GaAs基垂直腔面发射激光器综述

GaAs基垂直腔面发射激光器综述
GaAs基垂直腔面发射激光器综述

InP/InGaAsP垂直腔表面发射激光器综述

摘要:

简要介绍了半导体激光器的基本原理,基于InP/InGaAsP 材料的垂直腔表面发射激光器(VCSEL)的基本原理与结构,分布布拉格反射器(DBR)的材料与各层厚度,以及1.3μm的VCSEL在光纤通信方面的应用。

关键词:半导体激光器垂直腔表面发射激光器InP/InGaAsP

引言:

1962年,世界上第一台半导体激光器——GaAs激光器实现了低温下的脉冲工作。1970年实现了室温下连续工作,其后半导体激光器取得了迅速的发展。目前半导体激光器在光存储、光陀螺、激光打印、激光准直、测距等方面有广泛的应用。尤其在光纤通信中,它是最重要的光源之一。

垂直腔表面发射激光器的概念是由日本科学家Iga等人于1977年提出,并且于1979年研制出了第一只VCSEL,但只能实现低温下的激射,阈值电流也很高。该研究小组于1988年实现了0.86μm GaAs/AlGaAs 材料的VCSEL室温下的脉冲激射。随着外延技术的发展,使得制造出高反射率的半导体布拉格反射器成为可能,这大大加速了VCSEL的研究进程。1989年贝尔实验室制作出了第一只室温下连续波工作的0.98μm单量子阱VCSEL。其后VCSEL迅速发展,至1996年,美国的Honeywell公司提供了第一只应用于光纤通信的商用质子注入型VCSEL。近几年,1.3μm与1.55μm波长的VCSEL是研究的热点,它们在中短距离通信方面有重要的应用。

1 半导体激光器简介

半导体激光器是以半导体材料作为激光工作物质,利用半导体中的电子光跃迁引起光子受激发射而产生激光的光振荡器和光放大器的总称。它具有体积小,重量轻,寿命长,效率高,可利用调制高频电流的方法实现高频调制,可批量生产,可单片集成化等诸多优点。

半导体激光器发出激光的必要条件有:(1)实现粒子数反转,即将价带的电子激发到导带形成大量的电子——空穴对。(2)有一个能起光反馈作用的谐振腔。(3)满足一定的阈值条件使光增益大于光损耗。

半导体激光器的激励方式有很多,如注入电流激励、光激励、碰撞电离激励等。目前应用最广的是pn结注入电流激励。采用这种激励方式的半导体激光器称注入型半导体激光器,也称激光二极管[1]。

2 半导体激光器原理

(1)半导体发光

在半导体晶体中,由于原子之间的相互作用,其外层电子(价电子)的能级发生分裂形成两个能带,能量较低的称为价带,较高者称为导带,导带底与价带顶之间的能量差称为禁带宽度Eg,如图1所示。电子-空穴对的复合过程就是电子由导带跃迁到价带的过程,这一过程会发出一个频率υ=Eg/h的光子。导带边与价带边具有相同波矢者,称为直接带隙

半导体。在直接带隙半导体内,能带间的

光跃迁是直接进行的,没有声子参与,光

子的吸收与发射效率很高。因此在半导体

激光器中,作为发光介质的有源区,必须

是直接带隙半导体。图1半导体中的能带电子-空穴对产生的过程称为载流子注入,其反过程为载流子复合。要在有源区实现粒子数反转,就需要不断的进行载流子注入,通过双异质结构(DH)可以实现载流子注入与载流子限制。其基本结构如图2[2]所示。电子由N限制层

注入有源层,空穴从P限制层注入有源层,

在有源层发生载流子的复合,发生光子的受

激发射光放大。并且,N限制层与P限制层

提供的空穴势垒和电子势垒将注入的载流

子限制在有源层内,提高了载流子注入效率。图2 双异质结构

(2)光波导与谐振腔

光波导是能够将光波限制在其中并使光沿层面传播的结构。介质光波导有多种形式,如:简单的双异质结结构(三层介质波导)、大光腔结构(四层介质波导)、分别限制异质结构(五层介质波导)等,这里简要介绍分别限制异质结构(SCH)。

SCH的折射率分布为最中心折射率为你n,为有源层,其旁边上下两层折射

率为n2的是载流子限制层,作用是将载流子约束在有源层内同时与有源层一起构成光波导,又称为芯层。最外面折射率为n1的为上下包层,其折射率与载流子限制层相差很大,可以有效地将光约束在光波导内。

半导体激光器的谐振腔中最简单的是法布里-珀罗(F-P)谐振腔,它由两个平行的平面镜组成。在半导体器件中,光波导的两个平行的端面构成水平谐振腔,两个平行的表面构成垂直谐振腔。这种谐振腔结构非常简单,但纵模不稳定,常出现多模或跳模。利用与有源层平行耦合的布拉格衍射光栅,能够实现锁模,可将振荡频率锁定在布拉格频率附近。垂直谐振腔中,一般采用分布布拉格反射器(DBR)代替表面平面镜。DBR是折射率周期性变化的多层结构,各层厚度均为四分之一波长,利用多光束干涉使反射光得到加强来提高反射率。

