转子动力学
转子密封动力学

转子密封动力学
密封转子动力学是研究密封系统中转子的动力学特性的学科。
它主要关注密封系统中转子的运动状态、稳定性以及振动等方面的问题。
密封转子动力学的研究主要包括四个方面:
- 密封力模型及其计算方法的研究。
- 密封力集总参数(8个动力系数)的识别。
- 不同形式密封(含减阻结构和预旋等)对转子失稳的影响。
- 转子/密封动力学模型的建立和分析。
密封转子动力学的研究取得了一些重要成果,例如:以Muszynska模型为代表的集总参数模型、密封力线性动力系数的识别方法、简单转子/密封系统的分岔与混沌等复杂行为、CFD与密封/转子相结合的研究进展等。
密封转子动力学在许多领域都有应用,如航空航天、能源、化工等。
它对于提高密封系统的可靠性和稳定性具有重要意义。
workbench 转子动力学 远端位移约束

workbench 转子动力学远端位移约束
摘要:
1.工作台(workbench) 的概述
2.转子动力学的基本概念
3.远端位移约束的定义和作用
4.工作台、转子动力学和远端位移约束之间的关系
5.应用实例
正文:
1.工作台(workbench) 的概述
工作台,也被称为工作台面,是一种用于支撑和固定工件的设备。
它们通常用于机械加工、装配和维修等领域,以提供一个平坦、稳定的表面,以便进行精确的工作。
2.转子动力学的基本概念
转子动力学是研究旋转机械设备运行和维护的学科,包括转子的设计、制造、运行、维护、故障诊断和性能优化等方面。
转子动力学的研究对象包括涡轮机、泵、压缩机、电机等旋转设备。
3.远端位移约束的定义和作用
远端位移约束,也称为偏移约束,是一种用于限制物体在空间中的位移的约束。
在转子动力学中,远端位移约束通常用于限制转子的位移,以确保其运行的安全性和稳定性。
4.工作台、转子动力学和远端位移约束之间的关系
在工作台中,转子动力学和远端位移约束是密切相关的。
工作台可以作为
转子动力学的支撑系统,远端位移约束可以保证转子的稳定性和安全性。
5.应用实例
以风力发电机为例,风力发电机的转子是其关键部件之一。
在设计转子时,需要考虑转子的动力学性能,包括转子的弯曲、扭转和振动等。
同时,需要通过设置远端位移约束,来保证转子在运行过程中的稳定性和安全性。
此外,远端位移约束也可以用于工作台的设计和制造中。
例如,在设计和制造用于加工大型工件的工作台时,需要考虑工件的尺寸和重量,以及加工过程中可能出现的位移和变形。
转子动力学有限元法计算及编程

三、有关软件
• NX Nastran转子动力学案例
轴:2023mm 外径:100 mm 内径:88 mm 毂:96 kg 自转角速度: 0-24000 RPM 弹簧与阻尼支撑
W
转子模型示意图
三、有关软件
• NX Nastran转子动力学案例
一维梁单元仿真模型
三、有关软件
• NX Nastran转子动力学案例
谢谢大家!
0
u1
e2 e9
u1
y2 y9
e2 e9
u2
x2 e2
y2 x9 y9
0 e9 0
0
e2 0 e9
uu12
[L]u
xb1
xb1
yb1 xb 2
I
yb1 xb 2
I
ub
yb2
yb2
Qb
Co1
0
0 Co 2
[
L]{u}
u u b
LT Qb Qb
Qu 0
Qb
Co1
0
0 Co 2
[
L]{u}
Ko1 0
0 Ko2
[
L]{u}
Co1
0
0 Co 2
[
I
]{ub
}
Ko1 0
0
Ko
2
[
I
]{ub
}
M
0
0 Mb
u u b
WJ
LT1 [C [C ]L1
]L1
LT1 [C]Lb Cb [C]Lb
QQ11bbxy
Co1
x2 y2
xb1 yb1
Ko1
x2 y2
xb1 yb1
QQ22bbxy
转子动力学建模

转子动力学建模
转子动力学建模是一种用于研究旋转机械系统运动规律的方法。
该方法是基于刚体动力学理论,通过建立数学模型来描述转子的运动
状态和受力情况,从而预测其运动稳定性、振动响应和疲劳寿命等指标。
转子动力学建模的过程主要包括以下几个步骤:确定系统结构、
建立数学模型、求解运动方程、分析运动稳定性和振动响应。
