金矿石预处理工艺之生物氧化工艺

金矿石预处理工艺之生物氧化工艺
金矿石预处理工艺之生物氧化工艺

金矿石预处理工艺之生物氧化工艺1生物氧化工艺

生物氧化工艺是利用自然界中的微生物,优选出嗜硫、铁的沒矿菌株,经过适应性培养、驯化,在适宜的环境下,利用这些微生物新陈代谢的直接作用或代谢产物的间接作用,从而直接或间接氧化和分解硫化矿基体,将包裹金的黄铁矿、砷黄铁矿等有害成分破坏,使金充分暴露出来,从而为随后的氰化提金工艺创造有利的条件,实现髙效的回收。同时,在氧化过程中,矿石中对环境造成污染的有害元素砷、硫等分解成相对稳定的无害盐类物质,经中和沉淀后堆存,对环境及大气不产生污染。

1.1生物氧化工艺的基本原理

直接作用就是指浸矿细菌附着矿石表面与矿石中的硫化矿物发生作用,使矿物氧化溶解。以氧化亚铁硫杆菌为例,在有氧及水存在的情况下,对黄铁矿将会有如下反应:

间接作用则是指矿石在细菌代谢过程中所产生的硫酸高铁和硫酸作用下发

生化学溶解作用。黄铁矿的化学浸出反应是:

FeS

2+ 7Fe

2

(SO

4

)

3

+ 8H

2

O→15FeSO

4

+ 8H

2

SO

4

(3)

而反应所产生的硫酸亚铁又被细菌氧化成为硫酸铁,形成新的氧化剂,使这种间接作用不断进行下去:

4FeSO

4+ O

2

+ 2H

2

SO

4

→2Fe

2

(SO

4

)

3

+ 2H

2

O (4)

直接作用和间接作用往往是同时存在的,不过有时以直接作用为主,有时又以间接作用为主。

1.2生物氧化工艺技术特点

(1)该工艺在生产过程中不会产生烟尘,不向大气排放有害气体,对环境更加友好。

(2)生产工艺大部分采用常规的矿物处理设备,设备制造批量化比较容易。

(3)可通过控制氧化作业参数或条件,选择性地氧化目的矿物,达到高效的浸出效果。

(4)由于氧化过程是在酸性溶液中进行,氧化反应槽需要防腐或采用不锈钢材质。

(5)目前没有合适的工艺综合回收伴生的有价元素。

(6)工程菌放大周期长,工艺生产要求的连续性强。

生物氧化原则流程见图1。

1.3国内外生物氧化技术的开发和应用现状

目前生物氧化工艺主要有难处理金精矿生物搅拌浸出、难处理原矿生物搅拌浸出、原矿生物堆浸三种方式。金精矿搅拌浸金回收率最髙,浸出周期短,一般为6d左右,生物氧化反应体系投资花费较少。但随着资源的日益贫化,矿石品位降低,在用其他方法从经济上不能有效地提取时,原矿生物气化堆浸越来越引起人们注意。

国外最早开发应用生物氧化工艺的南非Gencor公司于1988年将其开发的生物氧化工程化技术注册为BIOX工艺流程,并向世界上7家以上的生产厂进行了技术转让;南非国家矿冶研究院(Mintek)开发并注册了MINBAC生物氧化技术;澳大利亚Bac Tech有限公司开发了Bac Tech生物工程技术;另外,Mint-ek还与

BacTech共同合作,将其开发的生物氧化技术用高额的技术转让费向发展中国家

进行推广。因此,在20世纪以前,生物氧化提金技术在工程化应用方面基本上由国外保持领先水平。

南非Barberton矿山公司的Fair View金矿于1912年投产。该矿石中97%的金是以微细粒浸染在黄铁矿与毒砂中。通过采用生物氧化工艺后,其金的浸出率由直接氰化浸出的35%提高到95%。其生物氧化控制的条件为:反应温度40T,pH值为1.6,氧浓度2xl0-4%~4xl0-4%(2~4PPm),添加的营养基为钾、氮、磷,矿浆浓度为12%。

美国的NEWM0NT公司则成功开发了低品位难处理金矿原矿生物堆浸预处理技术。原矿首先破碎到18mm,使矿石有足够的表面积,在筑堆过程中就需要向矿石中加营养液,而且要保证足够的空气,经过270d以后进行中和,然后进行常规的堆浸。其金的回收率由生物氧化前的20%提高到60%。

我国对生物氧化提金技术的应用研究起步于国家的“九五”科技攻关计划,2000年12月,由长春黄金研究院(CCGRI)全面负责生物氧化工艺技术、生物菌种转让及工业生产调试的50t/d生物提金厂在山东烟台黄金冶炼厂建成投产,成为国内真正意义上的首座生物提金工业生产厂。2003年7月辽宁天利金业有限责任公司生物氧化厂正式投入生产运行。成为我国自行研制、自行设计、自行建设、具有完全独立自主知识产权的示范工程。该厂自投产运行至今,生产运行稳定,各项经济技术指标均已超过设计要求。目前处理量为150t/d (超过原设计的50%),金、银回收率平均达到96. 32%和81. 31%,生产成本控制在280元/t

左右[3]。通过国内自主知识产权技术的推动,使生物氧化提金技术成为近几年在国内矿产资源开发利用领域中应用速度快、成熟期短,并已进入国际先进水平的高新技术之一,也使我国成为拥有生物提金厂数量最多的国家。

由于生物氧化与焙烧、压热和化学氧化工艺相比,具有资源利用率髙,环境污染小,对复杂的含砷、含硫、微细包裹型金精矿(或含金矿石)的适应性强,而且生产工艺运行稳定可靠,操作易于掌握,工艺基建和生产费用低等优点,该工艺成为近年来在黄金技术领域中发展最迅速和最具有应用前景的一项高新技术。

