路中。
它通过连接一个电容器,将源电路与负载电路隔离开来,实现信号的传输。
具体原理如下:
在电路中,当交流信号输入到电容耦合器时,信号会通过电容器的两个板之间的电场产生电流。
这个电流会经过耦合器的输出端口传递给负载电路。
通过适当的设计,可以使得电容器的容值与频率响应相匹配,从而实现信号的传输。
然而,直流信号将无法通过电容耦合器传输,因为电容器会阻止直流电流的流动。
电容耦合器的优点是具有较高的隔离性能和频率响应,能够传输宽频带的信号。
同时,由于电容器的隔离作用,源电路和负载电路之间可以有不同的电位差,从而避免了可能的共模干扰。
然而,电容耦合器也存在一些限制。
首先,由于电容器本身的特性,信号的低频响应会有所衰减。
此外,电容器的容值和介质选择也会对频率特性产生影响。
因此,在设计电容耦合器时,需要根据具体的应用场景和需求来选择合适的电容器参数。
总的来说,电容耦合原理通过电容器实现源电路和负载电路之间的隔离和传输,是一种常用的信号耦合方式。
它在电子电路设计和信号传输中发挥了重要的作用。
旁路电容和耦合电容详解讲解
关于旁路电容和耦合电容精讲从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合. 去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.旁路是把输入信号中的干扰作为滤除对象,而去耦是把输出信号的干扰作为滤除对象,防止干扰信号返回电源.这应该是他们的本质区别.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF.分布电容是指由非形态电容形成的一种分布参数.一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容.这种电容的容量很小,但可能对电路形成一定的影响.在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候.也成为寄生电容,制造时一定会产生,只是大小的问题.布高速PCB时,过孔可以减少板层电容,但会增加电感.分布电感是指在频率提高时,因导体自感而造成的阻抗增加.电容器选用及使用注意事项:1,一般在低频耦合或旁路,电气特性要求较低时,可选用纸介、涤纶电容器;在高频高压电路中,应选用云母电容器或瓷介电容器;在电源滤波和退耦电路中,可选用电解电容器.2,在振荡电路、延时电路、音调电路中,电容器容量应尽可能与计算值一致.在各种滤波及网(选频网络),电容器容量要求精确;在退耦电路、低频耦合电路中,对同两级精度的要求不太严格.3,电容器额定电压应高于实际工作电压,并要有足够的余地,一般选用耐压值为实际工作电压两倍以上的电容器.4,优先选用绝缘电阻高,损耗小的电容器,还要注意使用环境.我们知道,一般我们所用的电容最重要的一点就是滤波和旁路,我在设计中也正是这么使用的.对于高频杂波,一般我的经验是不要过大的电容,因为我个人认为,过大的电容虽然对于低频的杂波过滤效果也许比较好,但是对于高频的杂波,由于其谐振频率的下降,使得对于高频杂波的过滤效果不很理想.所以电容的选择不是容量越大越好.疑问点:1.以上都是我的经验,没有理论证实,希望哪位可以在理论在帮忙解释一下是否正确.或者推荐一个网页或者网站.2.是不是超过了谐振频率,其阻抗将大大增加,所以对高频的过滤信号,其作用就相对减小了呢?3.理想的滤波点是不是在谐振频率这点上???(没有搞懂中)4.以前只知道电容的旁路作用是隔直通交,现在具体于PCB设计中,电容的这一旁路作用具体体现在哪里?在用电容抑制电磁骚扰时,最容易忽视的问题就是电容引线对滤波效果的影响.电容器的容抗与频率成反比,正是利用这一特性,将电容并联在信号线与地线之间起到对高频噪声的旁路作用.然而,在实际工程中,很多人发现这种方法并不能起到预期滤除噪声的效果,面对顽固的电磁噪声束手无策.出现这种情况的一个原因是忽略了电容引线对旁路效果的影响. 实际电容器的电路模型是由等效电感(ESL)、电容和等效电阻(ESR)构成的串联网络. 理想电容的阻抗是随着频率的升高降低,而实际电容的阻抗是图1所示的网络的阻抗特性,在频率较低的时候,呈现电容特性,即阻抗随频率的增加而降低,在某一点发生谐振,在这点电容的阻抗等于等效串联电阻ESR.在谐振点以上,由于ESL的作用,电容阻抗随着频率的升高而增加,这是电容呈现电感的阻抗特性.在谐振点以上,由于电容的阻抗增加,因此对高频噪声的旁路作用减弱,甚至消失. 电容的谐振频率由ESL和C共同决定,电容值或电感值越大,则谐振频率越低,也就是电容的高频滤波效果越差.ESL 除了与电容器的种类有关外,电容的引线长度是一个十分重要的参数,引线越长,则电感越大,电容的谐振频率越低.因此在实际工程中,要使电容器的引线尽量短.根据LC电路串联谐振的原理,谐振点不仅与电感有关,还与电容值有关,电容越大,谐振点越低.许多人认为电容器的容值越大,滤波效果越好,这是一种误解.电容越大对低频干扰的旁路效果虽然好,但是由于电容在较低的频率发生了谐振,阻抗开始随频率的升高而增加,因此对高频噪声的旁路效果变差.表1是不同容量瓷片电容器的自谐振频率,电容的引线长度是 1.6mm(你使用的电容的引线有这么短吗?).