湖北省襄阳四校2013届高三上学期期中考试数学(文科)试题.
湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)2013-2014学年高一下学期期中联考 数学试题

一、选择题(本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,只有一个符合题目要求,请将正确选项的代号填入答题卡的相应位置.)1. 等比数列}{n a 中,如果5a 5=,8a 25=,则2a 等于 ( )B.C.5D.12.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c,若cos cos a cA C=,则△ABC 的形状是 ( ) A.等腰三角形 B. 直角三角形 C. 等腰直角三角形 D.等腰或直角三角形 3. 在等差数列{a n }中, 若357911200a a a a a ++++=, 则5342a a -的值为( ) A. 80 B. 60 C. 40 D. 204. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A cos C +sin C cos A =12 ,且a >b ,则∠B 等于 ( ) A. 5π6 B. 2π3 C. π3 D. π6 5. 已知首项为1的等比数列{a n }是摆动数列, S n 是{a n }的前n 项和, 且425S S =, 则数列{na 1}的前5项和为 ( )A.31B.1631 C.1116D. 116.在△ABC 中, 内角A ,B ,C 的对边分别为a ,b ,c .若2a =, b+c=7, cosB=14-, 则c = ( ) A. 3 B. 4 C. 5 D. 67. 如图,在ABC ∆中,AD BC ⊥,D 为垂足,AD 在ABC ∆的外部,且BD : CD :AD=2:3:6,则tan BAC ∠= ( )A. 1B. 17C. 15D. 578.等差数列的前n 项和,前2n 项和,前3n 项的和分别为S ,T ,R ,则 ( ) .A ()22S T S T R +=+ .B 3()R T S =- .C 2T S R = .D 2S R T += 9. 已知数列{n a }中,1a =21,n n a a =+1+2312++n n (n )+∈N ,则数列{n a }的通项公式为 ( )A.11+=n a n B. 21212++-+=n n n a n C. 1n n a n =+ D. 12n n a n +=+10.已知函数()sin cos =+f x m x n x ,且()6f π是它的最大值,(其中m 、n 为常数且0≠mn )给出下列命题:①()3f x π+是偶函数; ②函数()f x 的图象关于点8(,0)3π对称;③3()2-f π是函数()f x 的最小值;④m n =. 其中真命题有 ( )A. ①②③④B.②③C. ①②④D.②④第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5小题,每小题5分,共25分.请将答案填在答题卡上) 11.sin105cos105 的值为 .12. 数列{n a }中,5,2,2121==-=++a a a a a n n n ,则5a 为___________.13.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若32,2ABC b c S ∆===,则A=__________.14. 已知数列{}n a 和{}n b 的通项公式分别为35,24n n a n b n =+=+,则它们的公共项按从小到大的顺序组成的新数列{}n c 的通项公式为___________.15. 将正奇数排成如下图所示的三角形数阵(第k 行有k 个奇数),其中第i 行第j 个数表示为ij a (i,j ∈N *).例如4215a =,若ij a =2013,则i-j=______.三、解答题:本大题共6个小题,共75分.解答应写出文字说明,证明过程或演算步骤16.(本题满分12分) 已知3cos()cos sin()sin 5α-ββ-α-ββ=-,(,)2πα∈π,求sin(2)3πα+的值.17.(本题满分12分)在△ABC 中,已知 A B >,且tan A 、tan B 是方程26510x x -+=的两个根.(1)求tan A 、tan B 、tan()A B +的值;(2)若AB △ABC 的面积.18. (本题满分12分)如图,小岛A 的周围3.8海里内有暗礁.一艘渔船从B 地出发由西向东航行,观测到小岛A 在北偏东75°,继续航行8海里到达C 处,观测到小岛A 在北偏东60°.若此船不改变航向继续前进,有没有触礁的危险?19.(本题满分12分)设数列{}n a 是首项为()a a 11>0,公差为2的等差数列,其前n 项和为n S 成等差数列. (1)求数列{}n a 的通项公式; (2)记2nn na b =的前n 项和为n T ,求n T .20.(本题满分13分)已知函数2()2sin ()234f x x x π=--,ππ42x ⎡⎤∈⎢⎥⎣⎦,(1)求()f x 的最大值和最小值;(2)若方程()f x m =仅有一解,求实数m 的取值范围.21.(本题满分14分)在等比数列.,,64,65,}{*15371N n a a a a a a a n n n ∈<==++且中 (1)求数列{a n }的通项公式; (2)求数列{a n }的前5项的和5S ;(3)若n n a a a T 242lg lg lg +⋅⋅⋅++=,求T n 的最大值及此时n 的值.2013—2014学年度下学期高一期中考试数学试题 参考答案一.选择题 1---10 DAADC ABBCD 二.填空题 11.1-412. 19 13. 233ππ或 14. 62n c n =+ 15. 28三.解答题16. 解:由33cos()cos sin()sin cos 55α-ββ-α-ββ=-⇒α=- ···················· 2分 又由(,)2πα∈π及22sin cos 1x x +=得4sin 5α= ·············································· 4分所以4324sin 22sin cos 2()5525α=αα=⨯⨯-=- ············································· 6分2222347cos 2cos sin ()()5525ααα=-=--=-·············································· 8分s i n (2)s i n 2c o s c o s 2s i n3332417323()()25225250πππ∴α+=α+α+=-⨯+-⨯=-··················································· 12分17、解:(1)由所给条件,方程26510x x -+=的两根11tan ,tan 23A B ==.………2分 ∴tan tan tan()1tan tan A BA B A B++=-………………………………………………………………4分1123111123+==-⨯……………………………………………………………………………… 6分(或由韦达定理直接给出)(2)∵ 180=++C B A ,∴)(180B A C +-=.