第三章不等式综合大题10道
第三章不等式基础大题20道

第三章不等式基础大题20道一、解答题1.解下列不等式(1)314x -+<(2)()()2340x x --<2.已知23(6)6y x a a x =-+-+.(1)当1x =时,求关于a 的不等式大于0的解集;(2)若不等式23(6)6x a a x b -+-+>的解集为(1,3)-,求实数a ,b 的值.3.(1)已知平面向量()1,a x =,()23,b x x =+-,若a 与b 垂直,求x ;(2)求关于x 的不等式(1)()0x x a -->的解集.4.已知不等式2364ax x -+>的解集为{|1x x <或}2x >.(1)求a ;(2)解不等式()2220ax ac x c -++<. 5.(1)已知,a b c d ><,求证:a c b d ->-;(2)已知,0a b ab >>,求证:11a b<; (3)已知0,0a b c d >><<,求证:a b c d >. 6.已知不等式2320x x -+≤的解集为{}|x a x b ≤≤.(1)求实数a ,b 的值;(2)解关于x 的不等式:()()0x c ax b -->(c 为常数,且2c ≠).7.已知1y x x=+. (1)已知x >0,求y 的最小值;(2)已知x <0,求y 的最大值.8.解下列关于x 的不等式:(1)2(1)10ax a x -++<.(2)221ax x +≥+. 9.(1)已知,a b ∈R ,且360a b -+=,求128a b+的最小值.(2)已知,a b 是正数,且满足1a b +=,求14a b+的最小值. 10.已知函数()()22log 32f x mx mx =-+,m R ∈.(1)若1m =,求函数()f x 的单调递减区间;(2)若函数()f x 的定义域为R ,求实数m 的取值范围.11.已知x 、y 都是正数,求证:(1)如果积xy 等于定值P ,那么当x y =时,和x y +有最小值;(2)如果和x y +等于定值S ,那么当x y =时,积xy 有最大值214S . 12.已知不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,(1)画出不等式组所表示的平面区域(要求尺规作图,不用写出作图步骤,画草图不能得分);(2)求平面区域的面积.13.已知不等式2364ax x -+>的解集为{1x x <或}x b >.(1)求a ,b ;(2)解不等式2()0ax ac b x bc -++<. 14.设1a ≈21111a a =++. (1介于1a 与2a 之间;(2)判断1a ,2a,并说明理由.15.已知A ={m |a ≤m ≤b },B ={m |2m +4m +3≤0},A =B(1)求实数a ,b 的值;(2)若实数x ,y 满足10220240x y x y x y -+>⎧⎪+-≥⎨⎪+-≥⎩,试作出不等式组表示的平面区域,并求t =x b x a ++的取值范围.16.已知函数()9()33f x x x x =+>-. (1)求函数()f x 的最小值;(2)若不等式2()7f x t t ≥++恒成立,求实数t 的范围.17.若二次函数()f x 满足()1()2f x f x x +-=,且()02f =.(1)求()f x 的解析式;(2)若不等式2()0f x mx mx -+>对于x ∈R 恒成立,求实数m 的取值范围.18.已知函数()()22f x x a b x a =-++. (1)若关于x 的不等式()0f x <的解集为{}12x x <<,求a ,b 的值;(2)当2b =时,解关于x 的不等式()0f x >.19.设二次函数2()3f x ax bx =++.(1)若不等式()0f x >的解集为(1,3)-,求a ,b 的值;(2)若(1)4f =,0a >,0b >,求49a b+的最小值. 20.目前脱贫攻坚进入决胜的关键阶段,某扶贫企业为了增加工作岗位和增加员工收入,决定投入90万元再上一套生产设备,预计使用该设备后前()*n n ∈N 年的支出成本为()2105n n -万元,每年的销售收入95万元.(1)估计该设备从第几年开始实现总盈利;(2)使用若干年后对该设备处理的方案有两种:方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以60万元的价格处理;问哪种方案较为合理?并说明理由.参考答案1.(1){}06x x <<;(2){4x x >或32x ⎫<⎬⎭. 【分析】(1)先将不等式化为33x -<,进而可求出结果;(2)先将不等式化为()()2340x x -->,求解即可得出结果.【详解】(1)由314x -+<得33x -<,所以333x -<-<,则06x <<, 所以原不等式的解集为{}06x x <<;(2)由()()2340x x --<得()()2340x x -->,解得4x >或32x <, 所以原不等式的解集为{4x x >或32x ⎫<⎬⎭. 2.(1)(3-+;(2)33a b ⎧=±⎪⎨=-⎪⎩【分析】(1)当1x =时,得2630a a -++>,解此不等式即可;(2)由题意可知1,3-是方程23(6)60x a a x b --+-=的两根,再利用根与系数的关系可得(6)1336133a a b -⎧-+=⎪⎪⎨-⎪-⨯=⎪⎩,从而可求出a ,b 的值. 【详解】(1)当1x =时,263y a a =-++.∴不等式为2630a a -++>,解得33a -<<+∴所求不等式的解集为(3-+.(2)∵23(6)6x a a x b -+-+>,∴23(6)60x a a x b --+-<,∴1,3-是方程23(6)60x a a x b --+-=的两根, ∴(6)1336133a a b -⎧-+=⎪⎪⎨-⎪-⨯=⎪⎩,解得33a b ⎧=±⎪⎨=-⎪⎩3.(1)3x =或1x =-;(2)分类讨论,答案见解析.【分析】(1)由向量垂直的坐标表示,计算即可得出结果;(2)对参数a 分情况讨论,分别求得不等式的解集.【详解】(1)∵a b ⊥,∴()2230x x +-=,2230x x --= ∴3x =或1x =-.(2)①1a >时解集()(),1,a -∞⋃+∞,②1a =时解集{|x x R ∈且}1x ≠③1a <时解集()(),1,a -∞⋃+∞.【点睛】本题考查向量垂直的坐标表示、一元二次不等式的解法,意在考查学生的分类讨论思想及数学运算的学科素养,属基础题.4.(1)a =1;(2)当2>c 时,不等式的解集为{}2x x c <<,当2c =时,不等式的解集为∅,当2c <时,不等式的解集为{}2x c x <<【分析】(1)由已知可知1x =或2x =是方程2320ax x -+=的根,把根代入方程中可求出a 的值; (2)由(1)可知不等不等式化为()2220x c x c -++<,然后分2>c ,2c =和2c <求解即可【详解】解:(1)因为不等式2364ax x -+>的解集为{|1x x <或}2x >,所以1x =或2x =是方程2320ax x -+=的根,所以320a -+=,解得1a =(2)由(1)可知不等式化为()2220x c x c -++<, 即()(2)0x c x --<当2>c 时,不等式的解集为{}2x x c <<,当2c =时,不等式的解集为∅,当2c <时,不等式的解集为{}2x c x <<【点睛】此题考查由一元二次不等式的解集求参数,考查一元二次不等式的解法,属于基础题 5.(1)证明见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据c d <不等号左右两边同时乘以一个负数,不等号方向改变得到 c d ->-, 再用同向可加性法则即可得出结果. (2)根据正数的倒数大于0可得10ab>,再用同向同正可乘性得出结果. (3)因为0c d <<,根据(2)的结论,得110c d >>,再用同向同正可乘性得出结果. 【详解】证明:(1)因为,a b c d ><,所以,a b c d >->-.则a c b d ->-.(2)因为0ab >,所以10ab>. 又因为a b >,所以 1a b ab ab1⋅>⋅, 即11b a >,因此11a b <. (3)因为0c d <<,根据(2)的结论,得110c d>>. 又因为0a b >>,则 11a b c d⋅>⋅,即a b c d>. 【点睛】本题考查不等式的基本性质与不等关系,是基础题.6.(1)1a =,2b =;(2)当2>c 时解集为{|x x c >或2}x <;当2c <时解集为{|2x x >或}x c <.【分析】(1)不等式2320x x -+≤的解集为{}|12x x ≤≤,即得解;(2)不等式为()(2)0x c x -->,再对c 分类讨论得解.【详解】(1)不等式2320x x -+≤的解集为{}|12x x ≤≤,因为不等式2320x x -+≤的解集为{}|x a x b ≤≤,所以1a =,2b =.(2)由(1)可知:不等式为()(2)0x c x -->, c 为常数,且2c ≠,∴当2>c 时解集为{|x x c >或2}x <;当2c <时解集为{|2x x >或}x c <.【点睛】本题主要考查一元二次不等式的解法,意在考查学生对这些知识的理解掌握水平. 7.(1)2;(2)-2.【分析】(1)直接利用基本不等式求解即可(2)由于x <0,所以先对式子变形()1y x x ⎡⎤=--+⎢⎥-⎣⎦,然后再利用基本不等式即可 【详解】(1)因为x >0,所以12y x x =+≥=,当且仅当1x x =,即x =1时等号成立.所以y 的最小值为2.(2)因为x <0,所以-x >0.所以()12y x x ⎡⎤=--+≤=-⎢⎥-⎣⎦,当且仅当1x x-=-,即x =-1时等号成立. 所以y 的最大值为-2.【点睛】此题考查基本不等式的应用,属于基础题.8.(1)见解析;(2)见解析.【分析】(1)对不等式因式分解,对a 分成0,0,01,1,1a a a a a <=<<=>等五种情况,根据一元二次不等式对应一元二次方程的根的情况,求得不等式的解集.(2)将原不等式转化为右边为零的形式,对a 分成2,2,2a a a >=<三种情况,由此求得不等式的解集.【详解】(1)(1)(1)0ax x --<.当0a <时,不等式的解集为1|x x a ⎧<⎨⎩,或1x ⎫>⎬⎭;当0a =时,不等式的解集为{}|1x x >;当01a <<时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭;当1a =时,不等式的解集为∅;当1a >时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭. (2)(2)01a x x -+.当2a >时,不等式的解集为{|1x x <-,或}0x ≥;当2a =时,不等式的解集为{}|1x x ≠-;当2a <时,不等式的解集{}|10x x -<≤.【点睛】本小题主要考查含有参数的一元二次不等式的解法,考查分式不等式的解法,考查考查分类讨论的数学思想方法,属于中档题.9.(1)14;(2)9. 【分析】(1)利用基本不等式结合指数幂的运算求出128a b +的最小值; (2)将代数式+a b 与14a b +相乘,展开后利用基本不等式可求出14a b +的最小值. 【详解】(1)360a b -+=,36a b ∴-=-,由基本不等式可得31122284a ab b -+=+≥===, 当且仅当336a b a b =-⎧⎨-=-⎩,即当31a b =-⎧⎨=⎩时,等号成立,所以,128a b +的最小值为14; (2)由基本不等式可得()14144559a b a b a b a b b a ⎛⎫+=++=++≥= ⎪⎝⎭, 当且仅当410,0a b b a a b a b ⎧=⎪⎪+=⎨⎪>>⎪⎩,即当1323a b ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,所以,14a b +的最小值为9. 【点睛】本题考查利用基本不等式求最值,解这类问题的关键就是对代数式朝着定值方向进行配凑,同时注意定值条件的应用,考查计算能力,属于中等题.10.(1)∞(-,1);(2)809m ≤<【分析】(1)先求出函数的义域为{|2x x >或1}x <,再利用复合函数的单调性原理求函数的单调减区间;(2)等价于2320mx mx -+>在R 上恒成立,利用一元二次函数的图象和性质分析得解.【详解】(1)若1m =,()()22log 32f x x x =-+, 函数的定义域为{|2x x >或1}x <, 由于函数2log y x =是定义域上的增函数,所以()f x 的单调递减区间等价于函数232(2y x x x =-+>或1)x <的减区间,232(2y x x x =-+>或1)x <的减区间为(),1-∞,所以函数()f x 的单调递减区间(),1-∞.(2)由题得2320mx mx -+>在R 上恒成立,当0m =时,2>0恒成立,所以0m =满足题意;当0m ≠时,20980m m m >⎧⎨∆=-<⎩,所以809m <<. 综合得809m ≤<【点睛】本题主要考查复合函数的单调性和二次不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.11.(1)证明见解析;(2)证明见解析.【分析】(1)利用基本不等式可证明出结论成立;(2)利用基本不等式可证明出结论成立.【详解】因为x 、y 都是正数,所以2x y +≥(1)当积xy 等于定值P 时,2x y +≥=x y +≥,当且仅当x y =时,上式等号成立.于是,当x y =时,和x y +有最小值;(2)当和x y +等于定值S 22x y S +≤=,所以214xy S ≤, 当且仅当x y =时,上式等号成立.于是,当x y =时,积xy 有最大值214S . 【点睛】本题考查利用基本不等式证明和与积的最值,在应用基本不等式时,要注意“一正二定三相等”三个条件的成立,考查计算能力与逻辑推理能力,属于基础题.12.(1)见解析(2)43【分析】(1)画出每一个二元一次不等式所表示的平面区域,然后取公共部分.(2)根据(1)分别求得三角形三个顶点的坐标,然后用三角形的面积公式求解.(1)不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,所表示的平面区域,如图所示:(2)由034x x y =⎧⎨+=⎩,解得40,3A ⎛⎫ ⎪⎝⎭. 由034x x y =⎧⎨+=⎩,解得()0,4C .由3434x y x y +=⎧⎨+=⎩,解得()1,1B . 所以平面区域的面积14441233S ⎛⎫=-⨯= ⎪⎝⎭. 【点睛】本题主要考查二元一次方程组与可行域,还考查数形结合的思想和理解辨析的能力,属于基础题.13.(1)1a =,2b =;(2)答案见解析.【分析】(1)根据一元二次不等式与对应方程之间的关系,利用根与系数的关系,列出方程组,求出a ,b 的值;(2)将a ,b 的值代入,并将不等式因式分解为(2)()0x x c --<,通过对c 与2的大小关系进行讨论,得出不等式的解集.(1)因为不等式2364ax x -+>的解集为{1x x <或}x b >,所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1. 由根与系数的关系,得3121b a b a ⎧+=⎪⎪⎨⎪⋅=⎪⎩, 解得12a b =⎧⎨=⎩; (2)原不等式化为:2(2)20x c x c -++<,即(2)()0x x c --<,①当2>c 时,不等式的解集为{}2x x c <<,②当2c <时,不等式的解集为{}2x c x <<,③当2c =时,不等式的解集为∅.【点睛】本题考查了一元二次不等式的解法与应用问题,根与系数的关系的应用,考查了分类讨论的思想,属于基础题.14.