难处理金矿提金的现状及发展趋势

doi:10.3969/j.issn.1007-7545.2015.04.010 难处理金矿提金的现状及发展趋势 孙留根1,袁朝新1,王云1,孙彦文1,常耀超1,徐晓辉1,杜齐平2,刘永涛2(1.北京矿冶研究总院,北京100160;2.中核沽源铀业有限责任公司,河北张家口076550) 摘要:简要介绍了难处理金精矿氰化类和非氰化类处理方法的机理及国内外最新研究及应用现状,综合比较了各种方法的优缺点,并指出了研究的发展方向。 关键词:难处理金矿;预处理;焙烧;生物氧化;氰化 中图分类号:TF831 文献标志码:A 文章编号:1007-7545(2015)04-0000-00 Status and Development of Gold Extraction from Refractory Gold Ore SUN Liu-gen1, YUAN Chao-xin1, WANG Yun1, SUN Yan-wen1, CHANG Yao-chao1, XU Xiao-hui1, DU Qi-ping2, LIU Yong-tao (1. Beijing General Research Institute of Mining & Metallurgy, Beijing 100160, China; 2. Zhonghe Guyuan Uranium Industry Co., Ltd, Zhangjiakou 076550, Hebei, China) Abstract: Processing mechanism, latest research and application status of refractory gold concentrate by cyanidation and non-cyanidation were briefly introduced. Advantages and disadvantages of each method were analyzed. The development direction of processing refractory gold ore was proposed. Key words: refractory gold ore; pretreatment; roasting; biological oxidation; cyanidation 氰化法是现代湿法提金的最重要方法,世界黄金产量的80%是采用氰化法获得的。随着易处理矿石资源的减少,人们逐渐把目光投向难处理金矿,我国难处理金矿资源[1-2]约占已探明黄金地质储量的25%~30%。但这些资源不能用常规选法经济地回收,需对精矿进行预处理,再用常规氰化浸出等方法回收。 难处理金矿石分三种:中等难处理矿石、复杂难处理矿石、高度难处理矿石。 中等难处理矿石:占总量20%~30%的金以微细粒和显微形态包裹于脉石矿物中,金属硫化物含量约占1%~4%,采用常规氰化法提金或浮选法浮集,金回收率均较低。 复杂难处理矿石:含砷3%以上,碳1%~2%,硫5%~6%,锑0.5%~5%。常规氰化金浸出率一般为20%~50%,氰化钠消耗量大,虽然浮选工艺能获得较高品位的金精矿,但精矿中砷、碳、锑等有害元素的含量也比较高,会给后续提金工艺带来影响。 高度难处理矿石:金银与铅、锑硫化物和含锑的硫砷铜矿物共生,以合金和化合物形式(如银金矿、金碲化合物、AuSb2和Au2Bi等)被化学包裹。 为了提高有价金属的回收率,实现资源的综合利用,国内外冶金工作者经过多年的研究,探索出多种难处理金矿的处理方法[3],按照是否使用氰化物分为氰化法和非氰化法,详细分类如图1所示。 收稿日期:2014-10-23 基金项目:国家重大科学仪器设备开发专项(2012YQ22011905) 作者简介:孙留根(1978-),男,河南许昌人,博士研究生,高级工程师.

四种浸出方法难处理金矿不难

选矿设备对难处理金矿的加压氧化法分离技术,加压氧化法是在高温、有氧条件下加压浸出,将硫化物氧化为硫酸而使金解离,以便下一步氰化浸出。依使用截止不同,可细分为四种方法; 1、酸性加压浸出法。通常在温度180~210°和总压力1000~3200Kpa、氧化分压350~700Kpa条件下操作,设备使用由耐酸砖作衬里或衬铅的多室高压釜。其特点是适用各种类型矿石和精矿,金回收率高,不向空气排放SO2或As,但投资大且成本高。美国、加拿大已有工业化生产企业,其它如巴西、希腊、澳大利亚等国也准备应用此技术。我国广州有色金属研究院也进行过这方面的实验研究。 2、硝酸氧化加压浸出。在硝酸介质中通氧气或用硝酸盐作催化剂,空气氧化,条件不太苛刻。此法优点是砷处于非常稳定状态,可从尾矿中排出,投资和成本也比酸性加压法低。该方法可细分为自动催化低压氧化法和Redox法(包括高温180~210℃与低温85~95℃两种)。我国吉林省冶金研究所对甘肃曲高砷金矿石,红星院化工冶金所对黑龙江团结构微细浸染型金精矿进行过小型室内试验,但因多种原因二未能工业生产。振动筛生产厂家生产的系列砂石生产线,石料生产线,制砂生产线等制砂设备,价格合理、性能可靠,是人工制砂首选设备。 3、碱性加压氧化法。一般在温度100~200℃,PH值7~8和较高压力(总压力大于3000Kpa)条件下操作,产出主要由Fe3O3组成的残渣,硫和砷则以盐类型式完全溶解。其特点是氧化温度

低和高压釜腐蚀轻。缺点为试剂费用高及砷渣处理。该法前苏联曾进行过研究,我国对吉林浑江金矿的含碳金精矿进行过研究,均未获突破;而美国已有工业生产应用实例。 4、加压氧化浸出法。美国矿物局开发出氯化物,氧气在95~120℃、200~300Kpa条件下浸出难处理金矿的新方法,在高压釜同时实现硫化物氧化和金的溶解。由于同时实现金和银的浸出,既省成本又保证环境安全,其缺点是设备的腐蚀严重和高压釜衬里的钛材料在纯氧环境中会自然。

