酶免疫测定(ELISA)介绍
酶联免疫吸附试验方法类型及反应原理

酶联免疫吸附试验方法类型及反应原理酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)是一种常用的生物化学分析方法,用于检测并定量测定生物样品中的抗体或抗原。
ELISA方法包括直接ELISA、间接ELISA、竞争ELISA和间接竞争ELISA等。
下面将对这些方法的类型和反应原理进行详细介绍。
1.直接ELISA直接ELISA是最简单的ELISA方法之一、在这种方法中,微孔板表面上涂覆有抗原,然后加入待检测样品,如血清等。
待检测样品中的抗体与涂覆的抗原结合,形成抗原-抗体复合物。
然后加入特异性抗体,这些抗体已标记有酶,比如辣根过氧化物酶(horse radish peroxidase,HRP),然后加入适当的底物。
酶与底物反应产生比色或荧光信号,信号的强度与待测样品中抗原或抗体的浓度成正比。
2.间接ELISA间接ELISA是常用的ELISA方法之一,比直接ELISA灵敏度更高。
在这种方法中,微孔板表面上涂覆有抗原,然后加入待检测样品,如血清等。
待检测样品中的抗体与涂覆的抗原结合,形成抗原-抗体复合物。
然后加入与待测抗体特异性的二抗,这些二抗已标记有酶,如HRP,再加入适当的底物。
酶与底物反应产生比色或荧光信号,信号的强度与待测样品中抗原或抗体的浓度成正比。
3.竞争ELISA竞争ELISA是一种用于测定样品中抗原或抗体浓度的ELISA方法。
在这种方法中,微孔板表面上涂覆有特异性抗体,然后加入待检测样品和已标记的抗原或抗体。
待检测样品中的抗原或抗体与涂覆的抗体竞争结合,形成复合物。
然后加入特异性的抗原或抗体,这些抗原或抗体已标记有酶,比如HRP,继续竞争与涂覆抗体结合。
酶与底物反应产生比色或荧光信号,信号的强度与待测样品中抗原或抗体的浓度成反比。
4.间接竞争ELISA间接竞争ELISA是一种用于测定样品中抗原或抗体浓度的高灵敏度ELISA方法。
在这种方法中,微孔板表面上涂覆有抗原。
ELISA检测方法

ELISA检测方法ELISA(酶联免疫吸附实验)是一种常用的免疫学检测方法,广泛应用于医学、生物科学及环境科学等领域。
该方法利用抗体和酶的相互作用,能够检测和测定特定抗原或抗体的存在和浓度。
下面将详细介绍ELISA的原理、步骤、应用以及优缺点。
ELISA的原理主要基于抗原-抗体结合的原理。
首先,在固体表面(晶髓酶标板等)上吸附或共价结合抗原,形成抗原固相。
然后,将待测样品加入酶标板孔中与固定的抗原发生反应,形成抗原-抗体复合物。
随后加入特异性的酶标记抗体,使其与复合物形成二抗三重复合物。
最后,通过添加底物,酶催化底物产生可检测的色变反应,测定抗原或抗体的浓度。
1.抗原固定:将已知浓度的抗原加入酶标板中,并使其吸附在固体表面,形成抗原固相。
固相吸附通常通过物理吸附或共价结合实现。
2.试样加入:将待测样品加入酶标板中与固定抗原发生反应,形成抗原-抗体复合物。
通常需要对样品进行初步处理,如稀释、加入染色剂等。
3.二抗加入:将特异性酶标记的二抗加入酶标板中,与复合物发生特异性反应,形成二抗三重复合物。
4.清洗:通过洗涤剂将非特异性结合物洗去,以减少干扰。
5.基质加入:加入特定底物,如TMB(3,3',5,5'-四甲基联苯二胺)或ABTS(2,2'-联氨基二(2-甲基丙酰氧)乙烷磺酸铵),酶催化产生彩色反应。
6.反应停止:用酸、碱或金属离子等停止反应,阻断底物的氧化反应,维持产色稳定。
7.反应测定:使用光度计测定产生的色素的吸光度或荧光。
ELISA具有广泛的应用。
在医学领域,ELISA常用于检测血液中的抗体和抗原,从而诊断传染病、自身免疫疾病等。