(1)证明见解析;(2)2a【分析】(1)只要证明)120a a <即可;(2)用a -a与1的大小即可. 【详解】(1)证:∵)12a a)11111a a ⎫=-⎪+⎭()211101a a =<+,介于1a ,2a 之间;(2)解:∵11221221a a -=>--, 1222a a ∴->-,2a ∴更接近于2.【点睛】本题主要考查比较代数式大小的方法,常用作差法或作商法,属于基础题.15.(1)3,1a b =-=- ;(2)作图见解析;t 的取值范围为[12-,1]. 【分析】(1)解出集合B ,由A =B ,可求出答案.(2)由条件作出可行域,又t =13x x --表示区域内任一点(x ,y )与M 点(3,1)连线的斜率,由可行域结合图形可求解.【详解】解:(1)由2m +4m +3≤0得31m -≤≤-,故{}|31B x m =-≤≤-又A ={m |a ≤m ≤b },A =B ,∴3,1a b =-=-(2)不等式组表示的平面区域如图中阴影所示由10240x y x y -+=⎧⎨+-=⎩,可得()1,2B 由220240x y x y +-=⎧⎨+-=⎩,可得()2,0A t =13x x --表示区域内任一点(x ,y )与M 点(3,1)连线的斜率,112MA MB k k ==-, 故由图形可知12-≤t ≤1,即t 的取值范围为[12-,1] 16.(1)9;(2)21t -≤≤.【分析】(1)将函数解析式变形,利用基本不等式,即可求出最值;(2)根据(1)的结果,将不等式化为2min ()7f x t t ≥++,解对应的一元二次不等式,即可得出结果.【详解】(1)因为3x >,所以99()333933f x x x x x =+=-++≥=--, 当且仅当933x x -=-,即6x =时,等号成立; 即函数()f x 的最小值为9;(2)为使不等式2()7f x t t ≥++恒成立,只需2min ()7f x t t ≥++,由(1)知297t t ≥++,解得21t -≤≤,即实数t 的范围为21t -≤≤.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.17.(1)2()2f x x x =-+;(2)(]7,1-. 【分析】(1)设()2()0f x ax bx c a =++≠,由()02f =,求出c ,即可求出()1f x +,再根据()1()2f x f x x +-=,计算可得;(2)依题意2(1)(1)20m x m x -+-+>对于x ∈R 恒成立,对二次项系数为零与否分类讨论,分别求出参数的取值范围最后取并集即可;【详解】解:(1)设()2()0f x ax bx c a =++≠, ∵()02f =,∴2c =,∴2()2f x ax bx =++.∵()()12f x f x x +-=,∴22ax a b x ++=,∴220a a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩, ∴2()2f x x x =-+.(2)2()0f x mx mx -+>即2(1)(1)20m x m x -+-+>对于x ∈R 恒成立, 当1m =时,20>恒成立,当1m ≠时,则210(1)8(1)0m m m ->⎧⎨∆=---<⎩,解得71m -<<. 综上:m 的取值范围为(]7,1-.【点睛】求函数解析式常用方法:(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)方程法:已知关于f (x )与1f x ⎛⎫ ⎪⎝⎭或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).18.(1)12a b =⎧⎨=⎩;(2)答案见解析. 【分析】(1)由一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程组求得结果;(2)分别在2a <、2a =和2a >三种情况下,解一元二次不等式求得结果.【详解】(1)()0f x <的解集为{}12x x <<,∴方程()220x a b x a -++=的两根为1和2,由韦达定理知:12212a b a +=+⎧⎨=⨯⎩,解得:12a b =⎧⎨=⎩. (2)当2b =时,()()()()22220f x x a x a x a x =-++=-->, 当2a <时,()0f x >的解集为()(),2,a -∞⋃+∞;当2a =时,()0f x >的解集为()(),22,-∞+∞;当2a >时,()0f x >的解集为()(),2,a -∞⋃+∞.19.(1)1,2a b =-=;(2)25.【分析】(1)由一元二次不等式与一元二次方程的关系运算即可得解;(2)转化条件为1a b +=,()()49494913b a a b a b a b a b +=++=++,再由基本不等式即可得解.【详解】解:(1)因为不等式()0f x >的解集为(1,3)-,所以-1和3是方程()0f x =的两个实根,且0a <, 由根与系数的关系,得13,313,b a a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩解得12a b =-⎧⎨=⎩(2)由(1)4f =,得34a b ++=,即1a b +=,又0a >,0b >, 所以()()494949131325b a a b a b a b a b +=++=++≥+=当且仅当1,49,a b b a a b +=⎧⎪⎨=⎪⎩即2,535a b ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立. 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.20.(1)第2年;(2)方案二较为合理,理由见详解.【分析】(1)先设()f n 为前n 年的总盈利额,由题中条件得出()f n ,列出不等式求解,即可得出结果;(2)分别求出两种方案的总利润,以及所需要的时间,即可得出结论.【详解】(1)设()f n 为前n 年的总盈利额,单位:万元;由题意可得()()()()22951059010100901019n n n f n n n n n +-=--=--=---, 由()0f n >得19n <<,又*n ∈N ,所以该设备从第2年开始实现总盈利;(2)方案二更合理,理由如下:方案一:由(1)知,总盈利额()()221009010516010f n n n n +-=--+=-,当5n =时,()f n 取得最大值160;此时处理掉设备,则总利润为16020180+=万元; 方案二:由(1)可得,平均盈利额为()21009091010010020401n n n f n n n n +-⎛⎫=-++≤-⎪-== ⎝⎭, 当且仅当9n n=,即3n =时,等号成立;即3n =时,平均盈利额最大,此时()120f n =,+=万元;此时处理掉设备,总利润为12060180综上,两种方案获利都是180万元,但方案二仅需要三年即可,故方案二更合适.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.。
第3章 一元一次不等式综合测试试题(含解析)

第三章:一元一次不等式综合测试答案一.选择题:1.答案:C解析:解不等式3x ≤2(x -1)得:2-≤x ,故选择C2.答案:B解析:解不等式x -3≤3x +1得:2-≥x ,故选择B3.答案:C解析:解不等式3(x -1)≤5-x 得:2≤x , ∵非负整数解为:0,1,2共3个, 故选择C4.答案:B 解析:解不等式组⎩⎨⎧≤->+0421x ax 得:21≤<-x a∵不等式组⎩⎨⎧≤->+0421x ax 有解,∴3,21<∴<-a a ,故选择B5.答案:B解析:原不等式可化为323255104xx x -≤---, 去分母,得6(4x -10)-15(5-x )≤10(3-2x )去括号,得24x -60-75+15x ≤30-20x. 合并同类项,得59x ≤165. 系数化为1,得x ≤59165所以原不等式的非负整数解是0,1,2. 故选择B6.答案:C解析:设从第六天起平均每天至少要读x 页, 由题意得:4005≥x ,解得:80≥x ,故选择C解析:把方程组⎩⎨⎧=++=+3313y x k y x 转化为:444+=+k y x∴44+=+k y x ,∴1440<+<k 解得:04<<-k ,故选择A答案:B解析:∵x <0,y >0,x +y <0,y x >,∴x y y x >->>-,故选择B答案:B解析:解不等式①,得x >-52. 解不等式②,得x <2a .∵不等式组恰有三个整数解, 2<2a ≤3. 231≤<a ,故选择B10.答案:B解析:设最多可打x 折,由题意得:%5100010001500≥-x解得:7.0≥x ,故最多可打7折,故选择B二.填空题:11.答案:4解析:解不等式2(x+k)-2>k 得:22kx ->, ∵不等式2(x+k)-2>k 的解集是x >-1, 122-=-k,解得:4=k12.答案:26解析:设较大的偶数是x ,则较小的偶数是x -2. 根据题意,得x +x -2≥49. 解得x ≥25.5.所以x 的最小值是26,即较大的偶数最小是26.解析:解不等式组⎩⎨⎧>->+1312x a x 得:11-<<a x∵不等式组⎩⎨⎧>->+1312x a x 的解为1<x <3,∴4,31=∴=-a a14.答案:1<x +y <5解析:由x -y =3,得x =y +3. ∵x >2,∴y +3>2,解得y >-1. 又∵y <1,∴-1<y <1. 把x =y +3代入x +y , 得x +y =y +3+y =2y +3, 而1<2y +3<5, ∴1<x +y <5.15.答案:3解析:由题意,得a 1+a 2≤a 3,a 2+a 3≤a 4,a 3+a 4≤a 5, ∴当a 1=1时,a 2=2,a 3=3,a 4=5或6,a 5=9, ∴a 3=3.16.答案:152解析:设幼儿园共有小朋友x 人,共有玩具y 件,由题意得:⎩⎨⎧<--<=+4)1(50593x y yx解得:3230<<x ,∴31=x ,即小朋友为31人, 共有玩具15259313=+⨯=y三.解答题:17.解析:(1)去括号得:5x -10+8<6x -6+7. 移项得:5x -6x <10-8-6+7. 合并得:-x <3.系数化为1得:x>-3.(2)解不等式①,得x>-1. 解不等式②,得x ≤4.∴不等式组的解集为-1<x ≤4.18.解析:(1)解不等式3x +a 2<1得:32ax -<,解不等式031>-x 得:31<x ∴3132=-a ,∴1=a . (2)∵不等式123<+ax 的解都是不等式031>-x 的解,∴3132≤-a ,解得1≥a19.解析:关于x 的方程2x -3m =2m -4x +4的解为645+=m x 根据题意得:3187645mm --≥+ 去分母,得4(5m +4)≥21-8(1-m ).去括号,得20m +16≥21-8+8m. 移项、合并同类项,得12m ≥-3. 系数化为1,得m ≥-41 所以当m ≥-41时,方程的解不小于3187m --, 所以m 的最小值为-4120.解析:(1)由题意得:()152523+≤+k k解得k ≥413(2)解不等式①,得x ≤3. 解不等式②,得x<a. ∵a 是不等于3的常数,∴当a>3时,不等式组的解集为x ≤3; 当a<3时,不等式组的解集为x<a.21.解析:(1)解⎩⎨⎧+=---=+a y x a y x 317得:⎩⎨⎧--=-=423a y a x∵x 为非正数,y 为负数, ∴⎩⎨⎧<≤00y x 即⎩⎨⎧<--≤-04203a a 解得⎩⎨⎧->≤23a a∴a 的取值范围是-2<a ≤3.(2)∵-2<a ≤3,∴a -3≤0,a +2>0, ∴|a -3|+|a +2|=3-a +a +2=5. (3)不等式2ax +x <2a +1可化简为 (2a +1)x <2a +1.∵不等式的解为x >1, ∴2a +1<0,∴a <-21. 又∵-2<a ≤3,∴-2<a <-21. ∵a 为整数,∴a =-1.22.解析:(1)设购买平板电脑a 台,则购买学习机(100-a)台,由题意,得 3 000a +800(100-a)≤168 000.解得a ≤40. 答:平板电脑最多购买40台.(2)设购买的平板电脑a 台,则购买学习机(100-a)台,根据题意,得 100-a ≤1.7a.解得a ≥37271. ∵a 为正整数,∴a =38,39,40,则学习机依次买:62台,61台,60台. 因此该校有三种购买方案:答:购买平板电脑38台,学习机62台最省钱.23.解析:(1)∵()()815723--<-+x x .解得6>x . ∴不等式的最小整数解是7. 将x =7代入3x -ax =2,得719=a ∴aa 197-=19-7=12.(2)①∵523=++c b a , 132=-+c b a , 解得:37-=c a , c b 117-=, ∵0≥a ,0≥b ,∴037≥-c ,0117≥-c , ∴11773≤≤c , ②()()23711737373-=--+-=-+=c c c c c b a S∵11773≤≤c ,∴1121379≤≤c , ∴1112375-≤-≤-c∴S 的最大值为111-,最小值为75-。
人教B版必修5第三章不等式 统考题

不等式 历年统考题1.不等式2(24)60x m m y --++>表示的平面区域是以直线2(24)60x m m y --++= 为界的两个平面区域中的一个,且点(1,1)在这个区域内,则实数m 的取值范围是( )A.(,1)(3,)-∞-+∞B. (,1][3,)-∞-+∞C.[1,3]-D. (1,3)-2.已知 x 、y 为正实数,且lg 2lg8lg 4xy+=,则 13x y+ 的最小值是( )A.4B.8C.12D.163.已知b a ,为实数,则“0>+b a 且0>ab ”是“0>a 且0>b ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要4.函数),0(32)(2<+-=x xx x x f 取得最大值为( ) A.232-- B.322- C.232- D.232+ 5.已知y x ,满足5030x y x x y -+≥⎧⎪≤⎨⎪+≥⎩,则y x z 24+=的最小值为( ) A.6- B.6 C.5 D.5-6.实数1a <是11a>的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.设,x y 满足约束条件2602600,0.x y x y x y +-≥⎧⎪+-≤⎨⎪≥≥⎩,则目标函数3z x y =+的最大值是( )A. 8B. 6C. 5D.38.已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,12a =, 则nm 41+的最小值为 ( ) A.23 B. 52 C. 92 D.949.若关于x 的不等式24x x mx -+>的解集为}{|02x x <<,则实数m 的值为( )A.2-B. 2C. 6-D.610.已知点(,)P x y 满足条件0290y y x x y ≥⎧⎪≤⎨⎪+-≤⎩,则y x z 3-=的最小值为( )A.9B.6-C. -9D. 611.已知等比数列123,,a a a 的和为定值3(0)m m >,且公比为(0)q q >,令123t a a a =,则t 的取值范围为( ) A.3(0,]m B. 3[,)m +∞C.30,()3m ⎛⎤ ⎥⎝⎦ D. 3(),3m ⎡⎫+∞⎪⎢⎣⎭12.关于x 的不等式0>+b ax 的解集为)1,(-∞,则关于x 的不等式02>+-x abx 的解集为 .13.不等式6|2||12|≤--+x x 的解集为14.不等式|1|2x x +>的解集为 .15.不等式211x x -≥+的解集为 .16.已知命题P :不等式01)3(2>+--x m mx 的解集为R ;命题Q :方程0132=++mx x 有两个不相等的负根.若P Q ∨是真命题,P Q ∧是假命题,求实数m 的取值范围.18.已知命题p :方程2227510x mx m +++=的两个实数根中一个比2大,一个比2小;命题q :关于x的不等式()2310mx m x -+-≤对于任意实数x 均成立.若q p ∨为真,求实数m 的取值范围.17.(满分12分)若a 为实数,解关于x 的不等式02)2(2<--+x a ax19.( 12分)已知函数bax x x f +=2)((,a b 为常数)且方程()60f x x --=有两个实根12x =, 23x =.(Ⅰ)求函数()f x 的解析式;(理)(Ⅱ)设12k >,解关于x 的不等式:(21)()1k x kf x x +->-. (文)(Ⅱ)设12k <,解关于x 的不等式:2221()1x kx f x x -+>-20.(本小题满分12分)设a 为正实数,函数2()2()||f x x x a x a =+--. (Ⅰ)若(0)1f ≤-,求a 的取值范围;(Ⅱ)求()f x 的最小值;(Ⅲ) 若(,)x a ∈+∞,求不等式()1f x ≥的解集.21.(本小题满分12分)已知函数2()2(22)f x x ax a =--+ (Ⅰ)解关于x 的不等式()f x x >;(Ⅱ)若()30f x +≥在区间(1,)-+∞上恒成立,求实数a 的取值范围.。
