生物净化低温高铁锰氨氮地下水氨氮去除机制

合集下载

生物脱氮机理、ao工艺脱氮解释

生物脱氮机理、ao工艺脱氮解释

生物脱氮机理、AO工艺脱氮过程解释生物脱氮的基本原理是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝态氮,即将NH3转化为NO2--N和NO3--N。

在缺氧条件下通过反硝化作用,以硝酸盐氮为电子受体,以有机物为电子供体进行厌氧呼吸,并有外加碳源提供能量,将硝氮转化为氮气,即,将NO2--N(经反亚硝化)和NO3--N(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。

水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的。

由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的溶解氧(DO)值在2mg/L以上,合适的温度,最好20℃,不低于10℃,足够长的污泥泥龄,合适的pH条件。

反硝化阶段:硝酸盐的存在,缺氧条件(DO)值在0.5mg/L左右,充足的碳源(能源),合适的pH条件。

通过上述原理,可组成缺氧与好氧池,即所谓A/O系统。

AO工艺法也叫厌氧-好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。

A/O法生物去除氨氮原理:污水中的氨氮,在充氧的条件下(O段),被硝化菌硝化为硝态氮,大量硝态氮回流至A段,在缺氧条件下,通过兼性厌氧反硝化菌作用,以污水中有机物作为电子供体,硝态氮作为电子受体,使硝态氮波还原为无污染的氮气,逸入大气从而达到最终脱氮的自的。

硝化反应:NH4++2O2→NO3-+2H++H2O反硝化反应:6NO3-+5CH3OH(有机物)→5CO2↑+7H2O+6OH-+3N2↑如图,A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。

在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。

生物除铁锰概述

生物除铁锰概述

生物除铁除锰的概述1生物除铁除锰技术的发现早在上世纪三十年代人们对能氧化二价铁的细菌就有所发现,学者们甚至把能氧化铁的一大类细菌统称为铁氧化细菌,并且在输水管道锈蚀方面对于铁氧化细菌有相当深入的研究。

但在水质净化工程上的应用却无人问津。

1986年中国市政工程东北设计研究院在沈阳李观卜微污染含铁含锰地下水净化试验中,发现滤层中有较多的微生物存在,出水铁、锰合格,并且COD和NH3-N有较高的去除率,提出地下水中铁、锰的生物氧化现象。

1987年5月至9月,该院在鞍山大赵台水厂进行了“除铁除锰试验研究”。

采用跌水曝气一级锰砂过滤的简单流程,地下水铁、锰得以很好的去除。

同时进行了室内机理试验,指出滤砂表面的活性膜不是单纯的无机铁、锰氧化物,而是有微生物代谢的生物活性滤膜。

提出了“地下水中锰的去除是滤池中客观存在的生物、化学、物理等综合作用的结果”2生物除铁除锰技术的确立九十年代初,中国市政工程东北设计研究院以“生物固锰除锰技术”为题进行“八五”科技攻关(85-05-02)。

终于揭示了在pH中性域条件地下水除锰的机制,明确指出,在pH中性域条件下,除铁除锰滤层中Mn2+的氧化是以Mn2+氧化菌为主的生物氧化作用。

在这一生物滤层中,Mn2+ 首先吸附于细菌表面,然后在细菌胞外酶的作用下氧化为Mn2+,从而从水中除掉。

山于Mn2十在pH中性域条件卜,非常稳定,进入滤层前不会因曝气而被空气所氧化,因而不会生成类似氢氧化铁的细碎的胶体颗粒,穿透滤层,因此可以被生物滤层氧化得很彻底,从这个意义上讲,打破了除锰难的观念,应该说除锰比除铁容易。