表1电容值自谐振频率(MHz) 电容值自谐振频率(MHz)1m F 1.7 820 pF 38.50.1m F 4 680 pF 42.50.01m F 12.6 560 pF 453300pF 19.3 470 pF 491800 pF 25.5 390 pF 541100pF 33 330 pF 60 尽管从滤除高频噪声的角度看,电容的谐振是不希望的,但是电容的谐振并不是总是有害的.当要滤除的噪声频率确定时,可以通过调整电容的容量,使谐振点刚好落在骚扰频率上.从电路来说,总是存在驱动的源和被驱动的负载.如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作.这就是耦合.去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰.旁路电容实际也是去藕合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径.高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定.去耦和旁路都可以看作滤波.正如ppxp所说,去耦电容相当于电池,避免由于电流的突变而使电压下降,相当于滤纹波.具体容值可以根据电流的大小、期望的纹波大小、作用时间的大小来计算.去耦电容一般都很大,对更高频率的噪声,基本无效.旁路电容就是针对高频来的,也就是利用了电容的频率阻抗特性.电容一般都可以看成一个RLC串联模型.在某个频率,会发生谐振,此时电容的阻抗就等于其ESR.如果看电容的频率阻抗曲线图,就会发现一般都是一个V形的曲线.具体曲线与电容的介质有关,所以选择旁路电容还要考虑电容的介质,一个比较保险的方法就是多并几个电容.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz 取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰,在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.对于同一个电路来说,旁路(bypass)电容是把输入信号中的高频噪声作为滤除对象,把前级携带的高频杂波滤除,而去耦(decoupling,也称退耦)电容是把输出信号的干扰作为滤除对象.在供电电源和地之间也经常连接去耦电容,它有三个方面的作用:一是作为本集成电路的蓄能电容;二是滤除该器件产生的高频噪声,切断其通过供电回路进行传播的通路;三是防止电源携带的噪声对电路构成干扰.我来总结一下,旁路实际上就是给高频干扰提供一个到地的能量释放途径,不同的容值可以针对不同的频率干扰.所以一般旁路时常用一个大贴片加上一个小贴片并联使用.对于相同容量的电容的Q值我认为会影响旁路时高频干扰释放路径的阻抗,直接影响旁路的效果,对于旁路来说,希望在旁路作用时,电容的等效阻抗越小越好,这样更利于能量的排泄.数字电路输出信号电平转换过程中会产生很大的冲击电流,在供电线和电源内阻上产生较大的压降,使供电电压产生跳变,产生阻抗噪声(亦称开关噪声),形成干扰源.一、冲击电流的产生:(1)输出级控制正负逻辑输出的管子短时间同时导通,产生瞬态尖峰电流(2)受负载电容影响,输出逻辑由“0”转换至“1”时,由于对负载电容的充电而产生瞬态尖峰电流. 瞬态尖峰电流可达50ma,动作时间大约几ns至几十ns.二、降低冲击电流影响的措施:(1)降低供电电源内阻和供电线阻抗(2)匹配去耦电容三、何为去耦电容在ic(或电路)电源线端和地线端加接的电容称为去耦电容.四、去耦电容如何取值去耦电容取值一般为0.01~0.1uf,频率越高,去耦电容值越小.五、去耦电容的种类(1)独石 (2)玻璃釉 (3)瓷片 (4)钽六、去耦电容的放置去耦电容应放置于电源入口处,连线应尽可能短.旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用.电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件.例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容.后来也有的资料把它引申使用于类似情况.去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声.数字电路中典型的去耦电容值是0.1μF.这个电容的分布电感的典型值是5μH.0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于 10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用.1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些.每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右.最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感.要使用钽电容或聚碳酸酯电容.去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF.一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件有源器件在开关时产生的高频开关噪声将沿着电源线传播.