由(1)知,tan tan()1C A B =-+=-,∵C为三角形的内角,∴sin C =分 ∵,1tan ,2A =A为三角形的内角,∴sin 5A =, 由正弦定理得:sin sin AB BCC A= ∴.5BC ==分 襄州一中 枣阳一中 宜城一中 曾都一中由1tan 3B =∴sin 10B =∴1sin 2ABC S AB BC B ∆=⋅⋅112102==………………………………12分 (亦可由其它边角关系求) 18解法1在ABC ∆中,000000907515,9060150B C =-==+=,所以015A =.……4分 又已知BC=8,所以AC=8. ……8分 过点A 作AD ⊥BC,垂足为D,在直角三角形ACD 中,01sin 30842AD AC ==⨯=>3.8 ……11分 所以此船继续前行没有触礁的危险 . ……12分解法2 过点A 作AD ⊥BC,垂足为D,由已知,BC=8,∠BAD=75°, ∠CAD=60°…4分在直角三角形ABD 中,0tan tan 75BD AD BAD AD =∠=,在直角三角形ACD 中,同法可得0tan tan 60CD AD CAD AD =∠=,……………8分所以BC=BD-CD=00(tan75tan60)AD -,所以0084tan 75tan 60AD ==->3.8 ……………………11分 所以此船继续前行没有触礁的危险 . ………………………………12分 19. 解:(1)∵11S a =,212122S a a a =+=+,3123136S a a a a =++=+,……2分由成等差数列得,=,即136+ ……3分 解得11a =,故21n a n =-; ……6分 (2)211(21)()222nn n n n a n b n -===-, 12311111()3()5()(21)()2222n n T n =⨯+⨯+⨯++-⨯ , ① ①12⨯得,23411111111()3()5()(23)()(21)()222222n n n T n n +=⨯+⨯+⨯++-⨯+-⨯ , ② ……8分①-②得,2311111112()2()2()(21)()222222n n n T n +=+⨯+⨯++⨯--⨯11111(1)11222(21)()22123121222n n n n n n +-+-=⨯---⨯--=-- …… 10分 ∴4212333222n n n nn n T -+=--=-. …… 12分20.解:(1)2()2sin ()234cos(2)222f x x x x x ππ=-+-=--+- ………………1分2sin 222cos(2)26x x x π=--=+- ………………3分27,(2),42636x x πππππ⎡⎤⎡⎤∈⇒+∈⎢⎥⎢⎥⎣⎦⎣⎦ ………………4分所以当7266x ππ+=,即2x π=时,m ()2ax f x = …………5分当26x ππ+=,即512x π=时,min ()4f x =- ………………6分(2) 方程()f x m =仅有一解,则函数()2cos(2)26f x x π=+-在ππ42x ⎡⎤∈⎢⎥⎣⎦,的图像与函数()g x m =的图像仅有一个交点。
湖北省襄阳市襄州一中 枣阳一中等四校2015届高三上学期期中联考语文试题

湖北省襄阳市襄州一中枣阳一中等四校2015届高三上学期期中联考语文试题高三2013-11-01 17:31湖北襄州一中等四校2013-2014学年上学期高三期中考试语文试题一、语文基础知识(共15分,共5小题,每小题3分)1.下列词语中,加点的字读音全都正确的一组是A.混(hún)沌孱(chán)弱撺(cuān)掇锣鼓喧阗(tián)B.拱券(xuàn)榫(sǔn)头抿(mǐng)嘴势不可当(dānɡ)C.穹窿(lóng)攒(cuán)聚诘难(nàn)剜(wān)肉补疮D.装裱(biǎo)场(cháng)景局(jú)促弄(nòng)虚作假2.下列词语中,没有错别字的一组是A.凑合丰盈作客他乡元气旺盛B.优裕装帧倍受欢迎在所难免C.起迄援例独当一面心劳日拙D.集锦协从杀人越货生死攸关3.依次在下列横线处填入词语,最恰当的一项是(1)那时,北大的学生好幸运,学生的借书证,可以借十本线装书。
(2)阿Q这个艺术形象,了鲁迅先生对国民灵魂弱点的认识深度。
(3)与会的很多国家认为,严厉打击国际恐怖活动无可厚非,但草木皆兵,随意扩大战争范围,则轻率。
(4)日本政府抛出的“购岛”闹剧,表现出日本军国主义大有之势,这极大的伤害了中国人民的感情。
A.居然表现有失东山再起B.居然体现失之死灰复燃C.竟然体现失之东山再起D.竟然表现有失死灰复燃4.下列各项中,没有语病的是A.中俄关系已进入互相提供重要发展机遇、互为主要优先合作伙伴。
在发展双边关系、处理重大国际和地区问题上,两国的契合点很多,合作共赢的机会很多。
B.美国《预防》杂志刊文指出,年龄在七八十岁的老年人如果每天干家务活的时间在一小时以上,他们会更健康。
C.相对矮小的五针松、文竹、吊兰及微型盆景等,最好放在茶几、案头或仿古架处较合适。
D.这篇文章介绍了传统相声所用的押韵、谐音、摹声等方面的详细的语言技巧和表达效果,内容丰富,饶有趣味。
2013年湖北卷文科数学试题与解答(全解析)

2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题及参考答案(湖北文1)已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U BA =ðA .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5} 【湖北文1解答】B U BA =ð}.4,3{}5,4,3{}4,3,2{= (湖北文2)已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等【湖北文2解答】D 在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有1cos sin 222=+=θθc ,即焦距相等. 甲(湖北文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q【湖北文3解答】A 因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ .(湖北文4)四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A .①② B .②③C .③④D . ①④【湖北文4解答】D 在○1中,y 与x 不是负相关;○1一定不正确;同理○4也一定不正确.(湖北文5)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是【湖北文5解答】C 可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B. 故选C.(湖北文6)将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π6【湖北文6解答】B因为sin ()y x x x =+∈R 可化为)6cos(2π-=x y (x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称. (湖北文7)已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC. D. 【湖北文7解答】A =(2,1),=(5,5),则向量在向量方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==θ. (湖北文8)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数【湖北文8解答】D 函数()[]f x x x =-表示实数x 的小数部分,有)(][]1[1)1(x f x x x x x f =-=+-+=+ ,所以函数()[]f x x x =-是以1为周期的周期函数.