3 基于InP/InGaAsP材料的垂直腔表面发射半导体激光器

垂直腔表面发射激光器的出射光束垂直于芯片表面。它具有阈值电流低,出射光束发散角小,易于单片集成,出射光束为圆形等优点。VCSEL的腔长非常短,纵模间距很大,容易实现单纵模传输。有源区体积小,具有相对大的调制带宽。在光通信、光互连、光信号处理、光计算及光电集成组件等方面有着广泛的应用前景[3]。

(1)垂直腔表面发射激光器的基本结构

VCSEL的结构主要由两部分组成:量子阱(QW)有源区和分布布拉格反射

器。其结构如图3所示。根据对电流注

入和光场限制的不同,可以将VCSEL

的结构分为四类:空气柱型、质子注入

型、掩埋异质结构、氧化限制型。目前

实用化的VCSEL多为氧化限制型。这

种结构是利用氮气作为载气,携带的水

蒸气在一定温度下将AlGaAs氧化成

Al2O3,这种结构不仅能提供良好的电流图3 VCSEL结构

注入和光场限制,而且能将有源区尺寸

减小到数微米。

(2)量子阱的原理与材料

当DH半导体芯片的有源层厚度可以和电子波的波长相比时,载流子沿垂直于有源层方向的动量量子化为一系列分立的能级,称为量子尺度效应。它类似于量子力学中的一维势阱,因此被称为量子阱。这种结构使电子或空穴被限制在阱内,即电子或空穴只能在与阱面平行的方向上以任意的动量运动,在垂直于阱面的方向上不能作自由运动,采用这种结构可以有效地改善半导体激光器的性能。量子阱有微腔效应,微腔的量子电动力学效应导致载流子寿命与自发发射谱线宽度的减小,二者的减小会造成光增益常效α与自发发射因子σ的增大,α与σ的增大使激光器阈值大幅度降低,调制频率大幅度提高。

若仅将DH激光器的有源层做的很薄,形成单量子阱(SQW)或多量子阱(MQW)的结构。由于QW层太薄,导致产生了光波限制减弱、对导波光的有效增益变小、容易产生注入载流子泄露等缺点,不能做出高性能的激光器。因此人们制作了各种改良结构。比如:、变形单量子阱(MSQW)、分布折射率分别限制单量子阱(GRIN-SCH-SQW)、变形多量子阱(MMQW),应变补偿多量子阱(SCMQW)等[4]。

量子阱有源区的材料的禁带宽带决定了激光器的带隙波长,带隙波长λg的计算式为:

λg=2π?c E g

可用于作为量子阱有源区的材料有很多,现在最常用的有两种材料体系,一种是以GaAs和Al x Ga1-x As(下标x表示GaAs中被Al原子取代的Ga原子的百分数)为基础的,这种材料体系的带隙波长一般在850nm左右,其出射波长受掺杂情况以及x的影响。另一种是以InP和In1-x Ga x As y P1-y为基础的,这种材料发射的激光波长主要有1.3μm和1.55μm,这两种波长都可用于光纤通信[5]。

(3)InP/InGaAsP材料的有源区与GaAs/AlAs材料的DBR

InP/InGaAsP材料作有源区的垂直腔表面发射激光器所得激光波长大约在1.3μm左右。InP/InGaAsP的制备可以采用气态源分子束外延(GSMBE)生长技术,在InP基上生长出一层合适的有源区材料,制成SCMQW结构。

这种激光器的DBR可采用GaAs/AlAs材料,这种材料的生长也可采用GSMBE技术,生长大约30对GaAs/AlAs DBR的反射率大于99%,可以满足使

用要求。这种材料的折射率与温度和光波长有关,其经验公式[6]为:

其中,T为温度,单位为K,h为普朗克常量,c是光速。对GaAs,C0=0.015381,C1=12.3615,E1(0)=1.5192,E1(0)=3.791;对AlAs,C0= 0.060876,C1= 61.064215,E1(0)= 3.099,E1(0)=11.717。

计算得:300K时,1.31μm处GaAs折射率为3.408,AlAs折射率为2.909。根据DBR中每层厚度为λ/(4n), 计算得到1.31μm的GaAs/AlAs DBR中GaAs单层厚度为96.1nm, AlAs单层厚度为112.59nm。

4 InP/InGaAsP材料的垂直腔表面发射激光器的应用

InP/InGaAsP材料的VCSEL的输出波长约1.3μm左右,这种波长的VCSEL 主要用于光纤通信。2001年4月,Infineon技术公司宣布已经研制出GaAs基的1300nm VCSEL,它以10Gbit/s的光纤传输数据率工作,最大输出功率1mW,室温下阈值电流2mA,激光作用温度达80℃。E20通信公司2001年5月宣布研制出1320nm VCSEL,该单模连续波激光器输出功率超过2mW,光谱线宽小于0. 2nm,器件所用的材料是GaAs和InP基底。随后,Cielo通信公司在展示了他们的1.3μm VCSEL产品[7]。

