Glass formation via structural fragmentation of a 2D coordination network

合集下载

无机材料科学基础复习资料资料

无机材料科学基础复习资料资料

第三章练习题1一、填空题1.玻璃具有下列通性:各向同性、介稳性、熔融态向玻璃态转化的可逆与渐变性、熔融态向玻璃态转化时物理、化学性能随温度变化的连续性。

2.在硅酸盐熔体中,当以低聚物为主时,体系的粘度低、析晶能力大。

3.物质在熔点时的粘度越高越容易形成玻璃,Tg/Tm 大于2/3(大于,等于,小于)时容易形成玻璃。

4.熔体是物质在液相温度以上存在的一种高能量状态,在冷却的过程中可以出现结晶化、玻璃化和分相三种不同的相变过程。

5.当SiO2含量比较高时,碱金属氧化物降低熔体粘度的能力是Li2O < Na2O < K2O。

6. 2Na2O·CaO·Al2O3·2SiO2的玻璃中,结构参数Y为 3 。

7.从三T曲线可以求出为避免析出10-6分数的晶体所需的临界冷却速率,该速率越小,越容易形成玻璃。

8.NaCl和SiO2两种物质中SiO2容易形成玻璃,因其具有极性共价键结构。

9.在Na2O-SiO2熔体中,当Na2O/Al2O3<1时,加入Al2O3使熔体粘度降低。

10. 硅酸盐熔体中聚合物种类,数量与熔体组成(O/Si)有关,O/Si比值增大,则熔体中的高聚体[SiO4]数量减少。

11.硅酸盐熔体中同时存在许多聚合程度不等的负离子团,其种类、大小和复杂程度随熔体的组成和温度而变。

当温度不变时,熔体中碱性氧化物含量增加,O/Si比值增大,这时熔体中高聚体数量减少。

二、问答题1.试述熔体粘度对玻璃形成的影响?在硅酸盐熔体中,分析加入—价碱金属氧化物、二价金属氧化物或B2O3后熔体粘度的变化?为什么?答:1) 熔体粘度对玻璃形成具有决定性作用。

熔体在熔点时具有很大粘度,并且粘度随温度降低而剧烈地升高时,容易形成玻璃。

2) 在硅酸盐熔体中,加入R2O,随着O/Si比增加,提供游离氧,桥氧数减小,硅氧网络断裂,使熔体粘度显著减小。

加入RO,提供游离氧,使硅氧网络断裂,熔体粘度降低,但是由于R2+的场强较大,有一定的集聚作用,降低的幅度较小。

超薄二维Au@BiVO_(4)纳米片光催化降解HPAM

超薄二维Au@BiVO_(4)纳米片光催化降解HPAM

超薄二维Au@BiVO 4纳米片光催化降解HPAM董泽坤1,李辉2,3,姚诗余4,刘轶1,鲁新2,刘汉军2(1.吉林大学化学学院,吉林长春130000;2.中国石油集团川庆钻探工程有限公司安全环保质量监督检测研究院,四川广汉618000;3.西华师范大学环境科学与工程学院,四川南充637009;4.吉林大学物理学院,吉林长春130000)[摘要]针对钻井废液中有机物难降解的难题,首先利用两相法制备了单斜晶相的超薄二维BiVO 4纳米片,然后利用光还原法在BiVO 4表面沉积Au 纳米粒子,制得超薄二维Au@BiVO 4纳米片,用于光催化降解聚丙烯酰胺(HPAM )。

考察了催化剂的制备条件、催化剂投加量、HPAM 初始浓度对光催化降解性能的影响,探究了其光催化降解HPAM 的机理。

结果表明,当n (Au )∶n (BiVO 4)为1∶100时,所得到的产品对HPAM 的光催化降解效果最好,其降解效果主要依靠催化剂在光照条件下产生·OH 来实现。

[关键词]两相法;Au@BiVO 4;光催化降解;聚丙烯酰胺[中图分类号]X703.1[文献标识码]A[文章编号]1005-829X (2021)09-0074-07Ultrathin two ⁃dimensional Au@BiVO 4nanosheetsfor photocatalytic degradation of polyacrylamideDong Zekun 1,Li Hui 2,3,Yao Shiyu 4,Liu Yi 1,Lu Xin 2,Liu Hanjun 2(1.College of Chemistry ,Jilin University ,Changchun 130000,China ;PC CCDE SafetyEnvironment Quality Surveillance &Inspection Research Institute ,Guanghan 618000,China ;3.College of Environmental Science and Engineering ,Southwest Normal University ,Nanchong 637009,China ;4.College of Physics ,Jilin University ,Changchun 130000,China )Abstract :Aiming the problem of organic compound hard degradation in drilling waste liquid ,two ⁃dimensional ultra ⁃thin BiVO 4nanosheets with monoclinic crystal phase were firstly prepared via a simple two ⁃phase method ,followedby the deposition of Au nanoparticles under the irradiation.The prepared nanosheets was used to photocatalytic degra ⁃dation of polyacrylamide (HPAM ).The effects of the preparation conditions ,the dosage of the photocatalyst and the initial concentration of the hydrolyzed polyacrylamide (HPAM )on the performance of the photocatalytic degradation efficiency were studied.The mechanism of photocatalytic degradation of HPAM was investigated as well.The results showed that Au@BiVO 4nanosheets exhibited the highest photocatalytic efficiency for HPAM degradation when the molar ratio of Au to BiVO 4was 1∶100.And the photocatalytic degradation mechanism is mainly depended on the ·OH.Key words :two ⁃phase method ;Au@BiVO 4;photocatalytic degradation ;polyacrylamide [基金项目]国家自然科学基金项目(51803070);川庆钻探工程公司资助项目(CQ2020B-41-1-7)油气勘探过程中产生的液态废弃物主要来源于钻井过程中报废的水基与油基钻井液等〔1-2〕。

《无机材料》 第4章 非晶态结构与性质(2)-熔体的性质(2学时)

《无机材料》 第4章 非晶态结构与性质(2)-熔体的性质(2学时)

2. 请分析图示R2O 对R2O-SiO2系统玻 璃粘度的影响
R2O-SiO2系统玻璃在1400℃时的粘度变化
u 熔体粘度,特征温度【应变点,退火点(Tg),变形 点,Litteleton软化点,操作点,成形温度范围】,硼 反常现象,混合碱效应;
u 熔体表面张力,表面活性物质,表面惰性物质,表面 活性剂;
u 当Na2O约为15~20mol%时,B3
+形成[BO4]最多,Y最大, α最小;
u 继续增加Na2O 含量,引入游离
氧,起断网作用,Y↓ , α ↑ 。
Na2O-B2O3二元玻璃中平均桥氧数Y、
热膨胀系数α随Na2O含量的变化
(6)混合碱效应:粘度↑
混合碱效应:熔体中同时引入两种或以上 R2O或 RO时,粘度比等量的一种R2O或RO高。
η=1012Pa·s时18Na2O·12RO·70SiO2玻璃对应温度
8电子结构 T(℃) 18电子结构 T(℃)
第四周期
CaO 533
ZnO
513
第五周期
SrO 511
CdO 487
第六周期
BaO 482
PbO 422
(8)其它化合物
CaF2:熔体粘度↓↓ F-半径与O2-相近,较易发生取代,但F-只有一 价,破坏原网络后难以形成新网络,粘度大大下降。
(2)修正式——VFT公式(Vogel-Fulcher-Tammann公式)
lg A B
T T0
式中 A、B、T0——与熔体组成有关的常数,其 中,T0 表示 液体分子不能再移动时的温度,也可理解 为:当液体过冷到T0时,其中的质点不再可能作在一 般液体中的迁移运动。
【注意】以上两公式均为经验式,因此目前粘度仍

