数控技术的发展趋势

合集下载

数控发展趋势

数控发展趋势

数控发展趋势一数控技术简介数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;数控技术的应用不但给传统制造业带来了性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业IT、汽车、轻工、医疗等的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势;从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面;数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;二数控技术国内外现状1 开放结构的发展数控技术从发明到现在,已有近50年的历史;按照电子器件的发展可分为五个发展阶段:电子管数控,晶体管数控,中小规模IC数控,小型计算机数控,微处理器数控;从体系结构的发展,可分为以硬件及连线组成的硬数控系统、计算机硬件及软件组成的CNC数控系统,后者也称为软数控系统:从伺服及控制的方式可分为步进电机驱动的开环系统和伺服电机驱动的闭环系统;数控系统装备的机床大大提高了加工精度、速度和效率;人类发明了机器,延长和扩展人的手脚功能:当出现数控系统以后,制造厂家逐渐希望数控系统能部分代替机床设计师和操作者的大脑,具有一定的智能,能把特殊的加工工艺、管理经验和操作技能放进数控系统,同时也希望系统具有图形交互、诊断功能等;首先就要求数控系统具有友好的人机界面和开发平台,通过这个界面和平台开放而自由地执行和表达自己的思路;这就产生了开放结构的数控系统;机床制造商可以在该开放系统的平台上增加一定的硬件和软件构成自己的系统;目前,开放系统有两种基本结构:1CNC+PC主板:把一块PC主板插入传统的CNC机器中,PC板主要运行实时控制,CNC主要运行以坐标轴运动为主的实时控制;2PC+运动控制板:把运动控制板插入PC机的标准插槽中作实时控制用,而PC机主要作非实时控制;开放结构在90年代初形成;对于许多熟悉计算机应用的系统厂家,往往采用第2方案;但目前主流数控系统生产厂家认为数控系统最主要的性能是可靠性,象PC机存在的死机现象是不允许的;而系统功能首先追求的仍然是高精高速的加工;加上这些厂家长期已经生产大量的数控系统:体系结构的变化会对他们原系统的维修服务和可靠性产生不良的影响;因此不把开放结构作为主要的产品,仍然大量生产原结构的数控系统;为了增加开放性,主流数控系统生产厂家往往采用1方案,即在不变化原系统基本结构的基础上增加一块PC板,提供键盘使用户能把PC和CNC联系在一起,大大提高了人机界面的功能比较典型的如FANUC的150/160/180/210系统;有些厂家也把这种装置称为融合系统fusionsystem;由于它工作可靠,界面开放,越来越受到机床制造商的欢迎;2 软件伺服驱动技术伺服技术是数控系统的重要组成部分;广义上说,采用计算机控制,控制算法采用软件的伺服装置称为“软件伺服”;它有以下优点:1无温漂,稳定性好;2基于数值计算,精度高;3通过参数对设定,调整减少;4容易做成ASIC电路;70年代,美国GATTYS公司发明了直流力矩伺服电机,从此开始大量采用直流电机驱动;开环的系统逐渐由闭环的系统取代;但直流电机存在以下缺点:1电动机容量、最高转速、环境条件受到限制;2换向器、电刷维护不方便;交流异步电机虽然价格便宜、结构简单,但早期由於控制性能差,所以很长时间没有在数控系统上得到应用;随着电力电子技术的发展,1971年,德国西门子的发明了交流异步机的矢量控制法;1980年,德国人Leonhard为首的研究小组在应用微理器的矢量控制的研究中取得进展,使矢量控制实用化;从70年代末,数控机床逐渐采用异步电机为主轴的驱动电机;如果把直流电机进行“里翻外”的处理,即把电驱绕组装在定子,转子为永磁部分,由转子轴上的编码器测出磁极位置,这就构成了永磁无刷电机;这种电机具有良好的伺服性能;从80年代开始,逐渐应用在数控系统的进给驱动装置上;为了实现更高的加工精度和速度,90年代,许多公司又研制了直线电机;它由两个非接触元件组成,即磁板和线卷滑座:电磁力直接作用于移动的元件而无需机械连接,没有机械滞后或螺距周期误差,精度完全依赖于直线反馈系统和分级的支承,由全数字伺服驱动,刚性高,频响好,因而可获得高速度;但由于它的推力还不够大,发热,漏磁及造价也影响了它的广泛应用;对现代数控系统,伺服技术取得的最大突破可以归结为:交流驱动取代直流驱动、数字控制取代模拟控制、或者把它称为软件控制取代硬件控制;这两种突破的结果产生了交流数字驱动系统,应用在数控机床的伺服进给和主轴装置;由于电力电子技术及控制理论、微处理器等微电子技术的快速发展,软件运算及处理能力的提高,特别是DSP的应用,使系统的计算速度大大提高,采样时间大大减少;这些技术的突破,使伺服系统性能改善、可靠性提高、调试方便、柔性增强;大大推动了高精高速加工技术的发展;3 CNC系统的连网数控系统从控制单台机床到控制多台机床的分级式控制需要网络进行通信;网络的主要任务是进行通信,共享信息;这种通信通常分三级:1工厂管理级;一般由以太网组成;2车间单元控制级;一般由DNC功能进行控制;通过DNC功能形成网络可以实现对零件程序的上传或下传:读、写CNC的数据:PLC数据的传送;存贮器操作控制;系统状态采集和远程控制等;更高档次的DNC还可以对CAD/CAM/CAPP以及CNC的程序进行传送和分级管理;CNC与通信网络联系在一起还可以传递维修数据,使用户与NC生产厂直接通信:进而,把制造厂家联系一起,构成虚拟制造网络;3现场设备级;现场级与车间单元控制级及信息集成系统主要完成底层设备单机及I/0控制、连线控制、通信连网、在线设备状态监测及现场设备生产、运行数据的采集、存储、统计等功能,保证现场设备高质量完成生产任务,并将现场设备生产运行数据信息传送到工厂管理层,向工厂级提供数据;同时也可接受工厂管理层下达的生产管理及调度命令并执行之;因此,现场级与车间级是实现工厂自动化及CIMS系统的基础;传统的现场级大多是基于PLC的分布式系统;其主要特点是现场层设备与控制器之间的连接是一对一,即一个I/0点对设备的一个测控点;所谓I/0接线方式为传递4-20ma模拟量信息或24VDC开关信息;这种系统的缺点是:信息集成能力不强、系统不开放、可集成性差、专业性不强、可靠性不易保证、可维护性不高;现场总线是以单个分散的、数字化、智能化的测量和控制设备作为网络节点,用总线相连接,实现相互交换信息,共同完成自动控制功能的网络系统与控制系统;因此,现场总线是面向:工厂底层自动化及信息集成的数字网络技术;现场总线技术的主要特点为:它是数控系统通信向现场级的延伸、数字化通信取代4-20ma模拟信号、应用现场总线技术,要求现场设备智能化可编程或可参数化:它集现场设备的远程控制、参数化及故障诊断为一体:由于现场总线具有开放性、互操作性、互换性、可集成性,因此是实现数控系统设备层信息集成的关键技术;它对提高生产效率、降低生产成本非常重要;目前在工业上采用的现场总线有PROFIBUS-DP,SERCOS,JPCN-1,Deviconet,CAN,hterbus—S,Marco等;有的公司还有自己的总线,比如FANUC的FSSB,I/OLINK相当于JPCN—1,YASKAWA的MOTIONLINK等;目前比较活跃的是Prof主bus-DP,为了允许更快的数据传送速度,它由0SI的七层结构省去3-7层构成;西门子最新推出802D的伺服控制就是由PROFIBOUS-DP控制的;4功能不断发展和扩大WIDTH=200 align=right BBCOLOR=e5ebba