2019高考数学二轮复习 第二部分 专题五 解析几何 专题强化练十二 直线与圆 文
(全国通用版)2019高考数学二轮复习 专题五 解析几何 第1讲 直线与圆学案 理

第1讲 直线与圆[考情考向分析] 考查重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题).此类问题难度属于中低档,一般以选择题、填空题的形式出现.热点一 直线的方程及应用 1.两条直线平行与垂直的判定若两条不重合的直线l 1,l 2的斜率k 1,k 2存在,则l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1k 2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x 轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2(A 2+B 2≠0). (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离公式d =|Ax 0+By 0+C |A 2+B 2(A 2+B 2≠0).例1 (1)(2018·齐鲁名校教科研协作体模拟)已知直线l 1:x ·sin α+y -1=0,直线l 2:x -3y ·cos α+1=0,若l 1⊥l 2,则sin 2α等于( ) A.23 B .±35 C .-35 D.35 答案 D解析 因为l 1⊥l 2, 所以sin α-3cos α=0, 所以tan α=3,所以sin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α =2tan α1+tan 2α=35. (2)在平面直角坐标系xOy 中,直线l 1:kx -y +2=0与直线l 2:x +ky -2=0相交于点P ,则当实数k 变化时,点P 到直线x -y -4=0的距离的最大值为________. 答案 3 2解析 由题意得,当k ≠0时,直线l 1:kx -y +2=0的斜率为k ,且经过点A (0,2),直线l 2:x +ky -2=0的斜率为-1k,且经过点B (2,0),且直线l 1⊥l 2,所以点P 落在以AB 为直径的圆C 上,其中圆心坐标为C (1,1),半径为r =2,由圆心到直线x -y -4=0的距离为d =||1-1-42=22,所以点P 到直线x -y -4=0的最大距离为d +r =22+2=3 2.当k =0时,l 1⊥l 2,此时点P (2,2).点P 到直线x -y -4=0的距离d =|2-2-4|2=2 2.综上,点P 到直线x -y -4=0的距离的最大值为3 2.思维升华 (1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况. (2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究.跟踪演练1 (1)(2018·上海市虹口区模拟)直线ax +(a -1)y +1=0与直线4x +ay -2=0互相平行,则实数a =________.答案 2解析 当a ≠0时,a 4=a -1a ≠1-2,解得a =2.当a =0时,两直线显然不平行.故a =2.(2)(2018·齐齐哈尔模拟)圆x 2+y 2-2x -4y +3=0的圆心到直线x -ay +1=0的距离为2,则a 等于( ) A .-1 B .0 C .1 D .2 答案 B解析 因为(x -1)2+()y -22=2,所以|1-2a +1|1+a 2=2,所以a =0.热点二 圆的方程及应用 1.圆的标准方程当圆心为(a ,b ),半径为r 时,其标准方程为(x -a )2+(y -b )2=r 2,特别地,当圆心在原点时,方程为x 2+y 2=r 2.2.圆的一般方程x 2+y 2+Dx +Ey +F =0,其中D 2+E 2-4F >0,表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,D 2+E 2-4F 2为半径的圆.例2 (1)圆心为(2,0)的圆C 与圆x 2+y 2+4x -6y +4=0相外切,则C 的方程为( ) A .x 2+y 2+4x +2=0 B .x 2+y 2-4x +2=0C .x 2+y 2+4x =0 D .x 2+y 2-4x =0 答案 D解析 圆x 2+y 2+4x -6y +4=0, 即(x +2)2+(y -3)2=9, 圆心为(-2,3),半径为3. 设圆C 的半径为r .由两圆外切知,圆心距为(2+2)2+(0-3)2=5=3+r , 所以r =2.故圆C 的方程为(x -2)2+y 2=4, 展开得x 2+y 2-4x =0.(2)已知圆M 与直线3x -4y =0及3x -4y +10=0都相切,圆心在直线y =-x -4上,则圆M 的方程为( ) A.()x +32+(y -1)2=1B.()x -32+()y +12=1C.()x +32+()y +12=1D.()x -32+(y -1)2=1答案 C解析 到两直线3x -4y =0及3x -4y +10=0的距离都相等的直线方程为3x -4y +5=0,联立方程组⎩⎪⎨⎪⎧3x -4y +5=0,y =-x -4,解得⎩⎪⎨⎪⎧x =-3,y =-1.两平行线之间的距离为2,所以半径为1,从而圆M 的方程为()x +32+()y +12=1.故选C.思维升华 解决与圆有关的问题一般有两种方法(1)几何法:通过研究圆的性质、直线与圆、圆与圆的位置关系,进而求得圆的基本量和方程. (2)代数法:即用待定系数法先设出圆的方程,再由条件求得各系数.跟踪演练2 (1)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆.(2)(2018·天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.答案 x 2+y 2-2x =0解析 方法一 设圆的方程为x 2+y 2+Dx +Ey +F =0. ∵圆经过点(0,0),(1,1),(2,0),∴⎩⎪⎨⎪⎧F =0,2+D +E +F =0,4+2D +F =0,解得⎩⎪⎨⎪⎧D =-2,E =0,F =0.∴圆的方程为x 2+y 2-2x =0. 方法二 画出示意图如图所示,则△OAB 为等腰直角三角形, 故所求圆的圆心为(1,0),半径为1, ∴所求圆的方程为(x -1)2+y 2=1, 即x 2+y 2-2x =0.热点三 直线与圆、圆与圆的位置关系1.直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法.(1)点线距离法:设圆心到直线的距离为d ,圆的半径为r ,则d <r ⇔直线与圆相交,d =r ⇔直线与圆相切,d >r ⇔直线与圆相离.(2)判别式法:设圆C :(x -a )2+(y -b )2=r 2,直线l :Ax +By +C =0(A 2+B 2≠0),方程组⎩⎪⎨⎪⎧Ax +By +C =0,(x -a )2+(y -b )2=r2消去y ,得到关于x 的一元二次方程,其根的判别式为Δ,则直线与圆相离⇔Δ<0,直线与圆相切⇔Δ=0,直线与圆相交⇔Δ>0.2.圆与圆的位置关系有五种,即内含、内切、相交、外切、外离.设圆C 1:(x -a 1)2+(y -b 1)2=r 21,圆C 2:(x -a 2)2+(y -b 2)2=r 22,两圆心之间的距离为d ,则圆与圆的五种位置关系的判断方法如下: (1)d >r 1+r 2⇔两圆外离. (2)d =r 1+r 2⇔两圆外切. (3)|r 1-r 2|<d <r 1+r 2⇔两圆相交. (4)d =|r 1-r 2|(r 1≠r 2)⇔两圆内切. (5)0≤d <|r 1-r 2|(r 1≠r 2)⇔两圆内含.例3 (1)设圆C 1:x 2+y 2=1与圆C 2:(x -2)2+(y +2)2=1,则圆C 1与圆C 2的位置关系是( ) A .外离 B .外切 C .相交 D .内含答案 A故两圆外离.(2)(2018·揭阳模拟)已知直线4x -3y +a =0与⊙C :x 2+y 2+4x =0相交于A ,B 两点,且∠ACB =120°,则实数a 的值为( ) A .3 B .10 C .11或21 D .3或13答案 D解析 圆的方程整理为标准方程即(x +2)2+y 2=4,作CD ⊥AB 于点D ,由圆的性质可知△ABC 为等腰三角形,其中|CA |=|CB |, 则|CD |=|CA |×sin 30°=2×12=1,即圆心(-2,0)到直线4x -3y +a =0的距离为d =1, 据此可得|-8+0+a |42+(-3)2=1, 即|a -8|=5,解得a =3或a =13.思维升华 (1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量.(2)圆上的点与圆外点的距离的最值问题,可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题.跟踪演练3 (1)(2018·广州名校联考)已知直线y =ax 与圆C :x 2+y 2-2ax -2y +2=0交于两点A ,B ,且△CAB 为等边三角形,则圆C 的面积为________. 答案 6π解析 圆C 化为(x -a )2+(y -1)2=a 2-1, 且圆心C (a,1),半径R =a 2-1(a 2>1).∵直线y =ax 和圆C 相交,且△ABC 为等边三角形, ∴圆心C 到直线ax -y =0的距离为R sin 60°=32×a 2-1, 即d =|a 2-1|a 2+1=3(a 2-1)2.解得a 2=7.∴圆C 的面积为πR 2=π(7-1)=6π.(2)如果圆(x -a )2+(y -a )2=8上总存在到原点的距离为2的点,则实数a 的取值范围是( ) A .(-3,-1)∪(1,3) B .(-3,3)C .[1,1]D .[-3,-1]∪[1,3]答案 D=8上总存在点到原点的距离为2,则圆(x -a )2+(y -a )2=8与圆x 2+y 2=2有公共点,r ′=2,所以r -r ′≤|2a |≤r +r ′,即1≤|a |≤3,解得1≤a ≤3或-3≤a ≤-1,所以实数a 的取值范围是[-3,-1]∪[1,3].真题体验1.(2016·山东改编)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是________. 答案 相交解析 ∵圆M :x 2+(y -a )2=a 2, ∴圆心坐标为M (0,a ),半径r 1=a , 圆心M 到直线x +y =0的距离d =|a |2,由几何知识得⎝⎛⎭⎪⎫|a |22+(2)2=a 2,解得a =2. ∴M (0,2),r 1=2.又圆N 的圆心坐标为N (1,1),半径r 2=1, ∴|MN |=(1-0)2+(1-2)2= 2. 又r 1+r 2=3,r 1-r 2=1,∴r 1-r 2<|MN |<r 1+r 2,∴两圆相交.2.(2016·上海)已知平行直线l 1:2x +y -1=0,l 2:2x +y +1=0,则l 1,l 2的距离是________. 答案2553.(2018·全国Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 答案 2 2解析 由x 2+y 2+2y -3=0,得x 2+(y +1)2=4. ∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2.4.(2018·全国Ⅲ改编)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是________. 答案 [2,6]所以圆心C 到直线x +y +2=0的距离为22,可得d max =22+r =32,d min =22-r = 2.由已知条件可得|AB |=22,所以△ABP 面积的最大值为12|AB |·d max =6,△ABP 面积的最小值为12|AB |·d min =2.综上,△ABP 面积的取值范围是[2,6]. 押题预测1.已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成的两段弧长比为1∶2,则圆C 的方程为( ) A.⎝ ⎛⎭⎪⎫x ±332+y 2=43 B.⎝⎛⎭⎪⎫x ±332+y 2=13 C .x 2+⎝ ⎛⎭⎪⎫y ±332=43 D .x 2+⎝⎛⎭⎪⎫y ±332=13押题依据 直线和圆的方程是高考的必考点,经常以选择题、填空题的形式出现,利用几何法求圆的方程也是数形结合思想的应用. 答案 C解析 由已知得圆心在y 轴上,且被x 轴所分劣弧所对的圆心角为2π3.设圆心坐标为(0,a ),半径为r ,则r sin π3=1,r cos π3=|a |,解得r =233,即r 2=43,|a |=33,即a =±33,故圆C 的方程为x 2+⎝ ⎛⎭⎪⎫y ±332=43. 2.设m ,n 为正实数,若直线(m +1)x +(n +1)y -4=0与圆x 2+y 2-4x -4y +4=0相切,则mn ( ) A .有最小值1+2,无最大值 B .有最小值3+22,无最大值 C .有最大值3+22,无最小值 D .有最小值3-22,最大值3+2 2押题依据 直线与圆的位置关系是高考命题的热点,本题与基本不等式结合考查,灵活新颖,加之直线与圆的位置关系本身承载着不等关系,因此此类题在高考中出现的可能性很大. 答案 B解析 由直线(m +1)x +(n +1)y -4=0与圆(x -2)2+(y -2)2=4相切,可得2|m +n |(m +1)2+(n +1)2=2,整理得m+n +1=mn .由m ,n 为正实数可知,m +n ≥2mn (当且仅当m =n 时取等号),令t =mn ,则2t +1≤t 2,因为3.若圆x 2+y 2=4与圆x 2+y 2+ax +2ay -9=0(a >0)相交,公共弦的长为22,则a =________. 押题依据 本题已知公共弦长,求参数的范围,情境新颖,符合高考命题的思路. 