其中,
建立数学模型是关键环节,其主要任务是描述系统的结构和运动特性,以及各个部件之间的相互作用关系。
转子动力学模型通常采用有限元
方法、多体系统动力学方法和基于位移的方法等。
在建立数学模型时,需考虑转子的几何形状、材料特性、支撑方式、受力情况等因素。
同时,还需考虑转子的动力学特性,如离心力、振动、旋转惯性等影响因素。
其中,离心力是影响转子运动的主要因素,其大小与转子的转速、叶轮重量和离心力系数等相关。
通过求解运动方程,可以得到系统的运动状态和受力情况,从而
分析转子的稳定性和振动响应。
通过对模型的分析与计算,可以得到
一些重要参数,如关键转速、共振频率和疲劳寿命等。
这些参数对于
设计和优化旋转机械系统具有重要意义。
总的来说,转子动力学建模是研究旋转机械系统的重要方法,其
为研究系统运动规律和优化设计提供了理论基础。
转子系统动力学

转子系统动力学1. 引言转子系统动力学是研究转子在运动过程中的力学特性和动力学行为的学科。
转子系统广泛应用于各种机械设备中,例如发电机、涡轮机、离心压缩机等。
深入了解转子系统的动力学行为对于设计和优化这些机械设备至关重要。
转子系统动力学的研究内容包括转子的振动特性、转子的稳定性、转子的受力分析等。
在转子系统动力学中,转子被视为一个连续体,其运动受到各种力的作用,包括离心力、重力、惯性力等。
通过对这些力的分析和计算,可以获得转子的运动规律和稳定性。
2. 转子的振动特性转子的振动特性是转子系统动力学研究的重要内容之一。
转子的振动可以分为自由振动和强迫振动两种情况。
2.1 自由振动自由振动是指转子在没有外界力作用下的振动。
自由振动的特点是振幅和频率都是固定的,振动形式可以是简谐振动或复杂振动。
自由振动的频率由转子的刚度和质量分布决定。
2.2 强迫振动强迫振动是指转子在外界激励力作用下的振动。
外界激励力可以是周期性的,也可以是非周期性的。
强迫振动的特点是振幅和频率随外界激励力的变化而变化。
3. 转子的稳定性转子的稳定性是指转子在运动过程中是否保持平衡状态的能力。
稳定性的分析可以通过线性稳定性分析和非线性稳定性分析两种方法进行。
3.1 线性稳定性分析线性稳定性分析是指通过线性化转子系统的运动方程,然后对线性化方程进行分析,判断转子系统的稳定性。
线性稳定性分析的基本思想是将非线性问题近似为线性问题,通过对线性问题的分析来判断转子系统的稳定性。
3.2 非线性稳定性分析非线性稳定性分析是指直接对转子系统的非线性运动方程进行分析,判断转子系统的稳定性。
非线性稳定性分析考虑了转子系统的非线性特性,能够更准确地描述转子系统的稳定性。
4. 转子的受力分析转子的受力分析是研究转子系统动力学的重要内容之一。
转子在运动过程中受到各种力的作用,包括离心力、重力、惯性力等。
4.1 离心力离心力是转子在旋转过程中由于离心力的作用而产生的力。
ansys 转子动力学 不平衡质量

ansys 转子动力学不平衡质量ANSYS转子动力学是一种用于分析旋转机械系统中不平衡质量的工具。
不平衡质量是指在旋转机械系统中存在的质量分布不均匀的情况,它会导致系统产生不平衡力和振动。
不平衡质量在旋转机械系统中的影响是非常重要的,它会引起系统的振动、噪声和磨损,甚至会导致系统的故障和损坏。
因此,对不平衡质量进行准确的分析和评估是非常重要的。
ANSYS转子动力学可以通过以下步骤进行不平衡质量的分析:1. 建立转子模型:首先,需要根据实际情况建立旋转机械系统的几何模型。
这个模型可以包括转子、轴承、轴承座、连接件等各个组成部分。
2. 定义转子材料和属性:根据实际情况,需要定义转子的材料属性,例如弹性模量、密度等。
3. 定义转子的运动:需要定义转子的旋转速度和方向。
这个可以根据实际情况设置,例如转子的转速和转向。
4. 定义不平衡质量:需要定义转子上的不平衡质量分布。
这个可以根据实际情况设置,例如在转子上添加一定的质量块或者质量分布。
5. 进行转子动力学分析:使用ANSYS转子动力学工具进行分析。
工具会根据转子的几何模型、材料属性、运动和不平衡质量分布等信息,计算出转子的振动响应和不平衡力。