在生物科学研究中,ELISA可用于测定细胞因子、蛋白质等生物大分子的浓度。
此外,ELISA也可以用于检测环境样品中的污染物,如重金属、农药等。
1.灵敏度高:ELISA可以检测到较低浓度的抗原或抗体,常常超过其他方法的敏感度。
2.特异性强:ELISA利用特异性抗体进行识别,可准确检测特定的抗原或抗体。
ELISA六种方法类型及原理

ELISA六种方法类型及原理ELISA(酶联免疫吸附测定)是一种常用的实验技术,用于测定样品中特定抗原或抗体的存在和浓度。
它的原理基于抗原和抗体之间的专一结合,利用酶标记的抗体或抗原来检测并定量目标物。
ELISA有多种不同的方法类型,以下将对其中六种方法类型及其原理进行详细介绍。
1.直接ELISA:直接ELISA是最简单和最常用的ELISA方法,适用于寻找目标抗原。
在这种方法中,被测抗原直接吸附在固相或表面上,然后与特异性酶标记的抗原特异性结合。
最后,通过酶标记的底物的反应来定量测定目标物的浓度。
2.间接ELISA:间接ELISA也是常用的方法,适用于寻找目标抗体。
首先,将被测抗原吸附在固相或表面上,然后加入待测抗体。
之后,特异性结合的第二抗体(酶标记的)被加入用于识别和检测第一抗体。
最后通过酶标记的底物的反应来定量测定目标物的浓度。
3.竞争ELISA:竞争ELISA用于检测样品中的特定抗原或抗体。
在这种方法中,特异性酶标记的抗原或抗体与待测样品中的抗原或抗体竞争结合。
通过测定酶标记物的信号强度,可以确定待测样品中目标物的含量。
4.间接竞争ELISA:间接竞争ELISA是一种用于定量测定目标抗原的方法。
首先,在固相或表面上吸附被测抗原,然后加入特异性抗体。
该抗体与样品中的目标物竞争结合。
接着,再加入另一特异性抗体,该抗体与前面结合的抗体有竞争关系。
最后通过测定酶标记物的信号强度,可以确定目标物的浓度。
5.间接夹心ELISA:间接夹心ELISA用于寻找样品中的特定抗体。
首先,在固相或表面上吸附被测抗原,然后加入待测抗体。
随后,特异性酶标记的第二抗体被加入,用于识别和检测待测抗体。
最后通过测定酶标记物的信号强度,可以定量测定目标抗体的浓度。
6.双抗体ELISA:双抗体ELISA常用于寻找特定抗原。
首先,在固相或表面上吸附被测特异性抗体,然后加入样品。
目标抗原与抗体特异性结合。
接着,酶标记的第二抗体被加入,该抗体与目标抗原结合。
酶联免疫吸附测定名词解释

酶联免疫吸附测定名词解释酶联免疫吸附测定(Enzyme-Linked Immunosorbent Assay,ELISA)是一种用于检测生物样本中特定抗原或抗体的定量分析方法。
该方法结合了免疫学技术和酶学技术,可广泛应用于临床诊断、药物研发和生物学研究等领域。
ELISA的基本原理是利用特异性抗体与待测物质(抗原或抗体)结合,在固定的固相支持物上进行特异性结合。
通常情况下,ELISA方法包括四个主要步骤:涂覆、孵育、洗涤和检测。
1.涂覆:将特异性抗体或待测物质固定在微孔板的底部或其他固相材料上。
涂覆后,待测物质能够与后续加入的样本中的抗原或抗体结合。
2.孵育:将待测样本加入到涂覆好的微孔板中,样本中的抗原或抗体能够与固定在底部的特异性抗体结合。
3.洗涤:通过反复加入缓冲液并倒掉的方法,去除非特异性结合的物质,以减少干扰。
4.检测:加入与被测抗原或抗体结合的酶标记抗体,形成免疫复合物。
随后,再加入酶底物,使酶催化产生反应物。
根据反应物的产生量,可以定量测定待测物的浓度。
ELISA方法使用方便、操作简单,能够高效地进行大规模样本的处理和分析。
根据具体的检测目的和待测物质性质的不同,ELISA方法可分为直接ELISA、间接ELISA、竞争ELISA、夹心ELISA等不同类型。
