SPSS非参数检验之一卡方检验
卡方检验SPSS操作

16
三、行×列表资料的x2检验 第8题,P440
17
其 (SPSS的操作步骤与四格表相同)
步骤一: 定义变量
步骤二: 输入数据
步骤三:对数据按频数进行加权
步骤四:对数据作X2分析
步骤五:分析结果
配对卡方检验专用
药物 A B
T o ta l
药 物 * 药 效 Cross tabulation
Count % within 药 物 Count % within 药 物 Count % within 药 物
药效
有效
无效
73
9
89.0%
11.0%
52
22
70.3%
29.7%
125
31
80.1%
19.9%
无1/5的格子 的理论数大于 1小于5或有 T<1。故不用 合并或改用确 切概率法。直 接选择结果
练习题:
P440: 4、7、8题
23
⑵是否需要校正? 四格表资料检验条件: (1)当n≥40且所有T≥5,用普通X2检验 (2)当n≥40,但1≤T<5时, 用校正的X2检验 (3)当n<40 或 T ≤ 1时,用四格表资料的确切概率法。 2. SPSS不会自动做两两比较
2
卡方检验SPSS操作要领
计数资料(频数表):都是行列表 数据结构: r,c,f(行、列、频数)
.006
Exact Sig. Exact Sig. (2-sided) (1-sided)
Likelihood Ratio
8.758
1
第7章SPSS的非参数检验 ppt课件

ppt课件
19
SPSS多独立样本非参数检验
(一)目的:
– 与样本在相同点的累计频率进行比较.如果相差 较小,则认为样本所代表的总体符合指定的总体 分布.
ppt课件
9
SPSS的单样本K-S检验
K-S检验
(4)基本步骤:
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
ppt课件
17
SPSS两独立样本非参数检验
4. 极端反应检验(Moses Extreme Reaction)
首先,将两样本混合并按升序排序。
然后,求出控制样本的最小秩和最大秩,并计算
出跨度=最大—最小+1。
为了消除样本数据中极端值对分析结果的影响,
在计算跨度之前可按比例去除控制样本中部分靠近两端
的样本值,然后再求跨度,得到截头跨度。
样本数据和分组标志 ppt课件
14
SPSS两独立样本非参数检验
(四)基本方法
1.曼-惠特尼U检验(Mann-Whitney U):平均秩检验
将两样本数据混合并按升序排序 求出其秩 对两样本的秩分别求平均 如果两样本的平均秩大致相同,则认为两总体分布无显著 差异
ppt课件
15
SPSS两独立样本非参数检验
如果跨度或截头跨度较大,则说明是由于两类样
本数据充分混合的结果,p即pt课:件认为两总体分布无显著差异18 .
SPSS两独立样本非参数检验
(五)基本操作步骤
菜单选项:analyze->nonparametric tests->2 independent sample 选择待检验的变量入test variable list框 选择一种或几种检验方法
第7章spss非参数检验

Statistics按钮: 计算卡方值,用于行列
变量的独立性检验
计算pearson和spearman 相关系数
定类资料的行列变 量相关性检验
定序资料的行列变 量相关性检验
定序与定距资料的行 列变量相关性检验
评判内部一致性 相关风险比例 两相关二项分类变量的非参检验
二项分类变量的因、自变量独立性检验
p(1 p) / n
17
【界面设置】
检验的落入第一组的 概率常数值
分组值,小于该值为1 组,其余为1组
注意大小样本的选择
18
【结果形式】
19
7.3 Runs 游程检验 主要用于对二分变量(数值型)或利用断点分 为两组的变量,检验取值的分布随机性或两总体分 布是否一致,即一个case的取值是否影响下一个。 统计原假设H0:样本二分值分布是随机的或两总体分 布相同。
5、 2 Independent Samples 两独立(成组)样本检验
6、 K Independent Samples K个独立样本检验 5、 2 Related Samples 两关联(配对)样本检验 6、 K Related Samples K个关联样本检验
2
7.1 Chi-Square
1、卡方拟合优度检验 (Nonparametric Tests - Chi-Square) 主要用于分析实际频数与理论频数(已知)拟合情况;χ2 值反映了实际频数和理论频数的吻合程度。χ2值越小, 说明实际频数与理论频数越吻合。 适用于一个变量的多项分类数据的检验分析。 统计原假设:实际频数与理论频数相等或实际构成比等于 已知构成比。 k ( f 0 f e )2 卡方统计量为 2
25
【界面设置】
SPSS教程-非参数检验

一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ
表
肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。
07用SPSS进行卡方检验