答案102解析 联立两圆方程⎩⎪⎨⎪⎧x 2+y 2=4,x 2+y 2+ax +2ay -9=0,可得公共弦所在直线方程为ax +2ay -5=0, 故圆心(0,0)到直线ax +2ay -5=0的距离为 |-5|a 2+4a2=5a(a >0).故222-⎝⎛⎭⎪⎫5a 2=22, 解得a 2=52,因为a >0,所以a =102.A 组 专题通关1.若3π2<α<2π,则直线x cos α+y sin α=1必不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 令x =0,得y =sin α<0,令y =0,得x =cos α>0,直线过(0,sin α),(cos α,0)两点,因而直线不过第二象限.2.(2018·呼和浩特调研)设直线l 1:x -2y +1=0与直线l 2:mx +y +3=0的交点为A ,P ,Q 分别为l 1,l 2上任意两点,点M 为P ,Q 的中点,若|AM |=12|PQ |,则m 的值为( )A .2B .-2C .3D .-3 答案 A解析 根据题意画出图形,如图所示.直线l 1:x -2y +1=0 与直线l 2:mx +y +3=0 的交点为A ,M 为PQ 的中点, 若|AM |=12|PQ |,则PA ⊥QA ,即l 1⊥l 2,∴1×m +(-2)×1=0,解得m =2.3.我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A .x +(2-1)y -2=0 B .(1-2)x -y +2=0 C .x -(2+1)y +2=0 D .(2-1)x -y +2=0答案 C解析 如图所示可知A (2,0),B (1,1),C (0,2),D (-1,1),所以直线AB ,BC ,CD 的方程分别为y =1-01-2(x -2),y =(1-2)x +2, y =(2-1)x + 2整理为一般式即x +()2-1y -2=0,()1-2x -y +2=0,()2-1x -y +2=0,故选C.4.(2018·吴忠模拟)与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是( ) A .(x +1)2+()y +12=2B .(x -1)2+()y +12=4C .(x -1)2+()y +12=2D .(x +1)2+()y +12=4答案 C程为x +y =0,所求的圆心在此直线上,又圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求圆的半径为2,设所求圆心为(a ,b ),且圆心在直线x -y -4=0的左上方,则|a -b -4|2=2,且a +b =0,解得a=1,b =-1(a =3,b =-3不符合半径最小,舍去),故所求圆的方程为(x -1)2+()y +12=2.5.(2018·孝义模拟)已知点P 是直线l :x +y -b =0上的动点,由点P 向圆O :x 2+y 2=1引切线,切点分别为M ,N ,且∠MPN =90°,若满足以上条件的点P 有且只有一个,则b 等于( ) A .2 B .±2 C. 2 D .± 2 答案 B解析 由题意得∠PMO =∠PNO =∠MON =90°, |MO |=|ON |=1,∴四边形PMON 是正方形,∴|PO |=2, ∵满足以上条件的点P 有且只有一个, ∴OP 垂直于直线x +y -b =0, ∴2=|-b |1+1,∴b =±2.6.在平面直角坐标系xOy 中,圆O 的方程为x 2+y 2=4,直线l 的方程为y =k (x +2),若在圆O 上至少存在三点到直线l 的距离为1,则实数k 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤0,33 B.⎣⎢⎡⎦⎥⎤-33,33 C.⎣⎢⎡⎦⎥⎤-12,12D.⎣⎢⎡⎦⎥⎤0,12 答案 B解析 根据直线与圆的位置关系可知,若圆O :x 2+y 2=4上至少存在三点到直线l :y =k (x +2)的距离为1,则圆心(0,0)到直线kx -y +2k =0的距离d 应满足d ≤1,即||2k k 2+1≤1,解得k 2≤13,即-33≤k ≤33,故选B.7.(2018·安阳模拟)已知圆C 1:x 2+y 2-kx +2y =0与圆C 2:x 2+y 2+ky -4=0的公共弦所在直线恒过定点P (a ,b ),且点P 在直线mx -ny -2=0上,则mn 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-∞,14D.⎝⎛⎦⎥⎤-∞,14 答案 D解析 由x 2+y 2-kx +2y =0与x 2+y 2+ky -4=0,相减得公共弦所在直线方程kx +()k -2y -4=0,即k (x +y )-()2y +4=0,所以由⎩⎪⎨⎪⎧2y +4=0,x +y =0,得x =2,y =-2,即P ()2,-2,因此2m +2n -2=0, 所以m +n =1,mn ≤⎝⎛⎭⎪⎫m +n 22=14(当且仅当m =n 时取最大值).8.(2018·齐鲁名校教科研协作体模拟)直线x +y sin α-3=0(α∈R )的倾斜角的取值范围是_____.答案 ⎣⎢⎡⎦⎥⎤π4,3π4解析 若sin α=0,则直线的倾斜角为π2;若sin α≠0, 则直线的斜率k =-1sin α∈()-∞,-1]∪[1,+∞, 设直线的倾斜角为θ,则tan θ∈()-∞,-1]∪[1,+∞,故θ∈⎣⎢⎡⎭⎪⎫π4,π2∪ ⎝ ⎛⎦⎥⎤π2,3π4,综上可得直线的倾斜角的取值范围是⎣⎢⎡⎦⎥⎤π4,3π4.9.(2018·安徽省“皖南八校”联考)若过点(2,0)有两条直线与圆x 2+y 2-2x +2y +m +1=0相切,则实数m 的取值范围是________. 答案 (-1,1)解析 由题意过点(2,0)有两条直线与圆x 2+y 2-2x +2y +m +1=0相切, 则点(2,0)在圆外,即22-2×2+m +1>0,解得m >-1; 由方程x 2+y 2-2x +2y +m +1=0表示圆, 则(-2)2+22-4(m +1)>0,解得m <1. 综上,实数m 的取值范围是(-1,1).10.已知直线l :mx -y =1.若直线l 与直线x -my -1=0平行,则m 的值为________;动直线l 被圆x 2+2x +y 2-24=0截得的弦长的最小值为________. 答案 -1 223解析 当m =0时,两直线不平行;当m ≠0时,由题意得m 1=-1-m,所以m =±1.当m =1时,两直线重合,所以m =1舍去,故m =-1. 因为圆的方程为x 2+2x +y 2-24=0,所以(x +1)2+y 2=25,所以它表示圆心为C (-1,0),半径为5的圆. 由于直线l :mx -y -1=0过定点P (0,-1), 所以过点P 且与PC 垂直的弦长最短, 且最短弦长为252-(2)2=223.11.在平面直角坐标系xOy 中,已知圆C :(x +1)2+y 2=2,点A (2,0),若圆C 上存在点M ,满足|MA |2+|MO |2≤10,则点M 的纵坐标的取值范围是________. 答案 ⎣⎢⎡⎦⎥⎤-72,72 解析 设点M (x ,y ),因为|MA |2+|MO |2≤10, 所以(x -2)2+y 2+x 2+y 2≤10, 即x 2+y 2-2x -3≤0,因为(x +1)2+y 2=2,所以y 2=2-(x +1)2, 所以x 2+2-(x +1)2-2x -3≤0, 化简得x ≥-12.因为y 2=2-(x +1)2,所以y 2≤74,所以-72≤y ≤72. 12.设圆C 满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为d .当d 最小时,圆C 的面积为________. 答案 2π解析 如图,设圆心坐标为C (a ,b ),则⎩⎨⎧r 2=a 2+1,r =2|b |,即2b 2=a 2+1,所以圆心C (a ,b )到直线x -2y =0的距离d =|a -2b |5,故d 2=(a -2b )25=15(a 2+4b 2-4ab ).由于a 2+b 2≥2ab ,即-4ab ≥-2a 2-2b 2, 故d 2=15(a 2+4b 2-4ab )≥15(2b 2-a 2)=15(当且仅当a =b 时取等号),此时r 2=a 2+1=2,故圆的面积S =πr 2=2π.B 组 能力提高13.已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方)且|AB |=2,过点A 任作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,下列三个结论:①|NA ||NB |=|MA ||MB |;②|NB ||NA |-|MA ||MB |=2;③|NB ||NA |+|MA ||MB |=2 2.其中正确结论的序号是( ) A .①② B.②③ C.①③ D.①②③ 答案 D解析 根据题意,利用圆中的特殊三角形,求得圆心及半径,即得圆的方程为(x -1)2+(y -2)2=2,并且可以求得A (0,2-1),B (0,2+1),因为M ,N 在圆O :x 2+y 2=1上, 所以可设M (cos α,sin α),N (cos β,sin β),所以|NA |=(cos β-0)2+[sin β-(2-1)]2=2(2-1)(2-sin β),|NB |=(cos β-0)2+[sin β-(2+1)]2=2(2+1)(2-sin β), 所以|NA ||NB |=2-1,同理可得|MA ||MB |=2-1,所以|NA ||NB |=|MA ||MB |,|NB ||NA |-|MA ||MB |=12-1-(2-1)=2, |NB ||NA |+|MA ||MB |=22, 故①②③都正确.14.若对圆(x -1)2+(y -1)2=1上任意一点P (x ,y ),||3x -4y +a ||+3x -4y -9的取值与x ,y 无关,则实数a 的取值范围是( ) A .a ≤-4B .-4≤a ≤6C .a ≤-4或a ≥6D .a ≥6答案 D 解析||3x -4y -9表示圆上的点到直线l 1:3x -4y -9=0的距离的5倍,||3x -4y +a 表示圆上的点到直线l 2:3x -4y +a =0的距离的5倍,所以||3x -4y +a ||+3x -4y -9的取值与x ,y 无关,即圆上的点到直线l 1,l 2的距离与圆上点的位置无关,所以直线3x -4y +a =0与圆相离或相切,并且l 1和l 2在圆的两侧,所以d =||3-4+a 5≥1,并且a >0,解得a ≥6,故选D.15.(2018·合肥质检)为保护环境,建设美丽乡村,镇政府决定为A ,B ,C 三个自然村建造一座垃圾处理站,集中处理A ,B ,C 三个自然村的垃圾,受当地条件限制,垃圾处理站M 只能建在与A 村相距5 km ,且与C 村相距31 km 的地方.已知B 村在A 村的正东方向,相距3 km ,C 村在B 村的正北方向,相距3 3 km ,则垃圾处理站M 与B 村相距________ km. 答案 2或7解析 以A 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系(图略),则A (0,0),B (3,0),C (3,33). 由题意得垃圾处理站M 在以A (0,0)为圆心,5为半径的圆A 上,同时又在以C (3,33)为圆心,31为半径的圆C 上,两圆的方程分别为x 2+y 2=25和(x -3)2+(y -33)2=31.由⎩⎨⎧x 2+y 2=25,(x -3)2+(y -33)2=31,解得⎩⎪⎨⎪⎧x =5,y =0或⎩⎪⎨⎪⎧x =-52,y =532,∴垃圾处理站M 的坐标为(5,0)或⎝ ⎛⎭⎪⎫-52,532,∴|MB |=2或|MB |=⎝ ⎛⎭⎪⎫-52-32+⎝ ⎛⎭⎪⎫5322=7, 即垃圾处理站M 与B 村相距2 km 或7 km.16.点P (x ,y )是直线2x +y +4=0上的动点,PA ,PB 是圆C :x 2+(y -1)2=1的两条切线,A ,B 是切点,则△PAB 面积的最小值为________. 答案 85解析 由圆的方程C :x 2+(y -1)2=1,可得圆心C (0,1),半径r =1, 则圆心到直线2x +y +4=0的距离为d =522+12=5,设|PC |=m ,则m ≥5, 则S △PAB =12|PA |2sin 2∠APC=|PA |2sin∠APC cos∠APC=|PA |2·1|PC |·|PA ||PC |=()m 2-13m 2, 令S =(m 2-1)3m2,m ≥5, 所以S ′=m 2-1()3m 2-2m 2+2m 3=m 2-1()m 2+2m 3>0,所以函数S 在[)5,+∞上单调递增, 所以S min =S ()5=85.即(S △PAB )min =85.。
2019高考数学二轮复习专题五解析几何第一讲小题考法——直线与圆课件理

解得
答案:2
考点(二)
线与圆相切等问题.
圆的方程
主要考查圆的方程的求法,常涉及弦长公式、直
[ 典例感悟] [典例] (1)已知三点 A(1,0),B(0, 3),C(2, 3),则△ABC
外接圆的圆心到原点的距离为 5 A. 3
[解析]
[解析] 易知直线 x-y+1=0 与 x 轴的交点为(-1,0),
即圆 C 的圆心坐标为(-1,0). 因为直线 x+y+3=0 与圆 C 相切, 所以圆心(-1,0)到直线 x+y+3=0 的距离等于半径 r, |-1+0+3| 即 r= = 2,所以圆 C 的方程为(x+1)2+y2=2. 2
解析:由二元二次方程表示圆的条件可得 a2=a+2≠0,解得 a=2 或-1.当 a=2 时,方程为 4x2+4y2+4x+8y+10=0,即
1 2 5 5 2 x +y +x+2y+ =0,配方得 x+2 +(y+1) =- <0,不表 2 4
2 2
示圆;当 a=-1 时,方程为 x2+y2+4x+8y-5=0,配方得 (x+2)2+(y+4)2=25,则圆心坐标为(-2,-4),半径是 5.