5 总结

论文总结了半导体激光器的基本原理,介绍了输出波长为 1.3μm左右的InP/InGaAsP材料VCSEL的基本结构与应用。总之,1.3μm的半导体激光器是当前光纤通信技术的基础,采用InP/InGaAsP材料体系制作的 1.3μm的半导体激光器经过多年的发展,已经取得了很大的进步,也仍然存在一些问题,比如它的温度特性较差,虽然技术上可以采用热电制冷、光控、温控等方法确保器件的正常

工作。但这些方法都会导致成本的增加和系统可靠性的降低[8]。

参考文献

[1]张兴,黄如,刘晓彦微电子学概论北京:北京大学出版社2010.2

[2] 杜宝勋等编著半导体激光器理论基础北京:科学出版社2011

[3] 陈家璧,彭润玲激光原理及应用北京:电子工业出版社2008.8

[4] 栖原敏明(日)半导体激光器基础北京:科学出版社2002

[5] 周炳琨,高以智等激光原理(第六版)北京:国防工业出版社2009.12

[6] 谢正生1.3μm VCSEL结构制作研究中国科学院上海微系统与信息技术研究所硕士论文2007

[7] 宋晓舒垂直腔面发射激光器制造商强攻1300nm电信业堡垒光机电信息2002(8)

[8] 张永刚,陈建新,陈意桥,齐鸣,李爱珍1.3μm InAsP/InGaAsP应变补偿量子阱激光器功能材料与器件学报2000(6)

垂直腔面发射激光器的研究进展及其应用.

标题: 垂直腔面发射激光器的研究进展及其应用 发信站: 紫金飞鸿(2002年01月09日16:06:43 星期三, 站内信件 垂直腔面发射激光器的研究进展及其应用 王莉陈弘达潘钟黄永箴吴荣汉 ( 中国科学院半导体研究所北京100083 摘要:垂直腔面发射激光器VCSEL 具有常规半导体激光器不可比拟的优点其光束是园形的易于实现与光纤的高效耦合VCSEL 的有源区尺寸可做得非常小以获得高封装密度和低阈值电流适宜的设计可将激光二极管制成简单的单片集成二维列阵以实现二维光数据处理所用的激光源芯片生长后无须解理封装即可进行在片实验由于VCSEL 的优良性能从而获得了国内外科技界企业界的高度关注本文对这种器件的性能开发现状及应用作简要的概述关键词垂直腔面发射激光器光纤通信光网络光互连 1 引言 近年来由于人们对于超长距离超高速千兆比特/秒(Gbit/s及至兆兆比特/秒(Tbit/s光纤网络的需求对于高性能低成本光互联网的需求以及对于光学存贮密度的不断提高的要求使一种极其优秀的异型半导体激光器垂直腔面发射激光器(VCSEL应运而生1979年东京工业大学的Iga 提出了垂直腔面发射激光器的思想并于1988 年研制出首枚VCSEL 器件自诞生之日起其优异的性能就获得了人们的青睐科学家们以极大的热情投身到它的研究和开发中去使其蓬勃发展短短的十几年来其波长材料结构应用领域都得到迅猛发展部份产品进入市场据美国Cousultancy ElectroniCast 公司最近预测[1] 仅就用于全球消费的VCSE L 基光收发机而言2003 年VCSEL 将达到11.43 亿美元2008 年将达到近60 亿美元 2 垂直腔面发射激光器性能及结构 2 . 1 垂直腔面发射激光器的特性 垂直腔面发射激光器(Vertical-Cavity Surface-Emitting Laser 简称VCSEL及其阵列是一种新型半导体激光器它是光子学器件在集成化方面的重大突破VCSEL 与