③单击
,打开图6-5所示对话框,选中“卡方”,
单击
,返回图6-4所示对话框,再单击
,输出
表6-2和表6-3所示结果。
图6-4 行×列分析对话框
图6-5选择统计方法(卡方检验) 对话框
表6-2 灭螨剂A和灭螨剂B杀灭大蜂螨效果
表6-3 2 检验结果表
3.结果说明
表6-2 灭螨剂A和灭螨剂B杀灭大蜂螨效果
图6-2 例6.1数据输入格式
2. 统计分析 (1)简明分析步骤
数据 → 加权个案 加权个案 频率变量:计数 确定
分析→描述统计→交叉表 行:组别 列:效果 统计量: √ 卡方 继续 确定
频率变量为计数
行变量 列变量 要求进行卡方检验
(2)分析过程说明 ①单击“数据 → 加权个案 ”,打开图6-3对话框,选中
总和
34
46
80
◆ 具体步骤: 1.数据输入 (1)点击数据编辑窗口底部的“变量视图”标签,进入 “变量视图”窗口,分别命名3个变量:“组别”、“效果” 和“计数”。“组别”和“效果”两变量的类型选择为 “字符串”,变量“计数”小数位数定义为0,如图6-1。
图6-1 例6.1资料的变量命名
(2)点击数据编辑窗口底部的“数据视图”标签,进入“数据 视窗”界面,按图6-2格式输入数据资料。
五、用SPSS进行卡方检验
内容
一、2×2列联表的独立性检验 二、R×K列联表的独立性检验 三、适合性检验
一、教学目的、要求: 1. 掌握SPSS中进行X2检验分析的基本命令与操作; 2. 理解用SPSS进行X2检验分析所得结果的含义; 3. 了解X2检验的基本原理。
二、本节重点、难点: 1. SPSS中进行X2检验分析的基本命令与操作; 2. SPSS进行X2检验分析所得结果的含义。
第六章 spss非参数检验

