边坡稳定性计算极限平衡计算法的平面形计算法
岩质边坡稳定性分析计算

岩质边坡稳定性分析计算引言:岩质边坡是指由岩石构成的边坡体,它的稳定性分析是地质工程中的一项重要内容。
本文将围绕岩质边坡的稳定性分析进行详细讨论,包括边坡的力学特性、稳定性分析的方法和计算步骤。
一、岩质边坡力学特性:岩质边坡的力学特性主要包括边坡坡度、岩性、结构构造、地质构造、坡面覆盖物、地下水等。
这些因素对边坡的稳定性有着重要影响。
1.边坡坡度:边坡坡度是指地面或水平面与边坡倾斜线的夹角,是影响边坡稳定性的重要因素。
坡度越大,边坡的稳定性越差。
2.岩性:岩石的强度、粘聚力、内摩擦角等岩性参数对边坡稳定性有着重要影响。
一般来说,岩性较强的边坡稳定性较好。
3.结构构造:边坡中的断层、节理、褶皱等结构构造对边坡的稳定性有着重要影响。
结构面的发育程度和倾角越大,边坡的稳定性越差。
4.地质构造:地质构造包括岩层倾角、层面、节理等,对边坡的稳定性具有重要影响。
地质构造的研究可以帮助我们了解边坡的受力特点和变形规律。
5.坡面覆盖物:坡面覆盖物通常包括土壤、草地、水层等,这些覆盖物的分布情况和特性对边坡的稳定性有着显著影响。
6.地下水:地下水的存在对边坡的稳定性具有重要影响。
当地下水位上升时,边坡会受到水的浸润,导致边坡强度降低,从而增加边坡失稳的可能性。
二、岩质边坡稳定性分析方法:岩质边坡的稳定性分析方法主要有极限平衡法和有限元法两种,下面将对这两种方法进行介绍。
1.极限平衡法:极限平衡法是一种经典的岩质边坡稳定性分析方法,它基于边坡体在其稳定状态下的力学平衡原理进行计算。
这种方法通常将边坡分割为无限小的切割体,并假设切割体沿着内摩擦边界面滑动,从而得到边坡的稳定状态。
2.有限元法:有限元法是一种基于有限元理论进行边坡稳定性分析的方法。
这种方法将边坡体离散为有限数量的单元,通过求解单元之间的位移和应力,得到边坡的稳定状态。
有限元法能够模拟较为复杂的边坡几何形状和边界条件,但计算复杂度较大。
三、岩质边坡稳定性计算步骤:进行岩质边坡稳定性分析计算时,通常需要进行以下步骤:1.边坡参数确定:根据实地调查和实验数据,确定边坡的坡度、坡高、岩石强度参数、结构面参数等。
(整理)边坡稳定性计算方法

一、边坡稳定性计算方法在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。
根据边坡不同破裂面形状而有不同的分析模式。
边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。
这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。
(一)直线破裂面法化计算这类边坡稳定性分析采用直线破裂面法。
能形成直线破裂面的土类包括:均质砂性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。
图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗剪度指标为c、φ。
如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析该滑动体的稳定性。
沿边坡长度方向截取一个单位长度作为平面问题分析。
图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(ΔABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。
对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β角称为休止角,也称安息角。
此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。
这类滑坡滑动面的深度与长度之比往往很小。
当深长比小于 0.1时,可以把它当作一个无限边坡进行分析。
图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。
取一单位长度的滑动土条进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的剪应力等于土的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
边坡稳定性计算方法

