CHEMCAD设计管壳式换热器的设计步骤
chemCAD课件资料

单物料换热器工艺设计步骤-4
热力学基础知识
气相:理想气体: 真实气体:SRK、PR、CS、API S、BWRS、GS、MBK
液相:状态方程:SRK、PR、CS、API S、BWRS、GS、MBK 活度系数方程:正规溶液:Van Laar,Margule,MSRK、RS 无热溶液:Wilson、NRTL、UNIQUAC、UNIFIC 电解质溶液:Amine(MEA,DEA脱气),Sour water(水溶解酸性气或 NH3)、PPAQ(电解质体系) 特殊体系:Henry’s Gas Law,TSRK(甲醇系统),TEG(三乙二醇对 烃脱水),Flor-Huggins(聚合物)
公用工程校核 输入以下用于公用工程校核(设计型忽略)
单物料换热器工艺设计步骤-6
估价模式(管壳式、 蒸发器、空冷器、 套管式) 换热器形式(两端 固定、釜式再沸器、 U形管式) 蒸发器形式(强制 循环、长管式、降 膜式)
设备估价
单物料换热器工艺设计步骤-7
第七步,运算
注意提示框信息
单物料换热器工艺设计步骤-8
用户已有四千多家
前
chemCAD能做什么
言
第一章 换热器
chemCAD换热器设计 工艺模拟
设计: 热负荷 换热面积 物料出口状态 公用工程量 分段换热细节 校核: 换热器传热效率
设备设计
直径 长度 折流板 换热管 进出口
优化分析
振动分析 优化设计 逐区域分析
换热器分类
换热器(Heat Exchange) 管壳式(Shell &Tube) 板式(Plate) 套管式(Double) 空冷器(Air Cooler) 加热炉(Fired heater) (LNG Heat Exchange )
化工原理课程设计换热器

化工原理课程设计换热器
换热器设计是化工原理课程设计中一个重要的部分。
下面将为您介绍步骤和注意事项。
一、设计步骤:
1. 确定换热器类型:根据工艺要求及介质性质,选择适合的换热器类型,如管壳式、板式、螺旋板式等。
2. 估算传热系数:根据换热器类型、流体类型、流量、温度等因素,估算出传热系数。
3. 计算传热面积:根据所需传热量和传热系数,计算指定温度下需求的传热面积。
4. 选择换热器管径及壳体规格:根据所需传热面积和换热器类型,选择合适的换热器管径及壳体规格。
5. 设计热损失:根据换热器使用环境,计算换热器热损失量,以确保能量转化的高效。
6. 设计流路:结合工艺流程及介质性质,确定换热器内部介质的流路和流速,
以确保传热效率。
二、注意事项:
1. 选用合适的换热器类型,以确保传热效率和占用空间的合理性。
2. 估算传热系数要考虑介质性质、流量、温度等因素,更加科学地估算传热系数。
3. 所需传热面积要根据实际需要,同时结合换热器的大小、材质等因素做出合理的选择。
4. 选择换热器管径及壳体规格要遵循一定的社会标准及安全规范,以确保换热器使用的稳定性和安全性。
5. 设计热损失要考虑换热器使用环境,以确保能量转化的高效。
同时,必须符合国家有关规定。
管壳式换热器设计 课程设计

管壳式换热器设计课程设计XXX课程设计:管壳式换热器设计学院:机械与XXX专业:热能与动力工程专业班级:11-02班指导老师:小组成员:目录第一章:设计任务书第二章:管壳式换热器简介第三章:设计方法及设计步骤第四章:工艺计算4.1 物性参数的确定4.2 核算换热器传热面积4.2.1 传热量及平均温差4.2.2 估算传热面积第五章:管壳式换热器结构计算管壳式换热器是常用的热交换设备,广泛应用于化工、石油、制药、食品等行业。
本次课程设计旨在设计一台管壳式换热器,以满足特定工艺条件下的换热需求。
在设计之前,需要了解管壳式换热器的基本结构和工作原理。
管壳式换热器由外壳、管束、管板、管箱、管夹等部分组成。
热量通过内置于管束中的流体在管内传递,再通过管壳间的流体传递到外壳中,从而实现热交换。
设计过程中,需要确定流体的物性参数,包括密度、比热、导热系数等。
同时,还需要核算换热器传热面积,以满足特定的传热需求。
传热量和平均温差是计算传热面积的重要参数,而估算传热面积则需要考虑流体的流动状态、管束的排布方式等因素。
最终,我们将根据设计要求进行管壳式换热器的结构计算,确定外壳、管束等部分的尺寸和数量,以满足特定工艺条件下的换热需求。
第一章设计任务书本项目旨在设计一台管壳式换热器,用于将煤油由140℃冷却至40℃。
处理能力为10t/h,压强降不得超过100kPa。
具体操作条件为:煤油的入口温度为140℃,出口温度为40℃,冷却水的入口温度为26℃,出口温度为40℃。
2.第二章管壳式换热器简介管壳式换热器是石油化工行业中应用最广泛的换热器。
尽管各种板式换热器的竞争力不断上升,但管壳式换热器仍然占据着换热器市场的主导地位。
目前,各国为提高这类换热器性能进行的研究主要集中在强化传热、提高对苛刻工艺条件的适应性以及开发适用于各类腐蚀介质的材料。
此外,结构改进也是向着高温、高压、大型化方向发展的必然趋势。
5.1 换热管计算及排布方式在设计管壳式换热器时,需要计算并确定换热管的数量、直径和排布方式。
化工设备设计全书换热器设计