[答案]
D
[ 方法技巧]
直线方程问题的 2 个关注点
(1)求解两条直线平行的问题时,在利用 A1B2-A2B1 =0 建立方程求出参数的值后,要注意代入检验,排除两 条直线重合的情况.
(2)求直线方程时应根据条件选择合适的方程形式, 同时要考虑直线斜率不存在的情况.
[ 演练冲关] 1.(2018· 洛阳模拟)已知直线 l1:x+my-1=0,l2:nx+y-p=0,
则“m+n=0”是“l1⊥l2”的 A.充分不必要条件 C.充要条件 B.必要不充分条件 D.既不充分也不必要条件 ( )
2019年高考数学二轮复习试题:专题五 第1讲 直线与圆附解析

第1讲直线与圆选题明细表知识点·方法巩固提高A 巩固提高B直线及其方程1,4,10两条直线的位置关系2,8 4,9,15点到直线的距离16圆的方程3,5,14 13直线与圆、圆与6,9,11,15,16 2,6,11,12圆的位置关系圆的弦长13 1,5,10,14综合问题7,12,17 3,7,8,16巩固提高A一、选择题1.过点(2,1)且倾斜角比直线y=-x-1的倾斜角小的直线方程是( A )(A)x=2 (B)y=1 (C)x=1 (D)y=2解析:因为直线y=-x-1的斜率为-1,则倾斜角为,依题意,所求直线的倾斜角为-=,所以斜率不存在,所以过点(2,1)的直线方程为x=2.2.(2017·金丽衢十二校)设两直线l1:(3+m)x+4y=5-3m与l2:2x+(5+m)y=8,则“l1∥l2”是“m<-1”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:若l1∥l2,则(3+m)(5+m)=4×2,解得m=-7或m=-1,当m=-1时,两直线重合,当m=-7时l1∥l2,所以“l1∥l2”是“m<-1”的充分不必要条件.故选A.3.方程|y|-1=表示的曲线是( D )(A)一个椭圆 (B)一个圆(C)两个圆(D)两个半圆解析:由题意知|y|-1≥0,则y≥1或y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y ≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=表示的曲线是两个半圆,选D.4.直线l过点P(-1,2)且与以点M(-3,-2),N(4,0)为端点的线段恒相交,则l的斜率取值范围是( D )(A)[-,5](B)[-,0)∪(0,2](C)(-∞,-)∪[5,+∞)(D)(-∞,-]∪[2,+∞)解析:如图,因为P(-1,2),M(-3,-2),N(4,0),所以k PM==2,k PN==-.由图可知,使直线l与线段MN相交的l的斜率取值范围是(-∞,-]∪[2,+∞).故选D.5.抛物线y2=4x与过其焦点且垂直于x轴的直线相交于A,B两点,其准线与x轴的交点为M,则过M,A,B三点的圆的标准方程是( D )(A)x2+y2=5 (B)(x-1)2+y2=1(C)(x-1)2+y2=2 (D)(x-1)2+y2=4解析:由抛物线方程及题意知A(1,2),B(1,-2),M(-1,0),设所求圆的方程为x2+y2+Dx+Ey+F=0,所以解得从而所求方程为x2+y2-2x-3=0,即圆的标准方程为(x-1)2+y2=4.故选D.6.直线x-2y-3=0与圆C:(x-2)2+(y+3)2=9交于E,F两点,则△ECF的面积为( B )(A)(B)2 (C) (D)解析:由已知可得圆心到直线的距离为d=,所以|EF|=4,所以S△ECF=×4×=2.故选B.7.已知平面上两点A(-a,0),B(a,0)(a>0),若圆C:(x-3)2+(y-4)2=1上存在点P,使得∠APB=90°,则a的取值范围是( C )(A)[3,6] (B)[3,7] (C)[4,6] (D)[0,7]解析:因为圆C:(x-3)2+(y-4)2=1,所以圆心C(3,4),半径r=1;设点P(m,n)在圆C上,则=(a+m,n),=(m-a,n);因为∠APB=90°,所以⊥,所以(m+a)(m-a)+n2=0,即a2=m2+n2,又|OP|=,|OP|的最大值是|OC|+r=5+1=6,最小值是|OC|-r=5-1=4,所以a的取值范围是[4,6].故选C.8.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为( C )(A)5 (B)4 (C)2 (D)1解析:由题意得a2b+[-(a2+1)]=0,所以b=,所以|ab|=|a×|=|a+|=|a|+||≥2.当且仅当|a|=1时等号成立.故选C.二、填空题9.直线l:x=m y+2与圆M:x2+2x+y2+2y=0相切,则m的值等于.解析:圆心M(-1,-1),圆半径为.由直线与圆相切得d==,得m=-7或m=1.答案:-7或110.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为.解析:若直线过原点,则直线方程为3x+2y=0;若直线不过原点,则斜率为1,方程为y+3=x-2,即为x-y-5=0,故所求直线方程为3x+2y=0或x-y-5=0.答案:3x+2y=0或x-y-5=011.动直线l:y=kx-k+1(k∈R)经过的定点坐标为,若l和圆C:x2+y2=r2恒有公共点,则半径r的最小值是.解析:当x=1时,y恒为1,故定点为(1,1),要直线和圆恒有公共点,则需(1,1)在圆内,即12+12≤r2,r≥.答案:(1,1)12.当方程x2+y2+kx+2y+k2=0所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角α= .解析:由题意可知,圆的半径r==≤1,当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tan α=-1,又α∈[0,π),故α=.答案:13.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为2,则a=.解析:两圆方程作差易知弦所在的直线方程为y=,如图,由已知得|AC|=,|OA|=2,所以|OC|==1,所以a=1.答案:114.C的圆心在y轴正半轴上,且与x轴相切,被双曲线x2-=1的渐近线截得的弦长为,则圆C的方程为.解析:依题意得,题中的双曲线的一条渐近线的斜率为,倾斜角为60°,结合图形(图略)可知,所求的圆C的圆心坐标是(0,1)、半径是1,因此其方程是x2+(y-1)2=1.答案:x2+(y-1)2=115.直线y=-x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是.解析:当直线经过点(0,1)时,直线与圆有两个不同的交点,且另一个交点在第一象限, 此时m=1;当直线与圆相切时,圆心到直线的距离d==1,解得m=(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,则1<m<.答案:(1,)16.当正实数m变化时,斜率不为0的定直线始终与圆(x-2m)2+(y+m)2=m2相切,则直线的方程为.解析:设定直线的方程为y=kx+b,则=m,即(3k2+4k)m2+2b(2k+1)m+b2=0,因为该等式对任意m>0成立,故3k2+4k=0,2b(2k+1)=0,b2=0,即k=-,b=0,则直线的方程为y=-x.答案:y=-x三、解答题17.已知点G(5,4),圆C1:(x-1)2+(y-4)2=25,过点G的动直线l与圆C1相交于E,F两点,线段EF的中点为C,且C在圆C2上.(1)若直线mx+ny-1=0(mn>0)经过点G,求mn的最大值;(2)求圆C2的方程;(3)若过点A(1,0)的直线l1与圆C2相交于P,Q两点,线段PQ的中点为M.l1与l2:x+2y+2=0的交点为N,求证:|AM|·|AN|为定值.解:(1)因为点G(5,4)在直线mx+ny-1=0上,所以5m+4n=1,5m+4n≥2(当且仅当5m=4n 时取等号),所以1≥80mn,即mn≤,所以(mn)max=.(2)由已知得圆C1的圆心为(1,4),半径为5,设C(x,y),则=(x-1,y-4),=(5-x,4-y),由题设知·=0,所以(x-1)(5-x)+(y-4)(4-y)=0,即(x-3)2+(y-4)2=4,所以C2的方程是(x-3)2+(y-4)2=4.(3)证明:当直线l1的斜率不存在时,直线l1与圆C2相切,当直线l1的斜率为0时,直线l1与圆C2相离,故设直线l1的方程为kx-y-k=0(k≠0).由直线l1与圆C2相交,得<2,解得k>.由得N(,-),又直线C2M与l1垂直,由得M(,),所以|AM|·|AN|=·=··=6(定值).巩固提高B一、选择题1.若过点M(1,1)的直线l与圆(x-2)2+y2=4相交于两点A,B,且M为弦AB的中点,则|AB|为( A )(A)2 (B)4 (C) (D)2解析:圆心坐标为(2,0),半径为2,因为[]2+()2=22,所以|AB|=2.故选A.2.已知圆x2+y2=4与直线x+y-t=0,则“t=2”是“直线与圆相切”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:由已知,令=2,所以t=±2.故选A.3.若圆C1:x2+y2+2ax+a2-4=0(a∈R)与圆C2:x2+y2-2by+b2-1=0(b∈R)恰有三条公切线,则a+b的最大值为( D )(A)-3(B)-3 (C)3 (D)3解析:由已知得两圆外切,则|C1C2|=r1+r2,C1(-a,0),C2(0,b),所以a2+b2=9,因为()2≤,所以a+b≤3.故选D.4.已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x0,y0),且满足y0>x0+2,则的取值范围为( A )(A)(-,-) (B)(-∞,-](C)(-,-] (D)(-,0)解析:设A(x1,y1),=k,则y0=kx0,因为AB的中点为P(x0,y0),所以B(2x0-x1,2y0-y1).因为A,B分别在直线x+2y-1=0和x+2y+3=0上,所以x1+2y1-1=0,2x0-x1+2(2y0-y1)+3=0,所以2x0+4y0+2=0,即x0+2y0+1=0.因为y0=kx0,所以x0+2kx0+1=0,即x0=-.又y0>x0+2,所以kx0>x0+2,即(k-1)x0>2,即(k-1)(-)>2,即<0,解得-<k<-.故选A.5.已知△ABC的三个顶点的坐标分别为A(-2,3),B(-2,-1),C(6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则圆的方程为( D )(A)x2+y2=1(B)x2+y2=4(C)x2+y2=(D)x2+y2=1或x2+y2=37解析:如图所示,因为A(-2,3),B(-2,-1),C(6,-1).所以过A,C的直线方程为=,化为一般式为x+2y-4=0.点O到直线x+2y-4=0的距离d==>1,又|OA|==,|OB|==,|OC|==.所以以原点为圆心的圆若与三角形ABC有唯一的公共点,则公共点为(0,-1)或(6,-1),所以圆的半径分别为1或,则圆的方程为x2+y2=1或x2+y2=37.6.已知圆C:(x-1)2+(y-2)2=2与y轴在第二象限所围成区域的面积为S,直线y=2x+b分圆C的内部为两部分,其中一部分的面积也为S,则b等于( D )(A) (B)±(C)-(D)±解析:圆心(1,2)到y轴的距离为1,由题意知,圆心(1,2)到直线y=2x+b的距离也为1,即=1,解得b=±.故选D.7.已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,那么△PAB面积的最大值是( C )(A)3-(B)4(C)3+(D)6解析:依题意得圆x2+y2+kx=0的圆心(-,0)位于直线x-y-1=0上,于是有--1=0,即k=-2,因此圆心坐标是(1,0),半径是1.由题意可得|AB|=2,直线AB的方程是+=1,即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,所以△PAB面积的最大值为×2×=3+,故选C.8.过点P(-3,0)作直线2ax+(a+b)y+2b=0(a,b不同时为零)的垂线,垂足为M,已知点N(2,3),则当a,b变化时,|MN|的取值范围是( A )(A)[5-,5+](B)[5-,5](C)[5,5+](D)[0,5+]解析:直线2ax+(a+b)y+2b=0,整理为a(2x+y)+b(y+2)=0,从而可得直线过定点Q(1,-2),如图,∠PMQ=90°或者M与P,Q之一重合,PQ=2,故点M在以PQ为直径的圆上运动,设该圆的圆心为F,则线段MN确定的范围为|FN|-≤|MN|≤|FN|+,所以|MN|的取值范围是[5-,5+].故选A.二、填空题9.若m>0,n>0,点(-m,n)关于直线x+y-1=0的对称点在直线x-y+2=0上,那么+的最小值等于.解析:设点(-m,n)关于直线x+y-1=0的对称点为(a,b),则解得则(-m,n)关于直线x+y-1=0的对称点为(1-n,1+m),则1-n-(1+m)+2=0,即m+n=2.于是+=(m+n)(+)=×(5++)≥×(5+2×2)=,当且仅当m=,n=时等号成立.答案:10.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为.解析:由l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴知,其必过圆心(-2,2),因此k=3,则过点A(0,k)斜率为1的直线m的方程为y=x+3,圆心到其距离d==,所以弦长等于2=2=.答案:11.已知圆C1:x2+y2=4和圆C2:(x-2)2+(y-2)2=4,若点P(a,b)(a>0,b>0)在两圆的公共弦上,则+的最小值为.