边坡稳定性计算⽅法⼀、边坡稳定性计算⽅法在边坡稳定计算⽅法中,通常采⽤整体的极限平衡⽅法来进⾏分析。
根据边坡不同破裂⾯形状⽽有不同的分析模式。
边坡失稳的破裂⾯形状按⼟质和成因不同⽽不同,粗粒⼟或砂性⼟的破裂⾯多呈直线形;细粒⼟或粘性⼟的破裂⾯多为圆弧形;滑坡的滑动⾯为不规则的折线或圆弧状。
这⾥将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和⽅法。
(⼀)直线破裂⾯法所谓直线破裂⾯是指边坡破坏时其破裂⾯近似平⾯,在断⾯近似直线。
为了简化计算这类边坡稳定性分析采⽤直线破裂⾯法。
能形成直线破裂⾯的⼟类包括:均质砂性⼟坡;透⽔的砂、砾、碎⽯⼟;主要由内摩擦⾓控制强度的填⼟。
图 9-1为⼀砂性边坡⽰意图,坡⾼ H ,坡⾓β,⼟的容重为γ,抗剪度指标为 c 、φ。
如果倾⾓α的平⾯ AC ⾯为⼟坡破坏时的滑动⾯,则可分析该滑动体的稳定性。
沿边坡长度⽅向截取⼀个单位长度作为平⾯问题分析。
图9-1 砂性边坡受⼒⽰意图已知滑体ABC重 W,滑⾯的倾⾓为α,显然,滑⾯ AC上由滑体的重量W= γ(ΔABC)产⽣的下滑⼒T和由⼟的抗剪强度产⽣的抗滑⼒Tˊ分别为:T=W · sina和则此时边坡的稳定程度或安全系数可⽤抗滑⼒与下滑⼒来表⽰,即为了保证⼟坡的稳定性,安全系数F s 值⼀般不⼩于 1.25 ,特殊情况下可允许减⼩到 1.15 。
对于C=0 的砂性⼟坡或是指边坡,其安全系数表达式则变为从上式可以看出,当α =β时,F s 值最⼩,说明边坡表⾯⼀层⼟最容易滑动,这时当 F s =1时,β=φ,表明边坡处于极限平衡状态。
此时β⾓称为休⽌⾓,也称安息⾓。
此外,⼭区顺层滑坡或坡积层沿着基岩⾯滑动现象⼀般也属于平⾯滑动类型。
这类滑坡滑动⾯的深度与长度之⽐往往很⼩。
当深长⽐⼩于 0.1时,可以把它当作⼀个⽆限边坡进⾏分析。
图 9-2表⽰⼀⽆限边坡⽰意图,滑动⾯位置在坡⾯下H深度处。
取⼀单位长度的滑动⼟条进⾏分析,作⽤在滑动⾯上的剪应⼒为,在极限平衡状态时,破坏⾯上的剪应⼒等于⼟的抗剪强度,即得式中N s =c/ γ H 称为稳定系数。
第三章 边坡稳定性分析

(2)36º 法 方法:坡顶E处作与坡顶水平线成36º 的直线EF
二、
浸水路堤稳定性分析
1、河滩路堤受力: 普通路堤外力、自重、浮力(受水浸 泡产生浮力)、渗透动水压力(路堤两侧 水位高低不同时,水从高的一侧渗透到低 的一侧产生动水压力) 最不利情况:水位降落时动水压力指 向河滩两侧边坡,尤其当水位缓慢上涨而 集聚下降时,对路堤最不利。
※1、圆弧法基本步骤:
①通过坡脚任意选定可能滑动面AB,半径 为R,纵向单位长度,滑动土体分条(5~8) ②计算每个土条重Gi(土重、荷载重)垂 直滑动面法向分力 ③计算每一段滑动面抵抗力NitgΦ(内摩擦 力)和粘聚力cLi(Li为I小段弧长)
④以圆心o为转动圆心,半径R为力臂。 计算滑动面上各点对o点的滑动力矩和抗 滑力矩。
当量土柱高度的计算公式为:
荷载分布宽度: ⑴可分布在行车道宽度范围内 ⑵考虑实际行车有可能偏移或车辆停放在 路肩上,也可认为H1厚当量土层分布于整 个路基宽度上。
第二节 路基稳定性分析与设计验算
一、边坡稳定性分析方法: ※力学分析法: 1、数解法—假定几个滑动面力学平衡原理计 算,找出极限滑动面。 2、图解或表解法—在计算机或图解的基础上, 制定图或表,用查图或查表来进行,简单不精确。 ㈠力学分析法: 直线法—适用于砂土和砂性土(两者合称砂 性土)破裂面近似为平面。 圆弧法—适用于粘性土,破裂近似为圆柱形
※路堤各层填料性质不同时,所采用验算数据可按加权平 均法求得。
(二)边坡稳定分析的边坡取值
边坡稳定分析时,对于折线形边坡或阶梯 形边坡,在验算通过坡脚破裂面的稳定性 时,一般可取坡度平均值或坡脚点与坡顶 点的连线坡度。
(三)汽车荷载当量换算
路基承受自重作用、车辆荷载(按车 辆最不利情况排列,将车辆的设计荷 载换算成相当于土层厚度h0 ) h0称为车辆荷载的当量高度或换算高 度。
边坡稳定的极限平衡法