可调谐垂直腔面发射激光器

第42卷 第4期2018年7月 激 光 技 术LASERTECHNOLOGY Vol.42,No.4July,2018 文章编号:1001-3806(2018)04-0556-06 可调谐垂直腔面发射激光器 李保志,邹永刚 * (长春理工大学高功率半导体激光国家重点实验室,长春130022) 摘要:近年来国内外在可调谐垂直腔面发射激光器这一研究领域取得了极大的进步。叙述了可调谐垂直腔面发射 激光器的结构原理和发展历程,对不同结构的优缺点作了对比介绍,展望了可调谐激光器的发展前景。这种器件在光传输、光互连及光并行信息处理等方面有着良好的应用前景。 关键词:激光器;可调谐半导体激光器;谐振腔光程;面发射中图分类号:TN248.4 文献标志码:A doi:10.7510/jgjs.issn.1001-3806.2018.04.023 Tunableverticalcavitysurfaceemittinglasers LIBaozhi,ZOUYonggang (StateKeyLaboratoryofHigh-PowerSemiconductorLasers,ChangchunUniversityofScienceandTechnology,Changchun130022,China) Abstract:Inrecentyears,greatprogresshasbeenmadeinthefieldoftunableverticalcavitysurfaceemittinglasers.Theverticalcavitysurfaceemittinglaserisperpendiculartothesubstrate,andthisnovelstructurehastheadvantages,suchassmallopticaldivergenceangle,beingsuitableforintegrationwithotheroptoelectronicdevices,andtestinginchip.Simulationmethodwasusedtosimulatewavelengthtunableverticalcavitysurface-emittinglaserswithmicro-mechanicalstructure.Thestructure, principleanddevelopmenthistoryoftunableverticalcavitysurfaceemittinglasersweredescribed.Theadvantagesanddisadvantagesofdifferentstructureswereintroduced.Thedevelopmentprospectsoftunablelaserswerealsodiscussed.Wavelengthtunablelasersoflightsourcecanmakenetworkconstructioncostlower.Largerangetunablelaserswithoutmodehopcanbeusedforhigh-resolutionlaserspectroscopyandlaserranging.Thiskindofdevicehasgoodapplicationprospectsinoptical transmission,opticalinterconnectionandopticalparallelinformationprocessing. Keywords:lasers;tunablesemiconductorlaser;opticalpathofresonator;surfaceemitting 作者简介:李保志(1993-),男,硕士研究生,主要从事光 电子技术及应用方面的研究。 *通讯联系人。E-mail:zouyg@cust.edu.cn 收稿日期:2017-10-09;收到修改稿日期:2017-12-25 引 言 与传统的边发射激光器不同,垂直腔面发射激光器(verticalcavitysurfaceemithinglaser,VCSEL)是一种光垂直于衬底表面发射的新型激光器 [1] 。自20世纪 70年代被发明以来,VCSEL在光通信、光互联和光存储等领域都得到了广泛应用,并且在高性能计算机(highperformancecomputing,HPC)、磁光记录仪、原子钟、电子控制产品(激光成像和制导、激光雷达)等领域也具有广泛的应用前景。VCSEL除了可在同一衬底上并列集成多个器件外,还具有圆形对称光斑、体积 小、阈值低、单纵模、耦合效率高、调制速率高[2] 等诸多优点。 一般的VCSEL器件发射波长是不变的。在密集波分复用通信系统(densewavelengthdivisionmultiple-xing,DWDM)[3] 中,若要得到波长不同的光需要将多个VCSEL集成在一起,这样会造成系统不稳定并增加了生产成本。至此,波长可调谐VCSEL的提法便应运而生。20世纪90年代初,美国加州大学伯克利分校的CHANG-HASNAIN研发出了第1个波长可调谐的 VCSEL,波长调谐范围为19nm[4] 。在近几十年的发展过程中,可调谐VCSEL的调谐范围大大增加,调谐方式也更为丰富,具体可分为静电调谐、压电调谐、电热调谐和液晶调谐4种调谐方式。国内外主要的研究机构有:中国科学院半导体研究所、长春理工大学、北京工业大学、德国达姆施塔特工业大学、法国布列塔尼欧 万方数据

转换半导体激光器的波长面临挑战

转换半导体激光器的波长面临挑战 非线性光学技术是填补激光光谱空白的有效办法,它包括简单的谐波产生和更为复杂的光参量振荡器(OPO)。二极管泵浦钕激光器的倍频使得绿色激光指示器的价格更低、结构紧凑,但是为什么开发人员不放弃激光泵浦,然后直接通过倍频的方式来产生所需的波长呢? 绿光激光器实现了这一点,MicorVision公司生产的微微投影仪已经进入市场。但是这并不容易。非线性波长转换不仅需要高的激光源功率,激光打标机而且需要高的光束质量和窄线宽发射。https://www.360docs.net/doc/c83443453.html,把这些特性都集中到一台半导体激光器上并不容易。然而随着技术的不断进步,第一款产品已经进入市场,开发人员还在报告着更多令人兴奋的成果,包括新型激光器设计、二极管泵浦OPO、量子级联激光器的谐波和差频的产生。深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机 寻求倍频的二极管激光器 对二级管激光器进行倍频的工作起始于上世纪90年代早期,当时二极管已经达到较高的功率水平,但是波长止于红光。对近红外二极管激光器的输出进行倍频,可以得到可见光谱中的短波输出。激光打标机针对激光显示等应用,还可使用直接调制的短波激光器。 相干公司成功研制出一款名为D3的激光器(直接倍频二极管激光器),该激光器对860nm二极管激光器的100mW输出进行倍频,从而生成10mW的430nm波长的蓝光。它使用分布式布拉格反射激光器用于窄线宽输出,其输出还需要模式匹配并且相位锁定到外腔谐波发生器。这是业界第一款产品,但是由于没有找到合适的应用而最终退出市场。毫无疑问,部分原因是由于当时在日亚化学株式会社的中村修二成功开发出了蓝光氮化铟镓(InGaN)激光器。相干公司最终开发出了光泵表面发射半导体激光器,它可以倍频输出可见光,但是其更像固体激光器而非二极管激光器。 蓝光二极管激光器的成功,在绿光为中心的可见光光谱中留下了空隙。几年后,当消费电子领域寻找一种新技术用于投影电视的时候,这一问题凸显出来。如果可以找到合适的530nm激光源,激光背投电视可以提供比平板显示更好的色域。倍频钕激光器似乎是一个合理的选择,深圳市星鸿艺激光科技有限公司专业生产激光打标机,激光焊接机,深圳激光打标机,东莞激光打标机但是由于不能按照所需速率直接对其进行调制,因此开发人员转而寻求倍频1060nm的二极管激光器或其他激光器,以生成530nm的绿光。 随着背投电视逐渐淡出消费电子市场,大多数项目都因此搁浅,但也有一些项目转向了那些用于移动设备的微微投影仪。Portola Valley公司的光学顾问John Nightingale表示,这类应用的成本要远低于电视应用。 康宁公司已经在刚起步的微投影仪市场上有所开拓。去年该公司推出了一款商用版的投影仪,并为MicroVision公司的Showwx投影仪提供激光器,后者用于iPod和笔记本电脑。康宁公司的绿光激光器对分布式布拉格反射(DBR)激光器的1060nm的输出进行倍频,该DBR激光器发射单频单模激光激光打标机。该激光器包括三部分:第一部分是DBR光栅,第二部分是相位调节器,第三部分是增益介质。康宁公司最初报道的结