解析:由题意,两圆的方程相减,可得公共弦方程为x+y=2,因为点P(a,b)(a>0,b>0)在两圆的公共弦上,所以a+b=2,所以+=(+)(a+b)=(10++)≥(10+6)=8,当且仅当b=3a=时,取等号,+的最小值为8.答案:812.过x轴上一点P向圆C:x2+(y-2)2=1作切线,切点分别为A,B,则△PAB面积的最小值是.解析:因为圆的方程为x2+(y-2)2=1,所以圆心C(0,2),半径r为1,设点P(a,0),则|PC|=,|PA|=|PB|=,sin∠APB=2×=,所以S△PAB=|PA|·|PB|sin∠APB=,令=t,t≥,所以S△PAB==在[,+∞)上单调递增,所以当t=时,△PAB面积有最小值为.答案:13.已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为.解析:设所求圆的半径为r,依题意得,抛物线y2=4x的焦点坐标是(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,则r2=d2+()2=10,故圆C的方程为x2+(y-1)2=10.答案:x2+(y-1)2=1014.过点P(1,)作圆O:x2+y2=1的两条切线,切点分别为A和B,则弦长|AB|= . 解析:如图所示,因为PA,PB分别为圆O:x2+y2=1的切线,所以OA⊥AP,|AB|=2|AC|.因为P(1,),O(0,0),所以|OP|==2,又因为|OA|=1,所以∠AOP=60°,所以|AB|=2|AC|=2|AO|sin ∠AOP=.答案:15.已知曲线-=1与直线y=2x+m有两个交点,则m的取值范围是.解析:当x≥0,y≥0时,得曲线-=1.当x>0,y<0时,得曲线+=1.当x<0,y<0时,得曲线-+=1.当x<0,y>0时,得曲线--=1.得-=1的大致图象如图所示,当y=2x+m过(-2,0)时,m=4,过(2,0)时,m=-4,所以若有两个交点,可得m>4或m<-4.答案:(-∞,-4)∪(4,+∞)三、解答题16.(2017·全国Ⅲ卷)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.(1)证明:设A(x1,y1),B(x2,y2),l:x=my+2.由可得y2-2my-4=0,则y1y2=-4.又x1=,x2=.故x1x2==4.因此OA的斜率与OB的斜率之积为·==-1,所以OA⊥OB.故坐标原点O在圆M上.(2)解:由(1)可得y1+y2=2m,x1+x2=m(y1+y2)+4=2m2+4.故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为(,-),圆M的半径为,圆M的方程为(x-)2+(y+)2=.。
2019高考数学二轮复习 专题五 解析几何 第一讲 小题考法——直线与圆课件 理

[方法技巧] 圆的方程的 2 种求法
待定 ①根据题意,选择方程形式(标准方程或一般方程); 系数 ②根据条件列出关于a,b,r或D、E、F的方程组;
法 ③解出a,b,r或D、E、F,代入所选的方程中即可 在求圆的方程过程中,常利用圆的一些性质或定理直 接求出圆心和半径,进而可写出标准方程.常用的几
[演练冲关] 1.(2018·洛阳模拟)已知直线 l1:x+my-1=0,l2:nx+y-p=0,
则“m+n=0”是“l1⊥l2”的
()
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:①若 m+n=0,当 m=n=0 时,直线 l1:x-1=0 与直线
l2:y-p=0 互相垂直;当 m=-n≠0 时,直线 l1 的斜率为-m1 ,
坐标为(1, 3),半径为 2.从而所求圆的方程为(x-1)2+(y- 3)2=4.
几何 何性质有: 法 ①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上; ③两圆内切或外切时,切点与两圆圆心在一条直线上
[演练冲关]
1.(2018·长沙模拟)与圆(x-2)2+y2=4 关于直线 y= 33x 对称的圆的方程是
()
A.(x- 3)2+(y-1)2=4
B.(x- 2)2+(y- 2)2=4
[解析] 易知直线 x-y+1=0 与 x 轴的交点为(-1,0), 即圆 C 的圆心坐标为(-1,0). 因为直线 x+y+3=0 与圆 C 相切, 所以圆心(-1,0)到直线 x+y+3=0 的距离等于半径 r, 即 r=|-1+20+3|= 2,所以圆 C 的方程为(x+1)2+y2=2.
[答案] (x+1)2+y2=2
则 l1 与 l2 间的距离为
(全国通用版)2019高考数学二轮复习 12+4分项练10 直线与圆 文

12+4分项练10 直线与圆1.(2018·襄阳调研)已知点P (1,2)和圆C :x 2+y 2+kx +2y +k 2=0,过点P 作圆C 的切线有两条,则k 的取值范围是( ) A .RB.⎝⎛⎭⎪⎫-∞,233C.⎝ ⎛⎭⎪⎫-233,233D.⎝ ⎛⎭⎪⎫-233,0 答案 C解析 圆C :⎝ ⎛⎭⎪⎫x +k 22+()y +12=1-34k 2,因为过P 有两条切线,所以P 在圆外,从而⎩⎪⎨⎪⎧1+4+k +4+k 2>0,1-34k 2>0,解得-233<k <233.2.(2018·拉萨模拟)已知点P 在圆C :x 2+y 2-4x -2y +4=0上运动,则点P 到直线l :x -2y -5=0的距离的最小值是( ) A .4 B. 5 C.5+1 D.5-1 答案 D解析 圆C :x 2+y 2-4x -2y +4=0可化为(x -2)2+()y -12=1,圆心C (2,1),半径为1,先求圆心到直线的距离||2-2-512+22=5>1,则圆上一点P 到直线l :x -2y -5=0的距离的最小值是5-1.3.(2018·泉州质检)已知直线l :y =k (x -1),圆C :(x -1)2+y 2=r 2(r >0),现给出下列四个命题:p 1:∀k ∈R ,l 与C 相交; p 2:∃k 0∈R ,l 与C 相切; p 3:∀r >0,l 与C 相交; p 4:∃r 0>0,l 与C 相切.其中真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 A解析 因为圆C 是以(1,0)为圆心,以r 为半径的圆, 而直线l 是过点(1,0),且斜率是k 的直线, 所以无论k ,r 取何值,都有直线过圆心,所以有∀k ∈R ,∀r >0,都有l 与 C 相交,所以真命题有p 1,p 3.4.(2018·河北省衡水市武邑中学调研)若直线l :mx +ny -m -n =0()n ≠0将圆C :()x -32+()y -22=4的周长分为2∶1两部分,则直线l 的斜率为( )A .0或32B .0或43C .-43D.43答案 B解析 由题意知,直线l 将圆分成的两部分中劣弧所对圆心角为2π3,又圆心为点()3,2,半径为2, 则圆心到直线的距离为1, 即||3m +2n -m -n m 2+n2=1,解得m =0或m n =-43,所以直线l 的斜率为k =-m n =0或43.5.(2018·湖南师大附中月考)与圆x 2+(y -2)2=2相切,且在两坐标轴上截距相等的直线共有( )A .2条B .3条C .4条D .6条 答案 B解析 直线过原点时,设方程为y =kx ,利用点到直线的距离等于半径可求得k =±1,即直线方程为y =±x ;直线不过原点时,设其方程为x a +ya=1(a ≠0),同理可求得a =4,直线方程为x +y =4,所以符合题意的直线共3条,故选B.6.(2018·广东省佛山市顺德区调研)已知圆O 1的方程为x 2+y 2=1,圆O 2的方程为()x +a 2+y 2=4,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是( ) A.{}1,-1,3,-3 B.{}5,-5,3,-3 C.{}1,-1 D.{}3,-3答案 A解析 d =|a |=2+1=3或d =|a |=2-1=1,所以a =1,-1,3,-3.7.(2018·河北省衡水中学模拟)若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离之比为2,当P ,A ,B 不共线时,△PAB 面积的最大值是( ) A .2 2 B. 2 C.223 D.23答案 A解析 以线段AB 的中点O 为坐标原点,AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴,建立如图所示的坐标系,则A (1,0),B ()-1,0, 设P (x ,y ), 则(x -1)2+y 2(x +1)2+y2=2,化简得()x +32+y 2=8, 当点P 到AB (x 轴)距离最大时,△PAB 的面积取得最大值,由圆的性质可得, △PAB 面积的最大值为12×2×22=2 2.8.已知点A (2,3),B (-3,-2),若直线kx -y +1-k =0与线段AB 相交,则k 的取值范围是( )A.⎣⎢⎡⎦⎥⎤34,2 B.⎝ ⎛⎦⎥⎤-∞,34∪[2,+∞) C .(-∞,1]∪[2,+∞) D .[1,2]答案 B解析 直线kx -y +1-k =0恒过点P (1,1),k PA =3-12-1=2,k PB =-2-1-3-1=34,若直线kx -y +1-k =0与线段AB 相交,结合图象(图略)得k ≤34或k ≥2,故选B.9.已知点Q ()-1,m ,P 是圆C :(x -a )2+()y -2a +42=4上任意一点,若线段PQ 的中点M 的轨迹方程为x 2+()y -12=1,则m 的值为( )A .1B .2C .3D .4 答案 D解析 设P (x ,y ),PQ 的中点为M ()x 0,y 0,则由中点坐标公式得⎩⎪⎨⎪⎧x 0=x -12,y 0=y +m2.因为点M ()x 0,y 0在圆x 2+()y -12=1上, 所以⎝⎛⎭⎪⎫x -122+⎝ ⎛⎭⎪⎫y +m 2-12=1,即(x -1)2+()y +m -22=4.将此方程与方程(x -a )2+()y -2a +42=4比较可得⎩⎨⎧a =1,2a -4=-()m -2,解得m =4.10.(2018·四川省绵阳市南山中学模拟)若圆x 2+y 2+4x -4y -10=0上至少有三个不同的点到直线l :ax +by =0的距离为22,则直线l 的斜率的取值范围是( ) A .[2-3,2+3] B .[-2-3,3-2] C .[-2-3,2+3] D .[-2-3,2-3]答案 B解析 圆x 2+y 2+4x -4y -10=0可化为(x +2)2+()y -22=18,则圆心为(-2,2),半径为32,则由圆x 2+y 2+4x -4y -10=0上至少有三个不同的点到直线l :ax +by =0的距离为22可得,圆心到直线l :ax +by =0的距离d ≤32-22=2, 即||-2a +2b a 2+b2≤2,则a 2+b 2-4ab ≤0,若b =0,则a =0,故不成立, 故b ≠0,则上式可化为 1+⎝ ⎛⎭⎪⎫a b 2-4×⎝ ⎛⎭⎪⎫a b ≤0.由直线l 的斜率k =-a b, 可知上式可化为k 2+4k +1≤0,解得-2-3≤k ≤-2+ 3.11.(2018·甘肃省西北师范大学附属中学诊断)若直线l :ax +by +1=0始终平分圆M :x 2+y 2+4x +2y +1=0的周长,则(a -2)2+(b -2)2的最小值为( ) A. 5 B .5 C .2 5 D .10 答案 B解析 由直线ax +by +1=0始终平分圆M 的周长, 可知直线必过圆M 的圆心,由圆的方程可得圆M 的圆心坐标为(-2,-1), 代入直线方程ax +by +1=0可得2a +b -1=0,又由(a -2)2+(b -2)2表示点(2,2)与直线2a +b -1=0上的任一点的距离的平方, 由点到直线的距离公式得d =||2×2+2-15=5,所以(a -2)2+(b -2)2的最小值为d 2=()52=5.12.(2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( ) A .3 B .2 2 C. 5 D .2 答案 A解析 以A 为坐标原点,分别以AD ,AB 所在直线为x 轴,y 轴, 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD . ∵CD =1,BC =2, ∴BD =12+22=5,EC =BC ·CD BD =25=255,即圆C 的半径为255,∴P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎪⎨⎪⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).∵AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ), ∴μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得 λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝ ⎛⎭⎪⎫其中sin φ=55,cos φ=255, 当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A.13.设直线l 1:(a +1)x +3y +2-a =0,直线l 2:2x +(a +2)·y +1=0.若l 1⊥l 2,则实数a 的值为________,若l 1∥l 2,则实数a 的值为________.答案 -85-4解析 若l 1⊥l 2,则2(a +1)+3()a +2=0, 整理可得5a +8=0,求解关于实数a 的方程可得a =-85.若l 1∥l 2,则a +12=3a +2≠2-a 1, 据此可得a =-4.14.