此外,近年来还发展了一些改进的ELISA方法,如荧光ELISA和化学发光ELISA等。
ELISA方法在临床诊断中广泛应用,可以用于检测感染性疾病、自身免疫病、肿瘤标记物等。
此外,ELISA方法还可以用于药物研发,如筛选药物靶点、评估药物吸收、分布、代谢和排泄等。
在生物学研究中,ELISA方法可以用于分析蛋白质相互作用、表达水平的检测和鉴定、细胞因子测定等。
酶联免疫吸附法标准

酶联免疫吸附法标准一、概述酶联免疫吸附法是一种常用的生物检测方法,用于测定抗原或抗体。
该方法具有高灵敏度、特异性和准确性等特点,广泛应用于临床诊断、食品安全、环境监测等领域。
本文将介绍酶联免疫吸附法的原理、试剂和操作步骤等标准要求。
二、原理酶联免疫吸附试验(ELISA)是基于抗原抗体反应的检测方法。
在固相载体上标记特异性抗原或抗体,与样品中的靶分子结合后,再加入酶标记的抗靶分子抗体,最后通过底物显色反应观察结果。
根据颜色深浅程度可以判断样本中靶分子的浓度。
三、试剂1. 特异性抗原或抗体的纯化溶液:需经过质量控制,确保其准确性和特异性。
2. 酶标抗体的纯化溶液:应选择合适的酶标记抗体,以增强颜色反应的敏感性。
3. 洗涤液:用于去除实验过程中产生的非特异性结合物质。
4. 底物及终止液:用于颜色反应,可根据需要配置不同颜色的底物和终止液。
5. 其他所需辅助试剂:如缓冲液、防腐剂等。
四、操作步骤1. 准备试剂和设备:按照试剂说明书准备好所有试剂和设备,并确保仪器正常运行。
2. 包被抗原或抗体:将特异性抗原或抗体包被在固相载体上,制备成酶标板。
3. 加样:分别加入待测样品、标准品和阴性对照品,每个样品需设复孔。
4. 温育:将酶标板放置在恒温水浴中保温一定时间,使抗原抗体反应充分进行。
5. 洗涤:用洗涤液清洗酶标板表面,去除非特异性结合物质。
6. 添加底物:加入酶标抗体,继续温育并洗涤。
7. 显色反应:加入底物溶液,观察并记录颜色变化。
8. 终止反应:加入终止液,停止显色反应。
9. 检测与分析:用酶标仪测量各孔的光密度值,根据标准曲线的绘制得出待测样品中靶分子的浓度。
五、注意事项1. 应严格控制试剂和样本的质量,确保实验结果的准确性。
2. 在操作过程中应注意无菌操作,避免污染。
3. 洗涤时应彻底,以免影响实验结果。
4. 注意观察显色反应的时间和颜色深度,以确保实验过程的顺利进行。
5. 对于特殊样本(如血浆、组织匀浆液等),应在实验前进行处理,以保证实验结果的可靠性。
简述酶联免疫吸附测定的原理

简述酶联免疫吸附测定的原理酶联免疫吸附测定(Enzyme-Linked Immunosorbent Assay,ELISA)是一种高度敏感、高通量的免疫技术,常用于检测微量生物分子或抗体的存在与浓度。
ELISA的原理基于抗体与抗原之间高度特异性的结合,以及酶底物反应的可见色素反应。
ELISA的基本原理如下:1. 酶联:先将抗原或抗体固定在固相载体(如微孔板)上。
最常用的固相载体是聚丙烯酸酯(polystyrene),可以牢固地吸附抗原或抗体。
2.结合:在固相载体上固定的抗原与样品中的分子结合,以形成特异性的抗原-抗体复合物。
3.洗涤:为了去除非特异性结合的物质,需要进行反复的洗涤步骤。
4.检测:加入与目标分子相关的抗体,这些抗体经过标记,通常是酶标记。
这些标记的抗体与复合物中的目标分子结合。
5.洗涤:再次进行洗涤步骤,以去除非特异性结合的物质。
6.底物-酶反应:加入合适的底物,底物与酶标记的抗体发生反应,并产生可见的色素物质。
7.读数:用光度计测量反应物的吸光度,吸光度的强度与样品中目标物的浓度成正比。
ELISA的优点是具有高度的特异性和敏感性,可以检测极低浓度的物质。
此外,ELISA还可以同时检测多个样品,并且操作相对简单,不需要昂贵的设备。