第三章 不等式练习题(一元二次不等式、高次不等式、分式不等式解法)

一元二次不等式与特殊的高次不等式解法例1 解不等式0)1)(4(<-+x x .分析:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,∴原不等式的解集是下面两个不等式组:⎩⎨⎧<+>-0401x x 与⎩⎨⎧>+<-0401x x 的解集的并集,即{x|⎩⎨⎧<+>-0401x x }∪⎩⎨⎧>+<-0401|{x x x }=φ∪{x|-4<x<1}={x|-4<x<1}.书写时可按下列格式:解:∵(x-1)(x+4)<0⇔⎩⎨⎧<+>-0401x x 或⎩⎨⎧>+<-0401x x ⇔x∈φ或-4<x<1⇔-4<x<1,∴原不等式的解集是{x|-4<x<1}.小结:一元二次不等式)a ()c bx ax (c bx ax 00022≠<++>++或的代数解法:设一元二次不等式)a (c bx ax 002≠>++相应的方程)a (c bx ax 002≠=++的两根为2121x x x x ≤且、,则00212>--⇔>++)x x )(x x (a c bx ax ;①若⎩⎨⎧>>⎩⎨⎧<<⇒⎩⎨⎧>->-⎩⎨⎧<-<->.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得1x x <或2x x >;当21x x =时,得1x x ,R x ≠∈且. ②若⎩⎨⎧><⎩⎨⎧><⇒⎩⎨⎧>-<-⎩⎨⎧>-<-<.x x ,x x ,x x ,x x .x x ,x x ,x x ,x x ,a 2121212100000或或则得 当21x x <时,得21x x x <<;当21x x =时,得∅∈x .分析二:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:①求根:令(x-1)(x+4)=0,解得x (从小到大排列)分别为-4,1,这两根将x 轴分为三部分:(-∞,-4)(-4,1)(1,+∞);②分析这三部分中原不等式左边各因式的符号例2:解不等式:(x-1)(x+2)(x-3)>0;解:①检查各因式中x 的符号均正;②求得相应方程的根为:-2,1,3;③列表如下:④由上表可知,原不等式的解集为:{x|-2<x<1或x>3}.小结:此法叫列表法,解题步骤是:①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式(各项x的符号化“+”),令(x-x1)(x-x2)…(x-x n)=0,求出各根,不妨称之为分界点,一个分界点把(实数)数轴分成两部分,n个分界点把数轴分成n+1部分……;②按各根把实数分成的n+1部分,由小到大横向排列,相应各因式纵向排列(由对应较小根的因式开始依次自上而下排列);③计算各区间内各因式的符号,下面是乘积的符号;④看下面积的符号写出不等式的解集.练习:解不等式:x(x-3)(2-x)(x+1)>0. {x|-1<x<0或2<x<3}.思考:由函数、方程、不等式的关系,能否作出函数图像求解例2图练习图直接写出解集:{x|-2<x<1或x>3}. {x|-1<x<0或2<x<3}在没有技术的情况下:可大致画出函数图星求解,称之为串根法①将不等式化为(x-x1)(x-x2)…(x-x n)>0(<0)形式,并将各因式x的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x的系数化“+”后)是“>0”,则找“线”在x轴上方的区间;若不等式是“<0”,则找“线”在x轴下方的区间.注意:奇穿偶不穿例3解不等式:(x-2)2(x-3)3(x+1)<0.解:①检查各因式中x的符号均正;②求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);③在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:④∴原不等式的解集为:{x|-1<x<2或2<x<3}.说明:∵3是三重根,∴在C 处穿三次,2是二重根,∴在B 处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x 1)n 时,n 为奇数时,曲线在x 1点处穿过数轴;n 为偶数时,曲线在x 1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.练习:解不等式:(x-3)(x+1)(x 2+4x+4)≤0.解:①将原不等式化为:(x-3)(x+1)(x+2)2≤0;②求得相应方程的根为:-2(二重),-1,3;③在数轴上表示各根并穿线,如图:④∴原不等式的解集是{x|-1≤x ≤3或x=-2}.说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉.2.分式不等式的解法 例4 解不等式:073<+-x x .错解:去分母得03<-x ∴原不等式的解集是{}3<x |x .解法1:化为两个不等式组来解:∵073<+-x x ⇔⎩⎨⎧>+<-⎩⎨⎧<+>-07030703x x x x 或\ ⇔x ∈φ或37<<-x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x . 解法2:化为二次不等式来解: ∵073<+-x x ⇔⎩⎨⎧≠+<+-070)7)(3(x x x ⇔37<<-x ,∴原不等式的解集是{}37<<-x |x 说明:若本题带“=”,即(x-3)(x+7)≤0,则不等式解集中应注意x ≠-7的条件,解集应是{x| -7<x ≤3}. 小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x ,不等式两边同乘以一个含x 的式子,它的正负不知,不等号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项,通分,右边化为0,左边化为)x (g )x (f 的形式. 例5 解不等式:0322322≤--+-x x x x . 解法1:化为不等式组来解较繁.解法2:∵0322322≤--+-x x x x ⇔⎪⎩⎪⎨⎧≠--≤--+-0320)32)(23(222x x x x x x ⇔⎩⎨⎧≠+-≤+---0)1)(3(0)1)(3)(2)(1(x x x x x x ,∴原不等式的解集为{x| -1<x ≤1或2≤x<3}.练习:解不等式253>+-x x . 答案: 2.{x|-13<x<-5}. 练习:解不等式:123422+≥+--x x x x.(答:{x|x ≤0或1<x<2})三、小 结1.特殊的高次不等式即右边化为0,左边可分解为一次或二次式的因式的形式不等式,一般用区间法解,注意:①左边各因式中x 的系数化为“+”,若有因式为二次的(不能再分解了)二次项系数也化为“+”,再按我们总结的规律作;②注意边界点(数轴上表示时是“0”还是“.”).2.分式不等式,切忌去分母,一律移项通分化为)x (g )x (f >0(或)x (g )x (f <0)的形式,转化为:)0)(0)()((0)(0)()(⎩⎨⎧≠<⎩⎨⎧≠>x g x g x f x g x g x f 或,即转化为一次、二次或特殊高次不等式形式 . 3.一次不等式,二次不等式,特殊的高次不等式及分式不等式,我们称之为有理不等式. 4.注意必要的讨论.5.一次、二次不等式组成的不等式组仍要借助于数轴. 五、思考题:1. 解关于x 的不等式:(x-x 2+12)(x+a)<0.解:①将二次项系数化“+”为:(x 2-x-12)(x+a)>0,②相应方程的根为:-3,4,-a ,现a 的位置不定,应如何解? ③讨论:ⅰ当-a>4,即a<-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<4或x>-a}.ⅱ当-3<-a<4,即-4<a<3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -3<x<-a 或x>4}.ⅲ当-a<-3,即a>3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| -a<x<-3或x>4}.ⅳ0当-a=4,即a=-4时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>-3}.ⅴ当-a=-3,即a=3时,各根在数轴上的分布及穿线如下:∴原不等式的解集为{x| x>4}.2.若不等式13642222<++++x x kkx x 对于x 取任何实数均成立,求k 的范围.(提示:4x 2+6x+3恒正)(答:1<k<3)。
八年级数学上册《第三章 不等式的基本性质》练习题及答案-浙教版

八年级数学上册《第三章不等式的基本性质》练习题及答案-浙教版一、选择题1.已知实数a、b,若a>b,则下列结论正确的是()A. a﹣5<b﹣5B.2+a<2+bC.2a<2bD.3a>3b2.已知a<b,则下列不等式中不正确的是( )A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-43.下列不等式一定成立的是()A.5a>4aB.x+2<x+3C.-a>-2aD.4.若x>y,则下列式子错误的是()A.1﹣2x>1﹣2yB.x+2>y+2C.﹣2x<﹣2yD.2x>2y5.如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣bB.a2<abC.ab<b2D.a2<b26.下列不等式中,解集是x>1的不等式是()A.3x>-3B.x+4>3C.2x+3>5D.-2x+3>57.已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是( )A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c8.已知四个实数a,b,c,d,若a>b,c>d,则( )A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.>二、填空题9.当a<0时,6+a 6-a(填“<”或“>”).10.若a<b<0 ,则2a-1 2b-1.11.关于x的不等式(m-2)x>1的解集为x>1m-2,则m的取值范围是________.12.如果a>0,b>0,那么ab 0.13.若关于x的不等式3m﹣2x<5的解集是x>3,则实数m的值为________.14.若m<n,比较下列各式的大小:(1)m-3______n-3 (2)-5m_____-5n (3)______(4)3-m______2-n (5)0_____m-n (6)_____三、解答题15.判断下列推导是否正确,并说明理由.因为4a>4b,所以a>b;16.下面是解不等式的部分过程,如果错误,说明错误原因并改正;如果正确,说明理由.(1)由2x>﹣4,得x<﹣2;(2)由16x﹣8>32﹣24x,得2x﹣1>4﹣3x;(3)由﹣3x>12,得x<﹣4.17.某单位打算和一个体车主或一出租车公司签订月租合同.个体车主答应除去每月1 500元租金外,每千米收1元;出租车公司规定每千米收2元,不收其他费用.设该单位每月用车x千米时,乘坐出租车合算,请写出x的范围.18.若不等式(2k+1)x<2k+1的解集是x>1,求k的取值范围.19.某单位为改善办公条件,欲购进20台某品牌电脑,据了解,该品牌电脑的单价大致在6000元至6500元之间,则该单位购进这批电脑应预备多少钱?20.利用不等式的基本性质,将下列不等式化为“x>a”或“x<a”的形式:(1)x+2>7. (2)3x<-12. (3)-7x>-14. (4)13x<2.参考答案1.D2.C3.B4.A5.A6.C7.D8.A9.答案为:<.10.答案为:<;11.答案为:m>2.12.答案为:>.13.答案为:11/3.14.答案为:(1)<(2)>(3)>(4)>(5)>(6)<15.解:因为4a>4b所以a>b;正确利用不等式两边同除以一个数不等号的方向不变;16.解:(1)错误.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以由2x>﹣4,得x>﹣2;(2)正确.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,所以把16x﹣8>32﹣24x两边都除以8得到2x﹣1>4﹣3x;(3)正确.不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,所以﹣3x>12两边都除以﹣3,得到x<﹣4.17.解:根据题意,得1 500+x>2x,解得x<1 500.∵单位每月用车x(千米)不能是负数∴x的取值范围是0<x<1 500.18.答案为:k<-0.5.19.解:设该品牌电脑的单价为x元.则6000≤x≤6500.∴6000×20≤20x≤6500×20(不等式的基本性质3)即120000≤20x≤130000.答:该单位购买这批电脑应预备的钱数在12000元至13000元之间.20.解:(1)两边都减去2,得x>5.(2)两边都除以3,得x<-4.(3)两边都除以-7,得x<2.(4)两边都乘3,得x<6.。
中国人民大学附属中学必修五第三章《不等式》测试题(含答案解析)