废弃熔融石英玻璃高温晶化为方石英的过程研究

废弃熔融石英玻璃高温晶化为方石英的过程研究

2024 年 3月第 61 卷第 2 期Mar. 2024Vol. 61 No. 2四川大学学报(自然科学版)Journal of Sichuan University (Natural Science Edition)废弃熔融石英玻璃高温晶化为方石英的过程研究游敦翰1,2,孙红娟1,2,彭同江2,刘波1,2,王振轩1,2(1.西南科技大学固体废物处理与资源化教育部重点实验室,绵阳 621010;2.西南科技大学矿物材料及应用研究所,绵阳 621010)摘要: 高纯熔融石英玻璃当前被广泛应用于高新产业中,但是在使用过程中,由于析晶、软化变形等情况导致高纯熔融石英玻璃产品不能继续使用.本文在对废弃熔融石英玻璃的物相、杂质、气泡等分析的基础上,采用高温物相转化将废弃熔融石英玻璃转化为方石英,讨论了煅烧温度、保温时间、粒径三个影响因素,通过Jade软件计算了高温物相转化产物的晶相含量占比.结果表明,废弃熔融石英玻璃经过高温焙烧处理后转化为方石英相,并且方石英的含量主要受煅烧温度、保温时间和颗粒粒径的影响,随着煅烧温度升高和保温时间的延长,颗粒粒径越小,方石英的含量也逐渐增加.从1230 ℃开始,废弃熔融石英玻璃开始成核结晶,在1480 ℃进入一个快速结晶期,在1500 ℃可完全转化为方石英相.关键词: 废弃熔融石英玻璃;方石英;高温物相转化;煅烧温度中图分类号: X705 文献标志码: A DOI:10.19907/j.0490-6756.2024.025001Study on the process of converting waste fused quartz glass intocristobalite by nucleation crystallization at high temperatureYOU Dun-Han1,2, SUN Hong-Juan1,2, PENG Tong-Jiang2, LIU Bo1,2, WANG Zhen-Xuan1,2(1.School of Environment and Resources, Southwest University of Science and Technology, Mianyang621010, China; 2.Institute of Mineral Materials and Application, Southwest University of Science andTechnology, Mianyang 621010, China)Abstract: At present, high purity fused quartz glass is widely used in high-tech industry, however, crystalli‑zation,softening and deformation due to long-term use all affect its performance.In this paper,the waste fused quartz glass was transformed into cristobalite by high temperature phase transformation based on the analysis of the phase, impurities and bubbles of the waste fused quartz glass, and the three influencing factors including calcination temperature,holding time and particle size were discussed.The crystal phase content proportion of the product was theoretically calculated by Jade software.The results showed that the waste fused quartz glass was transformed into cristobalite phase after high temperature roasting, and the content of cristobalite was mainly affected by the calcination temperature,holding time and particle size.With the in‑creases of calcination temperature and extension of holding time, and the decrease the particle size, the con‑tent of cristobalite increased gradually. At 1230 ℃, the waste molten quartz glass began to nucleate and crys‑tallize. It entered a rapid crystallization period at 1480 ℃ and was completely transformed into a cristobalite phase at 1500 ℃.收稿日期: 2023-06-30基金项目: 四川省知识产权局知识产权专项资金项目(2022-ZS-00031)作者简介: 游敦翰(1998—),男,四川内江人,硕士研究生,研究方向为资源与环境.E-mail: 1043482268@通讯作者: 孙红娟.E-mail: sunhongjuan@第 2 期游敦翰,等:废弃熔融石英玻璃高温晶化为方石英的过程研究第 61 卷Keywords: Waste fused quartz glass; Cristobalite; High temperature phase transformation; Calcination tem‑perature1 引言石英(SiO2)是当前许多高新技术产业中不可或缺的原料,而高纯石英更是其中较为短缺的重要资源[1].SiO2含量高于99.99%的高端高纯石英砂通常作为熔融石英玻璃的原料.熔融石英玻璃具有优良的耐高温性、透明性和低污染性,在冶金、化工等耐高温设备及核工业、航空航天、电子材料制备等领域具有广泛的应用[2].熔融石英玻璃由于在高温下长时间使用,或产生的析晶层并引起高纯熔融石英玻璃破裂,或产生的微气泡和残留杂质聚集等,都会对产品造成影响[3].因此,熔融石英玻璃需要定期进行更换,属于消耗性器材[4].随着我国高新产业规模的不断扩增,特别是制造通信和光伏器件领域的不断增大,高纯熔融石英玻璃器件的淘汰量也与日俱增,其废弃量也越来越大.废弃熔融石英玻璃由于回收利用难度大,常作为废料堆放或者填埋,给环境和空间带来巨大的压力[5];或仅作为低档原料用于道路基础材料、建筑填料、制陶业等方面.但从化学成分角度上看,废弃熔融石英玻璃的SiO2含量高达99%以上,可作为制备高纯石英材料的潜在资源,以上处理是对资源的浪费.然而,当前对于废弃熔融石英玻璃的再利用研究进展较为缓慢[6, 7].方石英具有较高的散射性、消光性、高白度、抗腐蚀、耐擦洗和耐高温等性质,近年来,被广泛用于精密制造、电子产品和高新材料的制备[8].天然石英在1470 ℃下可转化为方石英.陈美怡等[9]以石英为原料在1350~1500 ℃中添加一定量的稻壳灰,促进石英向方石英转变,同时生成部分鳞石英相,但是晶相转化效率并不高.莫腾腾等[10]以SiO2含量为99.99%的石英为原料,研究其在高温的相变行为,发现随着温度的升高,石英的晶相转化含量增加,体积收缩率不断增加,在1300 ℃基本完全转变为方石英相.Silica等[11]发现不同含量的H2O和O2的气氛对不同杂质含量、还原性状态以及表面状态的石英玻璃的促进结晶效果不同,气氛中H2O和O2含量的提高能够促进石英玻璃的析晶成核速率.当前方石英的研究主要集中在石英转化为方石英动力学研究,以及石英直接煅烧法制备方石英等方面,采用的原料多为石英或者高纯石英产品,加入一定量的矿化剂促进晶相转化,在转化的同时也会引入一定的杂质,对于后续方石英材料造成一定的影响[12].本研究采用废弃熔融石英玻璃块料为原料,在废弃熔融石英玻璃的相关属性分析基础上,对废弃熔融石英玻璃在热处理过程中由玻璃相成核、结晶转化为方石英的过程进行了研究,讨论了煅烧温度、保温时间、粒径大小三个变量对废弃熔融石英玻璃成核、结晶及转化为方石英的影响,以及对废弃熔融石英玻璃的资源化利用与方石英材料的制备提供理论和实验技术支撑.2 实验2.1 实验原料废弃熔融石英玻璃试样来自于某企业,其外观形貌和显微形貌如图1所示.废弃熔融石英玻璃主要呈无色透明且内部具有气泡,熔融层分为内外具有气泡大小和含量明显不同两个分层.气泡内部常包含着杂质,两个分层具有较清晰的分界线.外层为气泡复合层,气泡尺寸大,气泡分布密集;内层为气泡空乏层,气泡尺寸小,气泡分布稀疏.结果发现,试样中气泡复合层表面粗糙,气泡密集,且气泡尺寸较大,由X射线衍射(XRD)分析(图2)主要为非晶相.2.2 实验制备将废弃熔融石英玻璃破碎、研磨、筛分后,准确称量不同粒度的熔融石英玻璃样品5 g(精确至0.1 mg),装入方石英坩埚中,并将其放入箱式高温炉中.在室温条件下,以10 ℃/min的升温速率升高至图1 废弃熔融石英玻璃及显微形貌的照片Fig.1 The morphology and microstructure of waste fused quartz glass第 61 卷四川大学学报(自然科学版)第 2 期目标温度,保温一定时间后自然冷却至室温.最后将反应产物取出,进行研磨并通过80目筛装袋,并编号为(FSY).2.3 样品表征与分析奥特光学偏光显微镜用于观察样品的外观形貌.电感耦合等离子体质谱仪(ICP‑MS)用于测定废弃熔融石英玻璃的元素含量.日本株式会社Ul‑tra型X射线衍射仪用于分析不同转化温度、不同保温时间、不同颗粒粒径下热处理后样品的物相特征.测试条件:Cu靶,管电压40 kV,管电流40 mA,发射狭缝(DS)(1/2)°,扫描步长0.02°,扫描范围3°~70°,连续扫描.Jade软件用于对各产品衍射数据和晶相含量的计算.德国蔡司Ultra55型场发射扫描电子显微镜(SEM)用于对不同温度下废弃熔融石英玻璃热处理样品的微观形貌观察.测试条件为:15 kV,放大倍数10~100 000倍.德国耐驰STA449′型热分析仪(TG-DCS)用于分析废弃石英石英坩埚在不同温度下的失重.测试条件:10 ℃/min,室温~1300 ℃,空气气氛.3 结果与讨论3.1 原料属性分析表1为废弃熔融石英玻璃样品杂质元素分析结果.由表1可见,废熔融石英玻璃样品中主要含有Al、Ca和Fe等金属杂质.这些金属杂质也是引起废弃熔融石英玻璃产生析晶行为的主要因素.参考标准GB/T3284‑2015(石英玻璃化学成分分析方法)采用四氟化硅挥发重量法测定的废弃熔融石英玻璃样品的SiO2的含量为99.91%.图2为废弃熔融石英玻璃样品的XRD图.由图2可知,废弃熔融石英玻璃样品基本为非晶相,表现为两个宽缓的散射峰.图3为废熔融石英玻璃的SEM图.可看出颗粒为不规则粒状,颗粒尺寸不均匀,有许多小颗粒在大颗粒表面.图4为废熔融石英玻璃的热分析图谱.由DSC 曲线可见,随着温度升高,试样在200 ℃附近和450 ℃附近出现两个吸收峰,分别对应于样品脱去吸附水和结构水的吸热效应;随后至1230 ℃,产生了一个较强的吸热效应,这与玻璃相热振动增加的吸热效应和至1230 ℃时成核结晶吸热作用的复合有关.由TG曲线可见,随着温度升高,试样有两段失重,第一段失重0.27%,第二段失重0.37%,试样总失重在0.64%.分析认为,第一段失重为试样中的吸附水与结构水由于温度的升高而被去除有关;第二段失重为高温下试样中的部分微小气泡爆裂,杂质逸出,并从试样中排出.3.2 煅烧温度对结晶作用的影响图5为废熔融石英玻璃原样及在不同温度保温表1 废弃熔融石英玻璃的杂质元素含量(µg/g)Tab.1 Content of impurity elements in waste fused quartz glass (µg/g)元素含量Al32.91Ca12.57Cu0.06Fe5.05K5.22Li0.16Mg3.87Na6.32Ni0.07Cr0.24Ba0.39Mn0.32Sum67.18图2 废弃熔融石英玻璃的XRD图谱Fig.2 XRD pattern of waste fused silica glass图3 废弃熔融石英玻璃的SEM图Fig.3 SEM images of waste fused quartz glass第 2 期游敦翰,等: 废弃熔融石英玻璃高温晶化为方石英的过程研究第 61 卷1 h 产物的XRD 图,以及对应样品的晶相含量占比.由图5a 的XRD 图可以看出,随着煅烧温度的升高,方石英d 101=4.4046 Å附近的特征峰逐渐增强;低角度区(2θ=3°~12°)的宽缓衍射峰强度逐渐降低;2θ在15°~30°的宽缓衍射峰强度也逐渐降低,峰型从馒头形转变为尖锐明显的方石英d 101衍射峰.这表明,试样在保温温度的升高过程中由非晶相转化为晶相结构,并且在1500 ℃保温1 h 的条件下完全转化为方石英晶体(d 101=4.4046 Å、d 020=2.4890 Å、d 012=2.8488 Å).非晶态SiO 2的短程有序结构(即硅氧四面体)与方石英的短程有序结构相近,但硅氧四面体之间的联结与排布前者存在无序性.在温度升高时,无序联结的硅氧四面体趋于有序排列,在固态下克服一定的势垒逐渐成核.