极限平衡法在边坡工程设计中应用广泛,可以帮助工程师确定边坡的安 全系数和稳定性。
极限平衡法基本原理:通过计算土体的抗剪强度和滑动面的抗剪强度,判断边坡的稳 定性
计算参数:包括土体的内聚力、内摩擦角、黏聚力、黏聚力等
计算方法:采用极限平衡法计算公式,如瑞典圆弧法、毕肖普法等
边界元法:适用于非 连续介质问题,求解 速度快,但需要大量 的计算
极限平衡法与边界元法 的比较:极限平衡法适 用于连续介质问题,而 边界元法适用于非连续 介质问题,两者在求解 速度上都有优势,但都 需要大量的计算。
边坡稳定的极限平 衡法的发展趋势和 未来展望
极限平衡法在 边坡稳定分析 中的应用越来
性的弹性体
计算原理:通 过求解土体的 应力、应变和 位移方程,得 到边坡的稳定
安全系数
应用范围:适 用于各种土质 边坡,特别是 那些受水、温 度等因素影响
的边坡
Байду номын сангаас
基本假设:土体为连续、均匀、各向同性的弹性体
计算方法:通过求解土体的静力平衡方程,得到土体的应力状态和变形状态
适用范围:适用于土体变形较小、应力状态较简单的情况 优点:计算简单、易于理解,能够快速得到土体的应力状态和变形状态
越广泛
极限平衡法的 计算方法和软 件不断改进和
完善
极限平衡法与 其他分析方法 相结合,提高 边坡稳定分析 的准确性和可
靠性
极限平衡法在 边坡稳定预警 和防治中的应
用前景广阔
技术进步:随着科技 的发展,极限平衡法 的计算方法和技术将 不断完善和改进。
应用领域拓展:极限平 衡法将在更多领域得到 应用,如地质灾害防治、 土木工程、环境工程等。
边坡稳定性计算极限平衡计算法的园弧形计算法

书山有路勤为径,学海无涯苦作舟
边坡稳定性计算极限平衡计算法的园弧形计算法
一、判别准则和要求
判定圆弧形滑坡的条件为:均质松散介质,包含多组产状各异的节理及风化破碎岩体。
二、边坡稳定系数计算
(一)滑动面位置的确定
弗先柯(ΦИСΕΗΚΟ·Γ·Η)作图法:根据()计算张裂隙高度,过坡顶B 点,取垂线BF=H90,过F 点以与水平线FC 成()角作直线FE,过坡脚A 点以与水平线成()角作直线AK 交FE 于K 点,再过A 点作AG 使与AB 成()角,作AK 的中垂线,过A 点作AG 线的垂线,并与上述中垂线相交于O 点,O 点即为所求的滑动弧AK 的圆心,如图1。
霍克(E· Hoek)曲线法①:用内摩擦角与边坡角度和高度H 查曲线图求出滑动弧圆心。
用试算法确定滑动面位置:取弧长L(如或等)与滑坡体最大厚度d 之比值等于7,作若干圆弧(一般作5 条,见图2),然后分别进行稳定性计算,取稳定性系数值最小者。
图1 弗先柯(ΦИСΕΗΚΟ·Γ·Η)图2 按试算法确定临界
临界滑面位置滑面位置
(二)稳定系数计算
圆弧形滑坡条块法计算是先根据所确定的滑动面位置,将滑坡体划分成若干个垂直条块,如图3,然后按分条块逐个进行的。
基于极限平衡法及有限元法的边坡稳定性综合分析