(2018·赣州适应性考试)以抛物线y 2=8x 的焦点为圆心且与直线kx -y +2=0相切的圆中,最大面积的圆的方程为________________. 答案 (x -2)2+y 2=8解析 由题意可知,圆的圆心为F (2,0),直线是过定点M (0,2)的动直线, 当满足直线和FM 垂直时,其圆心到直线的距离最大,即圆的半径最大, 此时满足圆的面积最大,且半径为r =(2-0)2+(0-2)2=22, 所以面积最大的圆的方程是(x -2)2+y 2=8.15.在平面直角坐标系xOy 中,圆M :x 2+y 2-6x -4y +8=0与x 轴的两个交点分别为A ,B ,其中A 在B 的右侧,以AB 为直径的圆记为圆N ,过点A 作直线l 与圆M ,圆N 分别交于C ,D 两点.若D 为线段AC 的中点,则直线l 的方程为________. 答案 x +2y -4=0解析 由题意得圆M 的方程为(x -3)2+(y -2)2=5, 令y =0,得x =2或x =4,所以A (4,0),B (2,0). 则圆N 的方程为(x -3)2+y 2=1,由题意得直线l 的斜率存在,所以设直线l :y =k (x -4). 联立直线l 的方程和圆M 的方程消去y , 得(1+k 2)x 2-(8k 2+4k +6)x +16k 2+16k +8=0, 所以4+x C =8k 2+4k +61+k2,① 联立⎩⎪⎨⎪⎧(x -3)2+y 2=1,y =kx -4k ,得(1+k 2)x 2-(8k 2+6)x +16k 2+8=0,所以4+x D =8k 2+61+k 2,②依题意得x C +4=2x D ,③ 解①②③得k =-12.所以直线l 的方程为x +2y -4=0.16.已知圆C 1:(x -2cos θ)2+(y -2sin θ)2=1与圆C 2:x 2+y 2=1,下列说法中: ①对于任意的θ,圆C 1与圆C 2始终外切; ②对于任意的θ,圆C 1与圆C 2始终有四条公切线;③当θ=π6时,圆C 1被直线l :3x -y -1=0截得的弦长为3;④若点P ,Q 分别为圆C 1与圆C 2上的动点,则|PQ |的最大值为4. 正确命题的序号为________. 答案 ①③④解析 对于①,我们知道两个圆外切等价于两个圆的圆心距刚好等于两个圆的半径之和, 由题意,得圆C 1的半径为1,圆心坐标为(2cos θ,2sin θ),圆C 2的半径为1,圆心坐标为(0,0),所以两个圆的圆心距为(2cos θ-0)2+(2sin θ-0)2=4cos 2θ+4sin 2θ=2. 又因为两圆的半径之和为1+1=2,所以对于任意θ,圆C 1和圆C 2始终外切,所以①正确;对于②,由①得,两圆外切,所以两圆只有三条公切线,所以②错误; 对于③,此时圆C 1的方程为:(x -3)2+(y -1)2=1, 故圆C 1的圆心坐标为(3,1), 所以圆心到直线l 的距离为|(3)2-1-1|(3)2+(-1)2=12. 又因为圆C 1的半径为1,所以其所截的弦长为212-⎝ ⎛⎭⎪⎫122=3,所以③正确;对于④,由①得,两圆外切,所以两圆上的点的最大距离就是两圆的直径之和, 因为C 1的直径为2,C 2的直径也为2, 故|PQ |的最大值为2+2=4.所以④正确. 故正确命题的序号为①③④.。
2019年高考数学二轮复习试题:专题五 第1讲 直线与圆

第1讲直线与圆选题明细表知识点·方法直线及其方程两条直线的位置关系点到直线的距离圆的方程直线与圆、圆与圆的位置关系圆的弦长综合问题巩固提高A1,4,102,8163,5,146,9,11,15,16137,12,17巩固提高A巩固提高B4,9,15132,6,11,121,5,10,143,7,8,16一、选择题1.过点(2,1)且倾斜角比直线y=-x-1的倾斜角小的直线方程是( A )(A)x=2(B)y=1(C)x=1(D)y=2解析:因为直线y=-x-1的斜率为-1,则倾斜角为,依题意,所求直线的倾斜角为-=,所以斜率不存在,所以过点(2,1)的直线方程为x=2.2.(2017·金丽衢十二校)设两直线l:(3+m)x+4y=5-3m与l:2x+(5+m)y=8,1 2则“l∥l”是“m<-1”的( A )1 2(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:若l∥l,1 2则(3+m)(5+m)=4×2,解得m=-7或m=-1,当m=-1时,两直线重合,当m=-7时l∥l,1 2所以“l∥l”是“m<-1”的充分不必要条件.1 2故选A.3.方程|y|-1=表示的曲线是( D )(A)一个椭圆(B)一个圆(C)两个圆(D)两个半圆解析:由题意知|y|-1≥0,则y≥1或 y≤-1,当y≥1时,原方程可化为(x-1)2+(y-1)2=1(y≥1),其表示以(1,1)为圆心、1为半径、直线y=1上方的半圆;当 y≤-1时,原方程可化为(x-1)2+(y+1)2=1(y≤-1),其表示以(1,-1)为圆心、1为半径、直线y=-1下方的半圆.所以方程|y|-1=表示的曲线是两个半圆,选D.4.直线l过点P(-1,2)且与以点M(-3,-2),N(4,0)为端点的线段恒相交,则l的斜率取值范围是( D )(A)[-,5](B)[-,0)∪(0,2](C)(-∞,-)∪[5,+∞)(D)(-∞,-]∪[2,+∞)解析:如图,因为P(-1,2),M(-3,-2),N(4,0),所以k = PM =2,k = =-.由图可知,使直线l与线段MN相交的l的PN斜率取值范围是(-∞,-]∪[2,+∞).故选D.5.抛物线y2=4x与过其焦点且垂直于x轴的直线相交于A,B两点,其准线与x轴的交点为M,则过M,A,B三点的圆的标准方程是( D )(A)x2+y2=5(B)(x-1)2+y2=1(C)(x-1)2+y2=2(D)(x-1)2+y2=4解析:由抛物线方程及题意知A(1,2),B(1,-2),M(-1,0),设所求圆的方程为x2所以解得+y2+Dx+Ey+F=0,从而所求方程为x2+y2-2x-3=0,即圆的标准方程为(x-1)2+y2=4.故选D.6.直线x-2y-3=0与圆C:(x-2)2+(y+3)2=9交于E,F两点,则△ECF的面积为( B )(A)(B)2(C)(D)解析:由已知可得圆心到直线的距离为d= ,所以|EF|=4,×4×=2 .所以S△=ECF故选B.7.已知平面上两点A(-a,0),B(a,0)(a>0),若圆C:(x-3)2+(y-4)2=1上存在点P,使得∠APB=90°,则a的取值范围是( C )(A)[3,6](B)[3,7](C)[4,6](D)[0,7]解析:因为圆C:(x-3)2+(y-4)2=1,所以圆心C(3,4),半径r=1;设点P(m,n)在圆C上,则=(a+m,n),=(m-a,n);因为∠APB=90°,所以⊥,所以(m+a)(m-a)+n2=0,即a2=m2+n2,又|OP|= ,|OP|的最大值是|OC|+r=5+1=6,最小值是|OC|-r=5-1=4,所以a的取值范围是[4,6].故选C.8.已知直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则|ab|的最小值为( C )(A)5(B)4(C)2(D)1解析:由题意得a2b+[-(a2+1)]=0,所以b= ,所以|ab|=|a×|=|a+|=|a|+||≥2.当且仅当|a|=1时等号成立.故选C.二、填空题9.直线l:x=m y+2与圆M:x2+2x+y2+2y=0相切,则m 的值等于 .解析:圆心M(-1,-1),圆半径为.由直线与圆相切得d== ,得m=-7或m=1.答案:-7或110.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为.解析:若直线过原点,则直线方程为3x+2y=0;若直线不过原点,则斜率为1,方程为y+3=x-2,即为x-y-5=0,故所求直线方程为3x+2y=0或x-y-5=0.答案:3x+2y=0或x-y-5=011.动直线l:y=kx-k+1(k∈R)经过的定点坐标为,若l 和圆C:x2+y2=r2恒有公共点,则半径r的最小值是.解析:当x=1时,y恒为1,故定点为(1,1),要直线和圆恒有公共点,则需(1,1)在圆内,即12+12≤r2,r≥.答案:(1,1)12.当方程 x2+y2+kx+2y+k2=0 所表示的圆的面积取最大值时,直线y=(k-1)x+2的倾斜角α=.解析:由题意可知,圆的半径r== ≤1,当半径r取最大值时,圆的面积最大,此时k=0,r=1,所以直线方程为y=-x+2,则有tanα=-1,又α∈[0,π),故α=.答案:13.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为2,则a=.解析:两圆方程作差易知弦所在的直线方程为y=,如图,由已知得|AC|=,|OA|=2,所以|OC|==1,所以a=1.答案:114.C的圆心在y轴正半轴上,且与x轴相切,被双曲线x2- =1的渐近线截得的弦长为,则圆C的方程为.解析:依题意得,题中的双曲线的一条渐近线的斜率为,倾斜角为60°,结合图形(图略)可知,所求的圆C的圆心坐标是(0,1)、半径是1,因此其方程是x2+(y-1)2=1.答案:x2+(y-1)2=115.直线y=-x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是.解析:当直线经过点(0,1)时,直线与圆有两个不同的交点,且另一个交点在第一象限,此时m=1;当直线与圆相切时,圆心到直线的距离d==1,解得m=(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,则1<m<答案:(1, )16.当正实数m变化时,斜率不为0的定直线始终与圆(x-2m)2.+(y+m)2=m2相切,则直线的方程为.解析 : 设定直线的方程为y=kx+b,则=m,即(3k2+4k)m2+2b(2k+1)m+b2=0,因为该等式对任意m>0成立,故3k2+4k=0,2b(2k+1)=0,b2=0,即k=-,b=0,则直线的方程为y=-x.答案:y=-x三、解答题17.已知点G(5,4),圆C:(x-1)2+(y-4)12=25,过点G的动直线l与圆C相交1于E,F两点,线段EF的中点为C,且C在圆C上.2(1)若直线mx+ny-1=0(mn>0)经过点G,求mn的最大值;(2)求圆C的方程;2(3)若过点A(1,0)的直线l与圆C相交于P,Q两点,线段PQ的中点为M.l1 21与l:x+2y+2=0的交点为N,求证:|AM|·|AN|为定值.2解:(1)因为点G(5,4)在直线mx+ny-1=0上,所以5m+4n=1,5m+4n≥2 (当且仅当5m=4n时取等号),所以1≥80mn,即mn≤,所以(mn)= .max(2)由已知得圆C的圆心为(1,4),半径为5,1设C(x,y),则=(5-x,4-y),=(x-1,y-4),由题设知·=0,所以(x-1)(5-x)+(y-4)(4-y)=0,即(x-3)2+(y-4)2=4,所以C的方程是(x-3)2+(y-4)2=4.2(3)证明:当直线l的斜率不存在时,直线l与圆C相切,当直线l的斜率1 12 1为0时,直线l与圆C相离,故设直线l的方程为kx-y-k=0(k≠0).1 2 1由直线l与圆C相交,得1 2由得N( ,- ),又直线C M与l垂直,2 1由得M( , ),所以|AM|·|AN|== ··一、选择题<2,解得k>.·=6(定值).巩固提高B1.若过点M(1,1)的直线l与圆(x-2)2+y2=4相交于两点A,B,且M为弦AB的中点,则|AB|为( A )(A)2(B)4(C) (D)2解析:圆心坐标为(2,0),半径为2,因为[ ]2+( )2=22,所以|AB|=2.故选A.2.已知圆x2+y2=4与直线x+y-t=0,则“t=2”是“直线与圆相切”的( A )(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解析:由已知,令=2,所以t=±2.故选A.3.若圆C:x12+y2+2ax+a2-4=0(a∈R)与圆C:x22+y2-2by+b2-1=0(b∈R)恰有三条公切线,则a+b的最大值为( D )(A)-3(B)-3(C)3(D)3解析:由已知得两圆外切,则|C C|=r+r,1 2 1 2C(-a,0),C(0,b),1 2所以a2+b2=9,因为( )2≤,所以a+b≤3.故选D.4.已知点A在直线x+2y-1=0上,点B在直线x+2y+3=0上,线段AB的中点为P(x,y),且满足y>x+2,则的取值范围为( A )0 0 0 0(A)(-,-)(B)(-∞,-](C)(-,-](D)(-,0)解析:设A(x,y),=k,则y=kx,1 1 0 0因为AB的中点为P(x,y),所以B(2x-x,2y-y).0 0 0 1 0 1因为A,B分别在直线x+2y-1=0和x+2y+3=0上,所以x+2y-1=0,2x-x+2(2y-y)+3=0,1 1 0 1 0 1所以2x+4y+2=0,即x+2y+1=0.0 0 0 0因为y=kx,所以x+2kx+1=0,即x=-0 0 0 0 0.又y>x+2,所以kx>x+2,即(k-1)x>2,0 0 0 0 0即(k-1)(-)>2,即<0,解得-<k<-.故选A.5.已知△ABC的三个顶点的坐标分别为A(-2,3),B(-2,-1),C(6,-1),以原点为圆心的圆与此三角形有唯一的公共点,则圆的方程为( D )(A)x2+y2=1(B)x2+y2=4(C)x2+y2=(D)x2+y2=1或x2+y2=37解析:如图所示,因为A(-2,3),B(-2,-1),C(6,-1).所以过A,C的直线方程为=,化为一般式为x+2y-4=0.点O到直线x+2y-4=0的距离d==>1,又|OA|==,|OB|=|OC|=== , .所以以原点为圆心的圆若与三角形ABC有唯一的公共点,则公共点为(0,-1)或(6,-1),所以圆的半径分别为1或,则圆的方程为x2+y2=1或x2+y2=37.6.