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

垂直腔面发射激光器(VCSEL)的研究进展

Optoelectronics 光电子, 2017, 7(2), 50-57 Published Online June 2017 in Hans. https://www.360docs.net/doc/c83443453.html,/journal/oe https://https://www.360docs.net/doc/c83443453.html,/10.12677/oe.2017.72008 Research Progress of VCSEL Yang Wang, Bifeng Cui, Tianxiao Fang Key Laboratory of Opto-Electronics Technology, Ministry of Education, Faculty of Information Technology, Beijing University of Technology, Beijing Received: May 20th, 2017; accepted: Jun. 3th, 2017; published: Jun. 8th, 2017 Abstract This paper gives an introduction to the progress of VCSEL mainly including the VCSEL commercial products and performance optimization of research area in recent years based on overall review of recent research reports for the VCSEL and the commercial VCSEL products of major companies. Keywords VCSEL, High Power, Application, Array 垂直腔面发射激光器(VCSEL)的研究进展 王阳,崔碧峰,房天啸 北京工业大学信息学部,省部共建光电子技术教育部重点实验室,北京 收稿日期:2017年5月20日;录用日期:2017年6月3日;发布日期:2017年6月8日 摘要 通过对近几年研究单位报道的VCSEL的研究成果以及目前各大公司的商用VCSEL产品进行分析总结,重点介绍了VCSEL的商用产品以及研究领域其性能优化情况,综述了近几年VCSEL的研究进展。 关键词 VCSEL,大功率,应用,阵列 文章引用:王阳, 崔碧峰, 房天啸. 垂直腔面发射激光器(VCSEL)的研究进展[J]. 光电子,2017, 7(2): 50-57.

半导体激光器的研究

半导体激光器的研究 半导体激光器是近年来应用非常广泛的一种激光器。在本实验中我们将对半导体激光器的主要发光器件——激光二极管(LD)进行全面的实验研究。 【实验内容】 1.激光二极管(LD)的伏安特性测量。 2.LD的发光强度与电流的关系曲线测量。 3*.LD发光光谱分布测量。 4*.LD发光偏振特性分析。 【实验仪器】 激光二极管,电压表,电流表,激光功率计,分光计,格兰—泰勒棱镜等

阅读材料 半导体激光器件 按照半导体器件功能的基本结构可分为:注入复合发光,即电—光转换;光引起电动势效应,即光—电变换。这里主要讨论前者。 半导体激光光源是半导体激光器发射的激光。它是以半导体材料作为激光工作物质的一类激光器,亦称激光二极管,英文缩写为LD。与其相对应的非相干发光二极管,英文缩写为LED。它具有工作电压低、体积小、效率高、寿命长、结构简单、价格便宜以及可以高速工作等一系列优点。可采用简单的电流注入方式来泵浦,其工作电压和电流与集成电路兼容,因而有可能与之单片集成;并且还可用高达吉赫(109 Hz)的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,LD在激光通信、光纤通信、光存储、光陀螺、激光打印、光盘录放、测距、制导、引信以及光雷达等方面已经获得了广泛应用,大功率LD 可用于医疗、加工和作为固体激光器的泵浦源等。 半导体激光器自1962年问世以来,发展极为迅速。特别是进入20世纪80年代,借用微电子学制作技术(称为外延技术),现已大量生产半导体激光器。以半导体LD条和LD堆为代表的高功率半导体激光器品种繁多,应有尽有。 1 概述 1)半导体激光器的分类 从半导体激光器的发射的激光看,可分为半导体结型二极管注入式激光器和垂直腔表面发射半导体激光器两种类型;而从结型看,又可分为同质结和异质结两类;从制造工艺看,又可为一般半导体激光器、分布反馈式半导体激光器和量子阱半导体激光器激光器;另外,为了提高半导体激光器的输出功率,增大有源区,将其做成列阵式,又可分为单元列阵、一维线列阵、二维面阵等。 2)半导体激光器的工作原理 半导体激光器与其它激光器没有原则区别,只是因工作物质不同,而有其自身的特点。图示给出了GaAs激光器的外形及其管芯结构,在激光器的外壳上有一个输出激光的小窗口,激光器的电极供外接电源用,外壳内是激光器管芯,管芯形状有长方形、台面形、电极条形等多种。它的核心部分是PN结。半导体激光器PN结的两个端面是按晶体的天然晶面剖切开的,称为解理面,这两个表面极为光滑,可以直接用作平行反射镜面,构成激光谐振腔。激光可以从某一侧解理面输出,也可由两侧输出。 半导体材料是一种单晶体,各原子最外层的轨道互相重叠,导致半导体能级不再是分

