初高中衔接课程数学辅导4(方程根的性质)(适合上海四大名校)

合集下载

初升高衔接课2.方程

初升高衔接课2.方程

方程本节内容一、有理方程(1)一元一次方程(2)一元二次方程(3)二元一次方程(4)分式方程二、无理方程本节习题题型一 一元一次方程1.解方程:0ax b +=题型二 一元二次方程2.(1) 关于x 的一元二次方程2690kx x -+=有两个不相等的实数根,则k 的取值范围是 .(2)关于x 的方程2210x kx ++=有两个不相等的实数根,则k 的取值范围为 .(3)关于x 的一元二次方程()2122110k x k x --+-=有两个不相等的实数根,则k 的取值范围为 .3.m 为给定的有理数,k 为何值时,方程()22413240x m x m m k +-+-+=的根为有理数?4.当m 为何值时,关于x 的方程()()2242110m x m x -+++=有实数根.5.若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .6.已知αβ、是方程2250x x +-=的两个实数根,则22ααβα++的值为 .7.若方程()200ax bx c a ++=≠的一个根是另一个根的3倍,则a b c 、、的关系是( )A. 2316b ac =B. 2316b ac =-C. 2163b ac =D. 2163b ac =-8.已知12x x 、是方程22350x x --=的两个根,不解方程,求下列代数式的值:(1)2212x x + (2)12x x - (3)2212233x x x +-9.已知关于x 的方程2210x mx m -+-=的两个实数根的平方和为23,求m 的值.10.已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.11.实数k 为何值时,关于x 的一元二次方程()()223240.x k x k --+-=(1)有两个正根?(2)两 根异号,且正根的绝对值较大?12.若一元二次方程()()21210m x m x m -++-=有两个正根,求m 的取值范围.13.如果实数a b 、分别满足2222,22a a b b +=+=,求11a b+的值.题型三 分式方程与无理方程14.解方程 (1)21421242x x x x +-=+-- (2)22234011x x x x ⎛⎫--= ⎪--⎝⎭(3)71x x +-= (4)3233x x -++=(5)223152512x x x x ++++= (6)22510127x x x x ++++=本节作业【练1】已知a b c 、、分别是三角形的三边,则方程()()220a b x cx a b ++++=的根的情况是() A .没有实数根 B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根【练2】关于x 的方程()2210mx m x m +++=有两个不等的实根,则m 的取值范围是 .【练3】若方程()2240x k x -++=有两个负根,则k 的取值范围是 .【练4】若关于x 的方程2210ax x ++=至少有一个负根,则a 的值为 .【练5】224233101232x x x xx x x x ++++=++++【练6】3621x x +-=【练7】1122x x x ++-=+【练8】222335239x x x x ++=++【练9】已知αβ、是方程2520x x ++=的两根,求βααβ+的值.【练10】若方程()()24250x m x m --+-=的两根都大于1,求m 的取值范围.。