BORDERCOLIRIGHT=006600BORDER=1>快速移动速度m/min分辨率μm2401100101NC技术经过50年的发展,已经成为制造技术发展的基础;这里以FANUC最先进的CNC控制系统15i/150i为例说明系统功能的发展;这是一台具有开放性,4通道、最多控制轴数为24轴、最多联动轴数为24轴、最多可控制4个主轴的CNC系统;其快速移动速度与分辨率关系如右表;它的技术特点反映了现代NC发展的特点:开放性:系统可通过光纤与PC机连接,采用Window兼容软件和开发环境;功能以高速、超精为核心,并具有智能控制;特别适合于加工航空机械零件,汽车及家电的高精零件,各种模具和复杂的需5轴加工的零件;15i/150主具有高精纳米插补功能;即使系统的设定编程单位为1μm,通过纳米插补也可提供数字伺服以1nm为单位的指令,平滑了机床的移动量,提高了加工表面光洁度,大大减少加工表面的误差;当分辨率为时,快速可达240m/min速度;系统还具有高速高精加工的智能控制功能:1预计算出多程序段刀具轨迹,并进行预处理;2智能控制,计及机床的机械性能,可按最佳的进率和最大的允许加速度工作,使机床的功能得到最大的发挥;以便降低加工时间,提高效率,同时提高加工精度;3系统可在分辨率为1nm时工作,适用于控制超精机械;高级复杂的功能:15i/150i可进行各种数学的插补,如直线、圆弧、螺旋线、渐开线、螺旋渐开线、样条等插补;也可以进行NURBS非均匀有理B样条插补;采用NURBS插补可以人人减少NC程序的数据输入量,减少加工时间,特别适用模具加工;NURBS插补不需任何硬件;强力的联网通信功能;适应工厂自动化需要,支持标准FA网络及DNC的连接;1工厂干线或控制层通信网络:由PC机通过以太网控制多台15i/150i组成的加工单元,可以传送数据、参数等;2设备层通信网络:15i/150i采用I/0LINK与日本标准JPCN-1相对应的一种现场总线;3通过RS-485接口传送I/0信号:或且也可采用PRELLBUS—DP符合欧洲1标准EN50170以12Mbps进行高速通信;具有高速度内装的PMC有的厂商称为PLC,以减少加工的循环的时间:1梯形图和顺序程序由专用的PMC处理器控制,这种结构可进行快速大规模顺序控制;2基本PMC指令执行时间为:;最大步数:32,000步;3可以用C语言编程;32位的C语言处理器可作为实时多任务运行;它与梯形图计算的PMC处理器并行工作;4可在PC机上进行程序开发;先进的操作:性和维修性;(1)具有触摸面板,容易操作;2可采用存储卡来改变输入输出三数控发展趋势1、高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体;高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力;为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会CIRP将其确定为21世纪的中心研究方向之一;在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工;近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联系方式拼装,使构件的强度、刚度和可靠性得到提高;这些都对加工装备提出了高速、高精和高柔性的要求;从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右;目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床;美国CINCINNATI公司的HYPERMACH机床速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min;加工薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12000r/mm和1g;在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~μm,并且超精密加工精度已开始进入纳米级μm;在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h 以上,表现出非常高的可靠性;为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大;2、轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高;一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢件时,5轴联动加工可比3轴联动加工发挥更高的效益;但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出很多,加之编程技术难度较大,制约了5轴联动机床的发展;当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头构造大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小;因此促进了复合主轴头类5轴联动机床和复合加工机床含5面加工机床的发展在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工;德国DMG公司展出DMUVOUTION系列加工中心,可5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制;3、智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等;为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题;目前许多国家对开放式数控系统进行研究,如美国的NGCThe Next Generation Work-Station/Machine Control、欧共体的OSACAOpen System Architecture for Control within Automation Systems、日本的OSECOpen System Environment for Controller,中国的ONCOpen Numerical Control System等;数控系统开放化已经成为数控系统的未来之路;所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象数控功能,形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品;目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心;网络化数控装备是近两年国际着名机床博览会的一个新亮点;数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元;国内外一些着名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山骑马扎克MAZAK公司展出的“CYBERPRODUCTION Center”智能生产控制中心,简称CPC;日本大尉Okuma机床公司展出“IT plaza”信息技术广场,简称IT广场;德国西门子Siemens公司展出的Open Manufacturing Environment开放制造环境,简称OME等,反映了数控机床加工向网络化方向发展的趋势;4、重视新技术标准、规范的建立如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范OMAC、OSACA、OSEC的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临;我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定;数控标准是制造业信息化发展的一种趋势;数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何how加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要;为此,国际上正在研究和制定一种新的CNC系统标准ISO14649STEP-NC,其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化;STEP-NC的出现可能是数控技术领域的一次,对于数控技术的发展乃至整个制造业,将产生深远的影响;首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上;而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向;其次,STEP-NC数控系统还可大大减少加工图纸约75%、加工程序编制时间约35%和加工时间约50%;目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划;参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构;美国的STEP Tools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型Super Model,其目标是用统一的规范描述所有加工过程;目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证;。