半导体激光器的发展及其应用

浅谈半导体激光器及其应用 摘要:近十几年来半导体激光器发展迅速,已成为世界上发展最快的一门激光技术。由于半导体激光器的一些特点,使得它目前在各个领域中应用非常广泛,受到世界各国的高度重视。本文简述了半导体激光器的概念及其工作原理和发展历史,介绍了半导体激光器的重要特征,列出了半导体激光器当前的各种应用,对半导体激光器的发展趋势进行了预测。 关键词:半导体激光器、激光媒质、载流子、单异质结、pn结。 自1962年世界上第一台半导体激光器发明问世以来,半导体激光器发生了巨大的变化,极大地推动了其他科学技术的发展,被认为是二十世纪人类最伟大的发明之一。近十几年来,半导体激光器的发展更为迅速,已成为世界上发展最快的一门激光技术。半导体激光器的应用范围覆盖了整个光电子学领域,已成为当今光电子科学的核心技术。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制以及价格较低廉等优点,使得它目前在光电子领域中应用非常广泛,已受到世界各国的高度重视。 一、半导体激光器 半导体激光器是以直接带隙半导体材料构成的Pn 结或Pin 结为工作物质的一种小型化激光器。半导体激光工作物质有几十种,目前已制成激光器的半导体材料有砷化镓、砷化铟、锑化铟、硫化镉、碲化镉、硒化铅、碲化铅、铝镓砷、铟磷砷等。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。绝大多数半导体激光器的激励方式是电注入,即给Pn 结加正向电压,以使在结平面区域产生受激发射,也就是说是个正向偏置的二极管。因此半导体激光器又称为半导体激光二极管。对半导体来说,由于电子是在各能带之间进行跃迁,而不是在分立的能级之间跃迁,所以跃迁能量不是个确定值, 这使得半导体激光器的输出波长展布在一个很宽的范围上。它们所发出的波长在0.3~34μm之间。其波长范围决定于所用材料的能带间隙,最常见的是AlGaAs双异质结激光器,其输出波长为750~890nm。 半导体激光器制作技术经历了由扩散法到液相外延法(LPE), 气相外延法(VPE),分子束外延法(MBE),MOCVD 方法(金属有机化合物汽相淀积),化学束外延(CBE)以及它们的各种结合型等多种工艺。半导体激光器最大的缺点是:激光性能受温度影响大,光束的发散角较大(一般在几度到20度之间),所以在方向性、单色性和相干性等方面较差。但随着科学技术的迅速发展, 半导体激光器的研究正向纵深方向推进,半导体激光器的性能在不断地提高。以半导体激光器为核心的半导体光电子技术在21 世纪的信息社会中将取得更大的进展, 发挥更大的作用。 二、半导体激光器的工作原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: 1、增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现, 将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 2、要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p 腔(法布里—珀罗腔)半导体激光器可以很方便地利用晶体的与p-n结平面相垂直的自然解理面构成F-p腔。 3、为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔

GaAs基垂直腔面发射激光器综述

InP/InGaAsP垂直腔表面发射激光器综述 摘要: 简要介绍了半导体激光器的基本原理,基于InP/InGaAsP 材料的垂直腔表面发射激光器(VCSEL)的基本原理与结构,分布布拉格反射器(DBR)的材料与各层厚度,以及1.3μm的VCSEL在光纤通信方面的应用。 关键词:半导体激光器垂直腔表面发射激光器InP/InGaAsP 引言: 1962年,世界上第一台半导体激光器——GaAs激光器实现了低温下的脉冲工作。1970年实现了室温下连续工作,其后半导体激光器取得了迅速的发展。目前半导体激光器在光存储、光陀螺、激光打印、激光准直、测距等方面有广泛的应用。尤其在光纤通信中,它是最重要的光源之一。 垂直腔表面发射激光器的概念是由日本科学家Iga等人于1977年提出,并且于1979年研制出了第一只VCSEL,但只能实现低温下的激射,阈值电流也很高。该研究小组于1988年实现了0.86μm GaAs/AlGaAs 材料的VCSEL室温下的脉冲激射。随着外延技术的发展,使得制造出高反射率的半导体布拉格反射器成为可能,这大大加速了VCSEL的研究进程。1989年贝尔实验室制作出了第一只室温下连续波工作的0.98μm单量子阱VCSEL。其后VCSEL迅速发展,至1996年,美国的Honeywell公司提供了第一只应用于光纤通信的商用质子注入型VCSEL。近几年,1.3μm与1.55μm波长的VCSEL是研究的热点,它们在中短距离通信方面有重要的应用。 1 半导体激光器简介 半导体激光器是以半导体材料作为激光工作物质,利用半导体中的电子光跃迁引起光子受激发射而产生激光的光振荡器和光放大器的总称。它具有体积小,重量轻,寿命长,效率高,可利用调制高频电流的方法实现高频调制,可批量生产,可单片集成化等诸多优点。 半导体激光器发出激光的必要条件有:(1)实现粒子数反转,即将价带的电子激发到导带形成大量的电子——空穴对。(2)有一个能起光反馈作用的谐振腔。(3)满足一定的阈值条件使光增益大于光损耗。