除锰滤池在投入运行之后,随着微生物的接种、培养、驯化,为生物数量从nX 10 CFU/mL湿砂逐步增长到n X 10CFU/mL湿砂。

微生物的对数增长期与锰去除率的对数增长期相对应。

所谓除锰滤层的成熟,就是滤层中微生物群落繁殖代谢达到平衡的过程。

凡是除锰效果好的滤池,都具有微生物繁殖代谢的条件。

污水处理中的氨氮去除技术

污水处理中的氨氮去除技术

污水处理中的氨氮去除技术污水处理是一项重要而复杂的环境工程技术,其中氨氮去除技术是其中一个关键环节。

本文将详细介绍污水处理中的氨氮去除技术,并分点列出其相关内容。

一、氨氮的来源及危害1. 氨氮的来源:工业废水、农业面源废水、生活污水、农业非点源废水等。

2. 氨氮的危害:氨氮过量排放会导致水体富营养化,引发水华、水生生物死亡及水环境恶臭等问题,严重危害生态环境和人类健康。

二、常见的氨氮去除技术1. 生物法:包括厌氧法和好氧法。

- 厌氧法:利用厌氧菌群将氨氮转化为氮气,常见的反应器有厌氧反应槽和厌氧滤池等。

- 好氧法:利用好氧菌群将氨氮转化为硝酸盐,常见的处理单元有好氧池、好氧滤池和硝化反硝化池等。

2. 物理法:主要用于氨氮浓度较低的水体。

- 蒸发浓缩法:利用加热蒸发水体,浓缩氨氮浓度,常用于工业废水处理。

- 膜分离法:利用膜的选择性透过性,将氨氮分离出来,常见的膜法有超滤、反渗透和离子交换膜等。

3. 化学法:通过添加化学药剂达到去除氨氮的目的。

- 高锰酸钾法:利用高锰酸钾氧化氨氮生成氮气,广泛应用于农村生活污水处理。

- 硝化法:通过添加化学药剂加速氨氮转化为硝态氮,常见的药剂有硝酸铵和硫酸铵等。

三、氨氮去除技术的特点及应用情况1. 生物法:- 特点:技术成熟、操作简单、能耗低、无二次污染。

- 应用情况:广泛应用于城市生活污水处理、工业废水处理和农村污水处理等领域。

2. 物理法:- 特点:适用于氨氮浓度较低的水体、处理效果稳定。

- 应用情况:主要应用于工业废水处理和海水淡化等领域。

3. 化学法:- 特点:适用性广、处理效果较好。

- 应用情况:常见于农村生活污水处理和工业废水处理等领域。

四、氨氮去除技术的发展趋势1. 生物法:加强氮素转化功能菌的研究,提高转化效率。

2. 物理法:研发更高效、节能的膜分离技术,开发新型浓缩设备。

3. 化学法:研究更环保、高效的化学药剂,减少药剂使用量。

五、国内外氨氮去除技术研究进展1. 国内研究进展:随着环保意识的提高,氨氮去除技术研究受到重视,取得了不少成果。

生物脱氮技术

生物脱氮技术

生物脱氮技术生物脱氮技术是一种有效的方法,用于处理含有高浓度氮污染物的废水和污水。

它通过利用微生物的生物活性,将废水中的氮污染物转化为氮气,从而实现脱氮的目的。

这种技术在环保领域中得到了广泛应用。

本文将详细介绍生物脱氮技术的原理、应用和优势。

一、原理生物脱氮技术基于微生物的代谢活动,通过一系列微生物反应将废水中的氮污染物转化为氮气。

具体来说,生物脱氮技术主要包括硝化和反硝化两个过程。

硝化是指将废水中的氨氮转化为硝态氮的过程。

在硝化过程中,氨氮首先被氧化成亚硝酸盐,然后再被氧化成硝酸盐。

这一过程主要由硝化细菌完成。

硝化细菌通过吸收废水中的氨氮,并在氧气的存在下将其转化为硝酸盐。

反硝化是指将废水中的硝态氮还原为氮气的过程。

在反硝化过程中,硝酸盐首先被还原成亚硝酸盐,然后再被还原成氮气。

这一过程主要由反硝化细菌完成。

反硝化细菌通过吸收废水中的硝酸盐,并在缺氧的环境下将其还原为氮气。

通过硝化和反硝化两个过程,生物脱氮技术可以将废水中的氮污染物转化为氮气,从而实现脱氮的效果。

二、应用生物脱氮技术广泛应用于各种含有高浓度氮污染物的废水和污水处理系统中。

例如,生物脱氮技术可以应用于城市生活污水处理厂和工业废水处理厂。

此外,生物脱氮技术还可以应用于农业废水处理和农田灌溉水质的改善。