一、选择题1.若正数x ,y 满足21y x+=,则2x y +的最小值为( )A .2B .4C .6D .82.若实数x ,y 满足约束条件220103x y x y x y +-≥⎧⎪--≥⎨⎪+≤⎩,则()222x y +-的最小值为( )A .12B .45C .92D .4193.设正数m ,n ,2m n u +=,222v m n mn =++,则2u v ⎛⎫ ⎪⎝⎭的最大值是( ) A .14B .13C .12D .14.设x ,y R +∈,1x y +=,求14x y+的最小值为( ).A .2B .4C .8D .9 5.当0x >时,不等式290x mx -+>恒成立,则实数m 的取值范围是( )A .(6)∞-,B .(6]∞-,C .[6)∞,+D .(6)∞,+6.已知实数,x y 满足约束条件5000x y x y y ++≥⎧⎪-≤⎨⎪≤⎩,则241z x y =++的最小值是( )A .14-B .1C .5-D .9-7.设0a >,0b >,则下列不等式中不.恒成立的是( ). A .12a a+≥B .222(1)a b a b +≥+- C≥D .3322a b ab +≥8.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞9.设x ,y 满足约束条件103030x y x y y -+≤⎧⎪-≥⎨⎪-≤⎩,则z x y =+的最小值为( )A .-1B .2C .4D .510.不等式ax 2+bx+2>0的解集是,则a+b 的值是( ) A .10B .﹣10C .14D .﹣1411.设m 1>,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z=x+my 的最大值小于2,则m 的取值范围为( ) A .(1,12 B .()12+∞,C .(1,3)D .(3,+∞)12.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭二、填空题13.若实数x ,y 满足约束条件23023030x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩,则y x x y +的取值范围是______.14.已知x ,y 满足条件1030,1x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩则32z x y =-+的最小值为___________.15.若x ,y 满足约束条件0202x y x y y -≤⎧⎪-≥⎨⎪⎩,则32z x y =+的最大值是_________.16.已知ABC 中,D 、E 分别为AB 、AC 的中点,DF tDE =,AF xAB yAC =+,则xy 的最大值为________.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2c cosB =2a +b ,若△ABC 的面3,则ab 的最小值为_______. 18.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.19.若对定义域内任意x ,都有()()f x a f x +>(a 为正常数),则称函数()f x 为“a距”增函数.若()3144f x x x =-+,x ∈R 是“a 距”增函数,则a 的取值范围是________.20.当x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩时,|2|x y a -≤恒成立,则实数a 的取值范围是________.三、解答题21.已知定义域为R 的函数()22x xb nf x b +=--是奇函数,且指数函数x y b =的图象过点(2,4).(Ⅰ)求()f x 的表达式;(Ⅱ)若方程()23()0f x x f a x ++-+=,(4,)x ∈-+∞恰有2个互异的实数根,求实数a 的取值集合;(Ⅲ)若对任意的[1,1]t ∈-,不等式()22(1)0f t a f at -+-≥恒成立,求实数a 的取值范围.22.已知函数()21f x x x =-++. (1)求不等式()5f x ≤的解集; (2)若()f x 的最小值是m ,且3ma b +=,求212a b +的最小值.23.如图,某房地产开发公司计划在一栋楼区内建造一个矩形公园ABCD ,公园由矩形的休闲区(阴影部分)1111D C B A 和环公园人行道组成,已知休闲区1111D C B A 的面积为1000平方米,人行道的宽分别为4米和10米,设休闲区的长为x 米.(1)求矩形ABCD 所占面积S (单位:平方米)关于x 的函数解析式; (2)要使公园所占面积最小,问休闲区1111D C B A 的长和宽应分别为多少米? 24.设1x >,且4149(1)x x +--的最小值为m .(1)求m ;(2)若关于x 的不等式20ax ax m -+的解集为R ,求a 的取值范围.25.已知函数2()3f x x ax a =-++. (1)当7a =时,解不等式()0f x >;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围.26.培养某种水生植物需要定期向培养植物的水中加入物质N ,已知向水中每投放1个单位的物质N ,x (单位:天)时刻后水中含有物质N 的量增加mol/L y ,y 与x 的函数关系可近似地表示为关系可近似地表示为168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩.根据经验,当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用.(1)若在水中首次投放1个单位的物质N ,计算物质N 能持续有效发挥作用几天? (2)若在水中首次投放1个单位的物质N ,第8天再投放1个单位的物质N ,试判断第8天至第12天,水中所含物质N 的量是否始终不超过6mol/L ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】 由21y x +=,对2x y +乘以21y x+=,构造均值不等式求最值 .【详解】22242248x y x xy y x y xy ⎛⎫⎛⎫+=++=+++≥+= ⎪ ⎪⎝⎭⎝⎭,当且仅当421xy xy y x⎧=⎪⎪⎨⎪+=⎪⎩,即412x y =⎧⎪⎨=⎪⎩时,等号成立,∴min 28x y ⎛⎫+= ⎪⎝⎭.故选:D 【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件:“一正、二定、三相等” (1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.如果等号成立的条件满足不了,说明函数在对应区间单调,可以利用单调性求最值或值域.2.C解析:C 【分析】作出可行域,利用()222x y +-的几何意义:表示可行域内点(,)x y 与定点(0,2)的距离的平方.可求得最小值. 【详解】作出可行域,如图ABC 内部(含边界),()222x y +-表示可行域内点(,)P x y 与定点(0,2)M 的距离的平方,由图可知min0213222PM--==,(点M 到直线BC 的距离) ∴()222x y +-的最小值是23292⎛⎫= ⎪ ⎪⎝⎭. 故选:C .【点睛】思路点睛:本题考查求简单的线性规划的非线性目标函数的最值.作出可行域是解题的基础.对非线性目标函数,常常利用其几何意义求解,主要有两种类型: (1)22()()x a y b -+-,两点间的距离公式; (2)y bx a--:两点连线斜率, 3.B解析:B 【分析】化简22211()44u mn v m n mn=+⨯++,再结合基本不等式,即可求解. 【详解】由题意,正数m ,n ,2m nu +=,222v m n mn =++,则2222222222()12112()444m n u m n mn mn v m n mn m n mn m n mn+++===+⨯++++++ 2111111111444444213()11mnm m m n n n n m=+⨯=+⨯≤+⨯=+++++, 当且仅当m n n m =时,即m n =时,等号成立,所以2u v ⎛⎫ ⎪⎝⎭的最大值是为13.故选:B . 【点睛】利用基本不等式求最值时,要注意其满足的三个条件:“一正、二定、三相等”: (1)“一正”:就是各项必须为正数;(2)“二定”:就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”:利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】由“1”有代换利用基本不等式可得最小值. 【详解】因为x ,y R +∈,1x y +=,所以14144()559x y x y x y x y y x ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当4x y y x =,即12,33x y ==时,等号成立.故选:D . 【点睛】易错点睛:本题考查用基本不等式求最小值.解题关键是利用“1”的代换凑配出定值.用基本不等式求最值必须满足三个条件:一正二定三相等.特别是相等这个条件常常会不满足,因此就不能用基本不等式求得最值.5.A解析:A 【分析】当x >0时,不等式x 2﹣mx +9>0恒成立⇔m <(x 9x+)min ,利用基本不等式可求得(x 9x+)min =6,从而可得实数m 的取值范围.【详解】当x>0时,不等式x2﹣mx+9>0恒成立⇔当x>0时,不等式m<x9x+恒成立⇔m<(x9x+)min,当x>0时,x9x+≥29xx⋅=6(当且仅当x=3时取“=”),因此(x9x+)min=6,所以m<6,故选A.【点睛】本题考查函数恒成立问题,分离参数m是关键,考查等价转化思想与基本不等式的应用,属于中档题.6.A解析:A【分析】求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.【详解】解:作出不等式组50x yx yy++≥⎧⎪-≤⎨⎪≤⎩表示的平面区域,如图所示的阴影部分由241z x y =++可得11244z y x =-+-, 则144z -表示直线11244z y x =-+-在y 轴上的截距,截距越小,z 越小, 由题意可得,当11244z y x =-+-经过点A 时,z 最小, 由500x y x y ++=⎧⎨-=⎩可得5522A ⎛⎫-- ⎪⎝⎭,, 此时552411422z =-⨯-⨯+=-, 故选:A. 【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.7.D解析:D 【解析】分析:根据基本不等式、作差法、分析法论证A,B,C 正确,举反例得D 错误. 详解:332222()()a b ab a b a ab b +-=-+-,a b <<有3322a b ab <+, 故D项错误,其余恒成立:1122,a a a a+≥=⇒+≥ 2222222(1)(1)(1)02(1),a b a b a b a b a b +-+-=-+-≥⇒+≥+-当a b ≥时0a b a b a b a b ---+---+⇒≥当a b <0>>D .点睛:本题考查根据基本不等式、作差法、分析法论证等知识点,考查推理论证能力.8.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥.故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.9.B解析:B 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案. 【详解】解:由约束条件103030x y x y y -+⎧⎪-⎨⎪-⎩作出可行域如图,化目标函数z x y =+为y x z =-+,由图可知,当直线y x z =-+过点A 时, 直线在y 轴上的截距最小,z 有最小值.联立1030x y x y -+=⎧⎨-=⎩,解得1(2A ,3)2.z ∴的最小值为13222+=.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.10.D解析:D【解析】试题分析:不等式ax2+bx+2>0的解集是,说明方程ax2+bx+2=0的解为,把解代入方程求出a、b即可.解:不等式ax2+bx+2>0的解集是即方程ax2+bx+2=0的解为故则a=﹣12,b=﹣2.考点:一元二次方程的根的分布与系数的关系.11.A解析:A【解析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.12.B解析:B 【分析】将函数()3x f x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3x f x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确; 对于D ,因为12x x <,所以121212()12()()22233333x x x x x x f x f x -----+++⋅=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B. 【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.二、填空题13.【分析】作出可行域利用表示可行域内点与原点连线的斜率求得它的取值范围再根据函数的单调性可得的范围【详解】作出可行域如图内部(含边界)表示出可行域内点与原点连线斜率由已知得所以记由勾形函数性质知在上递解析:52,2⎡⎤⎢⎥⎣⎦【分析】 作出可行域,利用yx表示可行域内点与原点连线的斜率求得它的取值范围,再根据函数的单调性可得y xx y+的范围. 【详解】作出可行域,如图ABC 内部(含边界),yx表示出可行域内点与原点连线斜率,由已知得(1,2),(2,1)A B ,2OA k=,12OB k =, 所以1,22y t x ⎡⎤=∈⎢⎥⎣⎦, 1y x t x y t +=+,记1()f t t t =+,由勾形函数性质知()f t 在1,12⎡⎤⎢⎥⎣⎦上递减,在[1,2]上递增,1522f ⎛⎫= ⎪⎝⎭,(1)2f =,5(2)2f =,∴5()2,2f t ⎡⎤∈⎢⎥⎣⎦.故答案为:52,2⎡⎤⎢⎥⎣⎦.14.【分析】作出不等式组所表示的可行域平移直线根据直线在轴上的截距最小找到使得目标函数取得最小值时的最优解代入计算即可【详解】作出不等式组所表示的可行域如下图所示:平移直线当直线经过可行域的顶点时直线在 解析:2-【分析】作出不等式组所表示的可行域,平移直线32z x y =-+,根据直线32z x y =-+在y 轴上的截距最小,找到使得目标函数32z x y =-+取得最小值时的最优解,代入计算即可. 【详解】作出不等式组10301x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域如下图所示:平移直线32z x y =-+,当直线32z x y =-+经过可行域的顶点()2,1A 时,直线32z x y =-+在y 轴上的截距最小,此时z 取得最小值,即min 32122z =-⨯+=-. 故答案为:2-. 【点睛】 思路点睛:求线性目标函数的最值问题,一般利用平移直线的方法,根据目标函数所对应的直线在坐标轴上的截距取得最值来判断目标函数在何处取得最优解.15.10【分析】作出不等式组对于的平面区域利用数形结合即可得到结论【详解】解:作出不等式组对于的平面区域如图:由则平移直线由图象可知当直线经过点时直线在轴上的截距最大此时最大由解得此时故答案为:10【点解析:10 【分析】作出不等式组对于的平面区域,利用数形结合即可得到结论. 【详解】解:作出不等式组对于的平面区域如图: 由32z x y =+,则322zy x =-+, 平移直线322zy x =-+, 由图象可知当直线322zy x =-+, 经过点A 时,直线322z y x =-+, 在y 轴上的截距最大,此时z 最大,由20y x y =⎧⎨-=⎩,解得(2,2)A ,此时322210max z =⨯+⨯=, 故答案为:10.【点睛】本题主要考查线性规划的应用,利用z 的几何意义,利用数形结合是解决本题的关键.16.