半导体激光器

半导体激光器 半导体激光器又称激光二极管[1](LD)。进入八十年代,人们吸收了半导体物理发展的最新成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器最新技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。于是,制作出的LD,其阈值电流显著下降,转换效率大幅度提高,输出功率成倍增长,使用寿命也明显加长。 A 小功率LD 用于信息技术领域的小功率LD发展极快。例如用于光纤通信及光交换系统的分布反馈(DFB)和动态单模LD、窄线宽可调谐DFB-LD、用于光盘等信息处理技术领域的可见光波长(如波长为670nm、650nm、630nm的红光到蓝绿光)LD、量子阱面发射激光器以及超短脉冲LD等都得到实质性发展。这些器件的发展特征是:单频窄线宽、高速率、可调谐以及短波长化和光电单片集成化等。 B 高功率LD 1983年,波长800nm的单个LD输出功率已超过100mW,到了1989年,0.1 mm条宽的LD则达到3.7W的连续输出,而1cm线阵LD已达到76W输出,转换效率达39%。1992年,美国人又把指标提高到一个新水平:1cm线阵LD连续波输出功率达121W,转换效率为45%。现在,输出功率为120W、1500W、3kW等诸多高功率LD均已面世。高效率、高功率LD及其列阵的迅速发展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光器的迅猛发展提供了强有力的条件。 近年来,为适应EDFA和EDFL等需要,波长980nm的大功率LD也有很大发展。最近配合光纤Bragg光栅作选频滤波,大幅度改善其输出稳定性,泵浦效率也得到有效提高。 【特点及应用范围】半导体二极管激光器是实用中最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面以及获得了广泛的应用。 【半导体激光器的发展及应用】半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。 在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写

半导体激光器

半导体激光器 摘要:由于三五族化合物工艺的发展与半导体激光器的多种优点,近几十年来,半导体激光器发展十分迅速,而且在各个领域发挥着越来越重要的作用。本文将介绍半导体激光器的基本理论原理、相关发展历程、研究现状以及其广泛的应用。 1.引言 自1962 年世界上第一台半导体激光器发明问世以来, 半导体激光器发生了巨大的变化, 极大地推动了其他科学技术的发展, 被认为是二十世纪人类最伟大的发明之一[1], 近十几年来, 半导体激光器的发展更为迅速, 已成为世界上发展最快的一门激光技术[2]。激光器的结构从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式,制作方法从扩散法发展到液相外延(LPE)、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE) 以及它们的各种结合型等多种工艺[3]。由于半导体激光器的体积小、结构简单、输入能量低、寿命较长、易于调制及价格低廉等优点, 使得它目前在各个领域中应用非常广泛。 2.半导体激光器的基本理论原理 半导体激光器又称激光二极管(LD)。它的实现并不是只是一个研究工作者的或小组的功劳,事实上,半导体激光器的基本理论也是一大批科研人员共同智慧的结晶。 早在1953年,美国的冯·纽曼(John Von Neumann)在一篇未发表的手稿中第一个论述了在半导体中产生受激发射的可能性;认为可以通过向PN结中注入少数载流子来实现受激发射;计算了在两个布里渊区之间的跃迁速率。巴丁在总结了这个理论后认为,通过各种方法扰动导带电子和价带空穴的平衡浓度,致使非平衡少数载流子复合而产生光子,其辐射复合的速率可以像放大器那样,以同样频率的电磁辐射作用来提高。这应该说是激光器的最早概念。 苏联的巴索夫等对半导体激光器做出了杰出贡献,他在1958年提出了在半导体中实现粒子数反转的理论研究,并在1961年提出将载流子注入半导体PN结中实现“注入激光器”,并论证了在高度简并的PN结中实现粒子数反转的可能性,而且认为有源区周围高密度的多数载流子造成有源区边界两边的折射率有一差值,因而产生光波导效应。1961年,伯纳德和杜拉福格利用准费米能级的概念推导出了半导体有源介质中实现粒子数反转的条件,这一条件为次年半导体激光器的研制成功提供了重要理论指导。 1960年,贝尔实验室的布莱和汤姆逊提出了用半导体的平行解理面作为产生光反馈的谐振腔,为激发光提供反馈。 回顾这些理论发展历程,可以总结半导体激光器的基本理论原理:在直接带隙半导体PN结中,用注入载流子的方法实现伯纳德—杜拉福格条件所控制的粒子数反转;由高度简并的电子和空位复合所产生的受激光辐射在光学谐振腔内震荡并得到放大,最后产生相干激光输出[4]。 3.半导体激光器发展历程 在上述理论的影响下,以及1960年产生的红宝石激光器的刺激下,美国和苏