在城市生活污水处理厂中,生物脱氮技术可以有效地处理含有高浓度氮污染物的污水。

通过生物脱氮技术,污水中的氮污染物可以被转化为氮气,从而减少了对环境的污染。

此外,生物脱氮技术还可以提高污水处理的效率和降低运营成本。

在工业废水处理厂中,生物脱氮技术可以处理各种含有高浓度氮污染物的废水。

通过生物脱氮技术,废水中的氮污染物可以被转化为氮气,从而降低了对环境的影响。

此外,生物脱氮技术还可以减少废水处理过程中的化学药剂使用量,降低了处理成本。

在农业废水处理和农田灌溉水质改善方面,生物脱氮技术也发挥了重要作用。

通过生物脱氮技术,农业废水中的氮污染物可以被转化为氮气,从而减少了对农田的污染。

去氨氮的方法

去氨氮的方法

去氨氮的方法去氨氮是指将水中的氨氮物质去除或降低至一定标准以下的处理过程。

氨氮是指水中存在的氨和游离氨离子所组成的总氨含量。

水中的氨氮来自于生物废水、工业废水、农业污染等多种来源,其高浓度会对水体生态环境和人体健康造成严重影响,因此,进行去氨氮处理对于水质的净化和保护具有重要意义。

一、去氨氮的常用方法1. 生物法:利用生物活性污泥中的硝化细菌和反硝化细菌来实现氨氮的转化和去除。

生物法常常采用好氧硝化-厌氧反硝化工艺,通过好氧条件下将氨氮氧化为亚硝酸盐,再在厌氧条件下将亚硝酸盐还原为氮气释放出去,从而达到去氨氮的目的。

2. 化学法:利用化学反应将氨氮与其他物质结合形成不溶于水的物质,从而去除水中的氨氮。

常用的化学法包括氯化法、硫酸法、氧化法等。

其中,氯化法是常用的氨氮去除方法之一,通过向水中加入氯化铁等化学药剂,使氨氮与氯离子结合生成氯胺,进而去除氨氮。

3. 吸附法:利用吸附剂对水中的氨氮进行吸附,从而去除氨氮。

常用的吸附剂有活性炭、离子交换树脂等。

吸附法具有操作简单、效果显著等优点,尤其适用于氨氮浓度较低的水体处理。

4. 膜法:利用特殊的膜材料对水中的氨氮进行分离和去除。

常见的膜法包括微滤膜、超滤膜、反渗透膜等。

膜法去除氨氮的原理是通过膜的选择性通透性使氨氮分离出去,从而实现去氨氮的效果。

5. 光催化法:利用光催化剂吸收光能,在光照下产生活性氧化物,通过氧化作用将水中的氨氮转化为无害物质。

光催化法具有反应速度快、无二次污染等优点,是一种环保高效的氨氮去除方法。

二、去氨氮方法的选择和应用在实际应用中,选择合适的去氨氮方法需要综合考虑水源质量、水体特性、处理要求以及经济成本等因素。

1. 生物法适用于氨氮浓度较高的废水处理,尤其适用于生活污水处理厂和工业废水处理厂。

2. 化学法适用于氨氮浓度较低的废水处理,常用于农业废水处理和地下水处理。

3. 吸附法适用于氨氮浓度较低的水体处理,如湖泊、河流等。

4. 膜法适用于氨氮浓度较低的水体处理,尤其适用于饮用水处理和工业废水处理。

给排水工艺中的去除氨氮总氮技术

给排水工艺中的去除氨氮总氮技术

给排水工艺中的去除氨氮总氮技术随着城市发展和人口增长,污水处理成为了一项关键的环保任务。

而其中,去除氨氮和总氮是污水处理过程中的重要指标之一。

本文将介绍几种常用的去除氨氮总氮技术,包括生物法、化学法和物理法。

一、生物法生物法是最常见的去除氨氮总氮的方法之一。

其原理是利用微生物将有机物和氨氮等有害物质转化为无害的固体物或气体。

常用的生物法包括活性污泥法、厌氧氨氧化法和硝化—反硝化法。

1. 活性污泥法活性污泥法利用污水中的微生物菌群,通过细菌的降解作用将氨氮和有机物质转化为沉淀物。

该方法适用于中小型污水处理厂,具有成本低、运行稳定等优点。

2. 厌氧氨氧化法厌氧氨氧化法是利用厌氧菌将氨氮氧化为亚硝酸盐。

该方法适用于高氨氮浓度的废水处理,能够大幅度减少氨氮的去除能耗。

3. 硝化—反硝化法硝化—反硝化法是将氨氮先氧化成硝酸盐,然后通过反硝化将硝酸盐还原为氮气排出。

该方法适用于氨氮浓度较低的废水处理,能够实现氮气的高效去除。