【分析】首先根据平面向量的线性运算表示出再根据向量相等得到最后利用基本不等式计算可得;【详解】解:因为DE 分别为ABAC 的中点所以又所以由所以当且仅当时取等号;故答案为:【点睛】本题考查平面向量基本 解析:116【分析】首先根据平面向量的线性运算表示出()11122AF t AB AC =-+,再根据向量相等得到12x y +=,最后利用基本不等式计算可得;【详解】解:因为D 、E 分别为AB 、AC 的中点,DF tDE =, 所以()12AF AD DF AD tDE AB t AE AD =+=+=+- ()11111122222AB t AC AB t AB AC ⎛⎫=+-=-+ ⎪⎝⎭ 又AF xAB yAC =+,所以()11212x t y t ⎧=-⎪⎪⎨⎪=⎪⎩,由12x y +=所以21216x y xy +⎛⎫≤= ⎪⎝⎭,当且仅当14x y ==时取等号; 故答案为:116【点睛】本题考查平面向量基本定理的应用,以及基本不等式的应用,属于中档题.17.【解析】分析:由正弦定理将2ccosB =2a +b 转化成由三角形内角和定理将利用两角和的正弦公式展开化简求得的值由余弦定理三角形的面积公式及基本不等式关系求得ab 的最小值详解:2ccosB =2a +b 由解析:13【解析】分析:由正弦定理将2c cosB =2a +b 转化成2sin cos 2sin sin C B A B =+,由三角形内角和定理,将()sin sin A B C =+,利用两角和的正弦公式展开,化简求得sin C 的值,由余弦定理、三角形的面积公式及基本不等式关系,求得ab 的最小值. 详解:2c cosB =2a +b ,由正弦定理转化成2sin cos 2sin sin C B A B =+∴()2sin cos 2sin sin C B B C B =++化简得:2sin cos sin 0B C B +=, 又0,sin 0BB π<,得1cos 2C =-,0C π<<,得23C π=,则△ABC 的面积为1sin 2S ab C ==,即3c ab =, 由余弦定理得2222cos c a b ab C =+-,化简得22229a b ab a b ++=,222a b ab +≥,当且仅当a b =时取等,∴2229ab ab a b +≤,即13ab ≥,故ab 的最小值是13. 故答案为13. 点睛:本题考查正余弦定理、三角形内角和定理及基本不等式相结合.18.1【分析】由约束条件作出可行域化目标函数为直线方程的斜截式数形结合得到最优解联立方程组求出最优解的坐标代入目标函数得答案【详解】画出不等式组对应的可行域如图所示由可得数形结合可得当直线过A 时直线在y解析:1 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案. 【详解】画出不等式组对应的可行域,如图所示,由3z x y =-可得3y x z =-, 数形结合可得当直线3y x z =-过A 时,直线在y 轴上的截距最大,z 有最小值, 联立1030x y x y -+=⎧⎨+-=⎩,解得A (1,2),此时z 有最小值为3×1﹣2=1. 故答案为:1【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.19.【分析】由题中定义得出作差变形后得出对任意的恒成立结合得出由此可求得实数的取值范围【详解】因为函数是距增函数所以恒成立由所以因此实数的取值范围是故答案为:【点睛】本题考查函数新定义考查二次不等式恒成 解析:(1,)+∞【分析】由题中定义得出()()f x a f x +>,作差变形后得出22313304ax a x a a ++->对任意的x ∈R 恒成立,结合0a >得出∆<0,由此可求得实数a 的取值范围.【详解】()()()()332231114433444f x a f x x a x a x x ax a x a a ⎡⎤⎛⎫+-=+-++--+=++- ⎪⎢⎥⎣⎦⎝⎭,因为函数()y f x =是“a 距”增函数,所以22313304ax a x a a ++->恒成立, 由0a >,所以2210912014a a a ⎛⎫∆<⇒--<⇒> ⎪⎝⎭.因此,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查函数新定义,考查二次不等式恒成立问题,考查运算求解能力,属于中等题.20.【分析】先根据条件作出可行域然后求出的取值范围由恒成立即即可得出答案【详解】由满足作出可行域如图设则表示直线在轴上的截距的相反数则由得当直线过点时有最大值4当直线过点时有最小值所以所以故答案为:【点解析:)4,⎡+∞⎣ 【分析】先根据条件作出可行域,然后求出2z x y =-的取值范围,由|2|x y a -≤恒成立,即max |2|x y a -≤,即可得出答案.【详解】由x ,y 满足270101x y x y x +-≤⎧⎪--≤⎨⎪⎩,作出可行域,如图.设2z x y =-,则2y x z =-,z 表示直线2y x z =-在y 轴上的截距的相反数.则()()1,0,1,3A C ,由27010x y x y +-=⎧⎨--=⎩,得()3,2B .当直线2y x z =-过点()3,2B 时,z 有最大值4,当直线2y x z =-过点()1,3C 时,z 有最小值-1.所以|2|4x y -≤,所以4a ≤故答案为:[)4+∞,. 【点睛】本题考查简单的线性规划问题和恒成立求参数的问题,属于中档题.三、解答题21.(Ⅰ)121()22x x f x +-+=+;(Ⅱ){}40a a -<<;(Ⅲ){}0a a ≥.【分析】(Ⅰ)先利用已知条件得到b 的值,再利用奇函数得到()00f =,进而得到n 的值,经检验即可得出结果;(Ⅱ)先利用指数函数的单调性判断()f x 的单调性,再利用奇偶性和单调性得到23x x a x +=-,把23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,求解即可;(Ⅲ)先利用函数()f x 为R 上的减函数且为奇函数,得到221t a at -≤-,把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立,令()221g t t at a =+--,利用二次函数的图像特点求解即可. 【详解】(Ⅰ)由指数函数x y b =的图象过点(2,4), 得2b =,所以2()222x x nf x +=-⋅-,又()f x 为R 上的奇函数, 所以()00f =, 得1n =-,经检验,当1n =-时,符合()()f x f x -=-,所以121()22x x f x +-+=+;(Ⅱ)12111()22221x x xf x +-+==-+++, 因为21x y =+在定义域内单调递增, 则121x y =+在定义域内单调递减, 所以()f x 在定义域内单调递增减, 由于()f x 为R 上的奇函数,所以由()23()0f x x f a x ++-+=, 可得()()23()f x x f a x f a x +=--+=-,则23x x a x +=-在(4,)x ∈-+∞恰有2个互异的实数根, 即()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点,则()()4000440204f a a a f a ⎧-><⎧⎪⎪∆>⇒>-⇒-<<⎨⎨⎪⎪-<>-⎩⎩, 所以实数a 的取值集合为{}40a a -<<.(Ⅲ)由(Ⅱ)知函数()f x 为R 上的减函数且为奇函数,由()22(1)0f t a f at -+-≥,得()()221f ta f at -≥-,所以221t a at -≤-,即2210t at a +--≤对任意的[1,1]t ∈-恒成立, 令()221g t t at a =+--,由题意()()1010g g ⎧-≤⎪⎨≤⎪⎩,得0a ≥,所以实数a 的取值范围为:{}0a a ≥. 【点睛】关键点睛:利用函数的奇偶性求解析式,(Ⅱ)把问题转化为()24f x x x a =+-在(4,)x ∈-+∞恰与x 轴有两个交点的问题;(Ⅲ)把问题转化为2210t at a +--≤对任意的[1,1]t ∈-恒成立是解决本题的关键. 22.(1)[]23,-;(2)92. 【分析】(1)将()f x 解析式中绝对值符号去掉,求得分段函数解析式;再在每一段中求得()5f x ≤时的解集;从而得出答案;(2)先由(1)求出()f x 的最小值3m =,所以得1a b +=;再将212a b+构造成符合基本不等式的形式,从而求其最小值. 【详解】解:(1)21,1()213,1221,2x x f x x x x x x -+≤⎧⎪=-++=-<<⎨⎪-≥⎩,()5f x ≤等价于1,215x x ≤-⎧⎨-+≤⎩或1235x -<<⎧⎨≤⎩或2215x x ≥⎧⎨-≤⎩,解得21x -≤≤-或12x -<<或23x ≤≤.故不等式()5f x ≤的解集为[]23,-. (2)由(1)可知3m =,则1a b +=, 则21212559()2222222b a a b a b a b a b ⎛⎫+=++=++≥+= ⎪⎝⎭(当23a =,13b =时,等号成立).故212a b +最小值为92. 【点睛】本题主要考查分段函数和基本不等式的相关性质,考查运算求解能力,属于基础题型. 23.(1)1000(20)(8),(0)S x x x=++>;(2)休闲区1111D C B A 的长和宽应分别为50米,20米. 【分析】(1)先表示休闲区的宽,再表示矩形ABCD 长与宽,最后根据矩形面积公式得函数解析式,注意求函数定义域;(2)根据基本不等式求S 最小值,再根据等号取法确定休闲区1111D C B A 的长和宽. 【详解】(1)因为休闲区的长为x 米,休闲区1111D C B A 的面积为1000平方米,所以休闲区的宽为1000x 米;从而矩形ABCD 长与宽分别为20x +米1000,8x+米, 因此矩形ABCD 所占面积1000(20)(8),(0)S x x x=++>,(2)100020000(20)(8)1160811601960S x x x x =++=++≥+ 当且仅当200008,50x x x ==时取等号,此时100020x= 因此要使公园所占面积最小,休闲区1111D C B A 的长和宽应分别为50米,20米. 【点睛】本题考查函数应用、求函数解析式、利用基本不等式求最值,考查基本分析求解能力,属基础题. 24.(1)47=m ;(2)160,7⎡⎤⎢⎥⎣⎦; 【分析】(1)直接利用基本不等式即可求得4149(1)x x +--的最小值;(2)不等式20ax ax m -+的解集为R ,分0a =与0a ≠进行分类讨论,再结合二次函数的图象与性质列不等式求解即可. 【详解】解:(1)因为1x >,所以10x ->, 所以444411249(1)49(1)497x x x x +-=-+=--,当且仅当4149(1)x x -=-,即217x -=,也即97x =时等号成立,故47=m . (2)由(1)知4,7m =, 若不等式2407ax ax -+ 的解集为R ,则 当0a = 时,407恒成立,满足题意; 当0a ≠时,201607a a a >⎧⎪⎨∆=-⎪⎩, 解得1607a <, 综上,1607a , 所以a 的取值范围为160,7⎡⎤⎢⎥⎣⎦. 【点睛】 本题考查基本不等式的应用,二次函数的图象及其性质,主要考查学生逻辑推理能力和计算能力,属于中档题.25.(1)(,2)(5,)-∞⋃+∞;(2)[2,6]-.【分析】(1)当7a =是,解一元二次不等式求得不等式()0f x >的解集.(2)利用判别式列不等式,解不等式求得a 的取值范围.【详解】(1)当7a =时,不等式为27100x x -+>,即(2)(5)0x x -->,∴该不等式解集为(,2)(5,)-∞⋃+∞ .(2)由已知得,若x ∈R 时,230+++≥x ax a 恒成立,24(3)0a a ∴∆=-+≤,即(2)(6)0a a +-≤,∴a 的取值范围为[2,6]-.【点睛】本小题主要考查一元二次不等式的解法,考查一元二次不等式恒成立问题,属于中档题. 26.(1)6天.(2)第8天至第12天,水中所含物质N 的量始终不超过6mol/L .见解析 【分析】(1)由题可知168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,分类讨论求解满足4y ≥时的x 的范围,即可得出在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的天数;(2)根据已知求出函数解析式()16162014666y x x x x ⎡⎤=--=--+⎢⎥--⎣⎦,利用基本不等式即可求得当10x =时,max 6y =,从而得出结论.【详解】解:(1)由题意,x (单位:天)时刻后水中含有物质N 的量为:168,06212,612x y x x x ⎧-≤≤⎪=+⎨⎪-<≤⎩,由于当水中含有物质N 的量不低4mol/L 时,物质N 才能有效发挥作用,即需4y ≥,则当06x ≤≤时,16842x -≥+且当612x <≤时,124x -≥, 解得:28x ≤≤,所以若在水中首次投放1个单位的物质N ,物质N 能持续有效发挥作用的时间为:8-2=6天.(2)设第()812x x ≤≤天水中所含物质N 的量为mol/L y , 则()1220(8)26 16168y x x x x ⎡⎤-⎢⎣=-+=--+⎦--⎥, ()161461466y x x ⎡⎤=--+≤-=⎢⎥-⎣⎦, 当且仅当1666x x -=-,即[]108,12x =∈时,等号成立, 即当10x =时,max 6y =,所以第8天至第12天,水中所含物质N 的量始终不超过6mol/L .【点睛】本题考查利用函数解决实际问题,考查分段函数和基本不等式的应用,确定函数的解析式是关键.。
第3章 不等式(A卷基础篇)(解析版)