初高中数学衔接教材参考答案

初高中数学衔接教材参考答案

初高中数学衔接教材参考答案第一讲 数与式的运算例1. 解:原式=22]31)2([+-+x x例2. 解:原式=333322)(])()()][([b a b a b b a a b a -=-+=-+---+例3. 解:(1)原式=333644m m +=+例7. 解:(1) 原式6==-(2) 原式ab(3) 原式=-+=-例8. 解:(1) 原式=22(1()21a b a +--+=--+(2) 原式=+=+例9.解:77 14,123x y x y xy ===+=-⇒+==-原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=例10. 解法一:1.3.4.-5.例1. 解:(1) 333282(2)(42)x x x x x +=+=+-+(2) 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+例2. 解:(1) 3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++.(2) 76663333()()()a ab a a b a a b a b -=-=+-例3. 解:21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--例4. 解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+ 例5. 解:22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+例6. 解:22222224282(24)x xy y z x xy y z ++-=++-例7. 解:(1)6(1)(6),(1)(6)7=-⨯--+-=-2 例8. (1) 24- 15(5)-=-例 例10. 例11. 练习1.(a +1(2645525216p -.2222()(),()(),n x x y y xy x x x y x xy y +-+-++3.(2)(1),(36)(1),(13)(2),(9)(3)x x x x x x x x --+++--+ 4.322(2)(8),(3)(2),(3)(1)(23),(3)(3)(2)n ax x x a a b a b x x x x x x x --+--+-+-++2(23)(31),(2)(415),(772)(1),(21)(35)(675)x x x y x y a b a b x x x x -+-++++-+--+5.2()(3),(21)(21),(3)(52),(256)(256)x y a y x x x x y a b a b -++--+---+第三讲 一元二次方程根与系数的关系例1. 解:(1)2 (3)42110∆=--⨯⨯=>,∴ 原方程有两个不相等的实数根.(2) 原方程可化为:241290y y -+=2 (12)4490∆=--⨯⨯=,∴ 原方程有两个相等的实数根. (3) 原方程可化为:256150x x -+=例2. 2(2)4=--例3. 例4. (4) 12||x x -====例5. 解:(1) ∵方程两实根的积为5∴ 222121[(1)]4(1)034,412154k k k k x x k ⎧∆=-+-+≥⎪⎪⇒≥=±⎨⎪=+=⎪⎩ 所以,当4k =时,方程两实根的积为5.(2) 由12||x x =得知: ①当10x ≥时,12x x =,所以方程有两相等实数根,故302k ∆=⇒=; ②当10x <时,12120101x x x x k k -=⇒+=⇒+=⇒=-,由于302k ∆>⇒>,故1k =-不合题意,舍去. 综上可得,3例6. ∴ 要使12212x x x x +-的值为整数的实数k 的整数值为2,3,5---.练习1. B 2. A 3.A 4. 3 5. 9或3-6.1或47.21(1)1650 (2)2m m ∆=+>=-8.3(1) (2)22k k ≥=第四讲 不 等 式例1. 解:原不等式可以化为:(3)(2)0x x +->,于是:3020x x +<⎧⎨-<⎩或3020x x +>⎧⎨->⎩333222x x x x x x <->-⎧⎧⇒⇒<->⎨⎨<>⎩⎩或或所以,原不等式的解是32x x <->或.例2.例3. 例4. 例5. 3(1)3k ⎪⎪-⋅=-⎪⎩例6. 解:(1) 解法(一) 原不等式可化为:解法(二) 原不等式可化为:3(23)(1)012x x x -+<⇒-<<. (2) ∵ 22131(024x x x -+=-+>原不等式可化为:303x x +≥⇒≥- 例7. 解:原不等式可化为:(35)(2)013535530002202223x x x x x x x x x x ++≥⎧--+-≤⇒≤⇒≥⇒⇒<-≥-⎨+≠+++⎩或例8. 解:原不等式可化为:(2)2m m x m ->-(1) 当202m m ->>即时,1mx >,不等式的解为1x m>; (2) 当202m m -<<即时,1mx <.无解.例9.1.(1)2.(1)x 3.5.(1)当2m >时,12m x m ->-;(2)当2m <时,12m x m -<-; (3) 当2m =时,x 取全体实数. 6.1k =- 7.1x ≠第五讲 二次函数的最值问题例1. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 例2. 解:作出函数的图象.当1x =时, 1max-=y,当2x =时, 5min-=y.由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:例3. 解:作出函数2(2)2y x x x x=--=-在0x≥内的图象.可以看出:当1x=时,min 1y=-,无最大值.例例5.∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.练习1.4 , 14或2,322.2216lm3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值.4.当34x=时,min318y=;当2x=-时,max19y=. 5.5y≥-6.当56x =时,min 36y =-;当23x =或1时,max 3y =.7.当54t =-时,min 0y =. 第六讲 简单的二元二次方程组例1. 解:由(1)得:2y x = (3)22 例2.例3. 例4. ∴ 原方程组可化为两个二元一次方程组:22300,44x y x y xy y xy y -=+=⎧⎧⎨⎨+=+=⎩⎩. 用代入法解这两个方程组,得原方程组的解是:121233,11x x y y ==-⎧⎧⎨⎨==-⎩⎩. 例5. 解:(1) +(2)2⨯得:222236()3666x y xy x y x y x y ++=⇒+=⇒+=+=-或, (1)-(2)2⨯得:222216()1644x y xy x y x y x y +-=⇒-=⇒-=-=-或.解此四个方程组,得原方程组的解是: 例6. 解:(1) 3(2)⨯-得:313 1 (3)x y y x -=⇒=-代入(1)得:212(31)33311x x x x x x -+=⇒=⇒==-或. 分别代入(3)得:1224y y ==-或.∴ 原方程组的解是:1211x x ==-⎧⎧⎨⎨或. 练习1.(1)x y ⎧⎨⎩2. (1)⎧⎨⎩3.(1)⎧⎨⎩44x y ⎧⎨⎩4.(1) ⎧⎪⎪⎨⎪⎪⎩第七讲 分式方程和无理方程的解法例1. 解:原方程可化为:方程两边各项都乘以24x -:即2364x x -=-, 整理得:2320x x -+= 解得:1x =或2x =.检验:把1x =代入24x -,不等于0,所以1x =是原方程的解;把2x =代入24x -,等于0,所以2x =是增根.所以,原方程的解是1x =.例2. 解:设21x y x =-,则原方程可化为:2340y y --= 解得4y =或1y =-. (1)当4y =时,241x x =-,去分母,得224(1)4402x x x x x =-⇒-+=⇒=;例3. (1)(2) 例4. 移项,合并同类项得:260x x +-=解得:3x =-或2x =检验:把3x =-代入原方程,左边≠右边,所以3x =-是增根.把2x =代入原方程,左边 = 右边,所以2x =是原方程的根. 所以,原方程的解是2x =.例5. 解:3=-两边平方得:3293x x -=-+整理得:1427x x =-⇒=-两边平方得:29(3)4914x x x +=-+整理得:223220x x -+=,解得:1x =或22x =.检验:把1x =代入原方程,左边=右边,所以1x =是原方程的根. 把22x =代入原方程,左边≠右边,所以22x =是增根.所以,原方程的解是1x =.例6. 1.(1)x 2.x =3.(1)x 4.(1)5.(1)x 第八讲 直线、平面与常见立体图形例1. 解:正方体有6个面,12条棱,8个顶点,18对平行棱。

初高中数学衔接讲座课件

初高中数学衔接讲座课件

概率与统计衔接点
概率初步知识
初中数学中的概率初步知识在高中阶段将更加深入,涉及 到条件概率、事件的独立性等,需要学生掌握概率的基本 思想和方法。
统计初步知识 初中数学中的统计初步知识在高中阶段将更加详细,涉及 到数据的收集与整理、概率分布等,需要学生提高数据处 理和分析能力。
随机变量及其分布
高中数学引入随机变量及其分布,为描述随机现象提供数 学模型,需要学生掌握离散型随机变量及其分布列、连续 型随机变量及其概率密度等知识。
古典概型和几何概型的计算 和应用
02
01
03
统计图表的认识和制作,如 条形图、折线图、扇形图等
数据的收集和整理,包括数 据的来源、数据的分类和整
理方法等
04
05
平均数、中位数、众数等统 计量的计算和应用
03
高中数学新增知识点介绍
函数与导数
一次函数、二次函数、指数函数、 对数函数等基本函数的图像与性 质。
初高中数学衔接讲座 课件
目录
• 引言 • 初中数学知识点回顾 • 高中数学新增知识点介绍 • 初高中数学衔接点分析 • 学习方法与技巧分享 • 案例分析:成功跨越初高中衔接阶