当温度继续升高(如1500 ℃)并达到完全克服势垒时,无序联结的硅氧四面体快速成核并快速生长,完全转化为方石英的有序结构.一方面为晶体内部提供越来越多的能量更有利于方石英的成核;另一方面增强了石英的活性并产生一定量的液相,增强了体系中粘性流动,有利于表现出这种相似性,从而促进SiO 2的相变行为,最终转化为方石英[13,14].图4 废弃熔融石英玻璃热分析图Fig.4 Thermal analysis diagram of waste fused quartz glass图5 FSY 原样及在不同温度保温1h 的XRD 图及晶相含量占比Fig.5 XRD patterns and crystal phase content ratios of FSY held at different holding temperatures for 1h图6 FSY 在不同温度下保温1 h 的SEM 图Fig.6 SEM atlas of FSY held at different temperatures for 1 h第 61 卷四川大学学报(自然科学版)第 2 期图5b 是通过Jade 软件统计计算获得的内部熔融层样品在1400~1500 ℃温度条件下煅烧产物中晶相与玻璃相的含量百分比变化(以CaF 2为内标物,添加量为20%).由图5b 可看出,随着温度逐渐升高,试样中的非晶相占比逐渐减少,方石英晶相含量占比则逐渐增大,与图5a 中非晶相向方石英晶相结构转化的XRD 图谱相一致.图6为废弃熔融石英玻璃在不同温度条件煅烧后产物的SEM 图.由图6看出,试样表面附着许多的小颗粒,随着温度的升高,方石英晶粒尺寸不断变大,当温度达1500 ℃时,方石英晶体长大.3.3 保温时间对结晶作用的影响图7为FSY 在1440 ℃下保温不同时间产物的XRD 图谱及晶相含量占比.从图7a 可以发现,试样随着保温时间的延长,方石英d 101=4.4046 Å附近的特征峰逐渐增强;低角度区(2θ=3°~12°)的宽缓衍射峰强度逐渐降低;在1440 ℃保温3 h 后,2θ在15°~30°的宽缓衍射峰强度也逐渐降低,趋向平缓,峰型从馒头形转变为尖锐明显的方石英d 101衍射峰.这是由于保温时间的延长为相变提供了更充分的能量,从而破坏更多的Si‑O 键,更有利于方石英的成核[15].同时,在1440 ℃保温4 h 后,晶相转化率变化不大,但是1500 ℃保温1 h 煅烧也比1440 ℃保温5 h 的转化效果好,因此需要进一步提高温度.通过对试样进行内标定量计算,由图7b 可见,在相同的温度条件下,方石英的含量随着保温时间的延长而增加,方石英含量从5.9%增加至67.8%,非晶相的含量从74.1%减少到12.2%.由图8的SEM 图谱可见,试样表面附着了许多小颗粒,随着保温时间的延长,试样晶粒尺寸不断变大,在熔融石英颗粒边缘优先生长,随后由表及里发生析晶,表面小颗粒熔融聚集为大颗粒.3.4 粒径大小对结晶作用的影响图9a 为不同粒径的FSY 在1440 ℃保温4 h 后的XRD 图.从图中可以发现,随着试样粒径的减小,方石英的d 101衍射峰的强度随之增强,峰型越来图7 FSY 在1440 ℃保温不同时间的XRD 图及晶相含量占比图Fig.7 XRD patterns and crystal phase content ratios of FSY held at 1440 ℃ for different time图8 FSY 在1440 ℃下保温不同时间的SEM 图Fig.8 SEM atlas of FSY held at 1440 ℃ for different time第 2 期游敦翰,等: 废弃熔融石英玻璃高温晶化为方石英的过程研究第 61 卷越尖锐;粒径在40~80目的试样中依然存在较多的非晶相,但2θ在20°~23°出现明显的方石英的d 101特征峰.在80目以下试样粒径的方石英含量明显提高.通过对试样进行内标定量计算可知(图9b ),在相同的温度和保温时间条件下,粒径越小的方石英含量越多,方石英含量从6.1%增加至79.2%,非晶相的含量从73.9%减少到0.8%;粒径在80~300目之间的颗粒,方石英的含量逐渐增加,但是转化率相差不大.这是因为析晶都是从颗粒表面开始的,即由于表面(或界面)能,使得表面成核析晶占主导地位[16].粒径小的颗粒比粒径大的颗粒具有更大的比表面积和受热面积,因此细颗粒的转化率会略高于粗颗粒[17].通过图10中的SEM 图谱可明显看出,在1440 ℃下保温4 h ,不同粒径的颗粒出现不同程度的球化现象,并且粒径越小,有棱角的小颗粒熔融聚集形成表面“圆滑”的大颗粒.随着非晶相结晶形成的方石英显示出的结构很致密.粒径越小的颗粒,小粒径颗粒之间有更充分的能量扩散和Si -O 键重排,晶粒成长变化越快,晶粒成长越多,粒径越小的颗粒在表面析晶行为越强[18].4 结论本文利用废弃熔融石英玻璃为原料,从煅烧温度、保温时间和粒径三个方面,通过XRD 及其计算、SEM 对废弃熔融石英玻璃高温转化后的变化情况进行研究,结果表明:(1) 废弃熔融石英玻璃的主要物相为非晶相,内外表析晶层为方石英晶相,并且废弃熔融石英玻璃的SiO 2含量在99.9%以上,具有可再利用潜力,并且在高温处理中,随着温度的升高,试样内部的水含量也逐渐减少.(2) 非晶相的熔融石英经过高温晶化处理,主图9 不同粒径FSY 在1440 ℃保温4 h 的XRD 图及晶相含量占比图Fig.9 XRD patterns and crystal phase content ratios of FSY with different particle sizes held at 1440 ℃ for 4 h图10 不同粒径的FSY 在1440 ℃保温4 h 的SEM 图Fig. 10 SEM atlas of FSY with different particle sizes held at 1440 ℃ for 4 h第 61 卷四川大学学报(自然科学版)第 2 期要转化为晶相的方石英相.方石英的转化率随着煅烧温度的升高而提高,升高煅烧温度可为非晶相转变方石英提供更多的能量,使大量Si‑O键破裂重组,在1500 ℃保温1 h后,方石英的含量从0.3%增加至80%.(3)方石英的含量随着保温时间的延长而增加,在1440 ℃保温条件下,随着保温时间的延长,非晶相的熔融石英能够更充分地吸收能量,更好地生长结晶,方石英含量从5.9%增加至67.8%.(4) 40~300目的颗粒在1440 ℃保温4 h,随着粒径的减小,方石英含量从6.1%增加至79.2%.粒径越小,颗粒比表面积越大,能够吸收更多的能量,加速了方石英的成核和成长,从而提高了方石英的转化率,也对废弃熔融石英玻璃的再利用提供了一定的参考价值.参考文献:[1]Wang L.Considerations on strategic non-metallic min‑eral resources [J].Conserv Util Mineral Resourc,2019, 39: 1.[汪灵.战略性非金属矿产的思考[J].矿产保护与利用, 2019, 39: 1.][2]Jiang R H, Xiao S Z.Silicon solar cells and materials [J].Adv Mater Indust,2003(7): 116.[蒋荣华,肖顺珍.硅基太阳能电池与材料[J].新材料产业, 2003(7): 116.][3]Mo Y, Zhang Y W, Han H P,et al.Effects of quartz crucible on growth of large diameter czochralski sili‑con [J].Electr Proc Technol,2021,42:46.[莫宇,张颖武,韩焕鹏,等.石英坩埚对大直径直拉硅单晶生长的影响[J].电子工艺技术, 2021, 42: 46.][4]Yue L X,Wu W S,Ji C C,et al.Effect of quartz zeramic crucible on polysilicon ingot quality [J].Foundry Technol, 2015, 36: 779.[岳立喜,武文双,及冲冲,等.石英陶瓷坩埚对多晶硅铸锭质量的影响[J].铸造技术, 2015, 36: 779.][5]Zhu C.The development strategy research on quartz crucible enterprises in the photovoltaic industrychain [J].Guid Sci Educ, 2013(5): 191.[朱纯.石英坩埚企业在光伏产业链中发展的策略研究[J].科教导刊, 2013(5): 191.][6]Liu H B,Jiang S X.The research evolution and appli‑cation of quartz ceramic materials [J].Glass, 2008(4):16.[刘恒波,蒋述兴.石英陶瓷材料的研究进展[J].玻璃, 2008(4): 16.][7]Li G J.Current situation and development of the cru‑cibles for multicrystalline silicon ingots in china [J].Bull Chin Ceram Soc, 2013, 32: 2297.[李贵佳.我国多晶硅铸锭坩埚的现状与发展[J].硅酸盐通报,2013, 32: 2297.][8]Shen K Y,Wang R,Zeng Q,et al.Preparation of cristobalite and testing of its thermal characteris‑tics [J].Foundry Technol, 2013, 34: 324.[申柯娅,王睿,曾群,等.方石英的制备及其热性能测试[J].铸造技术, 2013, 34: 324.][9]Chen M Y, Li Z D.Cristobalite transformation and its role in investment casting [J].Foundry, 1993(4): 9.[陈美怡,李自德.方石英转变及其在熔模铸造中的意义[J].铸造, 1993(4): 9.][10]Mo T T, Song N, Xie G,et al.The study of crystalli‑zation process of high-purity silica at high tempera‑ture [J].Light Metal, 2015(4): 49.[莫腾腾,宋宁,谢刚,等.高温下高纯二氧化硅的结晶过程研究[J].轻金属, 2015(4): 49.][11]Silica V, Wagstaff F E, Richards K J.Preparation and crystallization behavior of oxygen deficient vitreoussilica [J].J Am Ceram Soc, 1965, 48: 382.[12]Sun J, Li J K,Wang Y X,et al.Preparation of silicon dioxide-based electroceramics using discarded quartzcrucible from photovoltaic industry [J].J Ceram,2016, 37: 293.[孙健,李家科,王艳香,等.利用光伏行业中废弃石英坩埚制备硅质电瓷[J].陶瓷学报, 2016, 37: 293.][13]Müller R, Zantto E D, Fokin V M.Surface crystallization of silicate glasses:Nucleation sites and kinetics [J].J Non-Cryst Solids, 2000, 274: 208.[14]Xiao W S, Chen J Y, Peng W S,et al.Discussion on metastable formation mechanism of cristobalite [J].JMineral Petrol, 2003, 23: 6.[肖万生,陈晋阳,彭文世,等.方石英的亚稳态形成机制探讨[J].矿物岩石, 2003, 23: 6.][15]Lei Y, Yao J Y, Zhang K,et al.Preparation and char‑acterization of cristobalite from quartz [J].Bull ChinCeram Soc, 2011, 30: 4.[雷芸,姚建云,张科,等.方石英的制备及表征[J].硅酸盐通报, 2011, 30: 4.][16]Wsgstaff F E.Crystallization and melting kinetics of cristobalite [J].J Am Ceram Soc, 1969, 52 : 650.[17]Pagliari L,Dapiaggi M,Pavese A,et al.A kinetic study of the quartz–cristobalite phase transition [J].JEur Ceram Soc, 2013, 33: 3403.[18]Zhang X Y.Preparation of silica crucible and the re‑search on the crystallization behavior[D].Tianjin:Tianjin University, 2014.[张晓艳.熔融石英坩埚的制备及其析晶行为研究[D].天津:天津大学,2014].。