必修五第三章不等式(A卷基础篇)参考答案与试题解析一.选择题(共10小题,每小题5分,满分50分)1.(2019秋•渭南期末)若a,b,c∈R且a>b,则下列不等式中一定成立的是()A.ac>bc B.(a﹣b)c2>0 C.D.﹣2a<﹣2b【解析】解:∵a,b,c∈R且a>b,∴取c=0,可排除A,B;取a=1,b=﹣1可排除C.由不等式的性质知当a>b时,﹣2a<﹣2b,故D正确.故选:D.【点睛】本题考查了不等式的基本性质,属基础题.2.(2019秋•江阴市期中)不等式x2﹣5x+6<0的解集是()A.{x|x>1或x<﹣6} B.{x|x>6或x<﹣1}C.{x|x>3或x<2} D.{x|2<x<3}【解析】解:不等式x2﹣5x+6<0化为(x﹣2)(x﹣3)<0,解得2<x<3,所以不等式的解集是{x|﹣2<x<3}.故选:D.【点睛】本题考查了求一元二次不等式解集的应用问题,是基础题.3.(2019秋•罗田县期中)若不等式x2+ax+b<0(a,b∈R)的解集为{x|2<x<5},则a,b的值为()A.a=﹣7,b=10 B.a=7,b=﹣10 C.a=﹣7,b=﹣10 D.a=7,b=10【解析】解:不等式x2+ax+b<0的解集为{x|2<x<5},则对应方程x2﹣ax+b=0的两个根为2和5,即,解得a=﹣7,b=10.故选:A.【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.4.(2019秋•常州期末)若x>0,y>0,且x+y=S,xy=P,则下列说法中正确的是()A.当且仅当x=y时S有最小值2B.当且仅当x=y时p有最大值C.当且仅当p为定值时S有最小值2D.若S为定值,当且仅当x=y时P有最大值【解析】解:∵x,y∈R+,x+y=s,xy=p,∴s=x+y≥22①,当且仅当x=y时取等号;∴如果p是定值,那么当且仅当x=y时s的值最小,故A、C错误;由①得,p,当且仅当x=y时取等号;∴如果s是定值,那么当且仅当x=y时p的值最大,故D正确,B错误.故选:D.【点睛】应用基本不等式时,要熟练掌握不等式成立的条件与重要不等式的变形.5.(2020•湖南一模)已知实数x,y满足,则该不等式组所表示的平面区域的面积为()A.B.C.2 D.3【解析】解:根据题中所给的约束条件,画出其对应的区域如下图所示,其为阴影部分的三角区,解方程组可以求得三角形三个顶点的坐标分别为(1,0),(2,1),(4,0),根据三角形的面积公式可以求得S.故选:B.【点睛】本题主要考查线性规划的应用,通过数形结合是解决本题的关键,是中档题.6.(2019秋•雁峰区校级月考)已知log a(a2﹣4)<log a(2a﹣1),则a的取值范围是()A.(2,+∞)B.(,2)C.(2,3)D.(,3)【解析】解:由题意知,得:a>2,即函数f(x)=log a x为增函数,又因为log a(a2﹣4)<log a(2a﹣1),所以a2﹣4<2a﹣1得2<a<3.故选:C.【点睛】本题考查对数函数的图象及性质,考查不等式的求解,属于基础题.7.(2019秋•安徽期末)已知x>0,y>0,4x•2y=8,则的最小值是()A.3 B.C.D.9【解析】解:∵x>0,y>0,4x•2y=8,∴2x+y=3,∴,当且仅当,即,y=1时取等号,∴的最小值为3.故选:A.【点睛】本题考查了利用基本不等式求最值,考查了转化思想,属基础题.8.(2019秋•徐州期中)若关于x的不等式x2﹣4x﹣a>0在1<x<4内有解,则实数a的取值范围()A.a<﹣3 B.a<0 C.a<﹣4 D.a≤﹣4【解析】解:不等式x2﹣4x﹣a>0可化为a<x2﹣4x;设f(x)=x2﹣4x,其中x∈(1,4);则f(x)=(x﹣2)2﹣4,所以f(x)<f(4)=0;所以不等式在1<x<4内有解,实数a的取值范围是a<0.故选:B.【点睛】本题考查了不等式在某一范围内有解的应用问题,是基础题.9.(2019秋•浙江期中)已知关于x的不等式a(x+1)(x﹣3)+1>0(a≠0)的解集是(x1,x2)(x1<x2),则下列结论中错误的是()A.x1+x2=2 B.x1x2<﹣3 C.x2﹣x1>4 D.﹣1<x1<x2<3【解析】解:由关于x的不等式a(x+1)(x﹣3)+1>0(a≠0)的解集是(x1,x2)(x1<x2),∴a<0,x1,x2是一元二次方程ax2﹣2ax+1﹣3a=0.∴x1+x2=2,x1x23<﹣3.x2﹣x124.由x2﹣x1>4,可得:﹣1<x1<x2<4是错误的.故选:D.【点睛】本题考查了一元二次方程的根与系数的关系、不等式、配方法,考查了推理能力与计算能力,属于基础题.10.(2019秋•无锡期末)已知关于x的不等式(a2﹣4)x2+(a﹣2)x﹣1≥0的解集为空集,则实数a的取值范围是()A.[﹣2,] B.[﹣2,)C.(,2] D.(﹣∞,2]∪[2,+∞)【解析】解:①当a2﹣4=0,即a=±2.当a=2时,不等式(a2﹣4)x2+(a﹣2)x﹣1≥0化为﹣1≥0,其解集为空集,因此a=2满足题意;当a=﹣2时,不等式(a2﹣4)x2+(a﹣2)x﹣1≥0化为﹣4x﹣1≥0,即,其解集不为空集,因此a=﹣2满足题意,应舍去;②当a2﹣4≠0,即a≠±2时.∵关于x的不等式(a2﹣4)x2+(a﹣2)x﹣1≥0的解集为空集,∴,解得a<2.综上可得:a的取值范围是(,2].故选:C.【点睛】本题考查了一元二次不等式的解集与判别式的关系,考查了分类讨论的思想方法,考查了计算能力,属于中档题.二.填空题(共4小题,每小题5分,满分20分)11.(2020•南通模拟)设x>﹣1,则当y=x取最小值时,x的值为1.【解析】解:∵x>﹣1,∴x+1>0,则y=x x+11≥3,当且仅当x+1即x=1时取等号,故答案为:1【点睛】本题考查了基本不等式在求最值中的应用,属于基础题.12.(2019秋•宜昌期末)定义新运算“⊗”:a⊗b=ab+2a+b,则关于x的不等式x⊗(x﹣2)<0的解集是(﹣2,1).【解析】解:∵a⊗b=ab+2a+b,则关于x的不等式x⊗(x﹣2)=x(x﹣2)+2x+x﹣2=x2+x﹣2=(x+2)(x﹣1)<0,求得﹣2<x<1,故答案为(﹣2,1).【点睛】本题主要考查新定义,一元二次不等式的解法,属于基础题.13.(2019秋•泉州期末)若x,y满足约束条件,则z=3x+2y的最大值为4.【解析】解:作出x,y满足约束条件的平面区域如图:由z=3x+2y,则y x,平移直线y x,由图象可知当直线y x,经过点A时,直线y x,的截距最大,此时z最大,由,解得A(0,2),此时z max=3×0+2×2=4,故答案为:4.【点睛】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.14.(2019秋•扬州期末)若关于x的不等式(a﹣2)x2+(4a﹣10)x+4a﹣12>0的解集中恰有两个整数,则实数a的取值范围是[0,1).【解析】解:由关于x的不等式(a﹣2)x2+(4a﹣10)x+4a﹣12>0的解集中恰有两个整数,则a≠2.二次函数y=(a﹣2)x2+(4a﹣10)x+4a﹣12只有开口向下时才能满足(a﹣2)x2+(4a﹣10)x+4a﹣12>0的解集中恰有两个整数,故a<2,(a﹣2)x2+(4a﹣10)x+4a﹣12=[(a﹣2)x+2a﹣6][x+2]=0即两根为﹣2,,故∵2,即两个整数解应为﹣3,﹣2,∴∴a∈[0,1)故答案为[0,1).【点睛】本题关于不等式的解法,属于基础题.三.解答题(共3小题,每小题10分,满分30分)15.(2019秋•苏州期末)解下列不等式:(1)x2﹣4x﹣12≤0;(2).【解析】解:(1)根据题意,x2﹣4x﹣12≤0⇒(x﹣6)(x+2)≤0,解可得:﹣2≤x≤6,即不等式的解集为[﹣2,6];(2)根据题意,⇒⇒0,解可得:x<3或x>8,即不等式的解集为{x|x<3或x>8}.【点睛】本题考查一元二次不等式和分式不等式的解法,注意分式不等式的变形,属于基础题.16.(2019秋•金安区校级月考)(1)已知0 ,求y x(1﹣2x)的最大值;(2)已知x<3,求f(x)x的最大值;(3)已知x,y∈R+,且2x+3y+12xy=4,求2x+3y的最小值.【解析】解:(1)由题意,y x(1﹣2x)2x(1﹣2x),当且仅当2x=1﹣2x即x∈(0,)时等号成立;(2)由题意,3﹣x>0,∴f(x)x x﹣3+3,当且仅当即x=1时等号成立;(3)由2x+3y+12xy=4得,∵x,y>0,∴0<x<2,则,当且仅当即x时等号成立.【点睛】本题主要考查基本不等式及其应用,属于基础题.17.(2019秋•平谷区期末)已知f(x)=ax2﹣(2a+1)x+2,(Ⅰ)当a=﹣1时,解不等式f(x)≤0;(Ⅱ)若a>0,解关于x的不等式f(x)≤0.【解析】解:(Ⅰ)因为a=﹣1,所以f(x)=﹣x2+x+2;由f(x)≤0所以x2﹣x﹣2≥0,所以不等式的解为{x|x≤﹣1或x≥2}.(Ⅱ)因为a>0,f(x)≤0所以ax2﹣(2a+1)x+2≤0化为①时②当时,③当时{x|x=2}.综上当时,不等式f(x)≤0的解集是:当时,不等式f(x)≤0的解集是:;当时,不等式f(x)≤0的解集是:{x|x=2}.【点睛】本题主要考查一元二次不等式的求解以及分类讨论思想的应用,属于基础题目.。
(典型题)高中数学必修五第三章《不等式》测试卷(含答案解析)(1)
一、选择题1.已知正数x ,y 满足1431x y +=+,则x y +的最小值为( ) A .53B .2C .73D .62.设实数x ,y 满足约束条件21,22,x y x y -≤⎧⎨-≥⎩则x y +的最小值是( )A .2B .-2C .1D .-13.已知a b >,不等式220ax x b ++≥对于一切实数x 恒成立,且0x R ∃∈,使得20020ax x b ++=成立,则22a b a b+-的最小值为( )A .1BC .2D.4.若x 、y 满足约束条件36022x y x y y +-≤⎧⎪+≥⎨⎪≤⎩,则22x y +的最小值为( )A .5B .4C .2D5.已知实数,x y 满足24240x y x y y -≥⎧⎪+≤⎨⎪≤⎩,则32z x y =-的最小值是 ( )A .4B .5C .6D .76.设,x y 满足约束条件321104150250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z x y =+的最小值为( )A .3B .4C .5D .107.若函数()1xy a a =>的图象与不等式组40,20,1x y y x -≤⎧⎪-≥⎨⎪≤+⎩,表示的区域有公共点,则a 的取值范围为( ) A .[]2,4B.⎤⎦C .(][)1,24,⋃+∞D.([)2,⋃+∞8.已知函数()32f x x ax bx c =+++,且()()()01233f f f <-=-=-≤,则( )A .c 3≤B .3c 6<≤C .6c 9<≤D .c 9>9.设x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,则1z x y =-+的最小值是( )A .1-B .0C .1D .210.在ABC 中,BAC ∠的平分线交BC 于D .若3BAC π∠=,4AB AC +=,则AD 长度的最大值为( ) AB .2C .3D.11.设函数2()1f x mx mx =--,若对于任意的x ∈{x |1 ≤ x ≤ 3},()4f x m <-+恒成立,则实数m 的取值范围为( ) A .m ≤0 B .0≤m <57C .m <0或0<m <57D .m <5712.已知不等式230ax bx a --≥的解集是[]4,1-,则b a 的值为( ) A .-64B .-36C .36D .64二、填空题13.若正实数x 、y 、z ,满足3z x y +=,4z y x +=,则x y x y z++-的最小值为_______.14.已知x ,y 满足不等式组220,10,30x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则11x z y -=+,则z 的最大值为________.15.若关于x 的不等式250ax x b -+< 的解集为{|23}x x << ,则+a b 的值是__________.16.若不等式20++≥x mx m 在[1,2]x ∈上恒成立,则实数m 的最小值为________ 17.在下列函数中, ①1y x x=+②1123212y x x x ⎛⎫=++< ⎪-⎝⎭③()2114141x y x x x x ⎛⎫=++> ⎪+⎝⎭ ④22221πsin cos 0,sin cos 2y x x x x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭其中最小值为2的函数是__________.18.若关于x 的不等式()0f x <和()0g x <的解集分别为(),a b 和11,b a ⎛⎫⎪⎝⎭,则称这两个不等式为“对偶不等式”.若不等式()2220x x θ-+<和不等式()224sin 210x x θ++<为“对偶不等式”,且,2πθπ⎛⎫∈ ⎪⎝⎭,则θ=______.19.若实数x ,y 满足约束条件103030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则3z x y =-的最小值为__________.20.记等差数列{}n a 的前n 项和为n S ,满足570a a ,1122S =,则7811572a a a a a 的最小值为_________.三、解答题21.2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(ky k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本). (1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔ (2)该工厂计划投入促销费用多少万元,才能获得最大利润?22.已知m R ∈,命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得m ax ≤成立.(1)若p 为真命题,求m 的取值范围;(2)当1a =时,若p q ∨为真,p q ∧为假,求m 的取值范围. 23.已知()f x 是偶函数,()g x 是奇函数,且2()()2f x g x x x +=+-. (1)求()f x 和()g x 的解析式;(2)设2()33h x mx mx =+-(其中m R ∈),解不等式()()h x g x <.24.已知函数2221,()?23,x ax x af x x ax x a ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,其中 0a >. (1)若()()01ff =,求a 的值.(2)若函数()f x 的图象在x 轴的上方,求a 的取值范围. 25.已知函数()()21,4f x ax bx a b R =++∈,且()10f -=,对任意实数x ,()0f x ≥成立.(1)求函数()f x 的解析式;(2)若0c ≥,解关于x 的不等式()2131424f x c x x c ⎛⎫⎛⎫>+-++ ⎪ ⎪⎝⎭⎝⎭. 26.某单位计划建造一间背面靠墙的小屋,其地面面积为12m 2,墙面的高度为3m ,经测算,屋顶的造价为5800元,房屋正面每平方米的造价为1200元,房屋侧面每平方米的造价为800元,设房屋正面地面长方形的边长为x m ,房屋背面和地面的费用不计. (1)用含x 的表达式表示出房屋的总造价; (2)当x 为多少时,总造价最低?最低造价是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简114[(1)]()131x y x y x y +=++⨯+-+,再利用基本不等式求解. 【详解】由题得1114(1)1[(1)]31[(1)]()1331x y x y x y x y x y +=++-=++⨯-=++⨯+-+ 1141(5)1(5)123131y x x y y +=++-≥+-=++ 当且仅当1x y ==时取等. 所以x y +的最小值为2. 故选:B 【点睛】方法点睛:利用基本不等式求最值时,常用到常量代换,即把所求代数式中的某一常量换成已知中的代数式,再利用基本不等式求解.2.C解析:C 【分析】先作出约束条件对应的可行域,然后分析目标函数的几何意义,结合图形即可求解. 【详解】作出约束条件2122x y x y -≤⎧⎨-≥⎩所表示的平面区域如图所示:移动直线x y z +=,可知当其过点A 时取得最小值, 解方程组2122x y x y -≤⎧⎨-≥⎩,求得10x y =⎧⎨=⎩,即(1,0)A ,代入求得101=+=z ,所以x y +的最小值是1, 故选:C. 【点睛】方法点睛:该题考查的是有关线性规划的问题,解题方法如下: (1)根据题中所给的约束条件画出可行域; (2)根据目标函数的意义找到最优解; (3)解方程组求得最优解的坐标; (4)代入求得最小值,得到结果.3.D解析:D 【分析】根据条件对于一切实数x 不等式恒成立和0x R ∃∈使得方程成立结合二次不等式、二次方程、二次函数,可得1ab =,将22a b a b+-化成2a b a b -+-,再结合基本不等式求解即可.【详解】解:因为不等式220ax x b ++≥对于一切实数x 恒成立,所以0440a ab >⎧⎨-≤⎩,又因为0x R ∃∈,使得20020ax x b ++=成立,所以440ab -≥,所以440ab -=, 即0,0,1a b ab >>=,所以222()2222a b a b ab a b a b a b a b+-+==-+≥---,当且仅当2a b a b-=-时取得最小值. 故选:D. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.C解析:C 【分析】由不等式组作出可行域,如图,目标函数22xy +可视为可行域中的点与原点距离的平方,故其最小值应为原点到直线2x y +=的距离平方,根据点到直线的距离公式可得选项. 【详解】由不等式组做出可行域如图,目标函数22xy +可视为可行域内的点与原点距离的平方,故其最小值为原点到直线2x y +=的距离的平方,由点到直线的距离公式可知,原点到直线2x y +=的距离为22d ==,所以所求最小值为2. 故选:C.【点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.5.C解析:C【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】由实数x,y满足2424x yx yy-≥⎧⎪+≤⎨⎪≤⎩得到可行域如图:z=3x﹣2y变形为y=32x﹣2z,由24yx y=⎧⎨-=⎩,解得B(2,0)当此直线经过图中B时,在y轴的截距最大,z最小,所以z的最小值为3×2﹣2×0=6;故选C.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.6.B解析:B【分析】结合题意画出可行域,然后运用线性规划知识来求解【详解】如图由题意得到可行域,改写目标函数得y x z =-+,当取到点(3,1)A 时得到最小值,即314z =+=故选B 【点睛】本题考查了运用线性规划求解最值问题,一般步骤:画出可行域,改写目标函数,求出最值,需要掌握解题方法7.B解析:B 【分析】由约束条件作出可行域,再由指数函数的图象经过A ,B 两点求得a 值,则答案可求. 【详解】解:由约束条件40,20,1x y y x -⎧⎪-⎨⎪+⎩作出可行域如图:当1x =时,2y a =≤;当4x =时,42y a =≥,则42a ≥故a 的取值范围为42,2⎡⎤⎣⎦.故选:B . 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.8.C解析:C 【分析】由()()()123f f f -=-=-可求得a b ,的值,代回不等关系得出c 的取值范围 【详解】由()()()123f f f -=-=-可得184********a b c a b ca b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩解得611a b =⎧⎨=⎩则()32611f x x x x c =+++ 所以()16f c -=-,()013f <-≤所以0c 63-≤<,解得6c 9≤<, 故选C . 【点睛】本题主要考查了函数的性质,运用待定系数法求出参量的值,然后结合题意求出取值范围,较为基础.9.C解析:C 【分析】作出约束条件所表示的平面区域,结合图象确定目标函数的最优解,代入求解,即可得到答案. 【详解】作出x ,y 满足约束条件261322x y x y y -≤⎧⎪⎪+≥⎨⎪≤⎪⎩,所对应的可行域,如图所示,目标函数1z x y =-+可化为1y x z =+-,当直线1y x z =+-过点A 时, 此时直线在y 轴上的截距最大值,此时目标函数取得最小值,又由2132y x y =⎧⎪⎨+=⎪⎩,解得(2,2)A , 所以目标函数的最小值为min 2211z =-+=. 故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.10.A解析:A 【分析】根据题意,设,,,AD t AB c AC b ===由三角形面积公式1sin 2S a b θ=⋅⋅可表示出,,ACD ABD ABC ∆∆∆三者之间的关系,进而得边长关系为3,t bc =最后通过基本不等式求得AD 的最大值。
2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)
2022-2023学年浙教版八年级数学上册《第3章一元一次不等式》期末综合复习题(附答案)一.选择题(共8小题,满分40分)1.下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的个数有()A.2个B.3个C.4个D.5个2.据气象台预报,2019年某日武侯区最高气温33℃,最低气温24℃,则当天气温(℃:)的变化范围是()A.t>33B.t≤24C.24<t<33D.24≤t≤333.下列说法中,正确的是()A.x=1是不等式2x<1的解B.x=3是不等式﹣x<1的解集C.x>﹣1是不等式﹣2x<1的解集D.不等式﹣x<1的解集是x>﹣14.不等式组的解集是()A.x<3B.x>5或x<3C.x>5D.无解5.若a+b=﹣2,且a≥2b,则()A.有最小值B.有最大值1C.有最大值2D.有最小值6.一个正数m的平方根是a﹣3与1﹣2a,则关于x的不等式ax+>2x的解集为()A.x>B.x<C.x>D.x<7.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.08.若关于x的一元一次不等式组的解集是x≤k,且关于y的方程2y=3+k有正整数解,则符合条件的所有整数k的和为()A.5B.8C.9D.15二.填空题(共8小题,满分40分)9.若2x﹣y=1,且0<y<1,则x的取值范围为.10.已知关于x的不等式(2a﹣b)x>a﹣2b的解集是,则关于x的不等式ax+b<0的解集为.11.如果关于x的不等式3x﹣a≤0只有3个正整数解,则a的取值范围.12.不等式的负整数解的积是.13.符号表示运算ac﹣bd,对于整数a,b,c,d,已知1<<3,则b+d的值是.14.不等式组的解集是.15.不等式组无解,则m的取值范围为.16.若关于x的不等式组有3个整数解,则m的取值范围是.三.解答题(共6小题,满分40分)17.已知a+1>0,2a﹣2<0.(1)求a的取值范围;(2)若a﹣b=3,求a+b的取值范围.18.已知x=1满足不等式组,求a的取值范围.19.(1)解不等式:x+2﹣3(x+1)>1;(2)解不等式组.20.求不等式组的整数解.21.先阅读理解下面例题,再按要求解答下列问题:例:解不等式x2﹣9<0.解:∵x2﹣9=(x+3)(x﹣3),∴原不等式可化为(x+3)(x﹣3)<0.由有理数乘法法则:两数相乘,异号得负,得:①,或②.解不等式组①得﹣3<x<3,解不等式组②无解,∴原不等式x2﹣9<0的解集为﹣3<x<3.请你模仿例题的解法,解决下列问题:(1)不等式x2﹣4>0解集为;(2)不等式x2+3x≤0解集为;(3)拓展延伸:解不等式.22.某学校计划购进一批电脑和电子白板,购买1台电脑和2台电子白板需要3.5万元;购进2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有哪几种购买方案?(3)请你求出学校在(2)的购买活动中最多需要多少资金?参考答案一.选择题(共8小题,满分40分)1.解:根据不等式的定义,只要有不等符号的式子就是不等式,所以(1),(2),(4),(6)为不等式,共有4个.故选:C.2.解:由题意知:武侯区的最高气温是33℃,最低气温24℃,所以当天武侯区的气温(t℃)的变化范围为:24≤t≤33.故选:D.3.解:A、解不等式得到解集是x,则x=1不是不等式2x<1的解,故不符合题意.B、不等式﹣x<1的解集是x>﹣1,∴x=3是它的一个解,而不是解集,故不符合题意.C、不等式﹣2x<1的解集是x>﹣,∴x>﹣1不是它的解集,故不符合题意.D、不等式﹣x<1的解集是x>﹣1,故符合题意.故选:D.4.解:∵比大的大比小的小无解,故选D.5.解:∵a+b=﹣2,∴a=﹣b﹣2,b=﹣2﹣a,又∵a≥2b,∴﹣b﹣2≥2b,a≥﹣4﹣2a,移项,得﹣3b≥2,3a≥﹣4,解得,b≤﹣<0(不等式的两边同时除以﹣3,不等号的方向发生改变),a≥﹣;由a≥2b,得≤2 (不等式的两边同时除以负数b,不等号的方向发生改变);A、当a>0时,<0,即的最小值不是,故本选项错误;B、当﹣≤a<0时,≥,有最小值是,无最大值;故本选项错误;C、有最大值2;故本选项正确;D、无最小值;故本选项错误.故选:C.6.解:根据题意得a﹣3+1﹣2a=0∴a=﹣2,∴a﹣3=﹣5,∴m=25,∴不等式为﹣2x+>2x,解得x<,故选:B.7.解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.8.解:,解不等式①得x≤k,解不等式②得x<7,由题意得k<7,解关于y的方程2y=3+k得,y=,由题意得,>0,解得k>﹣3,∴k的取值范围为:﹣3<k<7,且k为整数,∴k的取值为﹣2,﹣1,0,1,2,3,4,5,6,当k=﹣2时,y==,当k=﹣1时,y==1,当k=0时,y==,当k=1时,y==2,当k=2时,y==,当k=3时,y==3,当k=4时,y==,当k=5时,y==4,当k=6时,y==,∵为整数,且k为整数,∴符合条件的整数k为﹣1,1,3,5,∵﹣1+1+3+5=8,∴符合条件的所有整数k的和为8.故选:B.二.填空题(共8小题,满分40分)9.解:∵2x﹣y=1,∴y=2x﹣1,∵0<y<1,∴0<2x﹣1<1,解得<x<1.故答案为:.10.解:∵关于x的不等式(2a﹣b)x>a﹣2b的解集是,∴2a﹣b>0,x>∴2a>b,=∴2a﹣4b=10a﹣5b∴8a=b∴2a>8a∴a<0∵ax+b<0∴ax<﹣b∴x>﹣∵8a=b∴x>﹣8故答案为:x>﹣8.11.解:3x﹣a≤0的解集为x≤;其正整数解为1,2,3,则3≤<4,所以a的取值范围9≤a<12.12.解:不等式的解集是x>﹣,因而负整数解是:﹣1,﹣2,则其积是2.13.解:根据题意得:,解得:1<bd<3,∵b、d是整数,∴bd=2,则b、d的值是1和2,或﹣1,﹣2.则b+d=3或﹣3.故答案是:±3.14.解:,解不等式①得:x>﹣1,解不等式②得:x<4,∴不等式组的解集为﹣1<x<4,故答案为:﹣1<x<4.15.解:,解不等式①,得x≥3,∵不等式组无解,∴m<3,故答案为:m<3.16.解:解不等式2x﹣3>5,得:x>4,解不等式x﹣m<1,得:x<m+1,不等式租的解集为4<x<m+1,∵不等式组仅有3个整数解,∴7<m+1≤8,∴6<m≤7,故答案为:6<m≤7.三.解答题(共6小题,满分40分)17.解:(1)根据题意得,解①得a>﹣1,解②得a<1,则a的范围是﹣1<a<1;(2)∵a﹣b=3,∴b=a﹣3,∴a+b=2a﹣3,∵﹣1<a<1,∴﹣2<2a<2,∴﹣5<2a﹣3<﹣1,即﹣5<a+b<﹣1.18.解:将x=1代入3x﹣5≤2x﹣4a,得4a≤4,解得a≤1;将x=1代入3(x﹣a)<4(x+2)﹣5,得a>﹣.不等式组解集是﹣<a≤1,a的取值范围是﹣<a≤1.19.解:(1)x+2﹣3(x+1)>1,x+2﹣3x﹣3>1,x﹣3x>1﹣2+3,﹣2x>2,x<﹣1;(2)解不等式5x﹣1≤3(x+1),得:x≤2,解不等式≥x﹣1,得:x≤4,则不等式组的解集为x≤2.20.解:由①得,由②得x≤1,所以这个不等式组的的解集是,∴不等式组的整数解是﹣1,0,1.21.解:(1)∵x2﹣4>0,∴(x+2)(x﹣2)>0,则①,②,解不等式组①,得:x>2,解不等式组②,得:x<﹣2,∴不等式x2﹣4>0解集为x>2或x<﹣2,故答案为:x>2或x<﹣2;(2)∵x2+3x≤0,∴x(x+3)≤0,则①,②,解不等式组①,得:不等式组无解;解不等式组②,得:﹣3≤x≤0,故答案为:﹣3≤x≤0;(3)∵≤0,∴①,②,解不等式组①,得:﹣3≤x≤5,解不等式组②,得:不等式组无解;所以原不等式的解集为﹣3≤x≤5.22.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:,解得,,答:每台电脑0.5万元,每台电子白板1.5万元;(2)设需购进电脑m台,则购进电子白板(30﹣m)台,根据题意得:,解得:15≤m≤17,又∵m为正整数,∴m可以为15,16,17,∴共有3种购买方案:方案1:购进电脑15台,电子白板15台;方案2:购进电脑16台,电子白板14台;方案3:购进电脑17台,电子白板13台.(3)选择方案1所需费用为0.5×15+1.5×15=30(万元);选择方案2所需费用为0.5×16+1.5×14=29(万元);选择方案3所需费用为0.5×17+1.5×13=28(万元).∵30万元>29万元>28万元,∴学校在(2)的购买活动中最多需要30万元.。
高中数学第三章不等式练习题含答案解析
高中数学必修5第三章不等式练习题含答案解析人教版高中数学必修5第三章不等式单元测试题及答案一、选择题(本大题共10小题,每小题5分,共50分)1.不等式x2≥2x的解集是( )A.{x|x≥2} B.{x|x≤2} C.{x|0≤x≤2} D.{x|x≤0或x≥2}2.下列说法正确的是( )A.a>b⇒ac2>bc2 B.a>b⇒a2>b2 C.a>b⇒a3>b3 D.a2>b2⇒a>b3.直线3x+2y+5=0把平面分成两个区域,下列各点与原点位于同一区域的是( ) A.(-3,4) B.(-3,-4) C.(0,-3) D.(-3,2)x-14的解集是( ) x+2A.{x|x<-2} B.{x|-2<x<1} C.{x|x<1} D.{x|x∈R}5.设M=2a(a-2)+3,N=(a-1)(a-3),a∈R,则有( )A.M>N B.M≥N C.M<N D.M≤N2x-y+2≥0,.不等式组+y-2≤0,A.三角形表示的平面区域的形状为( ) B.平行四边形C.梯形D.正方形+y-3≥0,7.设z=x-y,式中变量x和y满足条件则z的最小值为-2y≥0,A.1 B.-1 C.3 D.-3 2m8.若关于x的函数y=x+(0,+∞)的值恒大于4,则( ) xA.m>2 B.m<-2或m>2 C.-2<m<2 D.m<-29.已知定义域在实数集R上的函数y=f(x)不恒为零,同时满足f(x+y)=f(x)·f(y),且当x>0时,f(x)>1,那么当x<0时,一定有( )A.f(x)<-1 B.-1<f(x)<0 C.f(x)>1 D.0<f(x)<1x+210.若,化简y=25-30x++-3的结果为( ) 3x-5A.y=-4x B.y=2-x C.y=3x-4 D.y=5-x二、填空题(本大题共5小题,每小题5分,共25分)111.对于x∈R,式子k的取值范围是_________.kx+kx+11112.不等式logx2-2x-15)>log(x+13)的解集是_________.22x-213.函数f(x)=lg4-x的定义域是__________.x-314.x≥0,y≥0,x+y≤4所围成的平面区域的周长是________.15.某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x的最小值是________.三、解答题(本大题共6小题,共75分)ee16.(12分)已知a>b>0,c<d<0,e<0,比较的大小.a-cb-d17.(12分)解下列不等式:2(1)-x2+2x->0;(2)9x2-6x+1≥0. 318.(12分)已知m∈R且m<-2,试解关于x的不等式:(m+3)x2-(2m+3)x+m>0.+y-4≤0,19.(12分)已知非负实数x,y满足+y-(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z=x+3y的最大值.20.(13分)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元) 1均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近似满足f(t)=20t-2 10|(元).(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.21.