垂直腔面发射激光器的特性分析

垂直腔面发射激光器的特性分析 半导体情报第38卷第 4期 2001年 8月 研究探讨 ZnO薄膜材料的发光特性 3 王卿璞 ,张德恒 (山东大学物理与微电子学院 ,山东济南

250100) 摘要 :回顾了最近几年对 于永芹,黄柏标 (山东大学晶体所,山东济南250100) ZnO 自发辐射和受激辐射发光特性。 薄膜材料发光特性的研究进展 ,介绍了用不同方法制备 ZnO薄膜的 关键词 : ZnO薄膜 ;发光特性 ;发光机制 中图分类号 : TN 30412+ 4文献标识码 :A文章编号 : 100125507 (2001) 0420048206 Light emitting characteristic of ZnO thin films

WANG Q ing2pu, ZHANG De2heng (Faculty of Physics and M icroelectronics, Shandong University , J inan 250100, Ch ina) YU Yong2qin, HUANGBo2b iao (Institute of CrystalliteM aterials, Shandong University , J inan 250100, Ch ina) Abstract:Thedevelopmentsoftheinvestigationonluminescencecharacteris ticforZnO thinfilms arereviewed, thesponteneousandstimulatedemissionforZnO thinfilmsdepositedbydifferent m ethod are described. Keywords: ZnO thinfilm ; luminescencecharacteristic; luminescencemechanism 效率的蓝光发光二极管和激光器。这可使全色显示 1引言成为可能 ,用 GaN所制造出的蓝光激光器可代替

半导体激光器

半导体激光器 半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器的分类 (1)异质结构激光器(2)条形结构激光器(3)AIGaAs/GaAs激光器(4)InGaAsP/InP激光器(5)可见光激光器(6)远红外激光器(7)动态单模激光器(8)分布反馈激光器(9)量子阱激光器(10)表面发射激光器(11)微腔激光器 半导体激光器 半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续输出。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生产量最大的激光器。激光二极体的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。 仪器简介

Q-Line纤绿半导体激光器 半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器. 工作原理及特点 半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。半导体激光器优点是体积小,重量轻,运转可靠,耗电少,效率高等。 封装技术 技术介绍 半导体激光器封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而半导体激光器封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于半导体激光器。 发光部分 半导体激光器的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高半导体激光器的内、外部量子效率。常规Φ5mm型半导体激光器封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合

半导体激光器的安全使用操作

实验一半导体激光器的安全使用操作一、实验目的 ?熟悉半导体激光器的一般常识。 ?掌握半导体激光器的安全使用及操作。 ?熟悉半导体激光器波导腔的特性及输出偏振特性。 ?了解PN结平面及快慢轴方向的分辨。 ?熟悉半导体激光器的出厂技术参数。 二. 半导体激光器原理及常识介绍 2.1运行机理 对于典型的双异质结半导体器激光器是靠PN结正向注入和载流子的复合发光的,要使它发射激光需具备的条件是:①粒子数反转分布;②有合适的光谐振腔起反馈作用;③满足一定的阀值条件。对于条件①一般是采用简并的P型和N型半导体构成PN结,大量的载流子注入PN结区,成为反转分布区。对于条件②结型半导体激光器的光谐振腔通常用与PN 结平面相垂直的自然解理面构成的平面腔。在作用区内,开始时导带中的电子自发地跃迁到价带和空穴复合,产生相位/方向并不相同的光子,大部分光子一产生便穿出PN结区,但也有一部分光子在PN结区平面内穿行,并且在PN结内行进相当长的距离,因而它们能够激发产生许多同样的光子。这些光子在两个平行的平面镜间不断地来回反射,每反射一次就得到进-步的放大。这样不断地重复和发展,就使得这种辐射趋于占压倒的优势,即辐射逐渐集中到平面镜上,而且方向垂直于反射面,形成激光输出。对于条件③半导体激光器的阀值电 流密度为(3-1) 其中、分别为增益因子与损耗因子;为谐振腔的长度,R1、R2为两腔镜的反射率。 2. 2波导腔的特性 半导体激光器其腔结构可看成是一波导腔,在垂直于P-N结平面方向(横向)一般为对称或非对称三层波导结构,为降低阈值,其有源层厚度仅为0.1~0.2 μm左右。根椐平板波导原理,在该波导中只允许基模传输,即其输出为基横模,输出偏振为TE,且发散角很

相关文档
最新文档