01
引言
目的和背景
帮助学生了解初高中数学知识的差异和联系 01
提高学生的数学素养和综合能力,为高中数学学 02 习打下基础
针对高中数学的特点,指 导学生掌握正确的学习方 法和思维习惯。
个性化辅导
心理疏导
针对不同学生的实际情况, 制定个性化的辅导计划, 帮助学生解决学习困难。
关注学生的心理状态,及 时进行心理疏导,帮助学 生保持积极的学习态度。
案例三:家长如何助力孩子跨越衔接阶段

高中数学初高中衔接教材第四节方程及方程组练习(无答案)新人教版

高中数学初高中衔接教材第四节方程及方程组练习(无答案)新人教版

(3 )第四节方程及方程组三元一次方程组 例1解方程组:X y a(1) y zb ;z X c例2:解方程组:.ab 2(1) be 9 ;-ea 2二、分式方程三、无理方程练习: 1. 5x 3 4x 2 0 的根是___________________ 2. x 22 x 23的解是3. (x 2 3x 2)(x 4)x0 的根为(2x -)212xx⑷ 3x 4 7 x 2 6 0 ;例3:解方程: (1)2x 44 xx 22x练习:解方程:1;(2) 26x 2x 3x 22x 26x 4 _s •3x;1⑺2(x 2 1) x 1 6x 6 7 ; 2 x 1.3x 4z 72x 3y z 9 ; 15x 9y 7z 8r y X z(2)y z z例4:解下列方程:(1) 3x 2 x 2 4x ;(3) (x 1) .x 3 0 ;⑷(5) x 6 3x 5 3. x 1(2) (x3)2 x 26x 1613;9 x 220 x 211 ;0 ; (6)x 2x 1 3 ' x 1 :x 224.解下列方程:(1) x 3 5x 23x 90 ;(2) 3x 212x 2 x 2 4x 7 13 0 ;(5)18 18x22x x2 2x 2 x22x 1作业:1 .解下列方程:(1)丄3 x6xx1 92x 8x 3x3x x211 3x2 (4) 12X x 121 ——x 22 •使分式方程产生增根m的值为四、二元二次方程组1. (I)型(特殊类型)例1 :解方程组厂x y 7(1)x2 y232 (2) 「2x一xy110 2x2. (n)型例2:解方程组:2厂x2 L x 3xy102y22xyy)23(x y)练习:1 •解下列方程组:(1)「Xx y2 •讨论方程组T3.方程组_xy2y2(x y) 2「y2 lx 2px2y4(P0)解的情形;2 「y,X 3) 4x2的解的组数是9例3:解下列方程组:2x y 1 10x2 y22x2yx6y22xy5xy2y3y2例4:例5:练习:2 2 厂x y(5)- 2 2_x y 解下列方程:(1)2 y 2xy当k为何值时,x y 18 2x4y 242x2x2y2y2xy2y4x2x4x3y(2)」Lxy2xy2y y 34方程组(1)有两个相等的实数根;1.方程组kx•若方程组JL XL2•解下列方程组:y 14y2...y2 L X2 匚x 2xy 3xy2y 104.方程组422km(1x 3y2y2y2101.;3x例6:解下列方程组:(1) 2x2 4xy3x 6xy4x 2y 1kx 2(2)有两个不相等的实数根;(3)无实数根。

2020年初升高数学衔接辅导之方程与不等式(含答案)

2020年初升高数学衔接辅导之方程与不等式(含答案)