(湖北文9)某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为A .31200元B .36000元C .36800元D .38400元 【湖北文9解答】C 根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有⎪⎪⎩⎪⎪⎨⎧=+>>≤-≤+,9006036,0,0,7,21y x y x x y y x 画出可行域,求出三个顶点的坐标分别为A(7,14),B(5,12),C(15,6),目标函数(租金)为y x k 24001600+=,如图所示. 将点B 的坐标代入其中,即得租金的最小值为: 3680012240051600=⨯+⨯=k (元). (湖北文10)已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞【湖北文10解答】B ax x x f 21ln )('-+=,由()(ln )f x x x ax =-由两个极值点,得0)('=x f 有两个不等的实数解,即12ln -=ax x 有两个实数解,从而直线12-=ax y 与曲线x y ln =有两个交点. 过点(0,-1)作x y ln =的切线,设切点为(x 0,y 0),则切线的斜率01x k =,切线方程为110-=x x y . 切点在切线上,则01000=-=x x y ,又切点在曲线x y ln =上,则10ln 00=⇒=x x ,即切点为(1,0).切线方程为1-=x y . 再由直线12-=ax y 与曲线x y ln =有两个交点.,知直线12-=ax y 位于两直线0=y 和1-=x y 之间,如图所示,其斜率2a 满足:0<2a <1,解得0<a <21. 二、填空题:(湖北文11) i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = .【湖北文11解答】23i -+ 复数123i z =-在复平面内的对应点Z 1(2,-3),它关于原点的对称点Z 2为(-2,3),所对应的复数为322+-=z i.(湖北文12) 某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 . 【湖北文12解答】(Ⅰ)7 ()747109459787101=+++++++++; (Ⅱ)2 []222222)74(2)75()77(3)78()79(2)710(101-+-+-+-+-+-=s =21040=. (湖北文13)阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2,则输出的结果i = .【湖北文13解答】4 初始值m =2,A =1,B=1,i =0,第一次执行程序,得 i=1,A=2,B=1,因为A <B 不成立,则第二次执行程序,得i=2,A =2×2=4,B =1×2=2,还是A <B 不成立,第三次执行程序,得 i=3,A=4×2=8,B=2×3=6,仍是A<B 不成立,第四次执行程序,得i =4,A =8×2=16,B =×4=24,有A <B 成立,输出i=4.(湖北文14)已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = . 【湖北文14解答】4 这圆的圆心在原点,半径为5,圆心到直线l 的距离为1sin cos 122=+θθ,所以圆O 上到直线l 的距离等于1的点有4个,如图A 、B 、C 、D 所示.(湖北文15)在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56, 则m = .【湖北文15解答】3 因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m. 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间 [2,4]-分为[-2,m]和[m ,4] ,且两区间的长度比为5:1,所以m =3.(湖北文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【湖北文16解答】3 如图示天池盆的半轴截面,那么盆中积水的体积为()ππ19631061069322⨯=⨯++⨯=V (立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为=⨯)(寸寸23196)(19633(寸).第13题图(湖北文17)在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数.若某格点多边形对应的71N =,18L =, 则S = (用数值作答).【湖北文17解答】(Ⅰ)3, 1, 6 S=S △DFG +S △DEF =1+2=3 ,N=1,L =6; (Ⅱ)79 根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 14=+c b , ○1由(Ⅰ)有36=++c b a , ○2再由格点△DEF 中,S=2,N=0,L=6,得26=+c b , ○3 联立○1○2○3,解得.1,1,21=-==a cb 所以当71N =,18L =时, S =791182171=-⨯+. (湖北文18)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积S =5b =,求sin sin B C 的值.【湖北文18解得】(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去).因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ===得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =.又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.(湖北文19)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【湖北文19解答】(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . (湖北文20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222ABC A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中.(Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.【湖北文20解得】(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥.第20题图由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估. (湖北文21)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.【湖北文21解答】(Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)())]b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b+(1)f f ≥. 由①得()b f f a ≤.(ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式, 得b x a ≤≤x 的取值范围为,b a ⎡⎢⎣; 当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式, bx a ≤,即x 的取值范围为b a ⎤⎥⎦. (湖北文22)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由. 【湖北文22解答】依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.第22题图(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d =12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x = ② 从而由①和②式可得1(1)λλλ+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>+当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d =12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<.从而111λλλ+<<-,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.。
湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2014-2015学年高一上期中联考语文试题word版含答案

湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)2014-2015学年高一上学期期中联考语文试题一、语文基础知识(共15分,共5小题,每小题3分)1、下列各组词语中加点的字,读音全都正确....的一组是()A.颓圮.(pǐ)巷.道(xiàng)虐.杀(nüâ)数.以千计(shù)B.笙.箫(shēng)瓦菲.(fēi)编辑.(jī)屏.息以待(bǐng)C.惺忪.(sōng)淬.火(cuì)创.伤(chuàng)长歌当.哭(dàng)D.团箕.(jī)攒.射(cuán)婆娑.(suō)叱咤.风云(zhà)2、下列各组词语中,没有..错别字的一组是()A.保姆旗杆万户候宇宙寥廓B.浸渍瞠目下功夫陨身不恤C.账簿销行发源地绿草如茵D.籼米恶耗水门汀神舟五号3、依次填入下列横线处的词语,最恰当...的一组是()在群芳谱中,桂花占不得先,但也不是敬陪末座。
她是这样安静自持的女子,外表不见得有多出众,只是一定饱读了诗书,所以内心安然,有腹有诗书气自华的优雅。
身在喧嚣红尘中,她不,招摇过市,也绝不拒人于千里之外,那样的波澜不惊,通身着一种温润通透的淡淡光华,让人不可忽视和拒绝。
A.固然笃定哗众取宠散发B.当然笃定夸夸其谈透露C.固然坚定哗众取宠透露D.当然坚定夸夸其谈散发4、下列各项中,没有语病....的一项是()A.据韩国军方推算,朝鲜现在拥有的飞毛腿数量可能大约为100枚左右,可以机动发射,隐蔽性强。
B.中央组织部近日印发的通知,要求加强基层党组织建设,整治村、社区等基层干部违法违纪行为,查处群众反映强烈的涉黑涉恶。
C.“中国好声音·第三季”作为中国夏天最火的歌唱类选秀节目,开启了“盲听”选秀新时代。
D.沃兹在采访中表示,之前他喜欢Android手机的一个最主要原因就是因为大屏,如今苹果也有了自己的大屏手机,因此他觉得没必要继续留在Android平台。
2013届湖北省襄樊市(襄阳一中、枣阳一中、曾都一中、宜城一中)四校高一期中联考数学试题(含答案解析)

2010—2011学年上学期高一期中考试数学试题时间:120分钟分值:150分命题学校:宜城一中审题学校:襄阳一中 曾都一中 枣阳一中一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的)。
1、设集合{}{}{}5,4,1,5,3,0,5,4,3,2,1,0===N M U ,则)(N C M U Ç=( A.{}5B.{}3,0C. {}5,3,2,0D. {}5,4,3,1,02、下列四组函数,表示同一函数的是( )A.x x g x x f ==)(,)(2B. xx x g x x f 2)(,)(==C. x x g x x f ln 2)(,ln )(2==D. 33)(),1,0(log )(x x g a a a x f xa =¹>=3、函数x y 5.0log =的定义域为( )A.(]1,¥-B.()1,¥-C.(]1,0D. ()1,04、已知函数îíì-=xe xf x ln 1)()1()1(>£x x ,那么)2(ln f 的值是( )A.0B.1C.)2ln(lnD.25、为了得到函数101xgy =的图象,可以把函数x y lg =的图象( ) A .向上平移一个单位 B .向下平移一个单位 C .向左平移一个单位D .向右平移一个单位6、函数[]2,42)1(2)(2在+-+-=x a x x f 上具有单调性,则实数a 的范围是( ) A. 53³£a a 或B. 5³aC. 3£aD. 53><a a 或襄阳一中 枣阳一中 曾都一中 宜城一中7、若函数)2(213)(¹-+-=x x x x f 的值域为集合P ,则下列元素中不属于P 的是( ) A. 2B.2-C.1-D. 3-8、函数9)(2-=x x f 的零点是( ) A.3±B.()()0,30,3-和C.3D. 3-9、若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数[]2,1,2Î=x x y 与函数[]1,2,2--Î=x x y 即为“同族函数”,请你找出下面哪个函数解析式也能够被用来构造“同族函数”的是( ) A 、x y =B 、2-=x yC 、x y 2=D 、x y 21log =10、已知函数)(x f 是R 上的增函数,)1,3(),1,0(B A -是其图象上的两点,记不等式1)1(1<+<-x f 的解集M C M R 则,=( )A 、()2,1-B 、()4,1C 、(][)+¥È-¥-,21,D 、()[)+¥È-¥-,41,二、填空题(本大题5小题,每小题5分,共计25分)11、设集合{}{}1,0,,==B b a A ,则从集合A 到集合B 的不同映射共有 个。
襄州四校2013-2014学年高三上期中联考数学试卷(理)及答案

湖北省襄阳市襄州一中等四校2013-2014学年高三上学期期中联考文数学试卷(带word 解析)第I 卷(选择题)1.已知集合}12|{},1|{>=<=xx N x x M ,则N M =( ) A .∅ B .}0|{<x x C .}1|{<x x D .}10|{<<x x【答案】D 【解析】试题分析:由}0|{}12|{>=>=x x x N x,故}10|{<<=x x N M ,选D. 考点:1.指数函数的单调性;2.集合的运算2.“a>b >0”是“ab<222a b +”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】A 【解析】试题分析:由a >b >0知02)(222>-+=-ab b a b a ,可得222b a ab +<,故满足充分性;由222b a ab +<得02)(222>-+=-ab b a b a ,故可得b a ≠,所以不满足必要性,选A.考点:1.基本不等式性质;2.充要条件3.复数ii-+13等于 ( ) A. i 21- B. i 21+C. i -2D. i +2【答案】B 【解析】 试题分析:由i ii i i i i i 21242)1)(1()1)(3(13+=+=+-++=-+,选B. 