机床数控技术的发展现状与发展趋势探析

机床数控技术的发展现状与发展趋势探析

机床数控技术的发展现状与发展趋势探析机床数控技术自20世纪50年代开始出现以来,经历了多项重大技术变革和发展,不断提高着生产效率、精度和自动化程度。

近年来,随着制造业的数字化、网络化和智能化转型加速,机床数控技术在这一背景下又迎来了新一轮的发展机遇。

本文将从机床数控技术的发展现状和未来趋势两方面进行探析。

1.技术水平不断提高在机床数控技术方面,高速、高精度、高可靠性已经成为技术的重点发展方向。

在数控加工、先进材料加工、微纳加工、光学制品加工、航空航天零部件加工等领域中,得益于国内外先进技术的应用,数控加工机床的代表产品—数控车床、数控铣床、数控磨床、数控钻床等,技术性能差距缩小,而在性能上也达到了一定的水平。

部分数控加工机床的精度已经达到了微米级,速度加快了10倍以上。

柔性生产线、高效加工中心等新一代数控机床也正在发展中。

整个机床数控技术的发展呈现出智能化、高效化的趋势。

2.应用范围不断扩大机床数控技术的应用范围不断扩大,除了传统的航空、航天、船舶、汽车、工程机械等行业的需求外,还涉及新能源、新材料、电子信息等行业的加工需求,也服务于国防军工、以及生活消费领域的智能家居、智能健康等领域。

3.智能化和自动化水平提高机床数控技术的智能化和自动化水平也在不断提高。

柔性生产线、智能加工中心、智能机器人等新技术、新产品陆续推出,可以实现方便快捷的自动化生产。

智能机器人可以负责数控加工与自动化生产的更多工作,提高了生产效率和节约了人力资源。

1.智能化发展趋势随着人工智能、大数据等新兴技术的快速发展,机床数控技术很有可能进一步智能化,实现自我调节、自我检测和自我诊断,同时实现产业链的协同、数据智能的应用,以及更加高效的产品研发和生产。