07方程与不等式高中必备知识点1:二元二次方程组的解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项. 我们看下面的两个方程组:224310,210;x y x y x y ⎧-++-=⎨--=⎩ 222220,560.x y x xy y ⎧+=⎪⎨-+=⎪⎩ 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组.下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解.典型考题【典型例题】已知方程组有两组相等的实数解,求的值,并求出此时方程组的解.【变式训练】解方程组:【能力提升】解方程组:高中必备知识点2:一元二次不等式的解法为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解.我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解.(1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知不等式ax2+bx+c>0的解为x<x1,或x>x2;不等式ax2+bx+c<0的解为x1<x<x2.(2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c=0有两个相等的实数根x1=x2=-b2a,由图2.3-2②可知不等式ax2+bx+c>0的解为x≠-b2a;不等式ax2+bx+c<0无解.(3)如果△<0,抛物线y=ax2+bx+c(a>0)与x轴没有公共点,方程ax2+bx+c =0没有实数根,由图2.3-2③可知不等式ax2+bx+c>0的解为一切实数;不等式ax2+bx+c<0无解.今后,我们在解一元二次不等式时,如果二次项系数大于零,可以利用上面的结论直接求解;如果二次项系数小于零,则可以先在不等式两边同乘以-1,将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式.典型考题【典型例题】解下列不等式: (1)-3x 2-2x +8≥0; (2)0<x 2-x -2≤4;【变式训练】求不等式()()2460x x --≤的解.【能力提升】解下列不等式:(1)0622≥+--x x ; (2)012>++x x ; (3)(31)(1)4x x -+>.专题验收测试题1.不等式组3413{1x x +≤-<的解集在数轴上表示正确的是( ) A . B . C .D .2. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( ) A . B . C . D .3.解不等式,解题依据错误的是( )解:①去分母,得5(x+2)<3(2x ﹣1)②去括号,得5x+10<6x﹣3③移项,得5x﹣6x<﹣3﹣10④合并同类项,得﹣x<﹣13⑤系数化1,得x>13A.②去括号法则B.③不等式的基本性质1C.④合并同类项法则D.⑤不等式的基本性质24.已知温州至杭州铁路长为380千米,从温州到杭州乘“G”列动车比乘“D”列动车少用20分钟,“G”列动车比“D”列动车每小时多行驶30千米,设“G”列动车速度为每小时x千米,则可列方程为()A.3803802030x x-=-B.3803802030x x-=-C.3803801303x x-=+D.3803801303x x-=-5.不等式组3(2)24251x xx x--≥⎧⎨-<+⎩的整数解有()A.3个B.4个C.5个D.6个6.方程组的实数解的个数是()A.4 B.2 C.1 D.07.以下说法:①关于x的方程的解是x=c(c≠0);②方程组正整数的解有2组;③已知关于x,y的方程组,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的有()A.②③B.①②C.①③D.①②③8.二元二次方程组的解是A.B.C.D.9.一元二次方程kx2+4x+1=0有两个实数根,则k的取值范围是()A.k>4 B.k≥4C.k≤4D.k≤4且k≠010.一元二次方程(x﹣1)(x+5)=3x+2的根的情况是()A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根是1、﹣5和11.不等式组有3个整数解,则m的取值范围是_____.12.关于x的不等式组的解集在数轴上的表示如图所示,则此不等式组的解集为_____.13.不等式组的解集是_____.14.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.15.方程x2+2x=0的解为_____.16.设是方程的两个实数根,则的值为_____.17.已知关于的一元二次方程,其中为常数.(1)求证:无论为何值,方程总有两个不相等实数根;(2)若抛物线轴交于两点,且,求的值;18.(1)用配方法解方程:x2-2x-2=0;(2)已知关于x的方程(m-2)x2+(m-2)x-1=0有两个相等的实数根,求m的值.19.已知关于x一元二次方程,(1)当时,试解这个方程;(2)若方程的两个实数根为,且,求的值.20.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.(1)求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?(2)学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺素材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺素材和陶艺素材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.21.某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元. (1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵? (2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵? 22.解不等式213132x x ---≥1,并把它的解集表示在数轴上.专题07方程与不等式高中必备知识点1:二元二次方程组的解法方程 22260x xy y x y +++++=是一个含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,这样的方程叫做二元二次方程.其中2x ,2xy ,2y 叫做这个方程的二次项,x ,y 叫做一次项,6叫做常数项.我们看下面的两个方程组:224310,210;x y x y x y ⎧-++-=⎨--=⎩ 222220,560.x y x xy y ⎧+=⎪⎨-+=⎪⎩ 第一个方程组是由一个二元二次方程和一个二元一次方程组成的,第二个方程组是由两个二元二次方程组成的,像这样的方程组叫做二元二次方程组.下面我们主要来研究由一个二元二次方程和一个二元一次方程组成的方程组的解法. 一个二元二次方程和一个二元一次方程组成的方程组一般可以用代入消元法来解.典型考题【典型例题】已知方程组有两组相等的实数解,求的值,并求出此时方程组的解. 【答案】,当时;当时【解析】把②代入①后计算得,∵方程组有两组相等的实数解,∴△=(12m)2−4(2m2+1)•12=0,解得:,当时,解得当时,解得【变式训练】解方程组:【答案】【解析】,由①得(x+y)(x-2y)=0,∴x+y=0或x-2y=0,由②得(x+y)2=1,∴x+y=1或x+y=-1,所以原方程组化为,所以原方程组的解为.【能力提升】解方程组:【答案】【解析】由②得:所以,.高中必备知识点2:一元二次不等式的解法为了方便起见,我们先来研究二次项系数a>0时的一元二次不等式的解.我们知道,对于一元二次方程ax2+bx+c=0(a>0),设△=b2-4ac,它的解的情形按照△>0,△=0,△<0分别为下列三种情况——有两个不相等的实数解、有两个相等的实数解和没有实数解,相应地,抛物线y=ax2+bx+c(a>0)与x轴分别有两个公共点、一个公共点和没有公共点(如图2.3-2所示),因此,我们可以分下列三种情况讨论对应的一元二次不等式ax2+bx+c>0(a>0)与ax2+bx+c<0(a>0)的解.(1)当Δ>0时,抛物线y=ax2+bx+c(a>0)与x轴有两个公共点(x1,0)和(x2,0),方程ax2+bx+c=0有两个不相等的实数根x1和x2(x1<x2),由图2.3-2①可知不等式ax2+bx+c>0的解为x<x1,或x>x2;不等式ax2+bx+c<0的解为x1<x<x2.(2)当Δ=0时,抛物线y=ax2+bx+c(a>0)与x轴有且仅有一个公共点,方程ax2+bx+c=0有两个相等的实数根x1=x2=-b2a,由图2.3-2②可知不等式ax2+bx+c>0的解为x≠-b2a;不等式ax2+bx+c<0无解.(3)如果△<0,抛物线y=ax2+bx+c(a>0)与x轴没有公共点,方程ax2+bx+c =0没有实数根,由图2.3-2③可知不等式ax2+bx+c>0的解为一切实数;不等式ax2+bx+c<0无解.今后,我们在解一元二次不等式时,如果二次项系数大于零,可以利用上面的结论直接求解;如果二次项系数小于零,则可以先在不等式两边同乘以-1,将不等式变成二次项系数大于零的形式,再利用上面的结论去解不等式.典型考题【典型例题】解下列不等式:(1)-3x2-2x+8≥0;(2)0<x2-x-2≤4;【答案】(1)4{x/-2x}3≤≤.(2) {x/-2x1,23}x≤<-<≤.【解析】(1)原不等式可化为3x2+2x-8≤0,即(3x-4)(x+2)≤0.解得-2≤x≤,所以原不等式的解集为. (2)原不等式等价于⇔⇔⇔借助于数轴,如图所示,原不等式的解集为. 【变式训练】求不等式()()2460x x--≤的解.