二、化学法化学法是采用化学品与氨氮或总氮发生反应,从而实现去除的方法。

常用的化学法包括硝化—硝化法和氨氮氧化法。

1. 硝化—硝化法硝化—硝化法是利用化学药剂将氨氮转化为亚硝酸盐或硝酸盐,再通过沉淀、吸附等方式进行去除。

该方法适用于废水中氨氮浓度较高的情况,但同时也会产生相应的化学废物。

2. 氨氮氧化法氨氮氧化法是利用高效氧化剂将氨氮氧化为无机氮。

该方法适用于氨氮含量较低的废水处理,但氧化剂的使用会增加运营成本。

三、物理法物理法主要是通过物理手段去除废水中的氨氮和总氮。

常用的物理法包括吸附法和膜分离法。

1. 吸附法吸附法是利用吸附剂吸附污水中的氨氮和总氮物质,从而实现去除。

常用的吸附剂有活性炭、树脂等。

该方法适用于小型污水处理系统,但吸附剂的再生和处理也需要额外考虑。

2. 膜分离法膜分离法是利用膜的筛选作用,通过渗透、过滤等方式将废水中的氨氮和总氮分离出来。

常见的膜分离方法有超滤法、反渗透法等。

氨氮废水的治理方法-生物脱氮法

氨氮废水的治理方法-生物脱氮法氨氮废水的冶金备件治理方法-生物脱氮法1)多级污泥系统多级污泥系统是传统的生物脱氮流程,该流程有相当好的BODs 去除效果和脱氮效果。

缺点是流程偏长,构筑物较多,基建费用高,需外加碳源,冶金备件运行费用较高,出水中残留一定量的甲醇。

2)单级污泥系统单级污泥系统包括前置反消化系统、后置反硝化系统及交替工作系统。

冶金备件前置反硝化的生物脱氮流程,通常称为A/O 流程。

与传统的生物脱氮工艺流程相比,A/0工艺具有流程简单,构筑物少,基建费用低,不需外加碳源,出水水质高等优点。

后置式反硝化系统,因为混合液缺乏有机物,一般还需人工投加碳源,但脱氮的效果高于前置式,理论上可达到接近100%的脱氮效果。

冶金备件交替工作的生物脱氮流程,主要由两个串联池子组成,通过改换进水和出水的方向,两个池子交替在缺氧和好氧的条件下运行。

它本质上仍是系统,但利用交替工作的方式,避免了混合液的回流,脱氮效果优于一般的 A/0流程。

3)生物膜系统将上述A/O 系统中的缺氧池和好氧池改为固定生物膜反应器,冶金备件即形成生物膜脱氮系统。

此系统中应有混合液回流,但不需污泥回流,在控制一定的缺氧气氛的好氧反应器中,保存了适合于反硝化和好氧氧化及硝化反应的两个污泥系统。

4.硝化反硝化法有机废水中氨氮在好氧菌作用下,氧化生成亚硝酸盐和硝酸盐,这一过程称为硝化。

硝酸盐和亚硝酸盐又被厌氧菌或兼氧菌还原为气态氮,这一过程称为反硝化。

冶金备件有机废水中的氨氮通过上述两个过程被去除。

1)硝化过程NHr+ 3/202 → N02-+ 2H+ + H 20NOr+ l/202 → NO 3-NH 4++ 202 →NO 3-+ 2H++ H 20硝化过程中要耗用大量的氧。

一般认为溶解氧应控制在1. 5?2. Omg/L 内,溶解氧低于0. 5mg/L 则硝化作用完全停止。

硝化反应后有硝酸形成,使生化环境的酸度提髙,因此要求废水中应有足够的盐碱度来平衡硝化作用中产生的酸,一般要求硝化作用最适宜的pH 为7. 5?9. 2。

高铁酸钾除氨氮

高铁酸钾除氨氮高铁酸钾除氨氮(Potassium Ferrocyanide Removal of Ammonia Nitrogen)是一种有效除去水中氨氮的技术,因为农用水中的氨氮会对当地农作物生长和环境造成严重危害。

高铁酸钾除氨氮技术主要采用水溶性高铁酸钾(K4[Fe(CN)6])作为除氨剂,它能够有效地将水中离子形式的氨氮(NH3-N)转变成不溶于水的氮化铁(Fe(CN)3-)及氨(NH3)。

氮化铁能够被脱除,并最终被固定到沉淀物中,这样,水中氨氮就被完全去除。

高铁酸钾除氨氮技术的优点在于其除氨效果良好、处理方法简便、运行成本低、过程可应用在悬浮物含量较高、温度低等条件下,而且它还能有效除去其他有害污染物,如重金属离子和有机污染物。