可以通过分析结果来评估不平衡质量对系统的影响。
6. 优化设计:根据分析结果,可以对转子的设计进行优化。
例如调整不平衡质量的位置和大小,以减小不平衡力和振动。
总之,ANSYS转子动力学是一种用于分析旋转机械系统中不平衡质量的工具,通过建立转子模型、定义转子的运动和不平衡质量分布等信息,可以计算出转子的振动响应和不平衡力,并进行优化设计。
转子动力学基本理论
eit
2
、=- n 2 1 n 一般0 1;
z K e nt sin( 1 2 n t )
2 n
+2i
2 n
2 eit ;
第一项很快衰减为0;
第二项为:
(()) 1
n
2
n
2 +i2
n
eit ;
其幅值及角度为:
A
(n)2
;
1(
n)22+4
2
2 n
不平衡可忽略,则称为刚性转子。
转子动平衡
❖ 刚性转子平衡:
静平衡;
❖ 明显的静不平衡; ❖ 不明显的静不平衡;
无测相法动平衡;
❖ 试加重量周移法 ❖ 二点法 ❖ 三点法(对单平面有效)
测相动平衡 单平面的测相平衡法(闪光测相法) 两个平面的测相平衡法(影响系数法)
动平衡理论
刚性转子的平衡原理
由于临界转速现象是激振力频率和转子自振频率相
同时产生的共振现象。因此,转子的各阶自阶振频 率就是转子的各阶临界转速,记作 nc1, nc2 , nc3 L L。
转子具有无穷多阶临界转速。转子临界转速的大小, 取决于转子的材料、几何形状和结构型式。因此,
对一个具体的转子来说,临界转速的大小是一定
的。转子系统的刚性愈大,转子的临界转速愈大。
Ⅱ平面上的平行力 、
❖ 同理,将 力 F21、 F22,
F分2 解为Ⅰ、Ⅱ平面上的平行
迭加
F11
、F12
为
A
;迭加
F12
、F22
为
B 显而易见,作用在Ⅰ、Ⅱ平面上的 A 、B
两力与不平衡离心力
F1
、F2 等效。
❖ 如果转子上有多个不平衡离心力存在,亦可同样
转子动力学培训 (API 684学习)
模态振型
模态振型指在临界转速时 转子的振动形态。与轴承 转子的刚度有关。
相位角
相位角是指测点出测量得到 的最大振幅与转子上标记位 置的相对角度。相位角可以 用于确定不平衡量的位置以 及临界转速的位置还有与临 临界转速相关的放大系数。 当转子运行在临界转速以下 时振动最大值与不平衡量的 位置比较接近,当转子运行 转速高于第一阶临界转速( 低于第二阶临界转速)时转子 的最大振动相位与不平衡量的 位置有接近180度的相位差。经 过第一阶临界转速时相位有明 显的变化。
在转子轴承系统设计时应该
考虑如下激振因素但不限于
这些因素。
1 转子系统不平衡; 2油膜不稳定; 3 内部摩擦; 4 叶片,小孔以及扩流器的通过频率; 5齿轮啮合与变频; 6 不对中; 7转子系统松动; 8摩擦涡动; 9边界流体分离状态; 10空气动力学交叉饮料; 11同步涡动; 12 滚动轴承的通过频率;
可以通过对计算结果与测试结果的对比来 优化模型建立,积累经验。 根据一般经验转子的二阶弯曲临界转速以及 稳定性对叶轮、轴套等的热套作用不明显。
叶轮等热套零件的惯性质量对于
转子系统的影响不能忽略,应该考虑
在内。
大部分的电机包括如下附加质量:
1 叶轮,盘; 2 联轴器; 3 轴套; 4 平衡盘; 5 推力头; 特殊的机器还包括:
假设转轴的质量可以忽略那么 转子与轴承的等效刚度可以以 下列公式代替。 从公式可知哪个部分的相对刚度 越低则对系统刚度影响更大。
从上述分析可以知道,轴承和 转子整合的刚度比单一部件的 刚度更低。
从图1-10表示了在不同转子刚度 的情况下的振动响应,从图中可 知在相同的轴承刚度情况下转子 刚度越大振动越平缓,临界转速 越高。
轴承转子系统动力学
轴承转子系统动力学
轴承转子系统动力学是研究轴承和转子在运转过程中的力学行为和相互作用的学科。
它涉及到转子的旋转、振动、稳定性以及与轴承之间的力学相互作用等方面。
在轴承转子系统中,转子是通过轴承支撑并旋转的。
转子的旋转会引起离心力和惯性力的产生,同时也会受到悬挂系统和轴承的约束。
轴承则起到支撑和导向转子的作用,并承受着由转子旋转所带来的力和力矩。