考点:复数的四则运算4.若△ABC 的内角A 、B 、C 所对的边a 、b 、c 满足4)(22=-+c b a ,且C =60°,则 ab 的值为( ) A .348- B .1 C .34 D .32【答案】C【解析】试题分析:由4)(22=-+c b a 得:ab c b a 24222-=-+,故由余弦定理知:ab c b a C 2cos 222-+=2160cos 224=︒=-=ab ab ,解得34=ab ,故选C.考点:余弦定理的应用5.函数mx m m x f )1()(2--=是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( )A .-1B .2C .3D .-1或2【答案】B 【解析】试题分析:由幂函数定义可知:112=--m m ,解得,2=m 或1-=m ,又函数在x ∈(0,+∞)上为增函数,故2=m .选B. 考点:幂函数6, )A B C【答案】B 【解析】考点:1.三角恒等变换;2.三角函数的图像变换7.平行四边形ABCD 中,AB =(1,0),AC =(2,2),则AD BD ⋅等于 ( )A .4B .-4C .2D .-2 【答案】A 【解析】 试题分析:由)2,1()0,1()2,2(=-=-==AB AC BC AD ,所以=-⋅=⋅)(4)2,0()2,1(=⋅.故选A.考点:1.向量的加减运算;2.向量的数量积8.已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递减. 若实数a 满足212(log )(log )2(1)≤+f f f a a , 则a 的取值范围是( )A .(-∞,21]∪[2,+∞) B .10,2⎛⎤⎥⎝⎦∪[2,+∞) C .1,22⎡⎤⎢⎥⎣⎦ D .(0,2]【答案】B 【解析】试题分析:因为函数()f x 是R 上的偶函数, 所以12222(log )(log )(log )(log )+=+-f a f a f a f a 222(log )2(|log 2(1)|)==≤f a f a f ,又在区间[0,)+∞单调递减,故2|log 1|≥a ,解得10,2⎛⎤∈ ⎥⎝⎦a ∪[2,+∞),选A. 考点:1.偶函数的性质;2.函数的单调性;3.对数不等式9.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若对任意的[],x a b ∈,都有|()()|1f x g x -≤,则称()f x 和()g x 在[],a b 上 是“密切函数”,[],a b 称为“密切区间”,设2()34f x x x =-+与()23g x x =-在[],a b 上是“密切函数”,则它的“密切区间”可以是 ( )A .[1,4]B . [2,4]C . [3,4]D . [2,3] 【答案】D 【解析】试题分析:由题意由1|75||)()(|2≤+-=-x x x g x f ,得17512≤+-≤-x x ,解之得]3,2[∈x ,故选D.考点:1.含绝对值的一元二次不等式的解法;2.函数新定义题10.已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤<时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 的取值范围是( )A. 11,]5,775 (()B. 10,[5,5+∞ ()) C. 10,5,5+∞ (]()D. 11,[5,775())【答案】C 【解析】 试题分析:函数g (x )=f (x )-log a |x|的零点个数,即函数y=f (x )与y=log a |x|的交点的个数; 由f (x+1)=-f (x ),可得f (x+2)=f (x+1+1)=-f (x+1)=f (x ),故函数f(x )是周期为2的周期函数,又由当-1≤x <1时,f (x )=x 3,据此可以做出f (x )的图象,y=log a |x|是偶函数,当x >0时,y=log a x ,则当x <0时,y=log a(-x),做出y=log a|x|的图象:第II 卷(非选择题)11.已知全集U = R ,集合{}1|-==x y x M ,则=M C U .【答案】{|1}x x < 【解析】试题分析:集合M 就是函数y =的定义域,所以{}|1M x x =≥,{|1}U C M x x =<.考点:补集. 12.复数iiz 21-=的虚部是 . 【答案】1- 【解析】试题分析: 由221222i i i z i i i--===--,所以z 的虚部为1-.考点:复数的概念和运算.13.“1>x ”是“12>x ”的 条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)【答案】充分不必要 【解析】试题分析:如果1>x 时,那么12>x ,所以“1>x ”是“12>x ”的充分条件,如果12>x ,那么1>x ,或1x <-,所以“1>x ”是“12>x ”的不必要条件,综上所以“1>x ”是“12>x ”的充分不必要条件.考点:充分条件和必要条件.14.已知扇形的半径为10cm ,圆心角为120°,则扇形的面积为 . 【答案】21003cm π【解析】试题分析:因为扇形的圆心角为120°,显然它的面积是其所在圆面积的13,而这个圆的面积为2100cm π,所以这个扇形的面积为21003cm π. 考点:扇形的面积.15.如果1log log 22=+y x ,则y x 2+的最小值是 . 【答案】4 【解析】试题分析:由1log log 22=+y x 得2log ()1xy =,所以2xy =且0,0x y >>,24x y +≥=,当且仅当2x y =即2,1x y ==时,y x 2+取得最小值4.考点:基本不等式,对数的运算.16.函数1ln(1)y x=++_____________. 【答案】]1,0( 【解析】试题分析:⎪⎩⎪⎨⎧≥->+010112x x由解得:]1,0(∈x . 考点:求函数的定义域 17.已知αααcos 900,102)45sin(,则且 <<-=-的值为_____________. 【答案】54 【解析】试题分析:由102)45sin(-=- α得:51c o s s i n -=-αα①,①平方得:2524cos sin 2=αα②,所以可得57cos sin =+αα③,由③-①得:=αcos 54.考点:1.两角和差的余弦公式;2.同角三角函数关系 18.已知函数⎩⎨⎧≤>=)0(3)0(log )(2x x x x f x,则)]81([f f 的值等于_______. 【答案】271【解析】试题分析:由已知分段函数可得:2713)3()81(log )]81([32==-==-f f f f . 考点:1.分段函数;2.基本初等函数求值19.若函数()(0,1)=>≠xf x a a a 在[-2,1]上的最大值为4,最小值为m ,则m 的值是______. 【答案】21或161 【解析】试题分析:分1>a 和10<<a 两种情况讨论:当1>a 时,函数xa x f =)(单调递增,则最大值为41==a a ,最小值为161422===--a m ;当10<<a 时,函数x a x f =)(单调递减,则最大值为42=-a ,解得21=a ,最小值为211==a m .故21=m 或161. 考点:1.分类讨论;2指数函数的单调性20.2)()(c x x x f -=在1=x 处有极小值,则实数c 为 . 