ELISA的应用广泛,特别是在医学诊断领域。
例如,ELISA可以用来检测一些疾病的标志物,如乳腺癌、艾滋病、流感等。
此外,ELISA还用于酶抗体检测、药物监测、细菌和病毒的检测等领域。
虽然ELISA是一种非常有用的技术,但也存在一些局限性。
ELISA对样品中的杂质比较敏感,可能会导致假阳性结果。
此外,ELISA只能检测已知的抗原或抗体,无法发现新的目标分子。
此外,ELISA需要时间较长(通常需要2-4小时)。
综上所述,酶联免疫吸附测定(ELISA)是一种重要的免疫技术,通过抗原与抗体的特异结合和酶底物反应,可以准确、敏感地检测微量生物分子或抗体的存在与浓度。
ELISA的数据分析
ELISA的数据分析ELISA(酶联免疫吸附测定)是一种常用的生物学实验技术,用于检测特定蛋白质在样本中的含量。
本文将详细介绍ELISA的数据分析过程,包括数据处理、结果解读和统计分析。
1. 数据处理:ELISA实验通常会生成一个标准曲线,用于将样品中的光密度值转换为相应的蛋白质浓度。
首先,将标准品的光密度值与其已知浓度绘制成标准曲线图。
接下来,测量样品的光密度值,并使用标准曲线图确定样品中蛋白质的浓度。
2. 结果解读:根据ELISA实验的结果,可以得到样品中特定蛋白质的浓度。
通过比较不同样品之间的浓度差异,可以评估蛋白质在不同条件下的表达水平或变化趋势。
此外,还可以将样品与正常对照组进行比较,以确定蛋白质是否异常表达。
3. 统计分析:ELISA实验的数据通常是连续变量,可以使用统计学方法进行分析。
常见的统计分析方法包括均值比较、方差分析和相关性分析。
通过这些分析,可以确定不同处理组之间是否存在显著差异,并评估实验结果的可靠性和统计学意义。
4. 实验结果示例:为了说明ELISA数据分析的过程,我们提供以下示例数据:标准曲线数据:标准品浓度(ng/mL)光密度值0 0.110 0.220 0.330 0.440 0.5样品数据:样品编号光密度值样品1 0.35样品2 0.25样品3 0.15根据标准曲线数据,我们可以计算出样品1、样品2和样品3中蛋白质的浓度。
假设样品1对应的浓度为15 ng/mL,样品2对应的浓度为25 ng/mL,样品3对应的浓度为5 ng/mL。
通过比较这些样品的浓度,我们可以发现样品2的蛋白质浓度较高,样品1的蛋白质浓度居中,而样品3的蛋白质浓度较低。
这可能暗示样品2中的蛋白质表达水平高于其他样品。
进一步的统计分析可以帮助我们确定这些差异是否具有统计学意义。
例如,使用方差分析(ANOVA)可以比较不同样品组之间的差异,并确定这些差异是否显著。
总结:ELISA的数据分析包括数据处理、结果解读和统计分析。
elisa法原理
elisa法原理Elisa法原理。
ELISA(酶联免疫吸附测定法)是一种广泛应用于生物化学和免疫学领域的实验技术,它通过测定抗体和抗原之间的相互作用来检测特定的蛋白质或其他分子。
ELISA法的原理基于酶标记抗体和底物的相互作用,通过酶的催化作用产生可定量检测的信号。
下面我们将详细介绍ELISA法的原理。
首先,ELISA法的基本原理是将待测样品中的抗原或抗体与已知的酶标记抗体或抗原结合,形成复合物。
然后,将这些复合物通过洗涤等步骤固定在固相载体(如微孔板)上。
接着,加入底物,酶标记物将催化底物的变化,产生可定量检测的信号。
最后,通过测定信号的强度,可以确定待测样品中抗原或抗体的浓度或存在与否。
其次,ELISA法可以根据酶标记抗体或抗原的不同,分为直接ELISA、间接ELISA、竞争ELISA和间接竞争ELISA等类型。
直接ELISA是将酶标记抗体直接与待测样品中的抗原结合;间接ELISA是先与待测样品中的抗原结合,再加入酶标记的二抗;竞争ELISA是将待测样品中的抗原与固相载体上的抗原竞争结合,再加入酶标记的抗体;间接竞争ELISA是将待测样品中的抗原与固相载体上的抗体竞争结合,再加入酶标记的二抗。