【答案】{|2x x≤-或26}x≤≤【解析】由题意,不等式()()2460x x--≤,可得24060xx⎧-≤⎨-≥⎩或24060xx⎧-≥⎨-≤⎩,由不等式组24060xx⎧-≤⎨-≥⎩,可得解集为ϕ由不等式组24060xx⎧-≥⎨-≤⎩,可得解集为2x-≤或26x≤≤,所以不等式的解集为{|2x x≤-或26}x≤≤.【能力提升】解下列不等式:(1)0622≥+--x x ; (2)012>++x x ;(3)(31)(1)4x x -+>.【答案】(1)3{|2}2x x -≤≤;(2)R ;(3)5{|3x x <-或1}x >. 【解析】(1)由题意,不等式0622≥+--x x ,可化为23262(2)()02x x x x +-=+-≤, 所以不不等式的解集为3{|2}2x x -≤≤; (2)由题意,可得22131()024x x x ++=++>,所以不等式的解集为R ; (3)由不等式(31)(1)4x x -+>,可化为23250x x +->,即5(1)()03x x -+>,所以不等式的解集为5{|3x x <-或1}x >.专题验收测试题1.不等式组3413{1x x +≤-<的解集在数轴上表示正确的是( ) A . B . C .D .【答案】D【解析】试题分析:解不等式3x+4≤13,得:x≤3,解不等式﹣x<1,得:x>﹣1,则不等式组的解集为﹣1<x≤3,故选:D.2.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.【答案】D【解析】试题分析:要列方程(组),首先要根据题意找出存在的等量关系.本题等量关系为:①男女生共20人;②男女生共植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.据此列出方程组:.故选D.3.解不等式,解题依据错误的是()解:①去分母,得5(x+2)<3(2x﹣1)②去括号,得5x+10<6x﹣3③移项,得5x﹣6x<﹣3﹣10④合并同类项,得﹣x<﹣13⑤系数化1,得x>13A.②去括号法则B.③不等式的基本性质1C.④合并同类项法则D.⑤不等式的基本性质2【答案】D【解析】由题目中的解答步骤可知,②去括号法则,故选项A正确,③不等式的基本性质1,故选项B正确,④合并同类项法则,故选项C正确,⑤不等式的基本性质3,故选项D错误,故选:D.4.已知温州至杭州铁路长为380千米,从温州到杭州乘“G”列动车比乘“D”列动车少用20分钟,“G”列动车比“D”列动车每小时多行驶30千米,设“G”列动车速度为每小时x千米,则可列方程为()A.3803802030x x-=-B .3803802030x x-=-C.3803801303x x-=+D.3803801303x x-=-【答案】D【解析】解:设“G”列动车速度为每小时x千米,则“D”列动车速度为每小时(x﹣30)千米,依题意,得:3803801303 x x-= -.故选:D.5.不等式组3(2)24251x xx x--≥⎧⎨-<+⎩的整数解有()A.3个B.4个C.5个D.6个【答案】C【解析】解:解不等式①,得x≤2,解不等式②,得x>﹣3.∴原不等式组的解集为﹣3<x≤2.又∵x为整数,∴x=﹣2,﹣1,0,1,2.故选:C.6.方程组的实数解的个数是()A.4 B.2 C.1 D.0【答案】B【解析】由①得原方程组可以转化为解得或无解.故方程组的实数解的个数是2个.故选:B.7.以下说法:①关于x的方程的解是x=c(c≠0);②方程组正整数的解有2组;③已知关于x,y的方程组,其中﹣3≤a≤1,当a=1时,方程组的解也是方程x+y=4﹣a的解;其中正确的有()A.②③B.①②C.①③D.①②③【答案】A【解析】①于x的方程x+==c+的解是x=c或x=(c≠0),此项错误;②方程组的正整数解有2组,方程组,因x、y、z是正整数,可得x+y≥2,又因23只能分解为23×1方程②变为(x+y)z=23,所以只能是z=1,x+y=23将z=1代入原方程转化为,解得x=2,y=21或x=20,y=3;所以这个方程组的正整数解是(2,21,1)、(20,3,1),此项正确;③关于x,y的方程组,其中-3≤a≤1,解得x=1+2a,y=1-a,x+y=2+a,当a=1时,x+y=3,故方程组的解也是方程x+y=4-a=3的解,此项正确.故选A.点睛:此题主要考查了分式方程的解法以及二元二次方程组的解法等知识,正确将原式变形是解题关键.8.二元二次方程组的解是A.B.C.D.【答案】C【解析】本题可将选项中的四组答案代入检验看是否符合二元二次方程组.也可根据第一个式子,得出的关系,代入第二个式子求解依题意得=3-∴y=(3-=-10-2+3+10=02-3-10=0(-5)(+2)=0=5,2=-21∴方程的解为:,故选C9.一元二次方程kx2+4x+1=0有两个实数根,则k的取值范围是()A.k>4 B.k≥4C.k≤4D.k≤4且k≠0【答案】D【解析】根据题意得k≠0且△=42﹣4k≥0,解得k≤4且k≠0.故选:D.10.一元二次方程(x﹣1)(x+5)=3x+2的根的情况是()A.方程没有实数根B.方程有两个相等的实数根C.方程有两个不相等的实数根D.方程的根是1、﹣5和【答案】C【解析】解:∵原方程可化为x2+x﹣7=0,∴a=1,b=1,c=﹣7,∴△=b2﹣4ac=12﹣4×1×(﹣7)=29>0,∴方程有两个不相等的实数根.故选:C.11.不等式组有3个整数解,则m的取值范围是_____.【答案】2<m≤3【解析】根据不等式组有3个整数解,可得:.故答案为:.12.关于x的不等式组的解集在数轴上的表示如图所示,则此不等式组的解集为_____.【答案】﹣1⩽x<2.【解析】解:由图示可看出,从﹣1 出发向右画出的线且﹣1 处是实心圆,表示x⩾﹣1;从2 出发向左画出的线且2 处是空心圆,表示x<2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是﹣1⩽x<2.13.不等式组的解集是_____.【答案】【解析】解:解不等式2x+4>0,得:x>−2,解不等式x−3(x−2)>4,得:x<1,则不等式组的解集为−2<x<1,故答案为:−2<x<1.14.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.【答案】m≤2解:由题意知,△=4﹣4(m﹣1)≥0,∴m≤2,故答案为:m≤2.15.方程x2+2x=0的解为_____.【答案】0,﹣2.【解析】x2+2x=0,x(x+2)=0,∴x=0或x+2=0,∴x=0或﹣2,故本题的答案是0,﹣2.16.设是方程的两个实数根,则的值为_____.【答案】2019【解析】解:根据题意得:α+β=1,α3−2021α−β+1=α(α2−2020)−(α+β)+1=α(α2−2020)−1+1=α(α2−2020),∵α2−α−2019=0,∴α2−2020=α−1,把α2−2020=α−1代入原式得:原式=α(α−1)=α2−α=2019.故答案为:2019.17.已知关于的一元二次方程,其中为常数.(1)求证:无论为何值,方程总有两个不相等实数根;(2)若抛物线轴交于两点,且,求【答案】(1)见解析;(2)【解析】(1)∵,,∴原方程总有两个不相等实数根(2)解:∵∴∴由题意:方程的两根为∴,代入上式,得,∴,∴,∴.18.(1)用配方法解方程:x2-2x-2=0;(2)已知关于x的方程(m-2)x2+(m-2)x-1=0有两个相等的实数根,求m的值.【答案】(1)x1=1+,x2=1-;(2)m的值为-2.【解析】解:(1)∵x2-2x-2=0,∴x2-2x=2,则x2-2x+1=2+1,即(x-1)2=3,∴x-1=,则x1=1+,x2=1-;(2)由题意,△=0即(m-2)2+4(m-2)=0,解得m1=2,m2=-2,又由m-2≠0,得m≠2,∴m的值为-2.19.已知关于x一元二次方程,(1)当时,试解这个方程;(2)若方程的两个实数根为,且,求的值.【答案】(1)(2)c=4【解析】解:(1)当时,原方程为,.∴(2)∵,∴∴∴解得:c=4∴ c=420.某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.(1)求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?(2)学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2元,陶艺素材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺素材和陶艺素材的数量在原计划基础上分别增加了2.5%和,结果在结算时发现,两种耗材的总价相等,求的值.【答案】(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)的值为95.【解析】(1)设购买一套茶艺耗材需要元,则购买一套陶艺耗材需要元,根据题意,得.解方程,得.经检验,是原方程的解,且符合题意.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为,由题意得:整理,得解方程,得(舍去).的值为95.21.某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?【答案】(1)购买了甲树10棵、乙树40棵;(2)至少应购买甲树30棵.【解析】解:(1)设购买了甲树x棵、乙树y棵,根据题意得50 800120056000 x yx y+=⎧⎨+=⎩解得:1040 xy=⎧⎨=⎩答:购买了甲树10棵、乙树40棵;(2)设应购买甲树a棵,根据题意得:800a≥1200(50﹣a)解得:a≥30答:至少应购买甲树30棵.22.解不等式213132x x---≥1,并把它的解集表示在数轴上.【答案】x≤﹣1【解析】解:去分母,得:2(2x﹣1)﹣3(3x﹣1)≥6,去括号,得:4x﹣2﹣9x+3≥6,移项,得:4x﹣9x≥6+2﹣3,合并同类项,得:﹣5x≥5,系数化为1,得:x≤﹣1,将不等式的解集表示在数轴上如下:21。