未来机床数控技术将更加人性化,对于操作者和用户有更友好的界面和互动方式。

机床数控技术的绿色化发展趋势也将越来越显着。

加强机床能效监测与管理,选择具有高能效、低污染的数控加工设备以及低能耗、低污染的可再生能源发电,以此减少环境污染和节省能源消耗,这也是未来的一个发展趋势3.生产数字化趋势当前,传统生产模式日益被数字化、模块化的生产模式所取代。

机床数控技术的现状及未来发展趋势

机床数控技术的现状及未来发展趋势

机床数控技术的现状及未来发展趋势一、数控机床的简单介绍车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。

能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。

数控系统是由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。

当然,普通机床发展到数控机床不只是加装数控系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。

加工中心最主要的功能是铣、镗、钻的功能。

我们一般所说的数控设备,主要是指数控车床和加工中心。

1、数控机床的特点如下:(1)加工精度高,具有稳定的加工质量;(2)可进行多坐标的联动,能加工形状复杂的零件;(3)加工零件改变时,一般只需要更改数控程序,可节省生产准备时间机床本身的精度高、刚性大,可选择有利的加工用量,生产率高(一般为普通机床的3~5倍);(4)机床自动化程度高,可以减轻劳动强度;(5)对操作人员的素质要求较高,对维修人员的技术要求更高。

2、数控机床的组成部分主机,他是数控机床的主题,包括机床身、立柱、主轴、进给机构等机械部件。

他是用于完成各种切削加工的机械部件.数控装置,是数控机床的核心,包括硬件(印刷电路板、CRT 显示器、键盒、纸带阅读机等)以及相应的软件,用于输入数字化的零件程序,并完成输入信息的存储、数据的变换、插补运算以及实现各种控制功能。

驱动装置,他是数控机床执行机构的驱动部件,包括主轴驱动单元、进给单元、主轴电机及进给电机等。

他在数控装置的控制下通过电气或电液伺服系统实现主轴和进给驱动。

当几个进给联动时,可以完成定位、直线、平面曲线和空间曲线的加工。

辅助装置,指数控机床的一些必要的配套部件,用以保证数控机床的运行,如冷却、排屑、润滑、照明、监测等。

它包括液压和气动装置、排屑装置、交换工作台、数控转台和数控分度头,还包括刀具及监控检测装置等.编程及其他附属设备,可用来在机外进行零件的程序编制、存储等。

国内外数控系统现状及发展趋势

国内外数控系统现状及发展趋势

国内外数控系统现状及发展趋势
数控系统是一种通过计算机控制机床运动的自动控制系统,其发展经历了几个阶段。

目前,国内外数控系统的最新发展趋势包括:
1. 智能化:随着人工智能技术的发展,数控系统也在向智能化方向发展。

智能化包括自适应控制、智能优化算法、故障诊断等方面。

2. 高速化:数控系统的高速化主要表现在快速的加工速度和高精度。

目前,高速、高精度的五轴联动数控系统已经成为主流。

3. 大数据:数控系统也需要应用大数据技术进行数据分析和处理,以实现更好的加工效率和质量控制。

4. 可视化:数控系统的可视化技术已经越来越成熟,这使得操作人员可以更直观、更方便地进行操作和控制。

5. 云计算:通过云计算技术,可以将数控系统的数据存储、计算和处理移到云端,实现远程监控和管理。

总之,随着数控系统技术的不断发展,其应用领域也在不断拓展,未来数控系统将成为工业自动化和智能制造的核心技术之一。

- 1 -。

浅谈数控技术的发展现状及趋势(1)

浅谈数控技术的发展现状及趋势(1)

浅谈数控技术的发展现状及趋势摘要:随着计算机业的快速发展,数控技术也发生了根本性的变革,是近年来应用领域中发展十分迅速的一项综合性的高新技术,文章结合国内外情况,分析了数控技术的发展趋势。

数控技术是一门集计算机技术、自动化控制技术、测量技术、现代机械制造技术、微电子技术、信息处理技术等多学科交叉的综合技术,是近年来应用领域中发展十分迅速的一项综合性的高新技术。

它是为适应高精度、高速度、复杂零件的加工而出现的,是实现自动化、数字化、柔性化、信息化、集成化、网络化的基础,是现代机床装备的灵魂和核心,有着广泛的应用领域和广阔的应用前景。

关键字:数控技术现状趋势一、国内外数控技术的发展现状随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。