溴到硼酸酯

溴到硼酸酯
Journal of
Materials Chemistry C
Published on 20 November 2014. Downloaded on 08/12/2016 07:54:22.
PAPER
View Article Online
View Journal | View Issue
Cite this: J. Mater. Chem. C, 2015, 3, 861
However, these oligouorene functionalized oligomers may suffer from the unwanted long wavelength emission under long-term device operation, similar to polyuorene-based macromolecules.34–36
Received 26th September 2014 Accepted 17th November 2014 DOI: 10.1039/c4tc02173h /MaterialsC
Starburst 4,40,400-tris(carbazol-9-yl)triphenylamine-based deep-blue fluorescent emitters with tunable oligophenyl length for solution-processed undoped organic lightemitting diodes†
Introduction
Since 1987, organic light-emitting diodes (OLEDs) have attracted tremendous attention due to their potential applications in at-panel displays and solid-state lightings.1–10 To achieve fullcolor displays, three primary RGB luminescent materials with excellent stability, efficiency and color purity are required. With respect to green and red counterparts, it seems to be a big challenge to develop blue emitters, especially deep-blue ones that have a Commission Internationale de l'Eclairage (CIE) y coordinate value of <0.10, because the intrinsic wide bandgap would inevitably result in inefficient charge injection to an emitting layer (EML).11 Therefore, great efforts should be paid to the design of deep-blue emitters to push forward the commercialization of full-color OLEDs.