浅谈难选冶金矿资源的预处理

安全性 □对信息系统安全性的威胁 任一系统,不管它是手工的还是采用计算机的,都有其弱点。所以不但在信息系统这一级而且在计算中心这一级(如果适用,也包括远程设备)都要审定并提出安全性的问题。靠识别系统的弱点来减少侵犯安全性的危险,以及采取必要的预防措施来提供满意的安全水平,这是用户和信息服务管理部门可做得到的。 管理部门应该特别努力地去发现那些由计算机罪犯对计算中心和信息系统的安全所造成的威胁。白领阶层的犯罪行为是客观存在的,而且存在于某些最不可能被发觉的地方。这是老练的罪犯所从事的需要专门技术的犯罪行为,而且这种犯罪行为之多比我们想象的还要普遍。 多数公司所存在的犯罪行为是从来不会被发觉的。关于利用计算机进行犯罪的任何统计资料仅仅反映了那些公开报道的犯罪行为。系统开发审查、工作审查和应用审查都能用来使这种威胁减到最小。 □计算中心的安全性 计算中心在下列方面存在弱点: 1.硬件。如果硬件失效,则系统也就失效。硬件出现一定的故障是无法避免的,但是预防性维护和提供物质上的安全预防措施,来防止未经批准人员使用机器可使这种硬件失效的威胁减到最小。 2.软件。软件能够被修改,因而可能损害公司的利益。严密地控制软件和软件资料将减少任何越权修改软件的可能性。但是,信息服务管理人员必须认识到由内部工作人员进行修改软件的可能性。银行的程序员可能通过修改程序,从自己的帐户中取款时漏记帐或者把别的帐户中的少量存款存到自己的帐户上,这已经是众所周知的了。其它行业里的另外一些大胆的程序员同样会挖空心思去作案。 3.文件和数据库。公司数据库是信息资源管理的原始材料。在某些情况下,这些文件和数据库可以说是公司的命根子。例如,有多少公司能经受得起丢失他们的收帐文件呢?大多数机构都具有后备措施,这些后备措施可以保证,如果正在工作的公司数据库被破坏,则能重新激活该数据库,使其继续工作。某些文件具有一定的价值并能出售。例如,政治运动的损助者名单被认为是有价值的,所以它可能被偷走,而且以后还能被出售。 4.数据通信。只要存在数据通信网络,就会对信息系统的安全性造成威胁。有知识的罪犯可能从远处接通系统,并为个人的利益使用该系统。偷用一个精心设计的系统不是件容易的事,但存在这种可能性。目前已发现许多罪犯利用数据通信设备的系统去作案。 5.人员。用户和信息服务管理人员同样要更加注意那些租用灵敏的信息系统工作的人。某个非常无能的人也能像一个本来不诚实的人一样破坏系统。 □信息系统的安全性 信息系统的安全性可分为物质安全和逻辑安全。物质安全指的是硬件、设施、磁带、以及其它能够被利用、被盗窃或者可能被破坏的东西的安全。逻辑安全是嵌入在软件内部的。一旦有人使用系统,该软件只允许对系统进行特许存取和特许处理。 物质安全是通过门上加锁、采用防火保险箱、出入标记、警报系统以及其它的普通安全

金矿石预处理工艺之焙烧氧化工艺

2焙烧氧化工艺 焙烧法是利用高温充气的条件下,使包裹金的硫化矿物分解为多孔的氧化物而使浸染其中的金暴露出来。焙烧法作为难浸金矿的预处理方法已有几十年的历史了。该法对矿石具有较广泛的适应性,操作、维护简单,技术可靠,但由于传统的焙烧处理放出S02, AS203等有毒气体,环境污染严重,因此其应用受到限制。但随着两段焙烧、循环沸腾焙烧、富氧焙烧、固化焙烧、闪速焙烧、微波焙烧等焙烧新工艺的出现,在一定程度上减少了环境污染,提髙了金的回收率,并且投资和生产成本相应降低,从而使焙烧氧化法又成为难浸金矿石预处理优先考虑的方案之一。 2.1焙烧氧化工艺的基本原理 高温条件下,难处理金矿将发生如下主要化学反应: 对于黄铁矿: 3FeS 2+ 8O 2 ====Fe3 3 4 + 6SO 2 ↑ (5) 4FeS 2+ 11O 2 ====2Fe 2 O3 + 8SO 2 ↑ (6) 对于砷黄铁矿,在氧气不足和约450℃时: 3FeAsS==== FeAs 2 + 2FeS + AsS ↑ (7) 12FeAsS + 29O 2====4Fe 3 O 4 + 6As 2 O 3 ↑ + 12SO 2 ↑ (8) 在600℃以上时: 4FeAsS====4FeS + As 4 ↑ (9) As 4+ 3O 2 ==== 2As 2 O 3 ↑ (10) 2.2焙烧氧化工艺技术特点 (1)该工艺处理速度快,适应性强,尤其是对含有机碳的矿石针对性强。 (2)副产品可以回收利用,可以综合回收砷、硫等伴生元素。

(3)在焙烧过程中,能造成硫化矿的“欠烧”或“过烧”,影响金的浸出率。 (4)焙烧过程产生大量的二氧体硫和三氧化二砷等有害气体,收尘系统复杂。 (5)工艺流程长而且复杂,操作参数要求严格,生产调试周期长。 (6)受到硫酸市场的影响和制约,酸价的波动直接影响该工艺的合理性。两段焙烧原则工艺流程见图2。 图2两段焙烧原则工艺流程图 2.3国内外焙烧氧化技术的开发和应用现状 目前最常见的焙烧氧化工艺主要有针对金精矿的两段沸腾焙烧和针对原矿 的固化沸腾焙烧。 对于含相当数量砷的金精矿一般采用两段焙烧工艺,即在400 ~450弋下控制弱氧化焙烧气氛或中性气氛,含砷矿物被氧化生成挥发性的三氧化二砷,同时

金矿提炼技术简介

金矿提炼技术简介 金在矿石中的含量极低,为了提取黄金,需要将矿石破碎和磨细并采用选矿方法预先富集或从矿石中使金分离出来。黄金选矿中使用较多的是重选和浮选,重选法在砂金生产中占有十分重要的地位,浮选法是岩金矿山广为运用的选矿方法,目前我国 80% 左右的岩金矿山采用此法选金,选矿技术和装备水平有了较大的提高。 (一)破碎与磨矿 据调查,我国选金厂多采用颚式破碎机进行粗碎,采用标准型圆锥碎矿机中碎,而细碎则采用短头型圆锥碎矿机以及对辊碎矿机。中、小型选金厂大多采用两段一闭路碎矿,大型选金厂采用三段一闭路碎矿流程。 为了提高选矿生产能力,挖掘设备潜力,对碎矿流程进行了改造,使磨矿机的利用系数提高,采取的主要措施是实行多碎少磨,降低入磨矿石粒度。 (二)重选 重选在岩金矿山应用比较广泛,多作为辅助工艺,在磨矿回路中回收粗粒金,为浮选和氰化工艺创造有利条件,改善选矿指标,提高金的总回收率,对增加产量和降低成本发挥了积极的作用。山东省约有 10 多个选金厂采用了重选这一工艺,平均总回收率可提高 2% ~ 3% ,企业经济效益好,据不完全统计,每年可得数百万元的利润。河南、湖南、内蒙古等省(区)亦取得好的效果,采用的主要设备有溜槽、摇床、跳汰机和短锥