不同类型的ELISA法适用于不同的实验需求,可以根据具体的实验目的选择合适的类型。
最后,ELISA法具有高灵敏度、高特异性和高重复性等优点,因此被广泛应用于生物医学研究、临床诊断、药物筛选等领域。
同时,ELISA法也存在一些局限性,如对抗体和抗原的特异性要求较高、操作步骤较多等。
因此,在进行ELISA实验时,需要严格按照操作规程进行,以确保实验结果的准确性和可靠性。
综上所述,ELISA法是一种基于酶标记抗体和抗原相互作用的实验技术,具有广泛的应用前景。
通过对ELISA法的原理和类型的深入了解,可以更好地进行实验设计和数据分析,为科研工作和临床诊断提供有力支持。
ELISA的原理技术及其在药物分析领域的应用
ELISA在临床医学中的应用
疾病诊断
ELISA可用于检测临床样本 中的特定生物标志物,帮助 医生进行疾病的早期诊断和 监测。
抗体检测
ELISA可用于测定人体内特 定抗体的水平,帮助评估免 疫系统功能和感染状态。
药物监测
ELISA可用于测定患者体内 药物的浓度,帮助医生进行 药物治疗的个体化调整。
总结与展望
ELISA的原理技术及其在 药物分析领域的应用
ELISA(酶联免疫吸附试验)是一种常用的生物化学分析技术,用于定量测 定或定性检测目标物质。本文将介绍ELISA的原理、技术流程以及在药物分 析领域的重要应用。
ELISA的定义和原理
酶联免疫吸附试验(ELISA)是一种广泛应用于生物学和医学领域的免疫学 实验技术。通过将目标物质与特异性抗体结合并使用酶进行标记,ELISA实 现了对目标物质的高灵敏度和特异性检测。
药物相互作用研究
ELISA可用于研究药物与受体、酶或其他生 物分子的相互作用机制,为新药研发提供理 论基础。
药代动力学研究
ELISA可实现对药物在体内的代谢和清除过 程进行监测,为药物代谢动力学研究提供重 要数据。
药物稳定性评估
ELISA可用于评估药物在不同条件下的稳定 性,为药物质量控制提供重要参考。
ELISA的技术流程
1
涂层
将特异性抗体固定在试验板上,形成抗原涂层。
2
样品加入
加入待测样品,其中的目标物质与抗原结合。
3
洗涤
洗涤掉没有结合的物质,保留结合的目标物质。
4
检测
加入检测抗体,形成免疫复合物。
5
发色
加入底物,产生可测定的信号。
ELISA在药物分析中的应用
酶联免疫吸附法
酶联免疫吸附试验ELISA一种酶联免疫技术。
用于检测包被于固相板孔中的待测抗原(或抗体)。
即用酶标记抗体,并将已知的抗原或抗体吸附在固相载体表面,使抗原抗体反应在固相载体表面进行,用洗涤法将液相中的游离成分洗除,最后通过酶作用于底物后显色来判断结果。
酶联免疫吸附试验(以下简称ELISA):是酶免疫测定技术中应用最广的技术。
其基本方法是将已知的抗原或抗体吸附在固相载体(聚苯乙烯微量反应板)表面,使酶标记的抗原抗体反应在固相表面进行,用洗涤法将液相中的游离成分洗除。
常用的ELISA法有双抗体夹心法和间接法,前者用于检测大分子抗原,后者用于测定特异抗体。
ELISA方法的基本原理是酶分子与抗体或抗抗体分子共价结合,此种结合不会改变抗体的免疫学特性,也不影响酶的生物学活性。
此种酶标记抗体可与吸附在固相载体上的抗原或抗体发生特异性结合。
滴加底物溶液后,底物可在酶作用下使其所含的供氢体由无色的还原型变成有色的氧化型,出现颜色反应。
因此,可通过底物的颜色反应来判定有无相应的免疫反应,颜色反应的深浅与标本中相应抗体或抗原的量呈正比。
此种显色反应可通过ELISA检测仪进行定量测定,这样就将酶化学反应的敏感性和抗原抗体反应的特异性结合起来,使ELISA方法成为一种既特异又敏感的检测方法。