已知圆C:(x-1)2+(y-2)2=2与y轴在第二象限所围成区域的面积为S,直线y=2x+b分圆C的内部为两部分,其中一部分的面积也为S,则b等于( D )(A)(B)±(C)-(D)±解析:圆心(1,2)到y轴的距离为1,由题意知,圆心(1,2)到直线y=2x+b的距离也为1,即=1,解得b=±.故选D.7.已知A(-2,0),B(0,2),实数k是常数,M,N是圆x2+y2+kx=0上两个不同点,P是圆x2+y2+kx=0上的动点,如果M,N关于直线x-y-1=0对称,那么△PAB 面积的最大值是( C )(A)3-(B)4(C)3+(D)6解析:依题意得圆x2+y2+kx=0的圆心(-,0)位于直线x-y-1=0上,于是有- -1=0,即k=-2,因此圆心坐标是(1,0),半径是1.+=1,由题意可得|AB|=2,直线AB的方程是即x-y+2=0,圆心(1,0)到直线AB的距离等于=,点P到直线AB的距离的最大值是+1,所以△PAB面积的最大值为×2×=3+,故选C.8.过点P(-3,0)作直线2ax+(a+b)y+2b=0(a,b不同时为零)的垂线,垂足为M,已知点N(2,3),则当a,b变化时,|MN|的取值范围是( A )(A)[5-,5+](B)[5-,5](C)[5,5+](D)[0,5+]解析:直线2ax+(a+b)y+2b=0,整理为a(2x+y)+b(y+2)=0,从而可得直线过定点Q(1,-2),如图,∠PMQ=90°或者M与P,Q之一重合,PQ=2,故点M在以PQ为直径的圆上运动,设该圆的圆心为F,则线段MN确定的范围为|FN|-≤|MN|≤|FN|+,所以|MN|的取值范围是[5- ,5+].故选A.二、填空题9.若m>0,n>0,点(-m,n)关于直线x+y-1=0的对称点在直线x-y+2=0上,那么+的最小值等于.解析:设点(-m,n)关于直线x+y-1=0的对称点为(a,b),则解得则(-m,n)关于直线x+y-1=0的对称点为(1-n,1+m),则 1-n-(1+m)+2=0,即)≥×(5+2×2)= ,当且仅当m+n=2.于是+ = (m+n)(+ )=×(5++m=,n=时等号成立.答案:10.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为 .解析:由l:kx+y+4=0(k∈R)是圆C:x2+y2+4x-4y+6=0的一条对称轴知,其必过圆心(-2,2),因此k=3,则过点A(0,k)斜率为1的直线m的方程为y=x+3,圆心到其距离d== ,所以弦长等于2=2= .答案:11.已知圆C:x2+y2=4和圆C:(x-2)2+(y-2)2=4,若点P(a,b)(a>0,b>0)在两1 2圆的公共弦上,则+的最小值为.解析:由题意,两圆的方程相减,可得公共弦方程为x+y=2,因为点P(a,b)(a>0,b>0)在两圆的公共弦上,所以a+b=2,所以+=(+)(a+b)=(10++)≥(10+6)=8,当且仅当b=3a=时,取等号,+的最小值为8.答案:812.过x轴上一点P向圆C:x2+(y-2)2=1作切线,切点分别为A,B,则△PAB 面积的最小值是.=1,解析:因为圆的方程为x2+(y-2)2所以圆心C(0,2),半径r为1,设点P(a,0),则|PC|= ,|PA|=|PB|=,sin∠APB=2×= ,|PA|·|PB|sin∠APB=,所以S△=PAB令=t,t≥,=在[ ,+∞)上单调递增,所以S△=PAB.所以当t= 时,△PAB面积有最小值为答案:13.已知圆 C 的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为.解析:设所求圆的半径为r,依题意得,抛物线y2=4x的焦点坐标是(1,0),则圆 C 的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,则r2=d2+()2=10,故圆C的方程为x2+(y-1)2=10.答案:x2+(y-1)2=1014.过点P(1, )作圆 O:x2+y2=1的两条切线,切点分别为 A 和 B,则弦长|AB|=.解析:如图所示,因为PA,PB分别为圆O:x所以OA⊥AP,|AB|=2|AC|.2+y2=1的切线,因为P(1, ),O(0,0),所以|OP|= =2,又因为|OA|=1,所以∠AOP=60°,所以|AB|=2|AC|=2|AO|sin∠AOP=.答案:15.已知曲线- =1与直线y=2x+m有两个交点,则m的取值范围是 .解析:当x≥0,y≥0时,得曲线-=1.当x>0,y<0时,得曲线+=1.当x<0,y<0时,得曲线-+=1.当x<0,y>0时,得曲线--=1.得- =1的大致图象如图所示,当y=2x+m过(-2,0)时,m=4,过(2,0)时,m=-4,所以若有两个交点,可得m>4或m<-4.答案:(-∞,-4)∪(4,+∞)三、解答题16.(2017·全国Ⅲ卷)已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B 两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.(1)证明:设A(x,y),B(x,y),l:x=my+2.1 12 2由可得y2-2my-4=0,则y y=-4.1 2又x= ,x=.故x x=1 2 1 2=4.因此OA的斜率与OB的斜率之积为·= 所以OA⊥OB.故坐标原点O在圆M上.=-1,(2)解:由(1)可得y+y=2m,x+x=m(y+y)+4=2m2+4.1 2 1 2 1 2故圆心M的坐标为(m2+2,m),圆M的半径r=.由于圆M过点P(4,-2),因此·=0,故(x-4)(x-4)+(y+2)(y+2)=0,1 2 1 2即x x-4(x+x)+y y+2(y+y)+20=0.1 2 1 2 1 2 1 2由(1)可得y y=-4,x x=4.1 2 1 2所以2m2-m-1=0,解得m=1或m=-.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为(x-3)2+(y-1)2=10.当m=-时,直线l的方程为2x+y-4=0,圆心M的坐标为(,-),圆M的半径为,圆M的方程为(x-)2+(y+)2= .。
高考数学二轮复习 第二部分 专题五 解析几何 专题强化练十三 直线与圆 理
专题强化练十三 直线与圆一、选择题1.(2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( )A .-43B .-34C. 3 D .2解析:圆x 2+y 2-2x -8y +13=0化为标准方程为(x -1)2+(y -4)2=4,则圆心为(1,4),由题意得d =|a +4-1|a 2+1=1,解得a =-43.答案:A2.(2018·安徽合肥二模)已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( )A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y -4)2=25 D .(x +3)2+(y -4)2=25解析:圆C 的圆心的坐标C (6,8),则OC 的中点坐标为E (3,4),则所求圆的半径|OE |=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.答案:C3.(2018·昆明诊断)已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1.所以命题p 是命题q 的充分不必要条件. 答案:A4.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( )A .2x +y -5=0B .2x +y -7=0C .x -2y -5=0D .x -2y -7=0解析:依题意知,点(3,1)在圆(x -1)2+y 2=r 2上,且为切点.因为圆心(1,0)与切点(3,1)连线的斜率为12,所以切线的斜率k =-2,故圆的切线方程为y -1=-2(x -3),即2x +y -7=0.答案:B5.(2018·广东深圳二模)已知点P (1,m )在椭圆x 24+y 2=1的外部,则直线y =2mx +3与圆x 2+y 2=1的位置关系为( )A .相离B .相交C .相切D .相交或相切解析:由点P (1,m )在椭圆x 24+y 2=1的外部,得m 2>34,则圆x 2+y 2=1的圆心(0,0)到直线y -2mx -3=0的距离d =|-3|1+4m2<32<1,所以直线y =2mx +3与圆x 2+y 2=1相交.答案:B6.(2018·湖南六校联考)在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上,若圆C 上存在点M ,使|MA |=2|MO |,则圆心C 的横坐标的取值范围为( )A.⎣⎢⎡⎦⎥⎤0,125B .[0,1]C.⎣⎢⎡⎦⎥⎤1,125 D.⎣⎢⎡⎦⎥⎤0,125解析:设点M (x ,y ),由|MA |=2|MO |,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+(y +1)2=4.所以点M 的轨迹为以(0,-1)为圆心,2为半径的圆,可记为圆D .又因为点M 在圆C 上,所以圆C 与圆D 的关系为相交或相切,所以1≤|CD |≤3, 设圆心C 的坐标为(a ,2a -4), 所以|CD |=a 2+(2a -3)2,所以1≤a 2+(2a -3)2≤9,解得0≤a ≤125.答案:A 二、填空题7.(2018·河南郑州一模)如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a =________.解析:因为直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,即直线ax +2y +3a =0与直线3x +(a -1)y -(a -7)=0平行,所以a 3=2a -1≠3a-(a -7),解得a =3.答案:38.(2018·青岛质检)已知抛物线y =ax 2(a >0)的准线为l ,若l 与圆C :(x -3)2+y 2=1相交所得弦长为3,则a =________.解析:由y =ax 2,得x 2=y a, 所以准线l 的方程为y =-14a. 又l 与圆C :(x -3)2+y 2=1相交的弦长为 3. 所以⎝ ⎛⎭⎪⎫-14a 2+⎝ ⎛⎭⎪⎫322=1,则a =12.答案:129.已知圆C 的方程是x 2+y 2-8x -2y +8=0,直线l :y =a (x -3)被圆C 截得的弦长最短时,直线l 方程为________.解析:圆C 的标准方程为(x -4)2+(y -1)2=9, 所以圆C 的圆心C (4,1),半径r =3. 又直线l :y =a (x -3)过定点P (3,0),则当直线y =a (x -3)与直线CP 垂直时,被圆C 截得的弦长最短. 因此a ·k CP =a ·1-04-3=-1,所以a =-1.故所求直线l 的方程为y =-(x -3),即x +y -3=0. 答案:x +y -3=0 三、解答题10.已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使|PM |取得最小值时点P 的坐标.解:圆C 的方程为(x +1)2+(y -2)2=2, 所以圆心C (-1,2),半径r = 2.由|PM |=|PO |,得|PO |2=|PM |2=|PC |2-|CM |2, 所以x 21+y 21=(x 1+1)2+(y 1-2)2-2.整理,得2x 1-4y 1+3=0,即点P 在直线2x -4y +3=0上,要使|PM |取最小值时,只要|PO |取最小值即可,当直线PO 垂直于直线2x -4y +3=0时,即直线PO 的方程为2x +y =0时,|PM |最小. 解方程组⎩⎪⎨⎪⎧2x +y =0,2x -4y +3=0,得⎩⎪⎨⎪⎧x =-310,y =35.故使|PM |取得最小值时,点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.11.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程. 解:圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M (6,7),半径为5,(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为|BC |=|OA |=22+42=25,又|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22,即25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.。
2019高考数学二轮复习 专题五 解析几何 第一讲 直线与圆能力训练 理