旋流器等。从我国多数黄金矿山来看,浮—重联合流程(浮选尾矿用重选)适于采用,今后应大力推广阶段磨矿阶段选别流程,提倡能收、早收的选矿原则。 (三)浮选 据调查,我国 80% 左右的岩金矿山采用浮选法选金,产出的精矿多送往有色冶炼厂处理。由于氰化法提金的日益发展和企业为提高经济效益,减少精矿运输损失,近年来产品结构发生了较大的变化,多采取就地处理(当然也由于选冶之间的矛盾和计价等问题,迫使矿山就地自行处理)促使浮选工艺有较大发展,在黄金生产中占有相当的重要地位。通常有优先浮选和混合浮选两种工艺。近年来在工艺流程改造和药剂添加制度方面有新的进展,浮选回收率也明显提高。据全国 40 多个选金厂,浮选工艺指标调查结果表明,硫化矿浮选回收率为 90% ,少数高达 95% ~97%; 氧化矿回收率为 75% 左右 ; 个别的达到 80% ~ 85% 。近年来,浮选工艺流程的革新改造以及科研成果很多,效果明显。阶段磨浮流程,重—浮联合流程等,是目前我国浮选工艺发展的主要趋势。如湘西金矿采用重—浮联合流程,进行阶段磨矿阶段选别,获得较好指标,回收率提高 6% 以上;焦家金矿、五龙金矿、文峪金矿、东闯金矿等也取得一定的效果。又如新城金矿,原流程为原矿直接浮选,由于含泥较高(矿石本身含泥高,再加采矿尾砂胶结充填强度不够,带入部分泥砂)使选矿指标连续下降。经考查试验,采用了泥砂分选工艺流程,回收率由 93.05% 提高到

金矿石中提炼金的方法

金矿石中提炼金的方法 单一浮选适用于处理粗、中粒自然黄金铁矿石。经破碎后的矿进入球磨机,磨细呈矿浆后进入浮选。在浮选中,用碳酸钠作调整剂,使黄金上浮。同时用丁黄药与胺黑药作补收剂,使金矿粉与矿渣分离,产出金精矿粉。 重力选矿系利用黄金与其它矿物比得的差异性进行浮选。比重差异愈大,更易于分离。将含金矿沙置入圆筒筛,通过高压水进行流矿,大于筛孔的砾砂经溜糟、皮带输送入尾矿场;小于筛孔的矿沙通过公配器输入1-3段圆跳汰机,经3段跳汰机精矿自流入摇床,进行粗、细、扫选,生产出精沙矿。此法多用于流沙矿,细碎后的矿石也可适用。 混汞浮选适用于处理自然金嵌布粒度较粗,储存在黄铁矿和其它硫化矿石。与单一浮选不同的是在磨矿后加汞板进行金回收,回收率可达30-45%。混汞后的矿浆,通过分级机溢流进行浮选。为使更好地生成汞金,磨矿时加添一定浓度的碳酸纳、苛性钠等,可使汞金回收率提到70% 。 炭浆法提金工艺,这种工敢是80年代世界最先进的提金方法,用在处理含金褐铁矿氧化矿石的选别效果更佳。1983年,中国黄金总公司对潼关金矿的选矿工艺决定改造,引用美国戴维麦基公司的炭浆提金新工艺。炭浆法即在氧化浸出的同时,进行活性炭吸附,提高金的浸出率。其流程包括:两段闭路破碎,两段磨矿,挽流器溢流产品-200目占95%,而后进入浓密机,将矿浆浓度由18-20%浓缩为42-45%左右,再经缓冲槽进入浸出吸附槽,进行浸出作业,同时用椰子壳制成的活性炭吸附,得出最终产品载金炭。尾矿用高频完全筛回收碎活性炭中的金,而后用液氯处理含氰尾液。金回收以解析、电解、酸洗等方法获得。解

析用高浓度氰化物、高碱度,进行高温高压将载金炭中的金解析下来,再将载析下来的溶液送电解回收。电解槽以钢棉为阴极、不锈钢为阳极,使金吸附在钢棉上,解析下来的活性炭用盐酸洗涤,附去炭酸钙以及其他杂质,最后在返600℃的回转窑中再生。此项工艺经过1986-1987年的试行情况分析,1987年的浸出率比1986年5个月平均指标低5.73个百分点,为81.36%。而且各月浸出率波动较大,最你为33%,最高达98.4%。原因是矿厂中硫化物及铜的含量比1984年1月和5月分别由国内、国外试验分析的结果都有增加的趋势,银、铝、铜增加亦较显着,影响炭浆工艺的浸出效果。故于1987年改造了一条浮选流程,把部分含铜较高的硫化矿用浮选法处理,既利用了原浮选系列闲置设备,又保证了炭浆法的浸出率。冶炼经过各种选矿方法生产出金精矿粉、加入KNO3氧化剂及银和硼砂。当炉温升到700℃时,毛金熔化,炉温升至1000℃,熔液开始沸腾,渣液呈飘浮状,白炽明亮的金质下沉平静,当炉温加温至1250℃-1350℃时,渣液表面亮度变暗,经数次扒去渣液,生产出纯金。总过程是通过熔化使熔液中的过剩硫等化合物氧化除去。电解直接冶炼此法为潼关金矿所采用,以钢棉为阴极直接熔炼得金银合质金。由于此法原设计所得合质金,金银不易分离,交售时白银不予计价,钢棉一次使用混入渣,成本太大。现改为水洗电解钢棉,得金银泥,一般品位为22-28%的金,15-20%的银,在金银分离反应时银、铜、铁等渣质进入溶液,而金不溶解,呈红棕色状态存在,而后将金泥水洗、烘干和溶剂一起冶炼。