在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。

目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。

在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理。

长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。

加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。

CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。

在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。

数控ppt课件完整版

数控ppt课件完整版
和效率。
航空航天领域
航空航天零件具有复杂形状和高 精度要求,数控技术可以满足其 加工需求。
汽车制造领域
汽车制造中需要大量的零部件加 工,数控技术可以提高生产效率 和降低成本。
其他领域
如模具制造、能源装备等领域也 可以应用数控技术,提高生产效
率和产品质量。
02
数控机床结构与分类
数控机床的结构特点
高刚度
03
数控编程基础
数控编程的概念与步骤
数控编程的概念
是将零件的加工信息,按照数控系统规定的代码和格式,编制成加工程序文件,并输入到数控装置中,由数控装置控制机床进行 自动加工的过程。
数控编程的概念与步骤
确定加工方案
03
分析零件图样和工艺要求 数控编程的步骤
02 01
数控编程的概念与步骤
选择合适的数控机床 选择合适的刀具、夹具和量具 编制加工程序
复合化加工
绿色制造
复合化加工是未来数控技术 的重要发展方向,通过在一 台机床上实现多种加工功能, 提高加工效率。
环保和可持续发展已成为制 造业的重要趋势,数控技术 将更加注重绿色制造,如采 用环保材料、降低能耗等。
数控技术在未来制造业中的地位和作用
提高生产效率
数控技术能够显著提高加工精度和生产效率,降低生产成本,提 升企业竞争力。
如液压泵故障、气路堵塞等。
观察法
通过观察机床运行状态、听取异常声响等方式判断故障部位。
数控机床的故障诊断与排除方法
测量法
使用测量仪器对机床各部位进行检测,分析故障原因。
替换法
通过替换疑似故障部件的方式,逐步缩小故障范围。
数控机床的故障诊断与排除方法
故障排除方法
根据故障诊断结果,对相应部件进行维修或更 换。

数控技术在航空航天领域的应用及2024年展望

本文将介绍数控技术在航空航天领域的应用现状,分析其对行业发展的影响,并展望2024年航空航天领域中数控技术的发展方向。

一、数控技术在航空航天领域的应用现状航空航天领域是数控技术广泛应用的重要行业之一。

随着航空航天产业的发展,数控技术在飞机制造、发动机制造、航天器制造等方面得到了广泛应用。

飞机制造:数控机床在飞机零部件的加工和装配中扮演着重要角色。

数控机床可以实现复杂结构零件的高精度加工,提高生产效率和产品质量。

同时,数控技术还可以实现自动化装配,降低人工操作的错误率。

发动机制造:航空航天发动机是航空航天领域的核心技术之一。

数控技术在发动机的叶片加工、燃烧室加工等方面发挥着重要作用。

通过数控机床可以实现对复杂曲面的高精度加工和微米级尺寸控制,提高发动机的性能和可靠性。

航天器制造:航天器制造对于精度和质量要求极高,而数控技术可以满足这些要求。

数控机床在航天器结构件、推进器、导航系统等方面的加工中发挥着重要作用。

通过数控机床可以实现对复杂结构的高精度加工和装配,确保航天器的安全和可靠性。

二、数控技术对航空航天领域的影响数控技术在航空航天领域的应用对行业发展产生了积极的影响:提高生产效率:数控技术可以实现自动化加工和装配,大大提高了生产效率。

相比传统的手工操作,数控机床可以快速完成复杂零部件的加工和装配,缩短了生产周期,提高了产能。

提高产品质量:数控技术具有高精度和稳定性的特点,可以保证产品的精度和一致性。

通过数控机床的应用,可以减少人为因素对产品质量的影响,提高产品的可靠性和稳定性。

降低成本:数控技术的应用可以降低人力成本和减少人为错误。

通过自动化加工和装配,可以减少人工操作所需的时间和成本,并且减少了人为操作错误导致的废品率,降低了生产成本。

推动技术创新:航空航天领域对于新材料、新工艺和新技术的需求很大,而数控技术作为一种先进的制造技术,推动了航空航天领域的技术创新。

数控技术的应用促进了航空航天领域的制造工艺和工程技术的进步,为行业的发展提供了技术支持。

1.1 数控技术的发展

数控技术的发展一、数控技术的基本概念自从上20世纪中叶数控技术创立以来,它给机械制造业带来了革命性的变化,数控技术是提高产品质量、提高劳动生产率必不可少的物质手段;是国家的战略技术,基于它的相关产业是体现国家综合国力水平的重要基础性产业。

机床数控技术:“用数字化信息对机床运动及其加工过程进行控制的一种方法”。

数控机床是采用了数控技术的机床。

数控机床是一个装有程序控制系统的机床,该系统能够逻辑地处理具有使用代码,或其它符号编码指令规定的程序。

二、数控技术的产生1.世界上第一台数控机床世界上第一台数控机床于1952年诞生,美国麻省理工学院为一台立式铣床装上了一套采用电子管元件的数控装置,成功地实现了同时控制三轴的运动,而这台机床则被认为是世界上第一台数控机床。

2.数控技术发展的几个重要阶段第一代数控(1952-1959年):采用电子管构成的硬件数控系统;第二代数控(1959-1965年):采用晶体管电路为主的硬件数控系统;第三代数控(1965年开始):采用小、中规模集成电路的硬件数控系统;第四代数控(1970年开始):采用大规模集成电路的小型通用电子计算机数控系统;第五代数控(1974年开始):用微型计算机控制的系统;第六代数控(1990年开始):采用工控PC机的通用CNC系统。