第一讲 直线与圆一、选择题1.“ab =4”是“直线2x +ay -1=0与直线bx +2y -2=0平行”的( ) A .充分必要条件 B .充分而不必要条件 C .必要而不充分条件D .既不充分也不必要条件解析:因为两直线平行,所以斜率相等,即-2a =-b2,可得ab =4,又当a =1,b =4时,满足ab =4,但是两直线重合,故选C.答案:C2.已知圆(x -1)2+y 2=1被直线x -3y =0分成两段圆弧,则较短弧长与较长弧长之比为( )A .1∶2B .1∶3C .1∶4D .1∶5解析:(x -1)2+y 2=1的圆心为(1,0),半径为1.圆心到直线的距离d =11+3=12,所以较短弧所对的圆心角为2π3,较长弧所对的圆心角为4π3,故两弧长之比为1∶2,故选A.=0(a >0)被圆(x -2)2+y 2=4所截得的弦长为2,B. 3 D .2 32,又直线被圆所截得的弦长为2,故圆心到直线4.(2018·济宁模拟)已知圆C 过点A (2,4),B (4,2),且圆心C 在直线x +y =4上,若直线x +2y -t =0与圆C 相切,则t 的值为( )A .-6±2 5B .6±2 5C .25±6D .6±4 5解析:因为圆C 过点A (2,4),B (4,2),所以圆心C 在线段AB 的垂直平分线y =x 上,又圆心C在直线x +y =4上,联立⎩⎪⎨⎪⎧y =xx +y =4,解得x =y =2,即圆心C (2,2),圆C 的半径r =-2+-2=2.又直线x +2y -t =0与圆C 相切,所以|2+4-t |5=2,解得t =6±2 5.答案:B5.(2018·南昌第一次模拟)如图,在平面直角坐标系xOy 中,直线y =2x +1与圆x 2+y 2=4相交于A ,B 两点,则cos ∠AOB =( )A.510 B C.910D 解析:因为圆x 2+y 2=4的圆心为O 到直线y =2x +1的距离d =|2×0-0+1|22+-2=15,所以弦长2195. 在△AOB 中,由余弦定理得cos ∠AOB =|OA |2+|OB |2-|AB |22|OA |·|OB |=4+4-4×1952×2×2=-910.答案:D6.(2018·合肥第一次教学质量检测)设圆x 2+y 2-2x -2y -2=0的圆心为C ,直线l 过(0,3)与圆C 交于A ,B 两点,若|AB |=23,则直线l 的方程为( )A .3x +4y -12=0或4x -3y +9=0B .3x +4y -12=0或x =0C .4x -3y +9=0或x =0D .3x -4y +12=0或4x +3y +9=0解析:当直线l 的斜率不存在时,计算出弦长为23,符合题意;当直线l 的斜率存在时,可设直线l 的方程为y =kx +3,由弦长为23可知,圆心到该直线的距离为1,从而有|k +2|k 2+1=1,解得k =-34 ,综上,直线l 的方程为x =0或3x+4y -12=0,故选B.答案:B7.已知圆O :x 2+y 2=1,点P 为直线x 4+y2=1上一动点,过点P 向圆O 引两条切线PA ,PB ,A ,B 为切点,则直线AB 经过定点( )A .(12,14)B .(14,12)C .(34,0) D .(0,34) 解析:因为点P 是直线x 4+y2=1上的一动点,所以设P (4-2m ,m ).因为PA ,PB 是圆x 2+y 2=1的两条切线,切点分别为A ,B ,所以OA ⊥PA ,OB ⊥PB ,所以点A ,B 在以OP 为直径的圆C 上,即弦AB 是圆O 和圆C 的公共弦.因为圆心C 的坐标是(2-m ,m2),且半径的平方r 2=-2m2+m24,所以圆C 的方程为(x -2+m )2+(y -m2)2=-2m 2+m24,①又x 2+y 2=1,②所以②-①得,(2m -4)x -my +1=0,即公共弦AB 所在的直线方程为(2x -y )m +(-4x+1)=0,所以由⎩⎪⎨⎪⎧-4x +1=0,2x -y =0得⎩⎪⎨⎪⎧x =14,y =12,所以直线AB 过定点(14,12).故选B.答案:B8.若过点A (1,0)的直线l 与圆C :x 2+y 2-6x -8y +21=0相交于P ,Q 两点,线段PQ 的中点为M ,l 与直线x +2y +2=0的交点为N ,则|AM |·|AN |的值为( )A .5B .6C .7D .8解析:圆C 的方程化成标准方程可得(x -3)2+(y -4)2=4,故圆心为C (3,4),半径为2,则可设直线l 的方程为kx -y -k =0(k ≠0),由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝⎛⎭⎪⎫2k -22k +1,-3k 2k +1,又直线CM 与l 垂直,得直线CM 的方程为y -4=-1k(x -3).由⎩⎪⎨⎪⎧y -4=-1k x -,kx -y -k =0,得M ⎝ ⎛⎭⎪⎫k 2+4k +3k 2+1,4k 2+2k k 2+1,则|AM |·|AN | =⎝ ⎛⎭⎪⎫k 2+4k +3k 2+1-12+⎝ ⎛⎭⎪⎫4k 2+2k k 2+12. ⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝ ⎛⎭⎪⎫-3k 2k +12=2|2k +1|1+k 2×1+k 2×31+k 2|2k +1|=6.故选B. 答案:B 二、填空题9.(2018·高考全国卷Ⅰ)直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________.解析:由x 2+y 2+2y -3=0,得x 2+(y +1)2∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =2 2.答案:2 210.(2018·江苏三市三模1),P 为圆x 2+y 2=2解析:设动点P (x ,y )|PA |,则-2+--2+-2t 2,整理得,(1-t 2)x 2+(1-t 2)y 2-2x +(2-4t 2)y +2-4t 2=0,(*)易知当1-t 2≠0时,(*)式表示一个圆,且动点P 在该圆上,又点P 在圆x 2+y 2=2上,所以点P 为两圆的公共点,两圆方程相减得两圆公共弦所在直线l 的方程为x -(1-2t 2)y -2+3t 2=0,所以圆心(0,0)到直线l 的距离d =|-2+3t 2|1+-2t22≤2,解得0<t ≤2,所以|PB ||PA |的最大值为2.答案:2 三、解答题11.已知圆C 过点P (1,1),且圆C 与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ →·MQ →的最小值.解析:(1)设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2. (2)设Q (x ,y ),则x 2+y 2=2, PQ →·MQ →=(x -1,y -1)·(x +2,y +2)=x 2+y 2+x +y -4=x +y -2,令x =2cos θ,y =2sin θ,则PQ →·MQ →=x +y -2=2(sin θ+cos θ)-2=2sin ⎝ ⎛⎭⎪⎫θ+π4-2,所以PQ →·MQ →的最小值为-4.12.已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程;(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使|PM |取得最小值时点P 的坐标.解析:(1)圆C 的标准方程为(x +1)2+(y -2)2=2.①当此切线在两坐标轴上的截距为零时,设此切线方程为y =kx , 由|k +2|1+k2=2,得k =2±6,∴此切线方程为y =(2±6)x .②当此切线在两坐标轴上的截距不为零时,设此切线方程为x +y -a =0,由|-1+2-a |2=2,得|a -1|=2,即a =-1或a =3. ∴此切线方程为x +y +1=0或x +y -3=0.综上,此切线方程为y =(2+6)x 或y =(2-6)x 或x +y +1=0或x +y -3=0. (2)由|PO |=|PM |,得|PO |2=|PM |2=|PC |2-|CM |2,即x 21+y 21=(x 1+1)2+(y 1-2)2-2,整理得2x 1-4y 1+3=0,即点P 在直线l :2x +4y +3=0上,当|PM |取最小值时,|PO |取最小值,此时直线PO ⊥l ,∴直线PO 的方程为2x +y =0.解方程组⎩⎪⎨⎪⎧2x +y =0,2x -4y +3=0,得⎩⎪⎨⎪⎧x =-310,y =35,故使|PM |取得最小值时,点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.13.已知过抛物线C :y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1)和B (x 2,y 2)(x 1<x 2)两点,且|AB |=92.(1)求抛物线C 的方程;(2)若抛物线C 的准线为l ,焦点为F ,点P 为直线m :x +y -2=0上的动点,且点P 的横坐标为a ,试讨论当a 取不同的值时,圆心在抛物线C 上,与直线l 相切,且过点P 的圆的个数.解析:(1)直线AB 的方程是y =22(x -p2),代入y 2=2px ,得4x 2-5px +p 2=0,所以x 1+x 2=5p4,由抛物线的定义得|AB |=x 1+x 22,∴抛物线C 的方程是y 2=4x ..l 相切,则圆过焦点F ,又圆过点P ,∴圆心在PF (a +12,2-a2),当a ≠1,a ≠2时k PF =2-aa -1,+2-a 2,化简得y =a -1a -2x +-2a 2+4a -3a -①.x =y 24代入①得a -a -Δ=1-4·a -1a -·-2a 2+4a -3a -=1+a -a 2-4a +a -2=a -2+2a 3-6a 2+7a -3a -2=2a 3-4a 2-a +5a -2=a +a 2-6a +a -2.∴当a =-1时,交点有1个,圆有1个; 当a <-1时,交点有0个,圆有0个;当a >-1,且a ≠1,a ≠2时,交点有2个,圆有2个.而当a =2时,易验证有2个交点,圆有2个;当a =1时,易知交点有1个,圆有1个.综上所述,当a <-1时,圆有0个; 当a =±1时,圆有1个;当a >-1,且a ≠1时,圆有2个.法二:设圆心Q (x 0,y 0)(y 20=4x 0),P (a,2-a ),由于准线l :x =-1, 故若存在圆Q 满足条件,则r =|PQ |=x 0-a2+y 0+a -2,且r =x 0+1,∴(x 0-a )2+(y 0+a -2)2=(x 0+1)2,即a 2+y 2+2(a -2)y 0+(a -2)2=(2+2a )x 0+1=(2+2a )y 204-1,整理得(1-a )y 20+(4a -8)y 0+4a 2-8a +6=0 (*), 当a =1时,(*)式即-4y 0+2=0,有1个解.当a ≠1时,(*)式中Δ=(4a -8)2-4(1-a )(4a 2-8a +6)=16a 3-32a 2-8a +40=8(a +1)(2a 2-6a +5),∵2a 2-6a +5=2(a -32)2+12>0,∴当a >-1且a ≠1时,Δ>0,(*)式有2个解; 当a =-1时,Δ=0,(*)式有1个解; 当a <-1时,Δ<0,(*)式无解. 综上,当a <-1时,圆有0个; 当a =±1时,圆有1个;当a >-1,且a ≠1时,圆有2个.。
2019年高考数学(理)二轮强化训练:专题5第1讲-直线与圆及答案
第一讲 直线与圆1.(2018·高考山东卷)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离2.点A(1,3)关于直线y =kx +b 对称的点是B(-2,1),则直线y =kx +b 在x 轴上的截距是( )A .-32 B.54C .-65 D.563.(2018·济南模拟考试)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且|AB|=3,则OA →·OB→的值是( )A .-12 B.12C .-34D .0 4.(2018·房山区高三上学期考试题)已知圆C :x 2+y 2-2x =1,直线l :y =k(x -1)+1,则直线l 与圆C的位置关系是( )A .一定相离B .一定相切C .相交且一定不过圆心D .相交且可能过圆心5.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT(T 为切点),当|PT|最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)6.(2018·高考湖北卷)已知圆O :x 2+y 2=5,直线l :xcos θ+ysin θ=1⎝⎛⎭⎪⎫0<θ<π2.设圆O 上到直线l 的距离等于1的点的个数为k ,则k =________.7.已知圆C :x 2+y 2-6x +8=0,则圆心C 的坐标为______;若直线y =kx 与圆C 相切,且切点在第四象限,则k =________.8.(2018·高考山东卷)过点(3,1)作圆(x -2)2+(y -2)2=4的弦,其中最短弦的长为________.9.(2018·高考江苏卷)如图,在平面直角坐标系xOy 中,点A(0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.10.已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.(1)若∠APB=60°,试求点P的坐标;(2)若P点的坐标为(2,1),过P作直线与圆M交于C,D两点,当CD=2时,求直线CD的方程;(3)求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.11.(2018·高考四川卷)已知圆C的方程为x2+(y-4)2=4,点O是坐标原点,直线l:y=kx与圆C交于M,N两点.(1)求k的取值范围;(2)设Q(m,n)是线段MN上的点,且2|OQ|2=1|OM|2+1|ON|2,请将n表示为m的函数.答案:1.【解析】选B.两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d = 42+1=17.∵3-2<d <3+2,∴两圆相交.2.【解析】选D.由题意知⎩⎪⎨⎪⎧3-11+2·k=-12=k·(-12)+b , 解得k =-32,b =54, ∴直线方程为y =-32x +54, 其在x 轴上的截距为56. 3.【解析】选A.