难处理金矿加压氧化法提金

书山有路勤为径,学海无涯苦作舟 难处理金矿加压氧化法提金 加压氧化又称为热压氧化,是在一定的温度和压力下,加入酸或碱进行氧化分解难处理金矿中的砷化物和硫化物,使金颗粒暴露出来,便于随后的氰化法浸金。此法可以处理金矿中的原矿,也可以处理金精矿。加压氧化过程所用的溶液介质,是根据物料的性质来选定的。当金矿的脉石矿物主要为酸性物质量(如石英及硅酸盐等),多采用酸法加压氧化;当金矿的脉石矿物主要为碱 性物质时(如含钙、镁的碳酸盐等),则采用碱法加压氧化。 世界上第一个在工业上采用加压氧化法预处理难浸金矿的是美国加州Homestake 公司McLaughlin 炭浆厂,该厂的加压氧化预处理车间于1985 年投产,是采用酸法加压氧化工艺,日处理硫化物金精矿3000t,由制氧300m3/d 的制氧机提供氧气,使用直径4.1m、长16m 的4 室卧式机械搅拌高压釜,操作温度为190℃,压力为2200kPa。第二座采用类似工艺的加压氧化厂的是巴西的SaoBento 金矿,日处理硫化物金精矿2000t,使用两台并联的直径3.5m、长19m 的5 室卧式机械搅拌高压釜,操作温度190℃,压力为1655kPa,也是在纯氧条件下操作。随后,相继投产的加压氧化预处理厂,还有美国的Barrick -Goldstrike 厂,也是采用酸法加压氧化工艺,日处理硫化物金矿石1500t。美国内华达州的Getchell 金矿含有雄黄与雌黄,金与硅质化的碳质页岩及石灰岩中黄铁矿共生,由于该金矿含有的脉石矿物主要为碳酸盐,所以在进入高压釜前先要用硫酸预测出以去除CO2,然后再进行加压氧化除砷和硫。美国Barrick -Mercur 金矿中的金是与黄铁矿和白铁矿共生,还含有活性有机碳,该厂是采用碱法加压氧化金矿的原矿石,操作温度220℃、压力3200kPa,由于硫化物的含量相对较少,所以用氧量较少,矿浆氧化和冷却后即可进行氰化浸出。 目前世界上共有10 余个采用加压氧化工艺预处理难浸金矿的工厂在运行

金矿石的选矿工艺

书山有路勤为径,学海无涯苦作舟 金矿石的选矿工艺 金矿石的各种类型因性质不同,采用的选矿方法也有不同,但普遍采用重选、浮选、混汞、氰化及近年来的树脂矿浆法、炭浆吸附法、堆浸法提金新工艺。对某些种类的矿石,往往采用联合提金工艺流程。 用于生产实践的选金流程方案很多,通常采用的有如下几种: 1.单一混汞此流程适于处理含粗粒金的石英脉原生矿床和氧化矿石。混汞法提金是一种古老而又普遍的选金方法。在近代黄金工业生产中,混汞法仍然占有很重要的位置。由于金在矿石中多呈游离状态出现,因此,在各类矿石中都有一部分金粒可以用混汞法回收。实践证明,在选金流程中用混汞法提前回收一部分金粒,可以明显地降低粗粒金在尾矿中的损失。 混汞法提金的理论基础为,汞对金粒能选择性地润湿,然后向润湿的金粒中扩散。在以水为介质的矿浆中,当汞与金粒表面接触时,金与汞形成的接触面代替了原来金与水和汞与水的接触面,从而降低了表面能,亦破坏了妨碍金与汞接触的水化膜。此时汞沿着金粒表面迅速扩散,并使相界面上的表面能降低。随后汞向金粒内部扩散,形成了汞的化合物-汞齐(汞膏)。 混汞提金法又分为内混汞和外混汞两种。所用混汞设备有混汞板、混汞溜槽、捣矿机、混汞筒和专用的小型球磨机或棒磨机。 混汞提金法工艺过程简单,操作容易,成本低廉。但汞是有毒物质,对人体危害很大。所以,采用混汞提金的选矿厂应当严格遵守安全技术操作规程,使汞蒸气和金属汞对人身体的危害限制到最小程度。 2.混汞-重选联合流程此流程分为先混汞后重选和先重选后混汞两个方案。先混汞后重选流程适用于处理简单石英脉含金矿石。先重选后混汞流程适用于处理金粒大,但表面被污染和氧化膜包裹的不易直接混汞的矿石,以及含金量

高砷金矿预处理脱砷技术发展现状

高砷金矿预处理脱砷技术发展现状 一、引言 随着易浸金矿资源的日益枯竭,含砷金矿的开发日益显出其重要性。含砷金矿一般皆属于难处理矿石,其资源的开发利用是世界性难题。砷黄铁矿(毒砂)、雌黄和雄黄是含砷金矿中主要的砷矿物。砷黄铁矿是最常见的载金矿物之一,常包裹有细分散的微粒金,在此情况下,矿石既使进行超细磨也不能使金微粒完全解离。由此,含砷金矿的预处理工艺是当今黄金提取技术科技攻关的主导方向之一,其难点是金与神化物(主要成分是毒砂)以及黄铁矿的关系非常密切,金往往以微细粒状态被包裹在其中,或存在于毒砂或黄铁矿的单个晶体之间。当金与毒砂共生时会生成黑色或黑褐色的表面膜覆盖在金的表面。上述现象导致在提金工艺中金的回收率很低。为了提高其回收率,有必要对矿石进行预处理以尽可能地脱除其 中的砷,这是目前采金业中重点研究的方向。 二、焙烧氧化预处理 焙烧氧化法是有色金属选冶中的传统工艺,也是处理含金硫化矿,特别是含炭质硫化矿最通用的可靠方法。焙烧的目的是使硫化物分解以暴露金粒,使砷、锑的硫化物呈氧化态挥发掉、炭质物燃烧或失去活性;使显微或亚显微细粒金相对富集,以便为下一步氰化浸金提供良好的动力条件。焙烧是多相化学反应过程,其主要影响因素有:温度、反应物和生成物的物化性质(粒度、孔隙度、化学组成等)、气流运动特性、气相中氧的浓度等。温度的选择和条件的控制尤为重要,故焙烧法对操作参数和给料成分非常敏感,常造成过烧或欠烧,使焙砂的浸出率不高。传统的焙烧工艺在焙烧过程中会释放大量SO2、As2O3等有毒气体,严重污染环境;炉气的收尘净化装置复杂、操作费用高。但焙烧法简单、可靠,并可综合回收S、As等元素的优点使入乐此不疲。为了解决欠烧、过烧及环境污染等缺陷,多年来.科技工作者不断研究探索,使焙烧工艺和设备不断完善和发展。就设备而言,从单膛炉发展到多膛炉,由固定床发展到流态化沸腾焙烧。昆明理工大学矿业工程黄金课题组研制了多段控温、制粒内热焙烧系统,取得良好效果;工艺方面,由一段发展到两段或多段焙烧,由空气到富氧焙烧。此外,在传统工艺的基础上,发展了加盐固硫、砷焙烧法,解决了硫、砷氧化物逸出造成环境污染的问题,减轻了尾气净化及除尘负担。氧化与硫酸化焙烧、还原焙烧、氧化焙烧及加盐焙烧等是近年来在传统焙烧法基础上发展起来的一些新型焙烧工艺。 这些方法除了具有传统焙烧工艺某些特点外,都具有各自的特色。 氧化和硫酸化焙烧广泛用于处理Fe、Cu、Cu-Ni、Co、Mn、Zn、Sb等硫化矿,使重金属转变为易溶的金属氧化物或硫酸盐,使铁变成难溶的氧化铁,使炭质物燃烧As、Sb、Se、Pb呈气态氧化物挥 发。经过焙烧金的提取率大为提高。 加盐焙烧是针对含S、As较高的金矿用传统焙烧工艺环境污染大、尾气净化负担重的问题而发展的技术,是在焙烧物料中加入适量的无机盐混合焙烧,以达到固化S、As的目的,常用的盐类为 Na2CO3/NaHCO3和钙盐(CaCl2,Ca(OH)2)。