用于标记抗体或抗抗体的酶须具有下列特性:有高度的活性和敏感性;在室温下稳定;反应产物易于显现;能商品化生产。
目前应用较多的有辣根过氧化物酶(HRP)、碱性磷酸酶、葡萄糖氧化酶等,其中以HRP应用最广。
1•辣根过氧化物酶(HRP)过氧化物酶广泛分布于植物中,辣根中含量最咼,从辣根中提取的称辣根过氧化物酶(HRP),是由无色酶蛋白和深棕色的铁卟啉构成的一种糖蛋白(含糖量18%),分子量约40000,约由300个氨基酸组成,等电点为pH3-9,催化反应的最适pH值因供氢体不同而稍有差异,一般多在pH5左右。
此酶溶于水和50%饱和度以下的硫酸铵溶液。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酶免疫测定(ELISA)一、ELISA技术介绍1、抗体的结构抗体是能与抗原特异性结合的免疫球蛋白(immunoglobulin,Ig)。
Ig分五类,即IgG、IgA、IgM、IgD和IgE。
与免疫测定有关的Ig主要为IgG和IgM。
Ig由两个轻链(L)和两个重链(H)的单体组成。
Ig的轻链是相同的,有κ(kappa)和λ(Lambda )两种型别。
五类Ig的重链结构不同,这决定了它们的抗原性也不同。
IgG和IgM的重链分别称为γ(gamma)链和μ(mu )链。
重链和轻链的N端的氨基酸排列顺序因各种抗体而异,称为可变区,分别用VH和VL表示。
两者构成抗体的抗原结合部位,只与相应的抗原决定簇匹配,发生特异性结合(见图),是抗体专一性结合抗原的结构基础。
IgG可被木瓜蛋白酶分解为三个区段,其中两个相同的区段称抗原结合片段(Fab)。
每个Fab都保存结合抗原的能力,但只有一个抗原结合位点,是单价的,与抗原结合后不出现凝集或沉淀。
另一区段称Fc段,无抗体活性,但具有IgG特有的抗原性。
IgG可被胃蛋白酶分解为两个片段,一个Fab双体,称F(ab')2,能和两个相同的抗原结合;另一片段类似Fc,随后被分解成小分子多肽,无生物活性。
IgM是由五个单体组成的五聚体,含10个重链和10个轻链,具有10个抗原结合价,由于空间位置的影响,只表现为五个抗原结合价。
IgM分子量约为900000,IgG分子量约为150000。
机体被微生物感染后,先产生IgM抗体,然后产生IgG抗体。
经过一段时间,IgM抗体量逐渐减少而消失,而IgG抗体可长期存在,在疾病痊愈后可持续数年之久。
IgM抗体一般为保护性抗体具有免疫性。
因此IgM抗体的测定,对某些传染病如甲型肝炎有较高的临床诊断价值。
右图为为甲型肝炎病人血清中IgG抗体和IgM抗体出现的时间和水平。
2、抗原抗体反应(1)可逆性抗原与抗体结合形成抗原抗体复合物的过程是一种动态平衡,其反应式为:Ag+Ab→Ag·Ab抗体的亲和力(affinity)是抗原抗体间的固有结合力,可以用平衡常数K表示:K=[Ag·Ab]/[Ag][Ab]Ag·Ab的解离程度与K值有关。
高亲和力抗体的抗原结合点与抗原的决定簇在空间构型上非常适合,两者结合牢固,不易解离。
解离后的抗原或抗体均能保持原有的结构和活性,因此可用亲和层析法来提纯抗原或抗体。
在抗血清中,特异性的IgG抗体仅占总IgG中的极小部分。
用亲和层析法提取的特异性抗体,称为亲和层析纯抗体,应用于免疫测定中可得到更好的效果。
(2)最适比例在恒定量的抗体中加入递增量的抗原形成抗体复合物(沉淀)的量见图1-4。
曲线的高峰部分是抗原抗体比例最合适的范围,称为等价带(zone of equivalence)。
在等价带前后分别为抗体过剩带和抗原过剩带。
如果抗原或抗体极度过剩,则无沉淀物形成,在免疫测定中称为带现象(zone phenomenon)。