【答案】1 【解析】试题分析:由2)()(c x x x f -=得2243)('c cx x x f +-=,又2)()(c x x x f -=在1=x 处有极小值,故01413)1('22=+⨯-⨯=c c f ,解得1=c 或3=c ,当1=c 时,有143)('2+-=x x x f ,函数)(x f 在),1(),31,(+∞-∞单调递增,在)1,31(单调递减,故在1=x 处有极小值;当3=c 时,有9123)('2+-=x x x f ,函数)(x f 在),3(),1,(+∞-∞单调递增,在)3,1(单调递减,故在1=x 处有极大值.综上可知1=c .考点:利用导数处理函数的极值21.己知函数xe x xf 2)(=,当曲线y = f(x)的切线L 的斜率为正数时,L 在x 轴上截距的取值范围为 . 【答案】),0(]322,(+∞---∞ 【解析】试题分析:∵xe x xf 2)(=,∴)2()('2x x e x f x+=,由0)2()('2>+=x x e x f x得:,0>x 或2-<x .设切点为),(0200x e x x ,则切线方程为))(2(0200200x x x x e ex y x x -+=-,令0=y ,得:2020++=x x x x .当00>x 时,220>+x ,则:03222322)2(2000200=-+>-+++=++=x x x x x x ;当20-<x 时,20<+x 则:322322)2(2322)2(200000200--=-+⨯+-≤-+++=++=x x x x x x x x ,综上述知:切线在x 轴上的截距的取值范围为:),0(]322,(+∞---∞ . 考点:利用导数研究函数的单调性、切线、函数的值域22.已知数列{}n a 及其前n 项和n S 满足:n n n S S a 33311+==-, (2≥n ,*n N ∈). (1)证明:设n nn S b 3=,{}n b 是等差数列;(2)求n S 及n a ;(3)判断数列{}n a 是否存在最大或最小项,若有则求出来,若没有请说明理由. 【答案】(1)见解析;(2)13)12(-+=n n n a ,n n n S 3∙=;(3)数列{}n a 有最小项,无最大项,最小项为31=a 【解析】试题分析:(1)直接求出13311=---n n n n S S ,从而证明{}n b 是等差数列;(2)先由(1)可得n n n S 3∙=,然后由113)12(--+=-=n n n n n s s a ,注意检验当1=n 时是否适用 .(3)先判定数列是递增数列,从而确定只有最小项无最大项,最小项为31=a ,注意运用函数的思想方法解决数列问题. 试题解析:(1) n n n S S 331=-- ∴13311=---n n n n S S (2≥n ) 2分 设nnn S b 3=则{}n b 是公差为1的等差数列 3分 (2) 又 ,133111===a Sb ∴,3n S n n = ∴n n n S 3∙= 5分 当2≥n 时, 113)12(--+=-=n n n n n s s a 7分 又31=a 满足上式 8分 ∴13)12(-+=n n n a n n n S 3∙= 9分(3)1)32(3123)32(3)12(11<++=++=-+n n n n a a nn n n 11分 又1,0+<∴>n n n a a a ,则数列{}n a 为递增数列 12分 ∴数列{}n a 有最小项,无最大项,此时最小项为31=a 13分 考点:1.等差数列的判定;2.等差数列通项公式的求法;3.数列的单调性 23.已知: 、、是同一平面内的三个向量,其中 =(1,2) ⑴若||52=,且a c //,求c 的坐标; ⑵若|b |=,25且2+-3a b a b 与垂直,求a 与b 的夹角θ。
湖北省襄阳市四校(襄州一中、枣阳一中、宜城一中、曾都一中)2013-2014学年高一上学期期中考试数学试题
一、选择题:本大题共10小题, 每小题5分, 共50分. 在每小题给出的四个选项中, 有且只有一项是符合题目要求的。
1.已知A={1,3,5,7},B={2,3,4,5},则集合A ∪B 的元素个数是 ( )A .8B .7C .6D .52.下列函数是偶函数的是 ( )A. x y =B. 322-=x yC. 21-=xyD. ]1,0[,2∈=x x y3.函数)23(log 21-=x y 的定义域是 ( )A .),1[+∞B .),32(+∞C .]1,32[D .]1,32(4.若函数()f x 的图象是连续不断的,且(0)0>f ,(1)0>f ,(2)0<f ,则加上下列哪条件可确定()f x 有唯一零点 ( ) A. (3)0<f B. 函数在定义域内为增函数 C. (1)0->f D. 函数在定义域内为减函数5.若01x <<,则2x,12x⎛⎫ ⎪⎝⎭,()0.2x之间的大小关系为 ( ) A. 2x<()0.2x<12x⎛⎫⎪⎝⎭B. 2x<12x⎛⎫⎪⎝⎭<()0.2xC. 12x⎛⎫ ⎪⎝⎭<()0.2x < 2xD. ()0.2x< 12x⎛⎫ ⎪⎝⎭< 2x6.函数2()log 10f x x x =+-的零点所在区间为 ( ) A .(0,7)B .(6,8)C .(8,10)D .(9, +∞)7.函数y=ax 2+bx+3在(-∞,-1]上是增函数,在[-1,+∞)上是减函数,则( )A .b>0且a<0B .b=2a<0C .b=2a>0D .a ,b 的符号不定8.已知函数y=)32(log 221++x x , 则函数的最值情况为 ( )A.有最小值-1,无最大值;B. 无最小值,有最大值2 ;C.有最小值2,无最大值 ;D. 无最小值,有最大值-1. 9.已知函数)0()(>+=a xax x f 在],0(a 上是减函数,在),[∞+a 上是增函数,若函数xx x f 25)(+=在)0(),[>∞+m m 上的最小值为10,则m 的取值范围是( ) A .]5,0(B .)5,0(C .),5[∞+D .),5(∞+10.如图所示的是某池塘中的浮萍蔓延的面积(2m )与时间t (月)的关系:ty a =,有以下叙述: ① 这个指数函数的底数是2;② 第5个月时,浮萍的面积就会超过230m ③ 浮萍从24m 蔓延到212m 需要经过1.5个月; ④ 浮萍每个月增加的面积都相等;⑤ 若浮萍蔓延到22m 、23m 、26m 所经过的时间分别为1t 、2t 、3t ,则123t t t +=.其中正确的是 ( ) A. ①② B.①②③④ C.②③④⑤ D. ①②⑤二、填空题:本大题5小题 每小题5分, 共25分。
湖北省襄阳市四校2013-2014学年下学期高二年级期中联考数学试卷(文科)