CrystGrowthDes晶体生长英文文献

CrystGrowthDes晶体生长英文文献

An Infinite Two-Dimensional Hybrid Water-Chloride Network,Self-Assembled in a Hydrophobic Terpyridine Iron(II)MatrixRicardo R.Fernandes,†Alexander M.Kirillov,†M.Fátima C.Guedes da Silva,†,‡Zhen Ma,†JoséA.L.da Silva,†João J.R.Fraústo da Silva,†andArmando J.L.Pombeiro*,†Centro de Química Estrutural,Complexo I,Instituto Superior Técnico,TU-Lisbon,A V.Ro V isco Pais,1049-001Lisbon,Portugal,and Uni V ersidade Luso´fona de Humanidades e Tecnologias,A V.doCampo Grande,376,1749-024,Lisbon,PortugalRecei V ed October18,2007;Re V ised Manuscript Recei V ed January7,2008ABSTRACT:An unprecedented two-dimensional water-chloride anionic{[(H2O)20(Cl)4]4–}n network has been structurally identified in a hydrophobic matrix of the iron(II)compound[FeL2]Cl2·10H2O(L)4′-phenyl-2,2′:6′,2″-terpyridine).Its intricate relief geometry has been described as a set of10nonequivalent alternating cycles of different sizes ranging from tetra-to octanuclear{[(H2O)x(Cl)y]y–}z(x) 2–6,y)0–2,z)4–6,8)fragments.In contrast to the blooming research on structural characterizationof a wide variety of water clusters in different crystalline materials,1much less attention has been focused on the identification anddescription of hybrid hydrogen-bonded water assemblies with othersolvents,small molecules,or counterions.1c,2In particular,thecombination of chloride ions and water is one of the most commonlyfound in natural environments(e.g.,seawater or sea-salt aerosols),and thus the investigation of water-chloride interactions has beenthe object of numerous theoretical studies.3However,only recentlya few water-chloride associates incorporated in various crystalmatrixes have been identified and structurally characterized,4,5including examples of(i)discrete cyclic[(H2O)4(Cl)]–,4a[(H2O)4(Cl)2]2–,4b and[(H2O)6(Cl)2]2–4c clusters,and(ii)variousone-or two-dimensional(1D or2D)hydrogen-bonded networksgenerated from crystallization water and chloride counterionswith{[(H2O)4(Cl2)]2–}n,5b{[(H2O)6(Cl)2]2–}n,5b[(H2O)7(HCl)2]n,5c{[(H2O)11(Cl)7]7–}n,5d{[(H2O)14(Cl)2]2–}n,5e{[(H2O)14(Cl)4]4–}n,5aand{[(H2O)14(Cl)5]5–}n5f compositions.These studies are alsobelieved to provide a contribution toward the understanding of thehydration phenomena of chloride ions in nature and have importancein biochemistry,catalysis,supramolecular chemistry,and designof crystalline materials.5In pursuit of our interest in the self-assembly synthesis andcrystallization of various transition metal compounds in aqueousmedia,we have recently described the[(H2O)10]n,6a(H2O)6,6b and[(H2O)4(Cl)2]2–4b clusters hosted by Cu/Na or Ni metal-organicmatrixes.Continuing this research,we report herein the isolationand structural characterization of a unique2D water-chlorideanionic layer{[(H2O)20(Cl)4]4–}n within the crystal structure of thebis-terpyridine iron(II)compound[FeL2]Cl2·10H2O(1′)(L)4′-phenyl-2,2′:6′,2″-terpyridine).Although this compound has beenobtained unexpectedly,a search in the Cambridge StructuralDatabase(CSD)7,8points out that various terpyridine containinghosts tend to stabilize water-chloride associates,thus also sup-porting the recognized ability of terpyridine ligands in supra-molecular chemistry and crystal engineering.9,10Hence,the simple combination of FeCl2·2H2O and L in tetrahydrofuran(THF)solution at room temperature provides the formation of a deep purple solid formulated as[FeL2]Cl2·FeCl2·5H2O(1)on the basis of elemental analysis,FAB+-MS and IR spectroscopy.11This compound reveals a high affinity for water and,upon recrystallization from a MeOH/H2O(v/v)9/1)mixture,leads to single crystals of1′with a higher water content,which have been characterized by single-crystal X-ray analysis.12The asymmetric unit of1′is composed of a cationic[FeL2]2+ part,two chloride anions,and10independent crystallization water molecules(with all their H atoms located in the difference Fourier map),the latter occupying a considerable portion of the crystal cell. The iron atom possesses a significantly distorted octahedral coordination environmentfilled by two tridentate terpyridine moieties arranged in a nearly perpendicular fashion(Figure S1, Supporting Information).Most of the bonding parameters within [FeL2]2+are comparable to those reported for other iron compounds*To whom correspondence should be sent.Fax:+351-21-8464455.E-mail: pombeiro@ist.utl.pt.†Instituto Superior Técnico.‡Universidade Luso´fona de Humanidades eTecnologias.Figure 1.Perspective representations(arbitrary views)of hybrid water-chloride hydrogen-bonded assemblies in the crystal cell of1′; H2O molecules and chloride ions are shown as colored sticks and balls, respectively.(a)Minimal repeating{[(H2O)20(Cl)4]4–}n fragment with atom numbering scheme.(b)Nonplanar infinite polycyclic2D anionic layer generated by linkage of four{[(H2O)20(Cl)4]4–}n fragments(a) represented by different colors;the numbers are those of Table1and define the10nonequivalent alternating cycles of different size.2008310.1021/cg7010315CCC:$40.75 2008American Chemical SocietyPublished on Web02/08/2008bearing two terpyridine ligands.13The most interesting feature of the crystal structure of 1′consists in the extensive hydrogen bonding interactions of all the lattice–water molecules and chloride coun-terions (Table S1,Supporting Information),leading to the formation of a hybrid water -chloride polymeric assembly possessing minimal repeating {[(H 2O)20(Cl)4]4–}n fragments (Figure 1a).These are further interlinked by hydrogen bonds generating a nonplanar 2D water -chloride anionic layer (Figure 1b).Hence,the multicyclic {[(H 2O)20(Cl)4]4–}n fragment is con-structed by means of 12nonequivalent O–H ···O interactions with O ···O distances ranging from 2.727to 2.914Åand eight O–H ···Cl hydrogen bonds with O ···Cl separations varying in the 3.178–3.234Årange (Table S1,Supporting Information).Both average O ···O [∼2.82Å]and O ···Cl [∼3.20Å]separations are comparable to those found in liquid water (i.e.,2.85Å)14and various types of H 2O clusters 1,6or hybrid H 2O -Cl associates.4,5Eight of ten water molecules participate in the formation of three hydrogen bonds each (donating two and accepting one hydrogen),while the O3and O7H 2O molecules along with both Cl1and Cl2ions are involved in four hydrogen-bonding contacts.The resulting 2D network can be considered as a set of alternating cyclic fragments (Figure 1b)which are classified in Table 1and additionally shown by different colors in Figure 2.Altogether there are 10different cycles,that is,five tetranuclear,three pentanuclear,one hexanuclear,and one octa-nuclear fragment (Figures 1b and 2,Table 1).Three of them (cycles 1,2,and 6)are composed of only water molecules,whereas the other seven rings are water -chloride hybrids with one or two Cl atoms.The most lengthy O ···O,O ···Cl,or Cl ···Cl nonbonding separations within rings vary from 4.28to 7.91Å(Table 1,cycles 1and 10,respectively).Most