抗体过量称为前带(prezone),抗原地过量称为后带(postzone)。
在用免疫学方法测定抗原时,应使反应系统中有足够的抗体量,否则测得的量会小于实际含量,甚至出现假阴性。
(3)特异性抗原抗体的结合实质上只发生在抗原的抗原决定簇与抗体的抗原结合位点之间。
由于两者在化学结构和空间构型上呈互补关系,所以抗原抗体反应具有高度的特异性。
例如乙肝病毒中的表面抗原(HBsAg)、e抗原(HBeAg)和核心抗体(HBcAg),随来源于同一病毒,但仅与其相应的抗体结合,而不与另外两种抗体反应。
抗原抗体反应的这种特异性使免疫测定能在一非常复杂的蛋白质化合物(例如血清)中测定某一特定的物质,而不需先分离待检物。
但是这种特异性也不是绝对的。
假使两种化合物有着部分相同的结构,在抗原抗体反应中可出现交叉反应。
例如:绒毛膜促性腺激素(hCG)和黄体生成激素(LH)均由α和β两个亚单位组成,其结构的不同处在β亚单位,而两者的α亚单位是同类的。
用hCG免疫动物所得的抗血清中含有抗α-hCG 和抗β-hCG两种抗体,抗α-hCG抗体将与LH中的α酶位发生交叉反应。
在临床检验中,如用抗hCG 抗血清作为妊娠诊断试剂检定尿液中hCG,只能用于hCG浓度较高的试验,否则妇女生理性排泄入尿液中的微量LH将与之发生交叉反应。
因此在作为早孕诊断(敏感度应达到50mIu/mlhCG)的实际中必须应用只对hCG特异的抗β-hCG,以避免与其它激素的交叉反应的发生。
(4)敏感性在测定血清中某一物质的含量时,化学比色法的敏感度为mg/ml水平,酶反应测定法的敏感度约为5~10μg/ml,免疫测定中凝胶扩散法和浊度法的敏感度与酶反应法相仿。
标记的免疫测定的敏感度可提高数千倍,达ng/ml水平。
例如,用放射免疫测定法或酶免疫测定法测定HBsAg,其敏感度可达0.1ng /ml。
3、免疫测定在临床检验中的应用由于各种抗原成份,包括小分子的半抗原,均可用以制备特异性的抗血清或单克隆抗体,利用此抗体作为试剂就可检测标本中相应的抗原,因此免疫测定的应用范围极广,在临床检验中可用于测定:1) 体液中的各种蛋白质,包括含量极少的蛋白质如甲胎蛋白等。
2) 激素,包括小分子量的甾体激素等。
3) 抗生素和药物。
4) 病原体抗原,HBsAg、HBeAg等。
5) 另外,也可利用纯化的抗原检测标本中的抗体,例如抗-HBs等。
4、标记的免疫测定如上所述,免疫测定是一种很敏感的测定方法,抗原抗体反应后直接测定形成的沉淀或浊度,敏感度可达5~10μg/ml,但在临床检验中,某些待测物在标本中的含量远低于这一水平,因此要寻找增加敏感度的方法。
标记的免疫测定是将检测试剂中的抗原或抗体用可微量测定的物质加以标记,通过测定标记物来提高敏感度。
在放射免疫测定和酶免疫测定中,标记物分别为放射性核素和酶,最后用测定放射性和酶活力来计算待检物的量,敏感度可比直接测定沉淀物提高数百至数千倍。
在标记免疫测定中,一般加入过量的标记试剂以保证与待测物彻底反应。
以标记抗体(Ab ※)检测抗原(Ag)为例,反应式如下:Ag+ Ab※→ AgAb※+ Ab※在反应产物中有与Ag结合的Ab※和游离和Ab※,如不将两者分离而测定标记物,测得的结果将为两者之和。
因此,游离标记物与结合标记物的分离是标记免疫测定中的重要步骤。
可采用多种手段,固相载体是其中之一。
如将抗原或抗体包被在固相载体上,然后再与标记的抗原或抗体直接反应,结合的标记物被固定在载体上,而游离的标记物留于溶液中。
这样可以通过洗涤将游离的Ab ※除去,结合标记物的测定可在固相上进行。
5、酶免疫测定酶免疫测定(enzyme immunoassay)可分为均相(homogenous)和非均相(heterogenous)两种类型。