初高中数学衔接教程

初高中数学衔接教程
b 2 4ac b2 a( x ) 0 2、配方法: 2a 4a
b b 2 4ac x 3、求根公式法: 2a 0 b c x x , x x 1 2 1 2 a a
初高中衔接教程 二次型
韦达定理
【练习】见衔接教程第 74 页 第 1 题和第 2 题.
变形形式完成化简和求值。
初高中衔接教程 二次型
【例 2】已知关于 x 的方程 x2+2(m-2)x+m2+4=0 有两 个实数根,并且这两根的平方和比这两根的积大 21, 求 m 的值.
【方法提炼】 :勿忘韦达定理使用的前提是Δ ≥0。
初高中衔接教程
二次型
【例 3】若关于 x 的方程: x2-x+a+2=0 的一根大于零, 另一根小于零,求实数 a 的取值范围.
初高中数学衔接教程
一元二次方程
当我们不能确定什么是真的时,我们就应该去探 求什么是最可能的。 笛卡尔
回顾知识 巩固概念
一元二次方程的有关知识: 方程形式 根的判别式
回顾知识 巩固概念
一元二次方程的有关知识: 方程形式 根的判别式 求解方法 Δ ≥0 ax2+bx+c=0(a≠0) Δ =b2-4ac 1、因式分解法;
初高中衔接教程
二次型
例题评析
【例 1】如果 x1,x2 分别是方程 2x2-2x-1=0 的两根,
1 1 3 和 | x1 x2 | 的值. 分别求 x x , 2 2 , x13 x2 x1 x2
2 1 2 2
【变式】 :已知两个数的和为-6,积为-16,求这两个数。
【方法提炼 】 :熟记韦达定理,合理利用公式本身及其