of the cycles are nonplanar (except those derived from the three symmetry generated tetrameric fragments,cycles 1,2,and 4),thus contributing to the formation of an intricate relief geometry of the water -chloride layer,possessing average O ···O ···O,O ···Cl ···O,and O ···O ···Cl angles of ca.104.9,105.9,and 114.6°,respectively (Table S2,Supporting Information).The unprecedented character of thewater -chloride assembly in 1′has been confirmed by a thorough search in the CSD,7,15since the manual analysis of 156potentially significant entries with the minimal [(H 2O)3(Cl)]–core obtained within the searching algorithm 15did not match a similar topology.Nevertheless,we were able to find several other interesting examples 16of infinite 2D and three-dimensional (3D)water -chloride networks,most of them exhibiting strong interactions with metal -organic matrixes.The crystal packing diagram of 1′along the a axis (Figure 3)shows that 2D water -chloride anionic layers occupy the free space between hydrophobic arrays of metal -organic units,with an interlayer separation of 12.2125(13)Åthat is equivalent to the b unit cell dimension.12In contrast to most of the previously identified water clusters,1,6water -chloride networks,5,16and extended assemblies,1c the incorporation of {[(H 2O)20(Cl)4]4–}n sheets in 1′is not supported by strong intermolecular interactions with the terpyridine iron matrix.Nevertheless,four weak C–H ···O hydrogen bonds [avg d (D ···A))3.39Å]between some terpyridine CH atoms and lattice–water molecules (Table S1,Figure S2,Supporting Information)lead to the formation of a 3D supramolecular framework.The thermal gravimetric analysis (combined TG-DSC)of 117(Figure S3,Supporting Information)shows the stepwise elimination of lattice–water in the broad 50–305°C temperature interval,in accord with the detection on the differential scanning calorimetryTable 1.Description of Cyclic Fragments within the {[(H 2O)20(Cl)4]4–}n Network in 1′entry/cycle numbernumber of O/Cl atomsformula atom numberingschemegeometry most lengthy separation,Åcolor code a 14(H 2O)4O3–O4–O3–O4planar O3···O3,4.28light brown 24(H 2O)4O6–O7–O6–O7planar O7···O7,4.42light gray 34[(H 2O)3(Cl)]-O2–O4–O3–Cl2nonplanar O4···Cl2,4.66blue 44[(H 2O)3(Cl)]-O6–O7–O9–Cl1nonplanar O7···Cl1,4.61green 54[(H 2O)2(Cl)2]2-O9–Cl1–O9–Cl1planar Cl ···Cl1,4.76pink 65(H 2O)5O2–O4–O3–O10–O8nonplanar O2···O10,4.55red75[(H 2O)4(Cl)]-O1–O5–O7–O9–Cl1nonplanar O7···Cl1,5.25pale yellow 85[(H 2O)4(Cl)]-O1–O5–Cl2–O8–O10nonplanar O10···Cl2,5.29orange 96[(H 2O)4(Cl)2]2-O2–O8–Cl2–O2–O8–Cl2nonplanar Cl2···Cl2,7.12yellow 108[(H 2O)6(Cl)2]2-O1–O10–O3–Cl2–O5–O7–O6–Cl1nonplanarCl1···Cl2,7.91pale blueaColor codes are those of Figure 2.Figure 2.Fragment of nonplanar infinite polycyclic 2D anionic layer in the crystal cell of 1′.The 10nonequivalent alternating water or water -chloride cycles are shown by different colors (see Table 1for color codes).Figure 3.Fragment of the crystal packing diagram of 1′along the a axis showing the intercalation of two water -chloride layers (represented by space filling model)into the metal -organic matrix (depicted as sticks);color codes within H 2O -Cl layers:O red,Cl green,H grey.Communications Crystal Growth &Design,Vol.8,No.3,2008783curve(DSC)of three major endothermic processes in ca.50–170, 170–200,and200–305°C ranges with maxima at ca.165,190, and280°C,corresponding to the stepwise loss of ca.two,one, and two H2O molecules,respectively(the overall mass loss of9.1% is in accord with the calculated value of9.4%for the elimination of allfive water molecules).In accord,the initial broad and intense IRν(H2O)andδ(H2O)bands of1(maxima at3462and1656cm–1, respectively)gradually decrease in intensity on heating the sample up to ca.305°C,while the other bands remain almost unchangeable. Further heating above305°C leads to the sequential decomposition of the bis-terpyridine iron unit.These observations have also been supported by the IR spectra of the products remaining after heating the sample at different temperatures.The elimination of the last portions of water in1at temperatures as high as250–305°C is not commonly observed(although it is not unprecedented18)for crystalline materials with hosted water clusters,and can be related to the presence and extensive hydrogen-bonding of chloride ions in the crystal cell,tending to form the O–H(water)···Cl hydrogen bonds ca.2.5times stronger in energy than the corresponding O–H(water)···O(water)ones.5a The strong binding of crystallization water in1is also confirmed by its FAB+-MS analysis that reveals the rather uncommon formation of the fragments bearing from one tofive H2O molecules.11The exposure to water vapors for ca.8h of an almost completely dehydrated(as confirmed by weighing and IR spectroscopy)product after thermolysis of1(at250°C19for 30min)results in the reabsorption of water molecules giving a material with weight and IR spectrum identical to those of the initial sample1,thus corroborating the reversibility of the water escape and binding process.In conclusion,we have synthesized and structurally characterized a new type of2D hybrid water-chloride anionic multicyclic {[(H2O)20(Cl)4]4–}n network self-assembled in a hydrophobic matrix of the bis-terpyridine iron(II)complex,that is,[FeL2]Cl2·10H2O 1′.On the basis of the recent description and detailed analysis of the related{[(H2O)14(Cl)4]4–}n layers5a and taking into consideration that the water-chloride assembly in1′does not possess strong interactions with the metal-organic units,the crystal structure of 1′can alternatively be defined as an unusual set of water-chloride “hosts”with bis-terpyridine iron“guests”.Moreover,the present study extends the still limited number5of well-identified examples of large polymeric2D water-chloride assemblies intercalated in crystalline materials and shows that terpyridine compounds can provide rather suitable matrixes to stabilize and store water-chloride aggregates.Further work is currently in progress aiming at searching for possible applications in nanoelectrical devices,as well as understanding how the modification of the terpyridine ligand or the replacement of chlorides by other counterions with a high accepting ability toward hydrogen-bonds can affect the type and topology of the hybrid water containing associates within various terpyridine transition metal complexes.Acknowledgment.This work has been partially supported by the Foundation for Science and Technology(FCT)and its POCI 2010programme(FEDER funded),and by a HRTM Marie Curie Research Training Network(AQUACHEM project,CMTN-CT-2003-503864).The authors gratefully acknowledge Prof.Maria Filipa Ribeiro for kindly running the TG-DSC analysis,urent Benisvy,Dr.Maximilian N.Kopylovich,and Mr.Yauhen Y. Karabach for helpful discussions.Supporting Information Available:Additionalfigures(Figures S1–S3)with structural fragments of1′and TG-DSC analysis of1, Tables S1and S2with hydrogen-bond geometry in1′and bond angles within the H2O-Cl network,details for the general experimental procedures and X-ray crystal structure analysis and refinement,crystal-lographic informationfile(CIF),and the CSD refcodes for terpyridine compounds with water-chloride aggregates.This information is available free of charge via the Internet at .References(1)(a)Mascal,M.;Infantes,L.;Chisholm,J.Angew.Chem.,Int.Ed.2006,45,32and references therein.