三、数控技术的发展趋势数控技术不仅给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业的发展起着越来越重要的作用。

尽管十多年前就出现了高精度、高速度的趋势,但是科学技术的发展是没有止境的,高精度、高速度的内涵也在不断变化,目前正在向着精度和速度的极限发展。

从目前世界上数控技术发展的趋势来看,主要有如下几个方面:1.机床的高速化、精密化、智能化、微型化发展随着汽车、航空航天等工业轻合金材料的广泛应用,高速加工已成为制造技术的重要发展趋势。

高速加工具有缩短加工时间、提高加工精度和表面质量等优点,在模具制造等领域的应用也日益广泛。

机床数控技术的发展趋势

机床数控技术的发展趋势机床数控技术是近年来快速发展的一项技术,其在制造业中的应用已经成为了现代化生产的关键。

随着科技的进步和制造业的不断发展,机床数控技术的发展也在不断地进行着,未来的发展趋势也日趋清晰。

本文将探讨机床数控技术的未来发展趋势。

1.高度智能化随着大数据、人工智能和物联网技术的逐渐应用,机床数控技术也将变得更加智能化。

未来,机床数控系统将能够处理更多更复杂的数据,并借助人工智能技术提高自主决策和调整能力,从而实现更加智能化的生产流程和生产线。

有预测称,智能数控机床的普及将为制造业生产力提升至少50%。

2.高度自动化自动化是机床数控技术发展的另一个重要趋势。

未来,机床数控系统将实现实时监测和调整,并逐步实现全自动化加工。

通过智能化的监测和控制系统,机床数控系统将能够自动识别加工件的形状、质量和材料,并实现最佳刀具选择和工艺参数优化,从而实现高效、高质量的加工。

当前,机床数控系统在五金制造、汽车生产和航空航天等领域中已广泛应用。

3.高度可靠性随着制造业的不断发展,生产企业对生产线的可靠性要求越来越高。

机床数控技术的发展也注重提高系统的可靠性,未来将会在数据存储、处理和传输方面进行改进,提高系统的稳定性和抗干扰能力。

同时,数控系统的传动和控制部分也将实现全数字化和模块化设计,提高系统的可靠性和可维护性,降低维护成本和维护难度。

4.高度柔性化随着市场需求的不断变化,生产企业需要更加灵活和快速地调整生产线,以适应产品的多样化和个性化需求。

因此,未来的机床数控系统将会越来越柔性化,能够随时切换加工品种,并能自动识别加工件的尺寸、形状和材料,实现即插即用型生产流程。

5.高度绿色化随着环保意识的不断提升,生产企业对生产过程的环境影响越来越重视。

机床数控技术的未来发展也将注重降低能耗和减少废气废水的排放。

未来,机床数控系统将更多地应用可再生能源和能量回收技术,降低生产过程中的碳排放,实现绿色环保型制造。

国内外数控机床的发展现状

国内外数控机床的发展现状
目前,国内外数控机床的发展呈现出以下几个重要的现状。

首先,随着制造业的快速发展和智能化需求的不断提升,数控机床市场需求呈现稳步增长的趋势。

国内外制造业企业对于数控机床的需求日益增加,尤其是在汽车、航空航天、电子信息等高端制造领域,数控机床已经成为关键设备之一。

其次,国内数控机床技术水平和产品质量不断提升,与国外先进水平逐渐拉近。

在过去几年中,我国数控机床制造企业积极引进和消化国外先进技术,加大自主创新力度,不断提升产品的精度、速度、可靠性等关键指标,进而提高了整体竞争力。

第三,国内数控机床行业市场格局发生了一定的变化。

传统机床制造企业纷纷转型升级,加大数控机床生产线的建设,以满足市场需求。

同时,一些新兴高新技术企业也进入了数控机床领域,开展创新研发,推动行业的技术进步和创新发展。

此外,智能化和自动化程度的提升也是当前数控机床发展的一个重要趋势。

人工智能、云计算、大数据等新兴技术的应用,使得数控机床具备更强的智能化和自动化能力,大大提高了生产效率和产品质量,为制造业提供了更广阔的发展空间。

总体来说,国内外数控机床的发展都呈现出较为良好的态势。

我国在技术水平、产品质量等方面与国外企业逐渐拉近差距,而国内市场的需求持续增长也推动了行业的发展。

未来,随着
科技进步的不断推动,数控机床将继续向智能化、高效率和高精度的方向发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数控技术的发展趋势数控技术的发展趋势中国作为一个制造大国,主要还是依靠劳动力、价格、资源等方面的比较优势,而在产品的技术创新与自主开发方面与国外同行的差距还很大。

下面,店铺就为大家讲讲数控技术的发展趋势,一起来了解一下吧!数控技术的发展趋势数控技术不仅给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业的发展起着越来越重要的作用。