湖北省襄阳市四校2013-2014学年下学期高二年级期中联考数学试卷(文科)一、选择题(本大题10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.命题“对∀x R ∈,都有20x ≥”的否定为( )A .对∀x R ∈,都有20x <B .不存在x R ∈,都有20x <C .∃0x R ∈,使得200x ≥D .∃0x R ∈,使得200x <2.若曲线2y x ax b =++在点(1,)b 处的切线方程是10x y -+=,则( )A.1,2a b ==B. 1,2a b =-=C.1,2a b ==-D. 1,2a b =-=-3.若θ是任意实数,则方程224sin 1x y +θ=所表示的曲线一定不是( )A .直线B .双曲线C . 抛物线D .圆4.与椭圆2214924x y +=有公共焦点,且离心率53e =的双曲线方程是( ) A. 221916x y += B. 221169x y -= C. 221916x y -= D. 221169x y += 5.设函数()y f x =的图像如左图,则导函数'()y f x =的图像可能是下图中的( )6.函数()(23)x f x x e =-的单调递增区间是( ) A. 1(,)2-∞ B. (2,)+∞ C. 1(0,)2 D. 1(,)2+∞ 7.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .()+∞,0B .()2,0C .()+∞,1D .()1,08.设函数22()ln f x x x=+,则( ) A .2x =为()f x 的极大值点 B .2x =为()f x 的极小值点C .12x =为()f x 的极大值点D .12x =为()f x 的极小值点 9.给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.已知点P在曲线1x y e -=+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A. (0,]3π B.[,)32ππ C. 2(,]23ππ D. 2[,)3ππ 二、填空题(本大题共7小题,每小题5分,共35分)11.命题:“若2x =且3y =,则5x y +=”的逆否命题是_________命题;(填“真”或“假”)12.抛物线218y x =的焦点坐标为_________________;13.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF∆的面积为16,则b =_________________; 14.函数3()27f x x x =-在区间[33]-,上的最小值是_________________;15.过双曲线C :22221x y a b-=(0,0)a b >>的一个焦点作圆222x y a +=的两条切线,切点分别为A B 、,若90AOB ∠=(O 是坐标原点),则双曲线C 的离心率为____;16.已知双曲线的中心在坐标原点,焦点在x 轴上,A 是右顶点,B 是虚轴的上端点,F 是左焦点,当BF ⊥AB 时,此类双曲线称为“黄金双曲线”,其离心率为12e =,类比“黄金双曲线”,推算出“黄金椭圆”(如图)的离心率e =_________;17.若曲线2()ln f x ax x =-存在垂直于y 轴的切线,则实数a 的取值范围是_______.三、解答题(本大题共5个小题,共65分;解答应写出文字说明、证明过程或演算步骤)18.(本题满分12分)已知:p 函数321y x mx =++在(1,0)-上是单调递减函数,:q 方程244(2)10x m x +-+=无实根,若“p 或q ”为真,“p 且q ”为假,求m 的取值范围。
2013年全国大纲高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
湖北省襄阳四校2024-2025学年高一上学期期中考试数学试题(含答案)
襄州二中宜城二中枣阳二中枣阳师范2024-2025学年上学期高一期中考试数学试题注意事项:1.答卷前,考生务必将姓名、准考证号等在答卷上填写清楚2.选择题答案用2B 铅笔在答题卷把对应题目的答案标号涂黑,非选择题用0.5mm 黑色签字笔在每题对应的答题区内做答,答在试卷上无效。
第Ⅰ卷(选择题共58分)一、单选题:本题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列说法正确的有( )A .10以内的质数组成的集合是B .与是同一个集合C :方程的解集是D .集合中的元素是的三边长,则一定不是等腰三角形2.命题:p :,的否定为( )A .,B .,C .,D .,3.已知函数的定义域为,则函数的定义域为( )A .B .C .D .4下列函数中,既是奇函数,又在区间上是减函数的是( )A .B .C .D .5下列说法正确的是( )A .若,则B .若a ,b ,,则C .若,则D .若,,则6.不等式的一个必要不充分条件是( )A .B .C .D .7已知,,且恒成立,则实数m 的取值范围是( ){}0,2,3,5,7∅{}02210x x -+={}1,1{},,M a b c =ABC ∆ABC ∆x ∀∈R 0x x +≥x ∃∈R 0x x +≥x ∃∈R 0x x +<x ∃∈R 0x x +≤x ∀∈R 0x x +<()f x []0,1()1f x +[]0,1[]1,0-{}0[]1,2()0,+∞y x =3y x =2y x =3y x =-22ac bc >a b>()0,m ∈+∞b b m a a m +<+a b >11a b <a b >x y >ax by >22530x x --<132x -<<16x -<<102x -<<132x <<0a >0b >211a b+=a b m +≥A .B .C .D .8.今有一台坏天平,两臂长不等,其余均精确,有人要用它称物体的质量,他将物体放在左右托盘各称一次,记两次称量结果分别为a ,b ,设物体的真实质量为G ,则( )A.B .C .D二、选择题:本题共3小题,每小题6分,共18分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省襄阳四校2013届高三上学期期中考试数学(文科)试题时间:120分钟 主命题学校 曾都一中 分值:150分温馨提示:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上.2.答选择题时,必须将答案书写在答题卡上对应的题号下面位置上。
3.答非选择题时,必须使用0. 5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效.★祝考试顺利★一.选择题(本大题共有10个小题,每小题5分,共50分)1.已知集合P={x ∈N|1≤x ≤10},集合Q={x ∈R|06--2=x x },则P ∩Q 等于( )A.{2}B.{1,2}C.{2,3}D.{3}2.若函数)2(),3,0[)1(x f x f 则的定义域为+的定义域为( )A .[1,8]B .[1,4)C .[0,2)D .[0,2]3. 设}{n a 为等差数列,公差d=-2,n S 为其前n 项和,若1110S S =,则1a =( )A.18B. 22C. 20D.244. 若把函数x x y 2sin -2cos 3=的图象向右平移0)(>m m 个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π3B .12πC .π6D .5π65.在R 的定义运算: ⎝⎛c a bc ad d b -=⎪⎪⎭⎫,若不等式 ⎝⎛+-11a x 12≥⎪⎪⎭⎫-xa 对任意实数x 恒成立,则实数a 的最大值为( )A .21-B .23-C .21D .23 6. 等差数列{}n a 的前n 项和为n S ,已知2110m m ma a a -++-=,2138m S -=,则m =( ) A. 38 B. 20 C. 10 D. 97.函数f(x)=ln(4+3x -x 2)的单调递减区间是( )A.),(∞+23B.),(23-∞C.),(41-D. ),(4238.已知f(x)=⎪⎩⎪⎨⎧-∈+∈+)0,1[,1]1,0[,12x x x x ,则下列四图中所作函数的图像错误的是( )9. 若定义在R 上的函数)(-)1()(x f x f x f y =+=满足满足,且当]1,1[-∈x 时,2)(x x f =,函数⎩⎨⎧≤>=1,21),1-(log )(3x x x x g x,则函数)(-)()(x g x f x h =在区间]5,5[-内的零点的个数为( )A .6 B. 7 C. 8 D. 910.已知()y f x =是定义在R 上的奇函数,且当0x >时不等式()()'0f x xf x +<成立,若()0.30.333a f =⋅,)log (.log 33ππf b = 3311,log log 99c f ⎛⎫=⋅ ⎪⎝⎭,则 , , a b c 大小关系是( )A .c a b >>B .c b a >>C .b c a >>D .a c b >>二、填空题(本大题共7小题,每小题5分,共35分.将答案填在答题卡相应的位置上) 11.已知:()()110p x m x m -+--<;:1223q x <<,若q 是p 的充分不必要条件, 则实数m 的取值范围是___________________。