要想获得较好的效果,必须考虑以下因素:高铁酸钾的抗氧化性、水中某些成分的含量、水温和PH值、当地水质条件变化等。

这些因素将影响高铁酸钾的有效性和处理效果,使其在处理水中氨氮时获得最佳效果。

在高铁酸钾除氨氮处理技术中,污水预处理是有必要的。

污水进行预处理,可减少处理水中包含的各种杂质,如悬浮物、有机物、病毒及细菌等,从而有效地改善水质,以达到减少对后续处理设备的负荷及改善处理效果的目的。

同时,高铁酸钾除氨氮过程结束后,也需要进行后处理,以增强除氨效果,并减少出水氨的浓度,减少对池塘系统的秉益或流通水体的影响。

总之,高铁酸钾除氨氮是一个有效的、可靠的氨氮消除的技术,能够有效除去水中的氨氮,从而为人类提供一个更良好的环境。

高铁酸钾除氨氮技术可以有效地保护环境,减少农业污染,保护土壤肥力,防止农作物病险,净化水环境,保持水质安全,并且运行成本低廉,属于一种安全、可持续性和高效的处理技术。

地下水体脱氮方法

地下水体脱氮方法
一、地下水体脱氮方法
1、界面脱氮法
界面脱氮技术是一种物理脱氮技术,其原理是通过改变大气、水溶液的界面,使气体能够被吸附在水溶液的界面上,从而达到降低水中氮含量的目的。

2、活性炭脱氮法
活性炭脱氮是一种常用的物理脱氮法,其原理是通过活性炭的毛细管状结构,使水中的氮被吸附在活性炭上,从而实现脱氮的效果。

3、膜分离脱氮法
膜分离脱氮是一种比较先进的物理脱氮方法,其原理是利用膜分离技术将水中的氮离子(氨氮、氮氧)滤除,从而达到脱氮的效果。

4、化学脱氮法
化学脱氮方法是在地下水中添加一定量的降解水中氮离子的化
学试剂,从而达到脱氮的效果。

常用的化学脱氮剂有:H2O2、CaO、NaOCl、FeSO4、Fe2+(NH4)2SO4等。

5、生物脱氮法
生物脱氮是指在水系,利用水生生物的代谢产物,促使氨氮转化为无害物,从而达到减缓水体氮污染的技术手段。

常用的氨氮的生物降解剂有:铝、钙、钾、硝酸钙等。

二、结论
地下水体的脱氮是由物理、化学和生物方法相结合构成的,根据
实际情况选择不同的脱氮技术,才能有效脱氮,保护地下水体的水质。

生化池氨氮去除原理

生化池氨氮去除原理生化池是一种常用的废水处理设备,其主要功能是通过生物降解作用去除废水中的有机物质和氨氮。

生化池氨氮去除原理主要分为生物氧化和生物吸附两个过程。

生物氧化是指废水中的有机物质在生化池中被微生物分解为无机物质的过程。

废水中的有机物质包括蛋白质、脂肪、碳水化合物等,这些有机物质在生化池中被微生物分解为二氧化碳、水和微生物生长所需的细胞物质。

这个过程需要一定的时间和适宜的环境条件,如适宜的温度、pH值和氧气供应。

生物吸附是指废水中的氨氮被微生物吸附和转化为无机氮化合物的过程。

废水中的氨氮主要来源于废水中的氨、胺和尿素等含氮化合物,这些氮化合物在生化池中被微生物吸附并转化为硝酸盐和亚硝酸盐等无机氮化合物。

这个过程也需要一定的时间和适宜的环境条件,如适宜的温度、pH值和氧气供应。

生化池氨氮去除的关键是微生物的作用。

微生物在生化池中起着至关重要的作用,它们能够分解废水中的有机物质和吸附废水中的氨氮。

微生物通过代谢废水中的有机物质和氨氮,维持了生化池中的生态平衡。

为了提高生化池的去除效果,常常需要向生化池中添加适量的微生物菌剂,以增加微生物的数量和活性。

除了微生物的作用,生化池的设计和运行参数也对氨氮的去除效果有影响。

首先,生化池的设计应考虑废水的水质特点和处理要求,合理确定生化池的容积和水力停留时间。

其次,生化池的运行参数如温度、pH值和氧气供应量等也需要控制在适宜的范围内,以保证微生物的生长和代谢活动。

生化池氨氮去除的原理是通过微生物的生物降解和生物吸附作用,将废水中的有机物质和氨氮转化为无害的无机物质。

生化池的设计和运行参数对氨氮去除效果有重要影响,需要合理考虑废水的水质特点和处理要求,并控制好温度、pH值和氧气供应量等运行参数。

通过合理设计和运行,生化池能够有效去除废水中的氨氮,达到环保要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档