(b)Infantes,L.;Motherwell,S.CrystEngComm2002,4,454.(c)Infantes,L.;Chisholm,J.;Mother-well,S.CrystEngComm2003,5,480.(d)Supriya,S.;Das,S.K.J.Cluster Sci.2003,14,337.(2)(a)Das,M.C.;Bharadwaj,P.K.Eur.J.Inorg.Chem.2007,1229.(b)Ravikumar,I.;Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Cryst.Growth Des.2006,6,2630.(c)Ren,P.;Ding,B.;Shi,W.;Wang,Y.;Lu,T.B.;Cheng,P.Inorg.Chim.Acta2006,359,3824.(d)Li,Z.G.;Xu,J.W.;Via,H.Q.;Hu,mun.2006,9,969.(e)Lakshminarayanan,P.S.;Kumar,D.K.;Ghosh,P.Inorg.Chem.2005,44,7540.(f)Raghuraman,K.;Katti,K.K.;Barbour,L.J.;Pillarsetty,N.;Barnes,C.L.;Katti,K.V.J.Am.Chem.Soc.2003,125,6955.(3)(a)Jungwirth,P.;Tobias,D.J.J.Phys.Chem.B.2002,106,6361.(b)Tobias,D.J.;Jungwirth,P.;Parrinello,M.J.Chem.Phys.2001,114,7036.(c)Choi,J.H.;Kuwata,K.T.;Cao,Y.B.;Okumura,M.J.Phys.Chem.A.1998,102,503.(d)Xantheas,S.S.J.Phys.Chem.1996,100,9703.(e)Markovich,G.;Pollack,S.;Giniger,R.;Cheshnovsky,O.J.Chem.Phys.1994,101,9344.(f)Combariza,J.E.;Kestner,N.R.;Jortner,J.J.Chem.Phys.1994,100,2851.(g)Perera, L.;Berkowitz,M.L.J.Chem.Phys.1991,95,1954.(h)Dang,L.X.;Rice,J.E.;Caldwell,J.;Kollman,P.A.J.Am.Chem.Soc.1991, 113,2481.(4)(a)Custelcean,R.;Gorbunova,M.G.J.Am.Chem.Soc.2005,127,16362.(b)Kopylovich,M.N.;Tronova,E.A.;Haukka,M.;Kirillov,A.M.;Kukushkin,V.Yu.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Eur.J.Inorg.Chem.2007,4621.(c)Butchard,J.R.;Curnow,O.J.;Garrett,D.J.;Maclagan,R.G.A.R.Angew.Chem.,Int.Ed.2006, 45,7550.(5)(a)Reger,D.L.;Semeniuc,R.F.;Pettinari,C.;Luna-Giles,F.;Smith,M.D.Cryst.Growth.Des.2006,6,1068and references therein.(b) Saha,M.K.;Bernal,mun.2005,8,871.(c) Prabhakar,M.;Zacharias,P.S.;Das,mun.2006,9,899.(d)Lakshminarayanan,P.S.;Suresh,E.;Ghosh,P.Angew.Chem.,Int.Ed.2006,45,3807.(e)Ghosh,A.K.;Ghoshal,D.;Ribas,J.;Mostafa,G.;Chaudhuri,N.R.Cryst.Growth.Des.2006,6,36.(f)Deshpande,M.S.;Kumbhar,A.S.;Puranik,V.G.;Selvaraj, K.Cryst.Growth Des.2006,6,743.(6)(a)Karabach,Y.Y.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich,M.N.;Pombeiro,A.J.L.Cryst.Growth Des.2006,6,2200.(b) Kirillova,M.V.;Kirillov,A.M.;da Silva,M.F.C.G.;Kopylovich, M.N.;Fraústo da Silva,J.J.R.;Pombeiro,A.J.L.Inorg.Chim.Acta2008,doi:10.1016/j.ica.2006.12.016.(7)The Cambridge Structural Database(CSD).Allen, F.H.ActaCrystallogr.2002,B58,380.(8)The searching algorithm in the ConQuest Version1.9(CSD version5.28,August2007)constrained to the presence of any terpyridinemoiety and at least one crystallization water molecule and one chloride counter ion resulted in43analyzable hits from which40compounds contain diverse water-chloride aggregates(there are29and11 examples of infinite(mostly1D)networks and discrete clusters, respectively).See the Supporting Information for the CSD refcodes.(9)For a recent review,see Constable,E.C.Chem.Soc.Re V.2007,36,246.(10)For recent examples of supramolecular terpyridine compounds,see(a)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,456.(b)Zhou,X.-P.;Ni,W.-X.;Zhan,S.-Z.;Ni,J.;Li,D.;Yin,Y.-G.Inorg.Chem.2007,46,2345.(c)Shi,W.-J.;Hou,L.;Li,D.;Yin,Y.-G.Inorg.Chim.Acta2007,360,588.(d)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Neuburger,M.;Price,D.J.;Schaffner,S.CrystEngComm2007,9,1073.(e)Beves,J. E.;Constable, E. C.;Housecroft, C. E.;Neuburger,M.;Schaffner,mun.2007,10,1185.(f)Beves,J.E.;Constable,E.C.;Housecroft,C.E.;Kepert,C.J.;Price,D.J.CrystEngComm2007,9,353.(11)Synthesis of1:FeCl2·2H2O(82mg,0.50mmol)and4′-phenyl-2,2′:6′,2″-terpyridine(L)(154mg,0.50mmol)were combined in a THF (20mL)solution with continuous stirring at room temperature.The resulting deep purple suspension was stirred for1h,filtered off,washed with THF(3×15mL),and dried in vacuo to afford a deep purple solid1(196mg,41%).1exhibits a high affinity for water and upon recrystallization gives derivatives with a higher varying content of crystallization water.1is soluble in H2O,MeOH,EtOH,MeCN, CH2Cl2,and CHCl3.mp>305°C(dec.).Elemental analysis.Found: C52.96,H3.76,N8.36.Calcld.for C42H40Cl4Fe2N6O5:C52.42,H4.19,N8.73.FAB+-MS:m/z:835{[FeL2]Cl2·5H2O+H}+,816784Crystal Growth&Design,Vol.8,No.3,2008Communications{[FeL2]Cl2·4H2O}+,796{[FeL2]Cl2·3H2O–2H}+,781{[FeL2]Cl2·2H2O+H}+,763{[FeL2]Cl2·H2O+H}+,709{[FeL2]Cl}+,674 {[FeL2]}+,435{[FeL]Cl2}+,400{[FeL]Cl}+,364{[FeL]–H}+,311 {L–2H}+.IR(KBr):νmax/cm–1:3462(m br)ν(H2O),3060(w),2968 (w)and2859(w)ν(CH),1656(m br)δ(H2O),1611(s),1538(w), 1466(m),1416(s),1243(m),1159(w),1058(m),877(s),792(s), 766(vs),896(m),655(w),506(m)and461(m)(other bands).The X-ray quality crystals of[FeL2]Cl2·10H2O(1′)were grown by slow evaporation,in air at ca.20°C,of a MeOH/H2O(v/v)9/1)solution of1.(12)Crystal data:1′:C42H50Cl2FeN6O10,M)925.63,triclinic,a)10.1851(10),b)12.2125(13),c)19.5622(19)Å,R)76.602(6),)87.890(7),γ)67.321(6)°,U)2180.3(4)Å3,T)150(2)K,space group P1j,Z)2,µ(Mo-K R))0.532mm-1,32310reflections measured,8363unique(R int)0.0719)which were used in all calculations,R1)0.0469,wR2)0.0952,R1)0.0943,wR2)0.1121 (all data).(13)(a)McMurtrie,J.;Dance,I.CrystEngComm2005,7,230.(b)Nakayama,Y.;Baba,Y.;Yasuda,H.;Kawakita,K.;Ueyama,N.Macromolecules2003,36,7953.(c)Kabir,M.K.;Tobita,H.;Matsuo,H.;Nagayoshi,K.;Yamada,K.;Adachi,K.;Sugiyama,Y.;Kitagawa,S.;Kawata,S.Cryst.Growth Des.2003,3,791.(14)Ludwig,R.Angew.Chem.,Int.Ed.2001,40,1808.(15)The searching algorithm in the ConQuest Version1.9(CSD version5.28,May2007)was constrained to the presence of(i)at least onetetranuclear[(H2O)3(Cl)]–ring(i.e.,minimal cyclic fragment in our water-chloride network)with d(O···O))2.2–3.2Åand d(O···Cl) )2.6–3.6Å,and(ii)at least one crystallization water molecule andone chloride counter ion.All symmetry-related contacts were taken into consideration.(16)For2D networks with the[(H2O)3(Cl)]–core,see the CSD refcodes:AGETAH,AMIJAH,BEXVIJ,EXOWIX,FANJUA,GAFGIE, HIQCIT,LUNHUX,LUQCEF,PAYBEW,TESDEB,TXCDNA, WAQREL,WIXVUU,ZUHCOW.For3D network,see the CSD refcode:LUKZEW.(17)This analysis was run on1since we were unable to get1′in a sufficientamount due to the varying content of crystallization water in the samples obtained upon recrystallization of1.(18)(a)Das,S.;Bhardwaj,P.K.Cryst.Growth.Des.2006,6,187.(b)Wang,J.;Zheng,L.-L.;Li,C.-J.;Zheng,Y.-Z.;Tong,M.-L.Cryst.Growth.Des.2006,6,357.(c)Ghosh,S.K.;Ribas,J.;El Fallah, M.S.;Bharadwaj,P.K.Inorg.Chem.2005,44,3856.(19)A temperature below305°C has been used to avoid the eventualdecomposition of the compound upon rather prolonged heating.CG7010315Communications Crystal Growth&Design,Vol.8,No.3,2008785。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Accepted ManuscriptChemComm