基于极限平衡法及有限元法的边坡稳定性综合分析随着城市化进程的加快和土地资源的日益紧缺,地质灾害频繁发生成为了人们关注的焦点。
边坡稳定性分析作为地质灾害防治的重要内容之一,对于保障人民生命财产安全和城市发展具有重要意义。
本文将通过基于极限平衡法及有限元法的边坡稳定性综合分析,从两种不同的角度对边坡稳定性进行深入研究,以期为地质灾害防治提供理论支持和技术指导。
一、极限平衡法分析极限平衡法是指对于一定的边坡体系,在边坡体系受到外力作用时,通过平衡条件来确定边坡体系在达到稳定状态时,承受最大自重等荷载的状态。
具体步骤为:确定边坡的几何形状,计算边坡受力分布,确定边坡的抗滑稳定性和倾覆稳定性,得出边坡的稳定状态。
极限平衡法主要用于评估边坡在稳定状态下的安全系数,对于边坡的设计和监测具有重要意义。
二、有限元法分析有限元法是一种数值分析方法,将连续介质划分为有限个小单元,在每个小单元中建立方程,通过求解小单元之间的位移和应力关系来得出整个结构的位移和应力分布。
有限元法在地质灾害领域得到了广泛应用,能够较为准确地描述地质介质的力学行为,对复杂边坡体系的稳定性分析具有独特的优势。
基于有限元法的边坡稳定性分析首先要建立边坡的数值模型,将边坡体系划分为有限个小单元,然后确定边坡体系的边界条件和加载条件,进行有限元分析,计算得出边坡体系的位移和应力分布。
最后通过分析位移和应力的分布情况来评估边坡的稳定性。
三、综合分析将极限平衡法和有限元法两种分析方法相结合,可以更为全面地评估边坡的稳定性。
通过极限平衡法可以得到边坡在静态荷载下的稳定状态,而有限元法可以计算得出边坡在动态荷载下的位移和应力分布情况。
综合两种分析方法,可以较为全面地评估边坡的稳定性,为地质灾害防治提供更为可靠的技术支持。
边坡3_土质边坡稳定性极限平衡分析法

合力作用线
Institute of Geotechnical Engineering, Hunan University
3.4 瑞典条分法
于是,减少了3n-3个未知量,只剩下Ti 和Ni(i=1, 2, …, n)2n个未 知数。先利用各条块力平衡条件求出T i 和 Ni :
地下水位线
Xb
n Eb
B
n-1
n-1
i
n-1 e
Zb
f
n n n
Unknowns = 6n-3 f 点固定 5n-3
Institute of Geotechnical Engineering, Hunan University
3.1 极限平衡法基本原理
减少未知量的几种途径: ⑴ 根据新的安全系数定义,利用抗剪强度准则,将条块底面 的切向力和法向力联系起来,从而可减少 (n-1)个未知量; ⑵ 条间力合力的方向作一些假定, ⑶ 对条间力的大小作一些假定; ⑷ 对条间力合力作用点位置作一些假定。
的平均值) 5.试推导出Janbu法安全系数计算式。 6.试推导出Spencer法安全系数计算式。 7.试推导出Sarma法安全系数计算式。 8.试推导出Morgenstern-Price法安全系数计算式。
Institute of Geotechnical Engineering, Hunan University
Institute of Geotechnical Engineering, Hunan University
9
2011-12-30
3.11 最危险(临界)滑动面搜索
因此,对于复杂边坡的稳定性分析,准确地寻找出全局最危险(临界) 滑动面的位置并不容易,因为它是一个含多峰的、复杂的非线性规划问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
书山有路勤为径,学海无涯苦作舟
边坡稳定性计算极限平衡计算法的平面形计算法
一、判别准则和要求
构成平面形滑坡条件为:滑坡走向和倾向须与边坡面走向倾向一致,即滑面具有顺坡面方向;滑面倾角应小于边坡角而大于滑面内摩擦角;滑面须在坡脚处出露于坡面上;两侧面应脱开。
此类型滑坡当边坡有张裂隙存在时,则需考虑张裂隙存在的位置。
二、边坡稳定性系数计算
此类型滑坡,有边坡上无张裂隙和有张裂隙两种情况,如图1、2 和3 所示。
图1 坡体内无张裂隙边坡图2 坡面上有张裂隙边坡图3 坡面上有张裂隙边坡
几何要素几何要素几何要素
(一)稳定系数计算
当边坡体内无张裂隙,但滑动面上充水时(如图1),稳定系数K 值可用公式1 计算
(1)
当边坡体内存有不同位置和不同深度的张裂隙以及张裂隙不同充水深度的条件下(如图2,图3),稳定系数可用公式2 计算。
(2)
(二)参数计算
坡体内无张裂隙时:。