(14分)某工厂有一段旧墙长14 m,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m2的厂房,工程条件是:(1)建1 m新墙的费用为a元;(2)修1 m旧墙的费用为a 4a(3)拆去1 m的旧墙,用可得的建材建1 m元.2经讨论有两种方案:①利用旧墙x m(0<x<14)为矩形一边;②矩形厂房利用旧墙的一面长x≥14.试比较①②两种方案哪个更好.必修5第三章《不等式》单元测试题1.解析:原不等式化为x2-2x≥0,则x≤0或x≥2.答案:D2.解析:A中,当c=0时,ac2=bc2,所以A不正确;B中,当a=0>b=-1时,a2=0<b2=1,所以B不正确;D中,当(-2)2>(-1)2时,-2<-1,所以D不正确.很明显C正确.答案:C3.解析:当x=y=0时,3x+2y+5=5>0,所以原点一侧的平面区域对应的不等式是3x+2y+5>0,可以验证,仅有点(-3,4)的坐标满足3x+2y+5>0.答案:Ax-1x-1-34.解析:>1⇔-1>0⇔⇔x+2<0⇔x<-2. x+2x+2x+2答案:A5.解析:M-N=2a(a-2)+3-(a-1)(a-3)=a2≥0,所以M≥N.答案:B6.解析:在平面直角坐标系中,画出不等式组表示的平面区域,如下图中的阴影部分.则平面区域是△ABC.答案:A+y-3=0,7.解析:画出可行域如下图中的阴影部分所示.解方程组得A(2,1).由-2y=图知,当直线y=x-z过A时,-z最大,即z最小,则z的最小值为2-1=1.m28.解析:∵x+2|m|,∴2|m|>4. x∴m>2或m<-2.答案:B9.解析:令x=y=0得f(0)=f2(0),若f(0)=0,则f(x)=0·f(x)=0与题设矛盾.∴f(0)=1.又令y=-x,∴f(0)=f(x)·f(-x),1故f(x)=-∵x>0时,f(x)>1,∴x<0时,0<f(x)<1,故选D.答案:Dx+2510.解析:∵,∴-2<x<.而y=25-30x++-3=|3x-5|-|x+33x-5 2|-3=5-3x-x-2-3=-4x.∴选A.答案:A二、填空题(填空题的答案与试题不符)111.对于x∈R,式子k的取值范围是__________.kx+kx+11解析:式子kx2+kx+1>0恒成立.当k≠0时,k>0且Δ=k2kx+kx+1-4k<0,∴0<k<4;而k=0时,kx2+kx+1=1>0恒成立,故0≤k<4,选C. 答案:C?x-212.函数f(x)=+4-x的定义域是__________.x-3解析:求原函数定义域等价于解不等式组x-2≥0,-3≠0,-x>0,答案:A 解得2≤x<3或3<x<4.∴定义域为[2,3)∪(3,4).答案:[2,3)∪(3,4)13.x≥0,y≥0,x+y≤4所围成的平面区域的周长是________.解析:如下图中阴影部分所示,围成的平面区域是Rt△OAB.可求得A(4,0),B(0,4),则OA=OB=4,AB=42,所以Rt△OAB的周长是4+4+2=8+4答案:8+42+,214.已知函数f(x)=x-2x,则满足条件的点(x,y)所形成区域的面积-为__________.解析:化简原不等式组-+-,-+y-,所表示的区域如右图所示,阴影部分面积为半圆面积.答案:π15.(2010·浙江高考)某商家一月份至五月份累计销售额达3860万元.预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x的最小值是________.解析:由已知条件可得,七月份销售额为500×(1+x%),八月份销售额为500×(1+x%)2,一月份至十月份的销售总额为3860+500+2[500(1+x%)+500(1+x%)2],可列出不等式为11666t+-≥0.4360+1000[(1+x%)+(1+x%)2]≥7000.令1+x%=t,则t2+t-≥0,即11又∵t+0,566∴t≥,∴1+x%≥,55∴x%≥0.2,∴x≥20.故x的最小值是20.答案:20三、解答题(本大题共6小题,共75分)ee16.(12分)已知a>b>0,c<d<0,e<0,比较与a-cb-d----+-解:==e. a-cb---d--∵a>b>0,c<d<0,∴a-c>0,b-d>0,b-a<0,c-d<0.eeee又e<0,∴->0.∴>a-cb-da-cb-d17.(12分)解下列不等式:2(1)-x2+2x->0;3(2)9x2-6x+1≥0.22解:(1)-x2+2x-⇔x2-2x⇔3x2-6x+2<0. 3333Δ=12>0,且方程3x2-6x+2=0的两根为x1=1-x2=1,3333∴原不等式解集为{x|1-<x<1+.3322(2)9x-6x+1≥0⇔(3x-1)≥0.∴x∈R.∴不等式解集为R.18.(12分)已知m∈R且m<-2,试解关于x的不等式:(m+3)x2-(2m+3)x+m>0. 解:当m=-3时,不等式变成3x-3>0,得x>1;当-3<m<-2时,不等式变成(x-1)[(m+3)xm-m]>0,得x>1或x<;m+3m当m<-3时,得1<x<m+3综上,当m=-3时,原不等式的解集为(1,+∞);当m-3<m<-2时,原不等式的解集为-∞,m+∪(1,+∞);当m<-3时,原不等式m的解集为,m++y-4≤0,19.(12分)已知非负实数x,y满足+y-(1)在所给坐标系中画出不等式组所表示的平面区域;(2)求z=x+3y的最大值.解:(1)由x,y取非负实数,根据线性约束条件作出可行域,如下图所示阴影部分.(2)作出直线l:x+3y=0,将直线l向上平移至l1与y轴的交点M位置时,此时可行域内M点与直线l的距离最大,而直线x+y-3=0与y轴交于点M(0,3).∴zmax=0+3×3=9.20.(13分)(2009·江苏苏州调研)经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)=80-2t(件),价格近1似满足f(t)=20-t-10|(元).2(1)试写出该种商品的日销售额y与时间t(0≤t≤20)的函数表达式;(2)求该种商品的日销售额y的最大值与最小值.解:(1)y=g(t)·f(t)1=(80-2t)·(20-|t-10|) 2=(40-t)(40-|t-10|)+-,0≤t<10,=--,(2)当0≤t<10时,y的取值范围是[1200,1225],在t=5时,y取得最大值为1225;当10≤t≤20时,y的取值范围是[600,1200],在t=20时,y取得最小值为600.21.(14分)某工厂有一段旧墙长14 m,现准备利用这段旧墙为一面建造平面图形为矩形,面积为126 m2的厂房,工程条件是:(1)建1 m新墙的费用为a元;a(2)修1 m元;4a(3)拆去1 m的旧墙,用可得的建材建1 m元.2经讨论有两种方案:①利用旧墙x m(0<x<14)为矩形一边;②矩形厂房利用旧墙的一面长x≥14.试比较①②两种方案哪个更好.ax解:方案①:修旧墙费用为元),4a拆旧墙造新墙费用为(14-x)(元),22×126其余新墙费用为(2x+-14)a(元),x2×126axax36则总费用为y=(14-x)+(2x+-14)a=7a-1)(0<x<14),42x4xx36∵2=6,4x4xx36∴当且仅当x=12时,ymin=35a,4x方案②:a7a利用旧墙费用为14×=元),42252建新墙费用为(2x-14)a(元),x7a25212621则总费用为y=(2x+-14)a=2a(x+-(x≥14),2xx2126可以证明函数x+在[14,+∞)上为增函数,x∴当x=14时,ymin=35.5a.∴采用方案①更好些.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【点睛】
复合 命题真假的判断,若 是真命题,则 真 假、 假 真,或 真 真;若 是假命题,则 假 假.
4.(1) ;(2)
【分析】
(1)由题意可得 ,即可求解,
(2)原不等式可转化为 对于任意 恒成立,设
,对称轴为 ,只需要 ,由于对称轴不固定,所以分三种情况讨论对称轴和区间的关系,满足最小值大于或等于0,再求并集即可.
(2)逆否命题可得p是r的必要不充分条件,r:a≥1+m或a≤1﹣m,则满足 可得答案.
【详解】
(1)若∀x∈R,x2﹣4x+a2>0;则判别式△═16﹣4a2<0,即a2>4,得a>2或a<﹣2,即p:a>2或a<﹣2,
若一元二次方程x2+(a+1)x+a﹣1=0的一根大于零,另一根小于零,
设f(x)=x2+(a+1)x+a﹣1,则满足f(0)=a﹣1<0,即a<1即可,则q:a<1,
【详解】
(1)当 时, .
设 为不动点,因此 ,
解得 或 ,
,4为函数 的不动点.
(2) 恒有两个不动点,
即 恒有两个不等实根,
整理为 ,
恒成立.
即对于任意 恒成立.
令 ,
则 (或者 ),
解得 .
(3) ,
.
,即 ,
,
,
.
【点睛】
关键点点睛:本题考查函数问题中新定义问题,关键是能够充分理解不动点的定义,从而构造方程.在求解参数范围过程中,要根据不同的函数模型,利用二次函数、对号函数求解对应模型的最值,对于学生转化与化归的思想要求较高.
(2)使用若干年后,当年平均盈利额达到最大值时,求该厂商的盈利额.
2.已知 ,且 .
(1)求实数 和 的值,并求 的最小值;
(2)若不等式 对一切实数 都成立,求实数 的取值范围.
3.设命题p:关于a的不等式∀x∈R,x2﹣4x+a2>0;命题q:关于x的一元二次方程x2+(a+1)x+a﹣1=0的一根大于零,另一根小于零;命题r:a2﹣2a+1﹣m2≥0(m>0)的解集.
10.(1) ;(2) ;(3) .
【分析】
(1)根据新定义可得 ,求解即可;
(2)根据新定义可得 ,求解即可;
(3)根据新定义可得 ,求解即可.
【详解】
(1)由 ,
知 ,
当且仅当 时,取到最小值 ;
(2)由 ,
知
当且仅当 时,取到最小值 ;
(3)由 ,
知 ;
当且仅当 时,取到最小值 .
【点睛】
易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:
易错点睛:利用基本不等式求最值时,要注意其必须满足“一正二定三相等”:
(1)“一正”就是各项必须为正数;
(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;
(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.
(2)由(1)知,当年的平均盈利额为:
,
当且仅当 时,即 时等号成立.
所以使用15年后平均盈利额达到最大值,该厂商盈利额为1500万元.
【点睛】
关键点点睛:本题的关键是知道设备的维修费用是等差数列求和,才能正确写出函数关系.
2.(1) , , ;(2) .
【分析】
(1)根据 ,得到1,3是 的两个根,从而得到 ,进而得到 ,利用基本不等式求解,
(2) 取什么实数时,关于 的不等式: 在 恒成立.
7.(1)已知 求 的最小值
(2)已知a,b均为正实数,且 ,求a+b的最小值;
8.已知函数 .
(1)当 、 时,解不等式 ;
(2)若 、 ,且 ,求 的最小值.
9.对于函数 ,若存在 ,使 成立,则称 为 的不动点.已知函数 .
(1)当 , 时,求函数 的不动点;
6.(1) ;(2) .
【分析】
(1)由一元二次不等式的解得 且 的解为 ,再由韦达定理即可得解;
(2)由条件得 在 恒成立,再由 即可得解.
【详解】
(1)由 的解为 ,可得
且 的解为 ,
所以 ,解得 ;
(2) ,
由 在 恒成立,可得 在 恒成立,
又 ,所以 ,
所以 .
【点睛】
关键点点睛,本题的第一问关键点是由二次不等式的解得 且 的解为 ;第二问的关键点是参变分离 在 恒成立,转化为最值求参即可.
(提示: )
(2)研究 上的最小值;
(3)求出当 时, 的最小值.
参考答案
1.(1) ;(2)1500万元.
【分析】
(1)保养费用是首项为22,公差为4的等差数列,再利用收入-维修费用-成本,写出 关于 的函数关系式;(2)利用基本不等式计算 的最大值.
【详解】
(1)依题可得即 Fra bibliotek于 的函数关系式为 , .
【详解】
(1) 的对称轴为 ,
由题意可得 ,解得 ,
所以 ,
(2)不等式 对于任意 恒成立,
即 对于任意 恒成立,
设 ,开口向上的抛物线对称轴为 ,
只需要 ,
所以 或 或
解得: 或 或 ,
所以 或 ,
所以 的取值范围是 .
【点睛】
方法点睛:求不等式恒成立问题的方法
(1)分离参数法
若不等式 ( 是实参数)恒成立,将 转化为 或 恒成立,进而转化为 或 ,求 的最值即可.
(2)由 恒成立,转化为, 恒成立,利用判别式法求解.
【详解】
(1)∵ ,
∴1,3是 的两个根,
∴ ,
∴ , .
∴ ,
时, ,
当且仅当 即 时上式取等号,
所以 .
(2)由 ,得 (*)
当 即 时,不等式(*)为 ,不满足对任意实数 都成立,
∴ ,∴ ,
∴ ,
∴ ,
∴ ,
∴ 的取值范围为 .
【点睛】
方法点睛:(1)不等式ax2+bx+c>0的解是全体实数(或恒成立)的条件是当a=0时,b=0,c>0;当a≠0时, ,不等式ax2+bx+c<0的解是全体实数(或恒成立)的条件是当a=0时,b=0,c<0;当a≠0时, .
第三章不等式综合大题10道
一、解答题
1.现某厂商抓住商机在去年用450万元购进一批VR设备,经调试后今年投入使用,计划第一年维修、保养费用22万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该设备使用后,每年的总收入为180万元,设使用 年后设备的盈利额为 万元.
(1)写出 与 之间的函数关系式;
(2)若对任意实数 ,函数 恒有两个相异的不动点,求实数 的取值范围;
(3)若 的两个不动点为 , ,且 ,当 时,求实数 的取值范围.
10.某天数学课上,你突然惊醒,发现黑板上有如下内容:
例:求 的最小值.
解:利用基本不等式 ,得到 ,于是 ,当且仅当 时,取到最小值 .
(1)老师请你模仿例题,研究 上的最小值;
若p∨q为假命题,则p,q都是假命题,即 ,得1≤a≤2,即实数a的取值范围是[1,2].
(2)若¬r是¬p的必要不充分条件,则p是r的必要不充分条件,
由a2﹣2a+1﹣m2≥0(m>0)得[a﹣(1﹣m)][a﹣(1+m)]≥0,得a≥1+m或a≤1﹣m,
则满足 得 ,得m>3,即实数m的取值范围是(3,+∞).
(1)本题首先可根据题意将 转化为 ,然后通过计算即可得出结果;
(2)本题首先可根据 得出 ,然后将 转化为 ,最后根据基本不等式即可求出最值.
【详解】
(1)因为 , , ,
所以不等式 即 , ,解得 ,
故不等式 的解集为 .
(2)因为 ,所以 ,
则 ,当且仅当 时等号成立,
故 的最小值为 .
【点睛】
(1)“一正二定三相等”“一正”就是各项必须为正数;
(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;
(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.
7.(1)3;(2)18.
【分析】
(1)变形为 ,利用基本不等式求前两项和的最小值,进而得解;
(2)利用“×1”法转化为 ,利用基本不等式求后两项的最小值,即得所求.
【详解】
(1) = ,
当且仅当 ,即 时取等号,
的最小值为3;
(2)因为a,b均为正实数,且 , ,
当且仅当 ,即 时取等号,结合 ,解得 ,符合题意,
(2)数形结合法
结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.
(3)主参换位法
把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.