www.rsc.org/chemcommView Article OnlineView Journal

This article can be cited before page numbers have been issued, to do this please use: D. Umeyama, N.P. Funnell, M. Cliffe, J. A. Hill, A. Goodwin, Y. Hijikata, T. Itakura, T. Okubo, S. Horike and S. Kitagawa,Chem. Commun., 2015, DOI: 10.1039/C5CC04626B.Journal Name RSCPublishing

This journal is © The Royal Society of Chemistry 2012 J. Name., 2012, 00, 1-3 | 1 Cite this: DOI: 10.1039/x0xx00000x Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x www.rsc.org/

Glass formation via structural fragmentation of a 2D coordination network

D. Umeyama,a N. P. Funnell,b M. J. Cliffe,b J. A. Hill,b A. L. Goodwin,b Y. Hijikata,c T. Itakura,d T. Okubo,e S. Horike*a and S. Kitagawa*a, f

The structure of a glass obtained by the melt quenching of a two-dimensional (2D) coordination network was examined. X-ray analyses disclosed a 2D-to-0D structural transformation before and after glass formation. The mechanism is unique to coordination compounds, as it is characterized by labile and flexible coordination bonds. Glasses are an important class of materials and can be formed by many routes. Of various routes to the glassy state, melt quenching is one of the most common methods to obtain glasses.1 Many types of substances form glasses via melt quenching; there are several types of glasses classified according to their building units, including molecular (toluene), metallic (Au-Si), covalent (As2Se3), and open network glasses (SiO2).2 Recently we have reported a number of melting coordination polymers (CPs), and demonstrated the glass formation of one such melting CP by melt quenching.3 CPs are a class of crystalline inorganic−organic hybrids that form extended networks via coordination bonds.4 The immense number of possible combinations of metal ions and ligands results in rich structural and compositional diversity in CPs. This enables fine-tuning to give CPs that can melt. In addition to the aforementioned archetypal glasses, those from molten CPs can be classified as a new type of glass former that potentially inherits the useful properties of CPs.5 Although glasses do not have long range order, the local structures often resemble those of their crystalline counterparts; therefore molecular crystals form molecular glasses, and network crystals form network glasses.6 In a previous study, we examined the structure of a vitreous CP and identified that the glass state had a network structure that was similar to its crystalline state.3 Other extended coordination materials, including metal−organic frameworks (MOFs), also exhibit network structures in the vitreous states inherited from their parent crystals.7 The network preservation of these materials in glass and crystalline state can be rationalized by considering the lattice enthalpies that must be comparable in both states.8 However, this “preservation rule” might be expected to break down in cases where the lattice enthalpies between the two states are similar despite having very different structures. In this communication, we report a study on a glass-forming CP, which exhibits a network-to-molecular transformation before and after glass formation. This kind of drastic fragmentation is not observed in conventional glass formers such as organic polymers and silica glasses.6 The suggested molecular structure of the vitreous state, determined on the basis of X-ray absorption and pair distribution function (PDF) analyses, indicates that the chemical diversity of coordination species and flexibility in coordination geometry are responsible for the unique glass formation, which is accompanied by a dynamic rearrangement in a coordination sphere. The glass-forming CP, [Zn(H2PO4)2(HTr)2]n (1; Tr: 1,2,4-triazolate), comprises octahedral (Oh) zinc ions surrounded by HTr and phosphate ligands in the crystalline state. Each HTr ligand bridges two zinc ions equatorially to build an extended two-dimensional (2D) network, with the phosphate ligands standing axially on the sheet (Fig. 1a).9 Air cooling at ambient temperature from the molten state of 1 is sufficiently rapid to afford the vitreous state (1′), suppressing the recrystallization into 1 (Fig. 1b). 1′ exhibits a glass transition at 305 K (Tg), determined as described below using differential scanning calorimetry (DSC), and is thus stable as a glass at ambient temperature.

相关文档
最新文档