在均相EIA中可不需进行游离的和结合的标记物的分离而直接测定标记物。
例如在某种条件下,抗原抗体反应后形成的酶标记抗原抗体复合物中的酶失去其对底物作用的活力,因而测出的酶活力直接反映游离的酶标记物。
均相EIA在临床检验中较少应用。
非均相EIA需先进行游离的和结合的标记物的分离。
如前所述,固相载体可用作一种分离手段。
这种固相酶免疫测定方法在1971年最初建立时称为酶联免疫吸附剂测定(enzyme linked immunosorbent assay),简称ELISA,在国内有译作酶联免疫吸附试验的,虽然含义不完全确切,但已习用。
二、ELISA的原理和类型1、ELISA的原理ELISA的基础是抗原或抗体的固相化及抗原或抗体的酶标记。
结合在固相载体表面的抗原或抗体仍保持其免疫学活性,酶标记的抗原或抗体既保留其免疫学活性,又保留酶的活性。
在测定时,受检标本(测定其中的抗体或抗原)与固相载体表面的抗原或抗体起反应。
用洗涤的方法使固相载体上形成的抗原抗体复合物与液体中的其他物质分开。
再加入酶标记的抗原或抗体,也通过反应而结合在固相载体上。
此时固相上的酶量与标本中受检物质的量呈一定的比例。
加入酶反应的底物后,底物被酶催化成为有色产物,产物的量与标本中受检物质的量直接相关,故可根据呈色的深浅进行定性或定量分析。
由于酶的催化效率很高,间接地放大了免疫反应的结果,使测定方法达到很高的敏感度。
但是,ELISA技术只能检测到ng水平,精密度差(批内CV15-20%),线性范围窄(一个数量级),存在“HD-HOOK”效应。
2、ELISA的类型ELISA可用于测定抗原,也可用于测定抗体。
在这种测定方法中有三个必要的试剂:固相的抗菌素原或抗体,即"免疫吸附剂"(immunosorbent);酶标记的抗原或抗体,称为"结合物"(conjugate);酶反应的底物。
根据试剂的来源和标本的情况以及检测的具体条件,可设计出各种不类型的检测方法。
用于临床检验的ELISA主要有以下几种类型:(1)双抗体夹心法测抗原双抗体夹心法是检测抗原最常用的方法,操作步骤如下:①将特异性抗体与固相载体联结,形成固相抗体。
洗涤除去未结合的抗体及杂质。
②加受检标本,保温反应。
标本中的抗原与固相抗体结合,形成固相抗原抗体复合物。
洗涤除去其他未结合物质。
③加酶标抗体,保温反应。
固相免疫复合物上的抗原与酶标抗体结合。
彻底洗涤未结合的酶标抗体。
此时固相载体上带有的酶量与标本中受检抗原的量相关。
④加底物显色。
固相上的酶催化底物成为有色产物。
通过比色,测知标本中抗原的量。
在临床检验中,此法适用于检验各种蛋白质等大分子抗原,例如HBsAg、HBeAg、AFP、hCG等。
只要获得针对受检抗原的异性抗体,就可用于包被固相载体和制备酶结合物而建立此法。
如抗体的来源为抗血清,包被和酶标用的抗体最好分别取自不同种属的动物。
如应用单克隆抗体,一般选择两个针对抗原上不同决定簇的单抗,分别用于包被固相载体和制备酶结合物。
这种双位点夹心法具有很高的特异性,而且可以将受检标本和酶标抗体一起保温反应,作一步检测。
在一步法测定中,当标本中受检抗原的含量很高时,过量抗原分别和固相抗体及酶标抗体结合,而不再形成"夹心复合物"。
类同于沉淀反应中抗原过剩的后带现象,此时反应后显色的吸光值(位于抗原过剩带上)与标准曲线(位于抗体过剩带上)某一抗原浓度的吸光值相同,如按常法测读,所得结果将低于实际的含量,这种现象被称为钩状效应(hook effect),因为标准曲线到达高峰后呈钩状弯落。
钩状效应严重时,反应甚至可不显色而出现假阴性结果。
因此在使用一步法试剂测定标本中含量可异常增高的物质(例如血清中HBsAg、AFP和尿液hCG等)时,应注意可测范围的最高值。
用高亲和力的单克隆抗体制备此类试剂可削弱钩状效应。