一元二次方程根的分布(精练)(解析版)--2023届初升高数学衔接专题讲义

2023年初高中衔接素养提升专题课时检测第五讲一元二次方程根的分布(精练)(解析版)(测试时间60分钟)一、单选题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2022·四川巴中高一专题检测)若关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实根,则m 的取值范围为()A.((),22-∞---++∞B.(33---+C.((),33-∞---++∞D.(22---+【答案】C 【解析】由关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实根,所以2(1)40m m ∆=++=,即26+10m m +>解得:3m >-+或3m <--2.(2022·江苏·高一专题检测)一元二次方程24260x mx m -++=有两个不等的非正根,则实数m 的范围为()A.30m -<<B.31m -<≤-C.31m -≤<-D.312m -≤≤【答案】C【解析】因为一元二次方程24260x mx m -++=有两个不等的非正根,2164(26)020260m m m m ⎧∆=-+>⎪<⎨⎪+≥⎩,解得31m -≤<-,故选:C 3.(2022·陕西榆林高一专题检测)若方程()2250x m x m ++++=只有正根,则m 的取值范围是()A.4m ≤-或4m ≥B.54m -<≤-C.54m -≤≤-D.52m -<<-【答案】B 【解析】方程()2250x m x m ++++=只有正根,则1()当()()22450m m ∆=+-+=,即4m =±时,当4m =-时,方程为()210x -=时,1x =,符合题意;当4m =时,方程为()230x +=时,3x =-不符合题意.故4m =-成立;2()当()()22450m m ∆=+-+>,解得4m <-或4m >,则()()()224502050m m m m ⎧∆=+-+>⎪-+>⎨⎪+>⎩,解得54m -<<-.综上得54m -<≤-.故选B.4.(2022·江苏·高一月考)设1x ,2x 是关于x 的方程2(1)20x a x a +-++=的根.若111x -<<,212x <<,则实数a 的取值范围是()A .4(,1)3--B .31(,)42-C .(2,1)-D .(2,1)--【解答】解:由题意知,函数2()(1)2f x x a x a =+-++开口方向向上,若111x -<<,212x <<,则函数须同时满足三个条件:当1x =-时,2(1)20x a x a +-++>,代入解得40>,恒成立;当1x =时,2(1)20x a x a +-++<,代入解得220a +<,1a <-;当2x =时,2(1)20x a x a +-++>,代入解得4340,3a a +>>-,综上,实数a 的取值范围是4(,1)3--.故选:A .5.(2022·广东深圳高一专题检测)已知一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,则m 的值为()A .4-B .5-C .6-D .7-【解答】解:一元二次方程2(1)10()x m x m Z +++=∈有两个实数根1x ,2x ,且12013x x <<<<,令2()(1)10g x x m x =+++=,则(0)0(1)0(3)0g g g >⎧⎪<⎨⎪>⎩,即10301330m m >⎧⎪+<⎨⎪+>⎩,解得1333m -<<-,m Z ∈ ,4m ∴=-.故选:A .二、填空题6.(2022·浙江义乌高一专题检测)若关于x 的方程20x x a ++=的一个根大于1、另一个根小于1,则实数a 的取值范围为_____.【答案】(,2)-∞-【解析】 关于x 的方程20x x a ++=的一个根大于1、另一个根小于1,令2()f x x x a =++,则()120f a =+<,解得2a <-,7.(2022·江苏·高一专题检测)已知方程x 2-a 2x -a +1=0的两根x 1,x 2满足0<x 1<1,x 2>1.则实数a的取值范围是.【解析】设f(x)=x2-a2x-a+1.(0)=-a+1>0,(1)=1-a2-a+1<0,解得a<-2.8(2022·甘肃景泰二中高一专题检测)若函数f(x)=x2+(m-2)x+(5-m)有两个小于2的不同零点,则实数m的取值范围是.【解析】=(m-2)2-4(5-m)>0,-m-22<2,(2)=m+5>0,解得m>4.9.(2022·银川一中高一专题检测)关于x的方程x2+2(m-1)x+2m+6=0两个实根x1,x2满足x1<2,x2>4,则实数m的取值范围是.【解析】设f(x)=x2+2(m-1)x+2m+6.(2)=4+4(m-1)+2m+6<0,(4)=16+8(m-1)+2m+6<0,m+6<0,m+14<0,解得m<-75.三、解答题(解答时应写出文字说明、证明过程或演算步骤)10(2022·江苏·高一专题检测)方程8x2-(m-1)x+m-7=0的两实根都大于1,求实数m 的取值范围.【解析】方法一设函数f(x)=8x2-(m-1)x+m-7,作其草图,如图.若两实根均大于1,需m-1)2-32(m-7)≥0,≥25或m≤9,∈R,>17,解得m≥25.方法二设方程两根分别为x1,x2,则x1+x2=m-18,x1x2=m-78,因为两根均大于1,所以x1-1>0,x2-1>0,=(m-1)2-32(m-7)≥0,x1-1)+(x2-1)>0,x1-1)(x2-1)>0,)2-32(m-7)≥0,-m-18+1>0,解得11.(2022·江西高一第一月考)求实数m 的范围,使关于x 的方程22(1)260.x m x m +-++=(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根 αβ,,且满足014αβ<<<<;(3)至少有一个正根.【解析】(1)设()()22126y f x x m x m ==+-++.依题意有()20f <,即()441260m m +-++<,得1m <-.(2)设()()22126y f x x m x m ==+-++.依题意有()()()02601450410140f m f m f m ⎧=+>⎪=+<⎨⎪=+>⎩,解得7554m -<<-.(3)设()()22126y f x x m x m ==+-++.方程至少有一个正根,则有三种可能:①有两个正根,此时可得()()Δ0002102f m ⎧⎪≥⎪⎪>⎨⎪-⎪>⎪-⎩,即153.311m m m m m ≤-≥⎧⎪>-∴-<≤-⎨⎪<⎩或.②有一个正根,一个负根,此时可得()00f <,得3m <-.③有一个正根,另一根为0,此时可得()6203210m m m +=⎧∴=-⎨-<⎩,.综上所述,得1m ≤-.12.(2022·湖北武汉高一课时检测)已知关于x 的方程220x x a -+=.(1)当a 为何值时,方程的一个根大于1,另一个根小于1?(2)当a 为何值时,方程的一个根大于1-且小于1,另一个根大于2且小于3?(3)当a 为何值时,方程的两个根都大于0?【解析】(1)二次函数22y x x a =-+的图象是开口向上的抛物线,故方程220x x a -+=的一个根大于1,另一个根小于1,则2120a -+<,解得1a <,所以a 的取值范围是{}1a a <.(2)方程220x x a -+=的一个根大于1-且小于1,另一个根大于2且小于3,作满足题意的二次函数22y x x a =-+的大致图象,由图知,120120440960a a a a ++>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得30a -<<.所以a 的取值范围是{}30a a -<<.(3)方程220x x a -+=的两个根都大于0,则Δ4400a a =-≥⎧⎨>⎩,解得01a <≤,所以a 的取值范围是{}01a a <≤.。