在△OAB 中,|OA|=|OB|=1,|AB|=3,可得∠AOB=120°,所以OA →·OB →=1×1×cos 120°=-12. 4.【解析】选C.根据直线l :y =k(x -1)+1恒过定点P(1,1),而P(1,1)到圆心C(1,0)的距离为d =1<半径r =2,于是点P(1,1)在圆内,故直线l :y =k(x -1)+1与圆相交,且圆心C(1,0)不在直线l :y =k(x -1)+1上,故选C.5.【解析】选B.根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT|=|PC|2-1,故|PT|最小时,即|PC|最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x -4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2). 6.【解析】∵圆心(0,0)到直线的距离为1,又∵圆O 的半径为5,故圆上有4个点符合条件.【答案】47.【解析】圆的方程可化为(x -3)2+y 2=1,故圆心坐标为(3,0);由|3k|1+k 2=1,解得k =±24,根据切点在第四象限,可得k =-24. 【答案】-248.【解析】设A(3,1),易知圆心C(2,2),半径r =2,当弦过点A(3,1)且与CA 垂直时为最短弦.|CA|=(2-3)2+(2-1)2= 2.∴半弦长=r 2-|CA|2=4-2= 2.∴最短弦长为2 2.【答案】2 29.【解】(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C 的切线方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34, 故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为(x -a)2+[y -2(a -2)]2=1.设点M(x ,y),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x ,y)在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤CD≤2+1,即1≤a 2+(2a -3)2≤3.整理,得-8≤5a 2-12a≤0.由5a 2-12a +8≥0,得a∈R;由5a 2-12a≤0,得0≤a≤125.所以点C 的横坐标a 的取值范围为[0,125]. 10.【解】(1)设P(2m ,m),由题可知|MP|=2,所以(2m)2+(m -2)2=4,解之得m =0或m =45. 故所求点P 的坐标为P(0,0)或P(85,45). (2)由题意易知k 存在,设直线CD 的方程为y -1=k(x -2),由题知圆心M 到直线CD 的距离为22, 所以22=|-2k -1|1+k2,解得k =-1或k =-17, 故所求直线CD 的方程为x +y -3=0或x +7y -9=0. (3)证明:设P(2m ,m),则MP 的中点Q(m ,m 2+1). 因为PA 是圆M 的切线,所以经过A ,P ,M 三点的圆是以Q 为圆心,以MQ 为半径的圆,故其方程为(x -m)2+(y -m 2-1)2=m 2+(m 2-1)2. 化简得:x 2+y 2-2y -m(2x +y -2)=0,此式是关于m 的恒等式, 故⎩⎪⎨⎪⎧x 2+y 2-2y =0,2x +y -2=0, 解得⎩⎪⎨⎪⎧x =0y =2或⎩⎪⎨⎪⎧x =45,y =25. 所以经过A ,P ,M 三点的圆必过定点(0,2)或(45,25). 11.【解】(1)将y =kx 代入x 2+(y -4)2=4中,得(1+k 2)x 2-8kx +12=0.(*)由Δ=(-8k)2-4(1+k)2×12>0,得k 2>3,所以k 的取值范围是(-∞,-3)∪(3,+∞).(2)因为点M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1),(x 2,kx 2),则|OM|2=(1+k 2)x 21,|ON|2=(1+k 2)x 22.又|OQ|2=m 2+n 2=(1+k 2)m 2,由2|OQ|2=1|OM|2+1|ON|2,得 2(1+k 2)m 2=1(1+k 2)x 21+1(1+k 2)x 22, 即2m 2=1x 21+1x 22=(x 1+x 2)2-2x 1x 2x 21x 22. 由(*)式可知,x 1+x 2=8k 1+k 2,x 1x 2=121+k 2, 所以m 2=365k 2-3. 因为点Q 在直线y =kx 上,所以k =n m. 代入m 2=365k 2-3中并化简,得5n 2-3m 2=36. 由m 2=365k 2-3及k 2>3,可知0<m 2<3, 即m ∈(-3,0)∪(0,3).根据题意,点Q 在圆C 内,则n>0,所以n=36+3m25=15m2+1805.于是,n与m的函数关系式为n=15m2+1805(m∈(-3,0)∪(0,3)).。
江苏省2019高考数学二轮复习 专题五 解析几何 第1讲 直线与圆学案
第1讲直线与圆[考情考向分析]高考考查重点是求直线和圆的方程、直线间的平行和垂直关系、距离、直线与圆的位置关系,此类问题难度属于中档,偶尔出现解答题.其中直线方程和圆的标准方程与一般方程是C级要求.热点一直线、圆的方程例1 (1)在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中点A在第一象限,且错误!=2错误!,则直线l的方程为____________.答案x-y-1=0解析方法一易知l的斜率必存在,设l:y=k(x-1).由错误!=2错误!,可设BM=2t,MA=t,如图,过原点O作OH⊥l于点H,则BH=错误!。
设OH=d,在Rt△OBH中,d2+错误!2=r2=5,在Rt△OMH中,d2+错误!2=OM2=1,解得d2=错误!.所以d2=错误!=错误!,解得k=1或k=-1,因为点A在第一象限,错误!=2错误!,由图知k=1,所以l:x-y-1=0.方法二设A(x1,y1),B(x2,y2),所以错误!=(1-x2,-y2),错误!=(x1-1,y1).因为错误!=2错误!,所以有错误!即错误!又错误!代入可得错误!解得x1=2,代入可得y1=±1,又点A在第一象限,故A(2,1),由点A和点M的坐标可得直线AB的方程为x-y-1=0。
(2)已知圆M的圆心在x轴上,且圆心在直线l1:x=-2的右侧,若圆M截直线l1所得的弦长为23,且与直线l2:2x-错误!y-4=0相切,则圆M的方程为________.答案(x+1)2+y2=4解析由已知,可设圆M的圆心坐标为(a,0),a>-2,半径为r,则错误!解得错误!∴圆M的方程为(x+1)2+y2=4。
思维升华求具备一定条件的直线或圆的方程时,其关键是寻找确定直线或圆的两个几何要素,待定系数法也是经常使用的方法,解题时要注意平面几何知识的应用.跟踪演练1 (1)过点P(-4,0)的直线l与圆C:(x-1)2+y2=5相交于A,B两点,若点A恰好是线段PB 的中点,则直线l的方程为________.答案x±3y+4=0解析设AB的中点为D,则CD⊥AB,设CD=d,AD=x,则PA=AB=2x,在Rt△ACD中,由勾股定理得d2+x2=r2=5,①在Rt△PDC中,由勾股定理得d2+9x2=CP2=25,②由①②解得d2=错误!.易知直线l的斜率一定存在,设为k,则l:y=k(x+4),圆心C(1,0)到直线l的距离为d=错误!=错误!,解得k2=错误!,k=±错误!,所以直线l的方程为y=±13(x+4),即为x±3y+4=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
...
1
专题强化练十二 直线与圆
一、选择题
1.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=( )
A.-43 B.-34 C.3 D.2
解析:圆x2+y2-2x-8y+13=0化为标准方程为(x-1)2+(y-4)2=4,则圆心为(1,4),
由题意得d=|a+4-1|a2+1=1,解得a=-43.
答案:A
2.(2018·安徽合肥二模)已知圆C:(x-6)2+(y-8)2=4,O为坐标原点,则以OC为直径的圆的方程为( )
A.(x-3)2+(y+4)2=100
B.(x+3)2+(y-4)2=100
C.(x-3)2+(y-4)2=25
D.(x+3)2+(y-4)2=25
解析:圆C的圆心的坐标C(6,8),则OC的中点坐标为E(3,4),则所求圆的半径|OE|=32+42=5,则以OC为
直径的圆的方程为(x-3)2+(y-4)2=25.
答案:C
3.(2018·昆明诊断)已知命题p:“m=-1”,命题q:“直线x-y=0与直线x+m2y=0互相垂直”,则命题p是
命题q的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要
解析:“直线x-y=0与直线x+m2y=0互相垂直”的充要条件是1×1+(-1)·m2=0⇔m=±1.
所以命题p是命题q的充分不必要条件.
答案:A
4.过点(3,1)作圆(x-1)2+y2=r2的切线有且只有一条,则该切线的方程为( )
A.2x+y-5=0 B.2x+y-7=0
C.x-2y-5=0 D.x-2y-7=0
解析:依题意知,点(3,1)在圆(x-1)2+y2=r2上,且为切点.因为圆心(1,0)与切点(3,1)连线的斜率为12,所
以切线的斜率k=-2,故圆的切线方程为y-1=-2(x-3),即2x+y-7=0.
答案:B
5.(2018·广东深圳二模)已知点P(1,m)在椭圆x24+y2=1的外部,则直线y=2mx+3与圆x2+y2=1的位置关
系为( )
A.相离 B.相交
C.相切 D.相交或相切
...
2
解析:由点P(1,m)在椭圆x24+y2=1的外部,得m2>34,则圆x2+y2=1的圆心(0,0)到直线y-2mx-3=0的距
离d=|-3|1+4m2<32<1,所以直线y=2mx+3与圆x2+y2=1相交.
答案:B
6.已知圆C:(x-1)2+y2=25,则过点P(2,-1)的圆C的所有弦中,以最长弦和最短弦为对角线的四边形的面
积是( )
A.1031 B.921 C.1023 D.911
解析:易知最长弦为圆的直径10,
又最短弦所在直线与最长弦垂直,且|PC|=2,
所以最短弦的长为2r2-|PC|2=225-2=223,
故所求四边形的面积S=12×10×223=1023.
答案:C
二、填空题
7.(2018·河南郑州一模)如果直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行,则a=________.
解析:因为直线ax+2y+3a=0与直线3x+(a-1)y=a-7平行,
即直线ax+2y+3a=0与直线3x+(a-1)y-(a-7)=0平行,
所以a3=2a-1≠3a-(a-7),解得a=3.
答案:3
8.(2018·青岛质检)已知抛物线y=ax2(a>0)的准线为l,若l与圆C:(x-3)2+y2=1相交所得弦长为3,则
a
=________.
解析:由y=ax2,得x2=ya,
所以准线l的方程为y=-14a.
又l与圆C:(x-3)2+y2=1相交的弦长为3.
所以-14a2+322=1,则a=12.
答案:12
9.在平面直角坐标系xOy中,以点A(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大
的圆的标准方程为________.
解析:直线mx-y-2m-1=0恒过定点P(2,-1),
当AP与直线mx-y-2m-1=0垂直,即点P(2,-1)为切点时,圆的半径最大,
所以半径最大的圆的半径r=(1-2)2+(0+1)2=2.
...
3
故所求圆的标准方程为(x-1)2+y2=2.
答案:(x-1)2+y2=2
三、解答题
10.已知圆C:x2+y2+2x-4y+3=0,从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且
有|PM|=|PO|,求使|PM|取得最小值时点P的坐标.
解:圆C的方程为(x+1)2+(y-2)2=2,
所以圆心C(-1,2),半径r=2.
由|PM|=|PO|,得|PO|2=|PM|2=|PC|2-|CM|2,
所以x21+y21=(x1+1)2+(y1-2)2-2.
整理,得2x1-4y1+3=0,即点P在直线2x-4y+3=0上,
要使|PM|取最小值时,只要|PO|取最小值即可,
当直线PO垂直于直线2x-4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小.
解方程组2x+y=0,2x-4y+3=0,得x=-310,y=35.
故使|PM|取得最小值时,点P的坐标为-310,35.
11.已知过点A(1,0)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(1)求k的取值范围;
(2)若OM→·ON→=12,其中O为坐标原点,求|MN|.
解:(1)由题设,可知直线l的方程为y=kx+1.
因为l与圆C交于两点,所以|2k-3+1|1+k2<1,
解得4-73<k<4+73.
所以k的取值范围为4-73,4+73.
(2)设M(x1,y1),N(x2,y2),将y=kx+1代入方程(x-2)2+(y-3)2=1,
整理得(1+k2)x2-4(1+k)x+7=0.
所以x1+x2=4(1+k)1+k2,x1x2=71+k2.
OM→·ON→=x1x2+y1y2=(1+k2)x1x2+k(x1+x
2
)+1=4k(1+k)1+k2+8.
由题设可得4k(1+k)1+k2+8=12,解得k=1,
所以l的方程为y=x+1,
...
4
故圆心C在l上,所以|MN|=2.