尽管十多年前就出现了高精度、高速度的趋势,但是科学技术的发展是没有止境的,高精度、高速度的内涵也在不断变化,正在向着精度和速度的极限发展。

从世界上数控技术发展的趋势来看,主要有如下几个方面:1.机床的高速化、精密化、智能化、微型化发展随着汽车、航空航天等工业轻合金材料的广泛应用,高速加工已成为制造技术的重要发展趋势。

高速加工具有缩短加工时间、提高加工精度和表面质量等优点,在模具制造等领域的应用也日益广泛。

机床的高速化需要新的数控系统、高速电主轴和高速伺服进给驱动,以及机床结构的优化和轻量化。

高速加工不仅是设备本身,而且是机床、刀具、刀柄、夹具和数控编程技术,以及人员素质的集成。

高速化的最终目的是高效化,机床仅是实现高效的关键之一,绝非全部,生产效率和效益在“刀尖”上。

2.五轴联动加工和复合加工机床快速发展采用五轴联动对三维曲面零件进行加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。

一般认为,1台五轴联动机床的效率可以等于2台三轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,五轴联动加工可比三轴联动加工发挥更高的效益。

但过去因五轴联动数控系统主机结构复杂等原因,其价格要比三轴联动数控机床高出数倍,加之编程技术难度较大,制约了五轴联动机床的发展。

当前数控技术的发展,使得实现五轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。

因此五轴联动技术促进了复合主轴头类型五轴联动机床和复合加工机床的发展。

3.新结构、新材料及新设计方法的发展机床的高速化和精密化要求机床的结构简化和轻量化,以减少机床部件运动惯量对加工精度的负面影响,大幅度提高机床的动态性能。

例如,借助有限元分析对机床构件进行拓扑优化,设计箱中箱结构以及采用空心焊接结构和使用铅合金材料等已经开始从实验室走向实用。

我国机床设计和开发手段要尽快从二维CAD向三维CAD过渡。

三维建模和仿真是现代设计的基础,是企业技术优势的源泉。

在此三维设计基础上进行CAD/CAM/CAE/PDM的集成,加快新产品的开发速度,保证新产品的顺利投产,并逐步实现产品生命周期管理。

4.开放式数控系统的发展许多国家对开放式数控系统进行了研究,数控系统开放化已经成为数控系统的未来之路。

所谓开放式数控系统,就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。

开放式数控系统有三种形式:(1)全开放系统,即基于微机的数控系统,以微机作为平台,采用实时操作系统,开发数控系统的各种功能,通过伺服卡传送数据,控制坐标轴电动机的运动。

(2)嵌入系统,即CNC+PC,CNC控制坐标轴电动机的运动,PC作为人机界面和网络通信。

(3)融合系统,在CNC的基础上增加PC主板,提供键盘操作,提高人机界面功能。

开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。

5.可重组制造系统的发展随着产品更新换代速度的加快,专用机床的可重构性和制造系统的可重组性日益重要。

通过数控加工单元和功能部件的模块化,可以对制造系统进行快速重组和配置,以适应变型产品的生产需要。

机械、电气和电子、液体和气体,以及控制软件的接口规范化和标准化是实现可重组性的关键。

6.虚拟机床和虚拟制造的发展为了加快新机床的开发速度和质量,在设计阶段借助虚拟现实技术,可以在机床还没有制造出来以前,就能够评价机床设计的.正确性和使用性能,在早期发现设计过程的各种失误,减少损失,提高新机床开发的质量【拓展资料】数控技术是用数字信息对机械运动和工作过程进行控制的技术,它是集传统的机械制造技术、计算机技术、现代控制技术、传感检测技术、网络通信技术和光机电技术等于一体的现代制造业的基础技术,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化和智能化起着举足轻重的作用特点1.提高加工精度数控机床是高度综合的机电一体化产品,是由精密机械和自动控制系统组成的,其本身具有很高的定位精度和重复定位精度,机床的传动系统与机床的结构具有很高的刚度及热稳定性;在设计传动结构时采取了减少误差的措施,并由数控系统自动进行补偿,所以,数控机床有较高的加工精度,尤其提高了同批零件加工的一致性,使产品质量稳定,合格率高,这一点是普通机床无法与之相比的。

2.提高生产效率数控机床可以采用较大的切削用量,有效地节省了加工时间。

数控机床或加工中心还有自动换速、自动换刀和其他自动化操作功能,使辅助时间大大缩短,且一旦形成稳定加工过程,无须进行工序间的检验与测量。

所以,采用数控加工比普通机床的生产率高3-4倍,甚至更多。

3.提高适应性数控机床按照被加工零件的数控程序来进行自动化加工,当加工对象改变时,只要改变数控程序,不必用靠模、样板等专用工艺装备,这有利于缩短生产准备周期,促进产品的更新换代。