初高中数学衔接教材:第三讲 方程—教师版

第三讲 方程(两课时)在本讲中我们主要巩固初中所学的知识,在巩固的基础上进行初高中衔接。

在初一一元二次方程的根与系数关系(即韦达定理)是作为拓展内容的,学生可以选择性学习,也可以不学,但在高中韦达定理在求解二次函数、不等式及解析几何等相关问题有着非常广泛的应用,是高中学生必须掌握的内容,在本讲中着重补充了这一相关知识点。

2.1 一元一次方程一、核心要点2.1.1 一元一次方程1、定义:只含有一个未知数且未知数的次数是一次的整式方程叫做一元一次方程2、一般式:)0(0≠=+a b ax3、解一元一次方程的步骤:去分母⇒移项⇒合并同类项⇒未知数系数化为14、关于方程b ax =解的讨论 (1)当0≠a 时,方程有唯一解ab x =; (2)当0,0≠=b a 时,方程无解;(3)当0,0==b a 时,方程有无数解;此时任意实数都是方程的解。

二、考点突破【例1】若关于y x ,的二元一次方程组⎩⎨⎧=++=+3313y x ay x 的解满足2<+y x ,求a 的取值范围?解:4<a2.2 一元二次方程一、核心要点2.2.1 一元二次方程1、定义:只含有一个未知数且未知数的最高次数是2的整式方程叫做一元二次方程2、一般式:)0(02≠=++a c bx ax2.2.2 一元二次方程的求根公式与判别式ac b 42-=∆1、一元二次方程)0(02≠=++a c bx ax ,用配方法将其变形为:22244)2(a acb a b x -=+(1) 当042>-ac b 时,右端是正数。

因此,方程有两个不相等的实数根:aacb b x a ac b b x 24,242221---=-+-=(2) 当042=-ac b 时,右端是零。

因此,方程有两个相等的实数根:abx x 221-== (3) 当042<-ac b 时,右端是负数。

因此,方程没有实数根。

由于可以用ac b 42-的取值情况来判定一元二次方程的根的情况。

初高中数学衔接答案

初高中数学衔接答案【篇一:初高中衔接教材含答案】学衔接教材第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

夏老师的初高中数学衔接课程(完整版)

函数的概念与性质
包括函数的定义、函数的表示方法(解析法、列表法、图象法)、函数的单调性、奇偶性 等。
一次函数、二次函数、反比例函数的图象与性质
通过具体函数解析式和图象,理解函数的性质和应用。
三角函数与数列
任意角的三角函数
包括任意角的概念、弧度制、任意角 的三角函数定义、同角三角函数的基 本关系等。
做练习题
通过大量的练习,加深对 知识点的理解和记忆,提 高解题能力和思维水平。
如何提高数学思维能力
掌握数学基础知识
熟练掌握数学基础知识, 如代数、几何、概率统计 等,为高级数学思维打下 基础。
学习数学思维方法
学习和掌握数学思维方法 ,如归纳分类、化归、数 形结合等,提高分析问题 和解决问题的能力。
3
函数与方程的思想
通过解析函数与方程的关系,阐述函数思想在解 决代数问题中的应用,如利用函数图像求方程的 解等。
几何类问题解析
平面几何中的证明问题
通过具体例题,讲解平面几何中证明问题的方法和技巧,如利用 相似三角形、勾股定理等进行证明。
立体几何中的计算问题
介绍立体几何中计算问题的解决方法,包括空间向量的应用、空间 角的计算等。
解析几何中的综合问题
通过解析几何中的综合问题,阐述数形结合的思想在解决几何问题 中的应用,如利用直线和圆的方程求交点等。
综合类问题解析
代数与几何的综合问题
通过具体例题,讲解代数与几何的综合问题的解决方法,如利用 代数方法解决几何问题、利用几何方法解决代数问题等。
数学思想与方法的应用
介绍数学思想与方法在解决综合问题中的应用,如分类讨论、化归 与转化、数形结合等。
01
02
讲解与演示
通过教师的详细讲解和演示,帮 助学生理解和掌握相关知识点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中衔接课程数学辅导(4)方程根的性

1、 方程的根及其与系数的关系
一元二次方程
有实根,两实根解为,则根与系数的关系为

2、 二次三项式分解
一元二次方程有实根,两实根为,则二次三项式

【典例分析】
例1:试确定m的值,使方程
(1) 有两个不同的正根;
(2) 有一正根一负根;b
(3) 有两个不同的大于1的根;
(4) 两根互为倒数;
(5) 一根为另一根的3倍。

例2:若方程只有3个不相等的实根,求a的值。
例3:关于x的两个方程和,其中一个方程的两根是另一个方程的根的倒
数,求a,b。

例4:设的两实根为α,β,若以为根的一元二次方程仍是,求所有这样
的一元二次方程。

例5:设方程和方程有且仅有一个公共根,求以其余两根为根的方程。
例6:已知是一元二次方程的两个实数根。
(1) 是否存在实数k,使成立?若存在,求出k的值;若不存在,请说
明理由;
(2) 求使的值为整数的实数k的整数值;
(3) 若k=-2,,试求的值。

课后巩固练习
解答题
1、 已知方程,不解方程求解新方程,使新方程的根分别是原方程的根
的平方。

2、 若方程有两个实数根,求的最小值。
3、 已知首项系数不相等的两个二次方程及(a,b是正整数)有一个公
共根,求的值。
4、设等腰三角形的一腰与底边的长分别是方程的两根,当满足这样条
件的三角形只有一个时,试求a的取值范围。

5、设t是一元二次方程的一个实数根,比较与平方式的大小关系。
6、当a在什么范围内取值时,方程有且仅有两个相异实根?
填空题
1、 关于的方程有整数解,则a=_________。
2、 若是方程的两个实数根,则的最小值为______________。
3、 若关于的实系数一元二次方程与至少有一个公共的实数根,则
a=____________。
4、 写出一个以-3和1为根的一元二次方程:___________________。

相关文档
最新文档