金矿石预处理工艺之生物氧化工艺

金矿石预处理工艺之生物氧化工艺1生物氧化工艺 生物氧化工艺是利用自然界中的微生物,优选出嗜硫、铁的沒矿菌株,经过适应性培养、驯化,在适宜的环境下,利用这些微生物新陈代谢的直接作用或代谢产物的间接作用,从而直接或间接氧化和分解硫化矿基体,将包裹金的黄铁矿、砷黄铁矿等有害成分破坏,使金充分暴露出来,从而为随后的氰化提金工艺创造有利的条件,实现髙效的回收。同时,在氧化过程中,矿石中对环境造成污染的有害元素砷、硫等分解成相对稳定的无害盐类物质,经中和沉淀后堆存,对环境及大气不产生污染。 1.1生物氧化工艺的基本原理 直接作用就是指浸矿细菌附着矿石表面与矿石中的硫化矿物发生作用,使矿物氧化溶解。以氧化亚铁硫杆菌为例,在有氧及水存在的情况下,对黄铁矿将会有如下反应: 间接作用则是指矿石在细菌代谢过程中所产生的硫酸高铁和硫酸作用下发 生化学溶解作用。黄铁矿的化学浸出反应是: FeS 2+ 7Fe 2 (SO 4 ) 3 + 8H 2 O→15FeSO 4 + 8H 2 SO 4 (3) 而反应所产生的硫酸亚铁又被细菌氧化成为硫酸铁,形成新的氧化剂,使这种间接作用不断进行下去: 4FeSO 4+ O 2 + 2H 2 SO 4 →2Fe 2 (SO 4 ) 3 + 2H 2 O (4)

直接作用和间接作用往往是同时存在的,不过有时以直接作用为主,有时又以间接作用为主。 1.2生物氧化工艺技术特点 (1)该工艺在生产过程中不会产生烟尘,不向大气排放有害气体,对环境更加友好。 (2)生产工艺大部分采用常规的矿物处理设备,设备制造批量化比较容易。 (3)可通过控制氧化作业参数或条件,选择性地氧化目的矿物,达到高效的浸出效果。 (4)由于氧化过程是在酸性溶液中进行,氧化反应槽需要防腐或采用不锈钢材质。 (5)目前没有合适的工艺综合回收伴生的有价元素。 (6)工程菌放大周期长,工艺生产要求的连续性强。 生物氧化原则流程见图1。

含砷难处理金矿研究进展

含砷难处理金矿研究进展 摘要:近年来,含砷难处理金矿资源的开发利用已经引起世界各国的广泛关注和重视。其对于提高金的回收率,减少成本,达到环保要求和设计最佳流程等具有重要意义。概括介绍了焙烧氧化、微生物氧化、加压氧化等方面的发展。 关键词:含砷难处理金矿焙烧微生物氧化加压氧化 Research Progress of Arsenic-bearing Refractory Gold Ore Abstract:In recent years,refractory gold ore containing arsenic resource exploitation has caused world attention.The improvement of gold recovery rate,reduce costs,meet environmental protection requirements and design the best processes has important significance. Briefly introduces the roasting oxidation,microbial oxidation,pressure oxidation,non-cyanidation and other aspects of development. Key Words:Arsenic-bearing refractory gold ore;Roasting;Microbial oxidation;Pressure oxidation 随着金矿资源的不断开采,易处理金矿资源日益枯竭,含砷难处理金矿资源将成为黄金生产的主要资源,含砷难处理金矿中金与毒砂嵌布粒度细或成包裹状[1],采用机械法很难达到单体解离,毒砂又会产生化学干扰[2],直接进行氰化浸金,金的浸出效果不理想,故脱砷预处

金矿预处理

金、银矿石和精矿的预处理 金银矿石和精矿含有硫、砷、碳、碲时,通常在冶金前需要预处理。 1、焙烧 金银矿石大多为硫化矿,常规焙烧法多为鼓风自热焙烧。对低硫或基本不含硫的矿石,在焙烧时也可加入黄铁矿,或与其他硫化矿混合进行自热焙烧。焙烧温度、环境都需要试验决定。 A、硫金精矿的氧化焙烧 金精矿在控制温度下缓慢地进行(初期550℃,终止时金700℃),就可获得金易为浸出溶解的红棕色多孔焙砂。当金精矿中含有多于0.5%的锑或铅多于0.2%时,都会对浸出带来不利影响。铜则会消耗大量的浸出溶剂(焙烧时加入少量的氯化钠)。 B、碲金精矿的氧化焙烧 当碲化物与黄铁矿共生时,通过焙烧可同时除去。 C、砷金精矿的氧化焙烧 砷的焙烧温度为650℃、弱氧化气氛时,脱除率为98%左右,挥发的砷需要以白吡的形式回收。还有不让砷挥发,将砷通过焙烧以有利于浸出金的化合物的形式固定在矿石中。 D、含碳泥质氧化金矿的氧化焙烧 在680℃氧化焙烧20分钟,就可提高金的浸出。 E、银精矿的氯化焙烧 银精矿焙烧需要加入精矿重量的5~15%的食盐,在600℃条件下焙烧。