去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地.在电子电路中,去耦电容和旁路电容都是起到抗干扰的作用,电容所处的位置不同,称呼就不一样了.很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等.由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等.本文介绍电容器的主要参数及应用,可供读者选择电容器种类时用.1、标称电容量(CR):电容器产品标出的电容量值.云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容量居中(大约在0005μF10μF);通常电解电容器的容量较大.这是一个粗略的分类法.2、类别温度范围:电容器设计所确定的能连续工作的环境温度范围,该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等.3、额定电压(UR):在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值.电容器应用在高压场合时,必须注意电晕的影响.电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿.在交流或脉动条件下,电晕特别容易发生.对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值.4、损耗角正切(tgδ):在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率.这里需要解释一下,在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如下图所示.图中C为电容器的实际电容量,Rs是电容器的串联等效电阻,Rp是介质的绝缘电阻,Ro是介质的吸收等效电阻.对于电子设备来说,要求Rs愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角δ要小.这个关系用下式来表达: tgδ=Rs/Xc=2πf×c×Rs 因此,在应用当中应注意选择这个参数,避免自身发热过大,以减少设备的失效性.5、电容器的温度特性:通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示.补充:1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容).电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件.电容的特性主要是隔直流通交流.电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关.容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等.2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种.电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF).其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率.如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、电容容量误差表符号 F G J K L M允许误差±1% ±2% ±5% ±10% ±15% ±20%如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%.6使用寿命:电容器的使用寿命随温度的增加而减小.主要原因是温度加速化学反应而使介质随时间退化.7绝缘电阻:由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低.电容器包括固定电容器和可变电容器两大类,其中固定电容器又可根据所使用的介质材料分为云母电容器、陶瓷电容器、纸/塑料薄膜电容器、电解电容器和玻璃釉电容器等;可变电容器也可以是玻璃、空气或陶瓷介质结构.以下附表列出了常见电容器的字母符号.电容分类介绍名称:聚酯(涤纶)电容(CL)符号:电容量:40p--4u额定电压:63--630V主要特点:小体积,大容量,耐热耐湿,稳定性差应用:对稳定性和损耗要求不高的低频电路名称:聚苯乙烯电容(CB)符号:电容量:10p--1u额定电压:100V--30KV主要特点:稳定,低损耗,体积较大应用:对稳定性和损耗要求较高的电路名称:聚丙烯电容(CBB)符号:电容量:1000p--10u额定电压:63--2000V主要特点:性能与聚苯相似但体积小,稳定性略差应用:代替大部分聚苯或云母电容,用于要求较高的电路名称:云母电容(CY)符号:电容量:10p--0.1u额定电压:100V--7kV主要特点:高稳定性,高可靠性,温度系数小应用:高频振荡,脉冲等要求较高的电路名称:高频瓷介电容(CC)符号:电容量:1--6800p额定电压:63--500V主要特点:高频损耗小,稳定性好应用:高频电路名称:低频瓷介电容(CT)符号:电容量:10p--4.7u额定电压:50V--100V主要特点:体积小,价廉,损耗大,稳定性差应用:要求不高的低频电路名称:玻璃釉电容(CI)符号:电容量:10p--0.1u额定电压:63--400V主要特点:稳定性较好,损耗小,耐高温(200度) 