4.提高零件的可加工性一些由复杂曲线、曲面形成的机械零件,用常规工艺方法和手工操作难以加工,甚至无法完成,而由数控机床采用多坐标轴联动即可轻松实现。

5.提高经济效益数控机床(特别是加工中心)大多采用工序集中,一机多用,在一次装夹的情况下,可以完成零件的大部分工序的加工,一台数控机床或加工中心可以代替数台普通机床。

这样既可以减少装夹误差,节约工序间的运输、测量、装夹等辅助时间,又可以减少机床种类,节省机床占地面积,带来较高的经济效益应用从世界上数控技术及其装备应用来看,其主要应用领域有以下几个方面:1.制造行业机械制造行业是最早应用数控技术的行业,它担负着为国民经济各行业提供先进装备的重任。

主要应用有研制开发与生产现代化军用装备用的高性能五轴高速立式加工中心、五坐标加工中心、大型五坐标龙门铣等;汽车行业发动机、变速箱、曲轴柔性加工生产线上用的数控机床和高速加工中心,以及焊接、装配、喷漆机器人、板件激光焊接机和激光切割机等;航空、船舶、发电行业加工螺旋桨、发动机、发电机和水轮机叶片零件用的高速五坐标加工中心、重型车铣复合加工中心等。

2.信息行业在信息产业中,从计算机到网络、移动通信、遥测、遥控等设备,都需要采用基于超精技术、纳米技术的制造装备,如芯片制造的引线键合机、晶片光刻机等,这些装备的控制都需要采用数控技术。

3.医疗设备行业在医疗行业中,许多现代化的医疗诊断、治疗设备都采用了数控技术,如CT诊断仪、全身治疗机以及基于视觉引导的微创手术机器人,口腔医学中的正畸及牙齿修复等方面都需要采用高精度数控机床对牙齿进行加工生产。

4.其他行业在轻工行业,有采用多轴伺服控制的印刷机械、纺织机械、包装机械以及木工机械等;在建材行业,有用于石材加工的数控水刀切割机,用于玻璃加工的数控玻璃雕花机,用于席梦思加工的数控行缝机和用于服装加工的数控绣花机;在艺术品行业,越来越多的工艺品、艺术品都会采用高性能的五轴加工中心进行生产数控机床未来四大发展趋势:一、高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。

1)主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;2)进给率:在分辨率为0.01μm时,最大进给率达到240m/min 且可获得复杂型面的精确加工;3)运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。

由于运算速度的极大提高,使得当分辨率为0.1μm、0.01μm时仍能获得高达24~240m/min的进给速度;4)换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s 左右,高的已达0.5s。

德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。

二、高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。

1)提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01μm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;2)采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。

研究结果表明,综合误差补偿技术的应用可将加工误差减少60%~80%;3)采用网格检查和提高加工中心的运动轨迹精度,并通过仿真预测机床的加工精度,以保证机床的定位精度和重复定位精度,使其性能长期稳定,能够在不同运行条件下完成多种加工任务,并保证零件的加工质量。

三、功能复合化复合机床的含义是指在一台机床上实现或尽可能完成从毛坯至成品的多种要素加工。

根据其结构特点可分为工艺复合型和工序复合型两类。

工艺复合型机床如镗铣钻复合——加工中心、车铣复合——车削中心、铣镗钻车复合——复合加工中心等;工序复合型机床如多面多轴联动加工的复合机床和双主轴车削中心等。

采用复合机床进行加工,减少了工件装卸、更换和调整刀具的辅助时间以及中间过程中产生的误差,提高了零件加工精度,缩短了产品制造周期,提高了生产效率和制造商的市场反应能力,相对于传统的工序分散的生产方法具有明显的优势。

四、控制智能化随着人工智能技术的发展,为了满足制造业生产柔性化、制造自动化的发展需求,数控机床的智能化程度在不断提高。

具体体现在以下几个方面:1)加工过程自适应控制技术:通过监测加工过程中的切削力、主轴和进给电机的功率、电流、电压等信息,利用传统的或现代的算法进行识别,以辩识出刀具的受力、磨损、破损状态及机床加工的稳定性状态,并根据这些状态实时调整加工参数(主轴转速、进给速度)和加工指令,使设备处于最佳运行状态,以提高加工精度、降低加工表面粗糙度并提高设备运行的安全性;2)加工参数的智能优化与选择:将工艺专家或技师的经验、零件加工的一般与特殊规律,用现代智能方法,构造基于专家系统或基于模型的“加工参数的智能优化与选择器”,利用它获得优化的加工参数,从而达到提高编程效率和加工工艺水平、缩短生产准备时间的目的;3)智能故障自诊断与自修复技术:根据已有的故障信息,应用现代智能方法实现故障的快速准确定位;4)智能故障回放和故障仿真技术:能够完整记录系统的各种信息,对数控机床发生的各种错误和事故进行回放和仿真,用以确定错误引起的原因,找出解决问题的办法,积累生产经验;5)智能化交流伺服驱动装置:能自动识别负载,并自动调整参数的智能化伺服系统,包括智能主轴交流驱动装置和智能化进给伺服装置。

相关文档
最新文档