在动力学分析中,需要考虑转子的质量、惯性特性、几何形状以及受力情况等因素。
常见的分析方法包括刚体动力学、弹性动力学和有限元分析等。
这些方法可以用来计算转子的振动模态、共振频率、振型等,并评估转子系统的稳定性和可靠性。
此外,轴承转子系统动力学还包括对转子系统进行故障诊断和故障预测的研究。
通过监测转子系统的振动、声音和温度等信号,可以检测到转子系统中的故障,并进行相应的维修和保养,以确保系统的正常运行。
总之,轴承转子系统动力学是对转子和轴承在运转中力学行为进行分析和研究的学科,它对于提高转子系统的性能、可靠性和安全性具有重要意义。
1。
转子动力学基本理论
在转速为25%一85%的工作转速范围内, 即3000r/min机组在750—2550r∕min区间,轴系 各轴颈的响应峰峰值应小于0.229mm;
在转速为85%一125%的工作转速范围内, 即3000r∕min机组在2550—3750r/min区间,轴 系各轴颈的响应峰峰值应小于0.076mm。
Wst Wk
A3
A12 A2
1 2
C0
A1
A3
A32 A0 A1 A2 A12 A4
式中 Wst——失稳转速 Wk——转子的临界转速
由此可知,失稳转速比与轴承型式、承载系数和转 子相对挠度有关,若已知转子轴系的临界转速WK,就可 计算失稳转速Wst。 转子失稳表现为下列特点;
(1)振动频率为次同步或超同步; (2)自激振动的频率以转子本身的固有频率为主; (3)振幅可能发生突然急剧增加; (4)振幅的变化与转速或负荷关系密切;
不平衡响应特性决定了转子对已经存在的不平衡量或 运转过程中突然出现的不平衡的响应程度。ห้องสมุดไป่ตู้轴系安全 角度出发,希望这个响应越小越好。α小意味着同样的 不平衡量所造成的转子的振动小,小的不平衡响应,可
以减小动平衡的次数,减少运行中意外事故对设备带来 的不良后果。
和临界转速一样,不平衡响应可以用计算的 方法得到,也可以在现场实测得到。
一,单圆盘转子的临界转速 单圆盘转子加速过程中,当 o c 的时
m
候,转子动挠度S随 的增加而增加。当 接近
c
c
m 的时候,挠度S急剧加大。但是当
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转子动力学是什么?
转子动力学是研究所有与旋转机械转子及其部件和结构有关的动力学特性的学科,同时与流体力学中轴承与密封的润滑密切相关,有着极强的工程应用背景,它广泛应用于航空发动机、燃气轮机、汽轮机、压缩机、水轮机、涡轮泵、增压器、柴油机、泵、电机等各种旋转机械领域,研究范围包括振动、动态响应、稳定性、动平衡、轴承特性、密封特性、强度、疲劳、可靠性、状态监测、故障诊断和控制等方面,尤其是研究接近或超过临界转速运转状态下转子的各种动力学问题。
一、振动形式,按转子-轴承系统的输入,即振动原因可分为:
1. 强迫振动——系统受外界持续激扰作用下所产生的振动,比如转子不平衡产生的周期性的激振力下的转子振动。
特点:振动的频率与激振频率相关,一般由不平衡量引起的振动为1X振动,即振动频率与转速频率一致。
2. 自激振动——由系统自身的交叉耦合刚度引起的振动形式,当有一个初始振动,不需要外界向振动系统输送能量,振动即能保持下去。
这种振动与外界激励无关,完全是自己激励自己,故称为自激振动。
比如轴瓦自激振动(半速涡动,油膜振荡),大容量汽轮机高压转子上的间隙自激振动。
其特征是:振动的频率与转速无关,而与其自然频率有关
二、按转子—轴承系统的动力学参数的特性可分为:
线性转子动力学分析——通过线性化处理系统,包括轴承的刚度与阻尼等,分析系统的稳态响应,能用常系数线性微分方程描述的振动。
非线性转子动力学分析——系数的阻尼力或弹性恢复力具有非线性性质,只能用非线性微分方程来描述。
比如,所有的轴承作用力均为非线性力,严格来讲,与滑动轴承油膜力相关的转子动力学问题均为非线性转子动力学;还有裂纹转子的动力学分析等也属于非线性领域。
三、按振动位移的特征可分为:
横向振动—转子只作垂直轴线方向的振动。
扭转振动—转子绕其纵轴产生扭转变形的振动。
纵向振动—转子只作沿轴线方向的振动。