2、浮选分离矿石中的碳、砷 3、加压氧化分解法 A、加压酸浸氧化法 用稀硫酸在温度170℃和氧压810~1010kPa,于高压釜中浸出。 B、加压碱浸氧化法 在反应釜中预先加入石灰石、供氧、1013kpa、105℃条件下,氧化5~20小时,再浸出。 C、加压中性浸出氧化法 在225℃和不加试剂的ph7~8条件下进行。 4、化学氧化法 A、氯化法 使用氯气、次氯酸钙、次氯酸钠等处理硫、砷金矿。 B、硝化法 在密闭釜中常压供风、温度85~90℃、控制氧化还原电位750V条件下除砷、硫。 C、碱浸法 用氢氧化钠3%、固液比1:2、常温常压下预处理32小时。再浸出金。 D、N113催化氧化法 在硫酸介质中加入软锰矿,添加催化剂N113,可在常压和100℃条件下分解毒砂、黄铁矿。 E、微生物氧化分解法 使用氧化硫铁杆菌预处理砷硫金矿。

难处理金矿的浸出技术研究现状

难处理金矿的浸出技术研究现状 近年来,随着世界经济的发展,我国的黄金储备已达1054吨。目前我国黄金资源量有1.5~2万吨,保有黄金储量为4634吨,其中岩金2786吨,沙金593吨,伴生金1255吨,探明储量排名世界第7位。但在这些已探明的金矿资源中,约有1000吨都属于难浸金矿,占到了总量的近1/4。 难浸金矿石是指矿石经细磨后仍有相当一部分金不能用常规氰化法有效浸出的金矿石。这类金矿石中的金由于物理包裹或化合结合,故不能与氰化液接触,导致浸出率很低。难浸金矿石分为三种类型:(1)非硫化物脉石包裹金,这类矿石中金粒太小,无法用磨矿解离,金粒很难接触氰化液;(2)金被包裹在黄铁矿和砷黄铁矿等硫化矿物中,细磨也不能使包裹金粒接触浸出液;(3)碳质金矿石,金浸出时,金氰络合和被矿石中的活性有机炭从溶液中“劫取”⑴。 1.难浸矿石的预处理 大部分难浸矿石直接用氰化钠进行搅拌浸出时的浸出率都在10%~20%左右,浸出率低。研究人员通过对原料进行预处理的方法使难浸金矿石的浸出率得到很大提高。具体方法有氧化焙烧、热压氧化法、生物氧化法、硝酸催化氧化法等。 1.1焙烧 焙烧可使硫化物分解、砷和锑以氧化态挥发、含碳物质失去活性、显微细粒状的金富集。该工艺具有适应性较强、操作费用较低、综合回收效果好的优点。缺点是容易造成过烧和欠烧,生成的SO2及As2O3会对环境造成污染。 生产中常用的焙烧方法有两段焙烧、固硫固砷焙烧和球团包衣焙烧。 两段焙烧工艺采用两个焙烧炉,第一段是低温焙烧,温度为450~500℃,主要用于除砷。第二段是高温氧化,温度是600~650℃以除去硫;固硫固砷焙烧是加入固定剂使矿样中的砷形成硫酸盐和砷酸盐,该工艺既不放出有毒气体,又可使被包裹的金充分暴露。采用的固定剂有氧化钙、氢氧化钙、碳酸钠、氢氧化钠、氧化镁、碳酸镁等;球团包衣焙烧是将砷硫精矿和粘结剂形成的球团表面覆盖一层由砷硫固定剂组成的包衣层,焙烧时产生的As2O3、SO2气体被固定剂形成的砷酸钙和硫酸钙包裹起来以防止向外扩散污染环境⑶。 1.2热压氧化法 热压氧化法分为酸性热压氧化和碱性热压氧化。碱性热压氧化仅适用于碳酸盐含量高、硫化物含量低(<20%)的难处理金矿。酸性热压氧化是在高温高压条件下,黄铁矿、毒砂等硫化物在酸性介质中与氧发生一系列反应,矿物结构发生变化后包裹的金暴露出来,利于氰化浸金⑵。 热压氧化工艺是湿法流程,无烟气污染。黄铁矿和毒砂的氧化产物都是可溶的,故金颗粒无论大小均可以解离,金的回收率较高,许多难处理金精矿经热压浸出后,浸出率高达98%以上⑵。 1.3 生物氧化预处理

金矿石预处理工艺之热压氧化工艺

金矿石预处理工艺之热压氧化工艺3热压氧化工艺 热压氧化法主要是利用空气或富氧在高压釜中进行热压氣化的过程,通过加温、充氧的手段破坏硫化矿及部分脉石矿物的晶体,使被其包裹的金暴露出来,得以氰化沒出。该工艺既能在酸性介质中进行,也可在碱性介质中进行,既可处理原矿,也可处理精矿。热压氧化工艺已成功用于工业生产,美国、加拿大、巴西和巴布亚新几内亚等国家先后建立了近10座应用该工艺的提金厂。 3.1热压氧化工艺的基本原理 在碱性热压氧化过程中,硫化矿物中的硫、砷、锑、铁分别被氧化成硫酸盐、砷酸盐、锑酸盐及赤铁矿。主要的化学反应如下: 2FeAsS + lONaOH + 7O 2→Fe 2 O 3 + 2Na 3 AsO 4 + 2Na 2 SO 4 + 5H 2 O (11) 2FeS 2 + 12NaOH + 7. 5O 2 →Fe 2 O 3 + 4Na 2 SO 4 + 4H 2 O (12) Sb 2S 3 + 12NaOH + 7O 2 →2Na 3 SbO 4 + 3Ne 2 SO 4 + 6H 2 O (13) 2NaOH + H 2SO 4 →Na 2 SO 4 + 2H 2 O (14) SiO 2+ 2NaOH→Na 2 SiO 3 +2H 2 O (15) Al 2O 3 ? nH 2 O + 2NaOH→2NaAlO 2 + (n + 1)H 2 O (16) 在酸性热压氧化过程中,黄铁矿和毒砂被分解,生成FeAsO,、Fe203、Fe(OH)S04等沉淀物,主要的化学反应如下: 4FeS 2+ 15O 2 +2H 2 O→2Fe 2 (SO 4 ) 3 + 2H 2 SO 4 (17) 2FeAsS + 7O 2+ H 2 SO 4 +2H 2 O→2H 3 AsO 4 + Fe 2 (SO 4 ) 3 (18) 2H 3AsO 4 + Fe 2 (SO 4 )3 + 4H 2 O→2FeAsO 4 ? H 2 O ↓ + 3H 2 SO 4 (19) Fe 2( SO 4 )3 + 3H 2 O→Fe 2 O3↓ + 3H 2 SO 4 (20)