5.1
非参数检验介绍
5.2
单样本非参数检验
+ 均值比较和T检验
+ 均值比较和T检验
均值比较:
按照分组变量计算因变量的描述统计量,例如均值、方差、 标准差等,并将结果并列显示出来,提供比较分析
单样本T检验:
用于进行样本均值与已知总体均值的比较,检验样本是否来 自已知均值的总体。(检验样本总体均值是否为某个值)
水平,则不能拒绝零假设H0,认为变量 值的出现是随机的。
+ 在SPSS单样本变量值的随机性检验中, SPSS将利用游程构造Z统计量,并依据正 态分布表给出对应的相伴概率值。如果相
伴概率小于或等于用户的显著性水平α, 则应拒绝零假设H0,认为样本值的出现 不是随机的;如果相伴概率值大于显著性
水平,则不能拒绝零假设H0,认为变量 值的出现是随机的。
+ 其零假设H0为样本来自的总体与指定的理 论分布无显著差异。
+ 打开
儿童身高体重检验.sav
+ 作业 + 检验独生子女比例是否符合0.75
+ 采用K—S检验分析减肥前后体重是否符合正 态分布,并做出直方图与P-P图进行对比
独立样本T检验:
用于检验两个样本是否来自具有相同均值的总体
两配对样本T检验:
是根据样本数据对样本来自的两配对总体的均值是否有显著 性差异进行推断。
5.1
非参数检验介绍
+ 前面已经讨论的许多统计分析方法对总体 有特殊的要求,如T检验要求总体符合正 态分布,等等。这些方法常用来估计或检 验总体参数,统称为参数检验。
+ 单样本变量值的随机性检验通过游程( Run)数来实现。所谓游程是样本序列中 连续出现的变量值的次数。
spss参数与非参数检验实验报告
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验
非参数检验的SPSS操作
第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。
一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。
spss-非参数检验-K多个独立样本检验(-K
spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析最近经常失眠,好痛苦啊!大家有什么好的解决失眠的方法吗?希望知道的能够告诉我,谢谢啦,今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验( Kruskal-Wallis检验)。
还是以SPSS教程为例:假设:HO: 不同地区的儿童,身高分布是相同的H1:不同地区的儿童,身高分布是不同的不同地区儿童身高样本数据如下所示:提示:此样本数为4个(北京,上海,成都,广州)每个样本的样本量(观察数)都为5个即:K=4>3 n=5, 此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:将“周岁儿童身高”变量拖入右侧“检验变量列表”内,将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围” 输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。
在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定运行结果如下所示:对结果进行分析如下:1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900自由度为:3=k-1=4-1下面来看看“秩和统计量”的计算过程,如下所示:假设“秩和统计量”为 kw 那么:其中:n+1/2 为全体样本的“秩平均” Ri./ni 为第i个样本的秩平均 Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)最后得到的公式为:北京地区的“秩和”为:秩平均*观察数(N) = 14.4*5=72上海地区的“秩和”为:8.2*5=41成都地区的“秩和”为:15.8*5=79广州地区的“秩和”为:3.6*5=18接近13.90 (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003,由于0.003<0.01 所以得出结论:H1:不同地区的儿童,身高分布是不同的秩和检验前面介绍的均数的区间估计及假设检验,都是要求个体变量值服从正态分布,或根据中心极限定理,当样本较大时,样本均数服从正态分布。
卡方检验与非参数检验
4.1 适合度检验
例 4.3 某批苹果进行保存实验,共60箱, 每箱10个,实验结束后检查每箱苹果的变 质情况,结果如下表,试检验苹果的变质 数是否服从二项分布?
4.1 适合度检验
设每个苹果变质的平均概率为p,变质数x 服从二项分布,即x~B(10,p)。p根据实际观 测值的平均数 p 估计:
4.1 适合度检验
③ DPS (1)输入数据与选择数据,点击菜单分类 数据统计→模型拟合优度检验:
4.1 适合度检验
③ DPS 立刻得到结果:
结果中卡方值为0.4700(即Pearson卡方值,对 应的p值为0.9254,大于0.05,说明实际观测值 与孟德尔理论分离比9:3:3:1无显著差异。
4.1 适合度检验
① Minitab 输入数据,点击菜单统计→表格→卡方 拟合优度检验(单变量):
4.1 适合度检验
① Minitab 弹出对话框,将实际选择到观测计数后面, 颜色选择到类别名称(可选)后面。检验 下面选择按历史计数制定的比率,下拉条 选择输入列,将理论选择到按历史计数制 定的比率后面:
第四章 卡方检验与非参数检验
卡方(χ2)检验主要有三种类型:
第一是适合性检验,比较观测值与理论值 是否符合; 第二是独立性检验,比较两个或两个以上 的因子相互之间是独立还是相互有影响。
4.1 适合度检验
例4.1 有一鲤鱼遗传试验,以红色和青灰色 杂交,其F2代获得不同分离尾数,问观测 值是否符合孟德尔3:1遗传定律?
例 某实验室分别用乳胶凝集法和免疫荧光法对 58名可疑系统红斑狼疮患者血清中抗核抗体进行 测定,结果见表。问两种方法的检测结果有无差 别?
4.2.1.2 配对四格表资料的χ2检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真诚为您提供优质参考资料,若有不当之处,请指正。
1 / 5
SPSS中非参数检验之一:总体分布的卡方(Chi-square)检验
在得到一批样本数据后,人们往往希望从中得到样本所来自的总体的分布形
态是否和某种特定分布相拟合。这可以通过绘制样本数据直方图的方法来进行粗
略的判断。如果需要进行比较准确的判断,则需要使用非参数检验的方法。其中
总体分布的卡方检验(也记为χ2检验)就是一种比较好的方法。
一、定义
总体分布的卡方检验适用于配合度检验,是根据样本数据的实际频数推断总
体分布与期望分布或理论分布是否有显著差异。它的零假设H0:样本来自的总
体分布形态和期望分布或某一理论分布没有显著差异。
总体分布的卡方检验的原理是:如果从一个随机变量尤中随机抽取若干个观
察样本,这些观察样本落在X的k个互不相交的子集中的观察频数服从一个多项
分布,这个多项分布当k趋于无穷时,就近似服从X的总体分布。
因此,假设样本来自的总体服从某个期望分布或理论分布集的实际观察频数
同时获得样本数据各子集的实际观察频数,并依据下面的公式计算统计量Q
2
1kiiiiOEQE
其中,Oi表示观察频数;Ei表示期望频数或理论频数。可见Q值越大,表示
观察频数和理论频数越不接近;Q值越小,说明观察频数和理论频数越接近。SPSS
将自动计算Q统计量,由于Q统计量服从K-1个自由度的X平方分布,因此SPSS
将根据X平方分布表给出Q统计量所对应的相伴概率值。
如果相伴概率小于或等于用户的显著性水平,则应拒绝零假设H0,认为样
本来自的总体分布形态与期望分布或理论分布存在显著差异;如果相伴概率值大
于显著性水平,则不能拒绝零假设HO,认为样本来自的总体分布形态与期望分
布或理论分布不存在显著差异。
因此,总体分布的卡方检验是一种吻合性检验,比较适用于一个因素的多项
分类数据分析。总体分布的卡方检验的数据是实际收集到的样本数据,而非频数
数据。
二、实例
某地一周内各日患忧郁症的人数分布如下表所示,请检验一周内各日人们忧
郁数是否满足1:1:2:2:1:1:1。
周日 患者数
1 31
2 38
3 70
4 80
5 29
6 24
7 31
真诚为您提供优质参考资料,若有不当之处,请指正。
2 / 5
实施步骤:
1、打开SPSS 20.0,导入数据。
2、数据--加权个案,如下图所示。
3、分析--非参数检验--旧对话框--卡方检验
真诚为您提供优质参考资料,若有不当之处,请指正。
3 / 5
将要检验的一周内各日人们忧郁数比例1:1:2:2:1:1:1输入到SPSS中。
真诚为您提供优质参考资料,若有不当之处,请指正。
4 / 5
真诚为您提供优质参考资料,若有不当之处,请指正。
5 / 5
由结果可知P=0.331>0.05,不能拒绝原假设,因此可以得出结论:一周内各
日人们忧郁数比例为1:1:2:2:1:1:1。