12. 在△ABC 中,已知113cos ,cos(),07142A AB B A π=-=<<<,则角B = 。
13.命题“2,2390x x ax ∃∈-+<R ”为假命题,则实数a 的取值范围为 。
14.已知数列{n a }满足a 1=2,1n a +=3n a 一2,则n a =_______。
15.已知函数)(sin )(ϕω+=x A x f )2,0,0(πϕω<>>A 的一段图像如右图所示.则)(x f 的解析式是 。
16. 已知P 是边长为2的正ABC ∆边BC 上的动点,则)(AC AB AP +∙=_______。
17.设函数)(),(x g x f 的定义域分别是g fD D ,,且g f D D ⊆。
若对于任意f D x ∈,都有)()(x f x g =,则称函数)(x g 为)(x f 在g D 上的一个延拓函数。
设)0(2)(≤=x x f x ,)(x g 为)(x f 在R 上的一个延拓函数,且)(x g 是偶函数,则)(x g = 。
三、解答题(共65分.解答应写出文字说明,证明过程或演算步骤) 18.(本小题满分12分)已知向量b b a b y a ⊥+==)2),3,-1(),,1(且(。
ABCDM NP(1)求a ;(2)若)4-a )//(22(b b a k +,求k 的值。
19. (本小题满分12分)已知向量n m x f x n x m ∙===)(),2sin ,1(),3,cos 2(2函数.(1)求函数()f x 的最小正周期及单调增区间;(2)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求b a ,的值.20.(本小题满分13分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 在AM 上,D 在AN 上,对角线MN 过C 点,已知|AB|=3米,|AD|=2米,由于受地理条件限制,AN 长不超过8米,设x AN =。
(1)要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内?(2)若|AN| [3,4)∈(单位:米),则当AM 、AN 的长度是多少时,矩形花坛AMPN 的面积最大?并求出最大面积。
21.(本小题满分14分)若S n 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列。
(1)求等比数列124,,S S S 的公比; (2)若24S =,求{}n a 的通项公式;(3)在(2)的条件下,设13+=n n n a a b ,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m 。
22.(本小题满分14分)已知函数321()(1) 1.32a f x x x a x =+--+ (1)若曲线()y f x =在点(2,(2))f 处的切线与直线610x y ++=平行,求出这条切线的方程;(2)当0a >时,求:①讨论函数()f x 的单调区间;②对任意的1x <-,恒有()1f x <,求实数a 的取值范围.数学(文科)参考答案一.选择题:DCCBD CDDCA 二、填空题: 11.2331-≤≤m ;12. 3π=B ;13.]22,22[-;14. 131-+n ;15.)10-52(sin 3)(πx x f =;16. 6;17.x⎪⎭⎫ ⎝⎛21(写成分段函数也给分)。
三、解答题:18.解:(1).2),32,3(a 2=∴-=+y y b ----------------3分 5=∴a ---------------6分(2))16,2(4a 2),62,2(a -=--+=+b k kb k ------------9分1-=∴k -----------12分19.解:(1)22()(2cos ,3)(1,sin 2)2cos 3sin 2f x m n x x x x =⋅=⋅=+ ---2分cos 213sin 22sin(2)16x x x π=++=++------4分∴函数()f x 的最小周期22T ππ== -----5分 由得)(22622-2Z k k x k ∈+≤+≤πππππ: 单调增区间为Z k k k ∈⎥⎦⎤⎢⎣⎡+,6,3-ππππ ----------6分(2)31)62sin(2)(=++=πC C f ∴1)62sin(=+πCC 是三角形内角,∴262ππ=+C 即:6π=C -------8分 ∴232cos 222=-+=ab c a b C 即:722=+b a . -------9分 将32=ab 代入可得:71222=+aa ,解之得:432或=a ∴23或=a,∴32或=b ---- --11分 b a >,∴2=a ,3=b . -------12分 20.解:设AN 的长为x 米(82≤<x )∵|DN||DC||AN||AM|=,∴|AM |=32xx -∴S AMPN =|AN |•|AM |=232x x - - ---------------- 4分(1) 由06432-3,322-33222>+∴>>x x x x S AMPN 得382<<∴x 或38282,8<<∴≤<>x x x 又 即AN 长的取值范围是)38,2( ----------------------------------8分(2)令2/2)2-()4-(3,2-3x x x y x x y ==则 ---------------------------------10分 23,0)4,3[2/-=∴<∈x x y y x 函数时,当 在)4,3[上为单调减函数,时当3=∴x 232-=x x y 函数取得最大值,即27)(max =AMPN S (平方米)此时AN =3米,9=AM 米 -----------------------------------------12分21.解:∵数列{a n }为等差数列,∴112141,2,46S a S a d S a d ==+=+,∵S 1,S 2,S 4成等比数列, ∴ S 1·S 4 =S 22∴ 2111(46)(2)a a d a d +=+,∴212a d d =∵公差d 不等于0,∴12d a = -----------------2分(1)211144S a q S a === --------------------4分 (2)∵S 2 =4,∴124a d+=,又12d a =,∴11,2a d ==, ∴21n a n =-。
------------------8分(3)∵3311()(21)(21)22121nb n n n n ==--+-+ ------------------9分∴3111[(1)()2335n T =-+-+…11()]2121n n +--+313(1)2212n =-<+ ----11分 要使20n m T <对所有*N n ∈恒成立,∴3202m ≥,30m ≥, ---------13分∵*N n ∈, ∴m 的最小值为30。