黄金冶炼工艺流程

黄金冶炼工艺流程 我国黄金资源储量丰富,分布较广,黄金冶炼方法很多。其中包括常规的冶炼方法和新技术。冶炼方法、工艺的改进,促进了我国黄金工业的发展。目前我国黄金产量居世界第五位,成为产金大国之一。 黄金的冶炼过程一般为:预处理、浸取、回收、精炼。 1.黄金冶炼工艺方法分类 1.1矿石的预处理方法 分为:焙烧法、化学氧化法、微生物氧化法、其他预处理方法。 1.2浸取方法 浸取分为物理方法、化学方法两大类。其中,物理方法又分为混汞法、浮选法、重选法。化学方法分为氰化法(又分:氰化助浸工艺、堆浸工艺)与非氰化法(又分:硫脲法、硫代硫酸盐法、多硫化物法、氯化法、石硫合剂法、硫氰酸盐法、溴化法、碘化法、其他无氰提金法)。 1.3溶解金的回收方法 分为:锌置换沉淀法、炭吸附法、离子交换法、其它回收方法。 1.4精炼方法 主要有全湿法,它包括电解法、王水法、液氯法、氯化法、还原法火法、湿法一火法联合法。 2.矿石的预处理 随着金矿的大规模开采,易浸的金矿资源日渐枯竭,难处理金矿将成为今后

黄金工业的主要资源。在我国已探明的黄金储量中,有30%为难处理金矿。因此,难处理金矿的预处理方法成为当前黄金工业提金的关键问题。 难处理金矿,通常又称为难浸金矿或顽固金矿,它是指即使经过细磨也不能用常规的氰化法有效地浸出大部分金的矿石。因此,通常所说的难处理金矿是对氰化法而言的。 2.1焙烧法 焙烧是将砷、锑硫化物分解,使金粒暴露出来,使含碳物质失去活性。它是处理难浸金矿最经典的方法之一。焙烧法的优点是工艺简单,操作简便,适用性强,缺点是环境污染严重。含金砷黄铁矿一黄铁矿矿石中加石灰石焙烧,可控制砷和硫的污染;加碱焙烧可以有效固定S、As等有毒物质。美国发明的在富氧气氛中氧化焙烧并添加铁化合物使砷等杂质进入非挥发性砷酸盐中,国研发的用回转窑焙烧脱砷法,哈萨克斯坦研发的用真空脱砷法以及硫化挥发法,微波照射预处理法,俄罗斯研发的球团法等都能有效处理含砷难浸金矿石。 2.2化学氧化法 化学氧化法主要包括常压化学氧化法和加压化学氧化法。 常压化学氧化法是为处理碳质金矿而发展起来的一种方法。常温常压下添加化学试剂进行氧化,如常压加碱氧化,在碱性条件下,将黄铁矿氧化成Fe2(SO )3,砷氧化成As(OH)3和As203,后者进一步生成砷酸盐,可以脱除。主要的氧化剂有臭氧、过氧化物、高锰酸盐、氯气、高氯酸盐、次氯酸盐、铁离子和氧等。加压氧化是采用加氧和加热的方法,通过控制化学反应过程来使硫氧化。根据不同的反应过程,可采用酸性或碱性条件。 加压氧化法具有金回收率高(90% ~98% )、环境污染小、适应面广等优点,

三高金矿湿法化学预处理方法简介

三高金矿湿法化学预处理方法简介 1、常压碱浸预处理 常压碱浸预处理是在常压下通过添加化学试剂对矿石的有关组分进行氧化和处理,其介质是碱性的。 对某含砷金精矿进行了常温、常压强化碱浸预处理的试验研究,该金精矿中的多金属矿物主要以金属硫化物为主,主要为黄铁矿、毒砂、斜方砷铁矿。试验采用物理与化学综合分离方法,利用边磨边浸工艺,其主体设备采用塔式磨浸机对含砷金精矿进行超细磨,然后在常温、常压下利用强化预处理搅拌槽进行强化碱浸预处理,从而脱砷、脱硫或使金与硫化物充分解离,再进行氰化浸金,达到高效提金的目的。该方法具有环保、工艺简单、流程短、投资小等优点。 2、常压酸处理 常压酸处理通常是只用过一硫酸对难浸矿石进行氧化处理。过一硫酸是一种氧化性比H2O2更强的氧化剂,在pH值较低时是稳定的,过一硫酸是通过在浓硫酸中加入H2O2获得的: H2O2+H2SO4(浓)=H2SO5+H2O 过一硫酸可氧化硫化矿,对砷黄铁矿氧化效果更佳,Lakshaanan(据G.V.Weert,1988)曾报道过用过一硫酸实现类似于水相氧化的作用。与传统焙烧和加压氧化法相比,其处理费用更低,尽管如此,该法却没有得到工业应用。 3、湿法氯化法 水氯化法被用于含炭质金矿的直接提金,与提金不同的是,预处理所用的试剂不是氯气,而是次氯酸盐、高价氯化铁盐和铜盐以及氯化钠等。高价铁盐和铜盐是一系列硫化矿物预浸出的理想氧化剂。试验表明,高价铁盐浸出硫化物从难到易的顺序为:辉钼矿、黄铁矿、镍黄铁矿、辉钻矿、闪锌矿、方铅矿、辉铜矿、磁黄铁矿;高价铜盐浸出硫化物从难到易的顺序为:黄铁矿、黄铜矿、方铅矿、闪锌矿、辉铜矿。通过硫化物的分解,可使包裹的金粒得到释放,从而易于氰化浸出。 4、HNO3分解法 利用HNO3氧化砷黄铁矿可使原料中的硫化物充分分解,从而使Au成倍地富集,这有利于Au的回收。前苏联用HNO3处理砷金矿,As和S被氧化成亚砷酸和硫酸,从而达到充分解离包裹金的目的,浸出渣氰化提金回收率>95%。该法酸耗0.18~0.6t,但通入氧气或空气可加速氧化过程,使HNO3耗量降低1/2~1/3。前苏联巴依可夫冶金研究所曾用5%~ 10%HNO3在75~85℃、固-液比1∶7.5的常压条件下处理含Au黄铁矿及砷黄铁矿1小时,并通入氧气或空气,Fe98%、As97%和S92%溶解于溶液

相关文档
最新文档