应用:脉冲、耦合、旁路等电路名称:铝电解电容符号:电容量:0.47--10000u额定电压:6.3--450V主要特点:体积小,容量大,损耗大,漏电大应用:电源滤波,低频耦合,去耦,旁路等名称:钽电解电容(CA)铌电解电容(CN)符号:电容量:0.1--1000u额定电压:6.3--125V主要特点:损耗、漏电小于铝电解电容应用:在要求高的电路中代替铝电解电容名称:空气介质可变电容器符号:可变电容量:100--1500p主要特点:损耗小,效率高;可根据要求制成直线式、直线波长式、直线频率式及对数式等应用:电子仪器,广播电视设备等名称:薄膜介质可变电容器符号:可变电容量:15--550p主要特点:体积小,重量轻;损耗比空气介质的大应用:通讯,广播接收机等名称:薄膜介质微调电容器符号:可变电容量:1--29p主要特点:损耗较大,体积小应用:收录机,电子仪器等电路作电路补偿名称:陶瓷介质微调电容器符号:可变电容量:0.3--22p主要特点:损耗较小,体积较小应用:精密调谐的高频振荡回路名称:独石电容最大的缺点是温度系数很高,做振荡器的稳漂让人受不了,我们做的一个555振荡器,电容刚好在7805旁边,开机后,用示波器看频率,眼看着就慢慢变化,后来换成涤纶电容就好多了.独石电容的特点:电容量大、体积小、可靠性高、电容量稳定,耐高温耐湿性好等.应用范围:广泛应用于电子精密仪器.各种小型电子设备作谐振、耦合、滤波、旁路.容量范围:0.5PF--1UF耐压:二倍额定电压.里面说独石又叫多层瓷介电容,分两种类型,1型性能挺好,但容量小,一般小于0.2U,另一种叫II型,容量大,但性能一般.就温漂而言:独石为正温糸数+130左右,CBB为负温系数-230,用适当比例并联使用,可使温漂降到很小. 就价格而言:钽,铌电容最贵,独石,CBB较便宜,瓷片最低,但有种高频零温漂黑点瓷片稍贵.云母电容Q值较高,也稍贵.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
耦合电容问题
一、引言
在电路中,通常会使用电容器来储存能量或者对电流进行滤波。
而当电容器之间存在一定的物理或电气连接时,就会出现耦合电容问题。
耦合电容是指两个或者多个电容器之间通过导线或其他介质相互连接而形成的等效电容。
对于耦合电容问题的研究,有助于我们更好地理解电容器的使用和设计,以及对于电路工程的指导意义。
二、耦合电容的概念与原理
耦合电容是由于电容器之间的物理接触或者电气连接引起的。
当两个电容器C1和
C2之间通过金属导线或者其他介质相连时,就会形成一个等效电容C。
其等效电容可以通过下面的公式计算得到:
C = C1 + C2 + (C1 * C2) / (C1 + C2)
其中,C1和C2分别是两个电容器的电容。
这个公式的推导过程可以通过研究电容
器的等效电路模型来进行说明。
耦合电容的原理是电场的作用。
当电容器C1充电时,会在C1的两个极板之间形成一个电场。
而当C2与C1相连时,C1产生的电场
会影响到C2极板之间的电场分布。
因此,两个电容器之间的电场会相互影响,形
成耦合电容。
三、耦合电容的影响及应用
耦合电容问题在电路设计中具有重要的影响和应用。
首先,耦合电容会引起电路性能的变化。
当两个电容器发生耦合时,其等效电容C会大于C1和C2的和。
这意味着耦合电容会增大电路中的总电容值,从而影响电路的频率响应和传输特性。
此外,耦合电容还会改变电路的工作状态,影响信号的传输和衰减。
因此,在电路设计中需要对耦合电容进行充分的考虑和分析。
耦合电容问题在很多电子设备中都有应用。
例如,耦合电容被广泛用于音频放大器和滤波器电路中。
在音频放大器中,耦合电容被用于连接输入信号和放大电路,用于 AC 值的传输。
耦合电容的选择会直接影响到音频信号的质量和频率响应。
在滤波器电路中,多个耦合电容的连接形成带通、带阻等滤波特性,用于信号的频率选择和衰减。
四、解决耦合电容问题的方法
针对耦合电容问题,可以采取一系列的解决方法来减小或者消除耦合电容的影响。
下面是一些常见的解决方法:
1.降低耦合电容的物理连接:通过增加电容器之间的物理间隔或者采用特殊的
物理结构,可以减小耦合电容的影响。
例如,采用金属屏蔽罩、电容器的金
属外壳或者增加隔离层等方法,可以有效地降低耦合电容的发生。
2.增大电容器的阻抗:通过增大电容器之间的等效电阻或者等效电感,可以减
小耦合电容的传输效应。
这可以通过在电容器串联电阻或者电感来实现。
3.优化电路布局和设计:合理的电路布局和设计可以减小耦合电容的影响。
例
如,采用地线和电源线的分离、减少共用路径、增大引脚间距等方法,可以
有效地降低耦合电容的发生和传输。
五、总结
耦合电容问题是电路设计中重要的问题之一。
它对于电路性能和工作状态有直接的影响。
耦合电容的等效电容可以通过公式计算得到,而其产生的原理是电场的作用。
在解决耦合电容问题时,可以采取多种方法来减小或者消除耦合电容的影响,如降低物理连接、增大阻抗和优化设计等。
对耦合电容问题的深入研究和理解,对于电路设计和电子设备的性能提升具有重要意义。