化工设备设计全书换热器设计换热器是一种用于传递热量的设备,常用于化工工艺中。
换热器设计的目标是在满足工艺要求的前提下,最大限度地提高热量传递效率,并确保设备的稳定运行和安全性。
换热器设计过程包括以下几个主要步骤:1. 确定热量传递需求:首先,需要明确工艺中所需的热量传递量,即冷热流体之间的温度差和传热面积。
2. 选择合适的换热器类型:根据工艺要求和特定的应用场景,选择适合的换热器类型。
常见的换热器类型包括壳管式换热器、板式换热器、螺旋板换热器等。
3. 确定传热介质和流体参数:确定冷热流体的物性参数,如温度、压力、流量等,并选择合适的传热介质,如水、蒸汽、油等。
4. 计算传热面积:根据热量传递需求和换热器类型,计算所需的传热面积。
传热面积的大小直接影响换热器的尺寸和成本。
5. 设计换热器结构:根据换热器类型和传热面积,设计换热器的结构参数,如管束布置、管道直径、板间距等。
6. 选择合适的材料:根据工艺要求和流体特性,选择合适的材料来制造换热器,确保其耐腐蚀性和耐高温性。
7. 进行强度计算:对换热器结构进行强度计算,确保其能承受工作条件下的压力和温度。
8. 进行传热和流动阻力计算:通过传热和流动阻力计算,评估换热器的传热效率和流体流动特性是否满足工艺要求。
9. 进行换热器的工艺模拟和优化:使用计算机辅助设计软件,进行换热器的工艺模拟和优化,以提高热量传递效率和设备性能。
10. 编制设计报告和施工图纸:最后,根据设计结果编制详细的设计报告和施工图纸,作为生产制造和安装的依据。
换热器设计需要综合考虑工艺要求、设备特性和经济效益等因素,并遵循相关的设计规范和标准,以确保设计的准确性和安全性。
换热器设计步骤

换热器设计步骤换热器是用于传递热量的设备,广泛应用于工业生产和供暖系统中。
对于换热器的精确设计,需要经过一系列步骤才能得到最佳的设计方案。
下面是换热器精确设计的详细步骤:第一步:确定设计目标在进行换热器设计之前,需要明确设计目标。
这包括了热负荷、温度变化、流体属性以及安装条件等要求。
设计目标的明确可以为后续的设计提供指导。
第二步:收集原始数据为了进行精确的换热器设计,需要收集与设计有关的各种原始数据。
这些数据包括冷却剂的流量、温度和压力,以及被冷却物体的热负荷、温度和压力等信息。
此外,还需要收集流体的物性参数,如导热系数、比热容等。
第三步:确定换热方式根据实际需求和应用场景,确定合适的换热方式。
常见的换热方式包括对流换热、辐射换热和传导换热。
根据不同的热负荷和流体特性,选择最适合的换热方式。
第四步:统计设计条件根据收集的原始数据和所确定的换热方式,对设计条件进行统计和归纳。
这包括了流体的质量和能量平衡方程,换热面积和换热系数、传热功率、流体速度、压降等参数的计算。
第五步:选择换热器类型根据设计条件,选择合适的换热器类型。
常见的换热器类型包括管壳式换热器、板式换热器、螺旋板式换热器等。
选择合适的换热器类型可以满足设计要求,并保证换热器的经济性和可靠性。
第六步:进行换热器的初步设计根据所选择的换热器类型,进行初步的设计计算。
根据换热器的工作原理和结构特点,计算换热面积、流体通道的尺寸、流体速度和压降等参数。
这些计算可以通过数学模型、经验公式和实验数据等方法进行。
第七步:进行换热器的详细设计在初步设计的基础上,进行详细的设计计算和优化。
对换热器的结构参数进行精确调整和优化,满足热负荷的要求,并保证换热器的性能和可靠性。
这些计算包括了换热面积的计算、流体通道的设计、板/管束的选择、传热面积的计算和流体速度和压降的计算等。
第八步:进行换热器的安装调试在设计完成后,进行换热器的安装调试。
根据设计要求,进行换热器的安装和连接,并进行初步的运行测试。
管壳式换热器课程设计

目录前言 (2)第一部分,甲苯冷凝器的设计一、设计任务 (4)二、设计要求 (4)三、工艺结构尺寸 (6)(1)管径和管内流速 (6)(2)管程数和传热管数 (6)(3)平均传热温差校正及壳程数 (6)(4)传热管的排列和分程数法 (7)(5)壳体内径 (7)四、换热器主要传热参数核算 (8)(1)计算管程对流传热系数 (8)(2)计算壳程对流传热系数 (8)(3)确定污垢热阻 (9)(4)总传热系数 (9)第二部分,甲苯冷却器的设计一、试算并初选换热器规格 (11)(1)流体流动途径的确定 (11)(2)确定流体的定性温度、物性数据,并选择列管换热器的型式 (11)二、计算总传热系数 (11)(1)计算热负荷 (11)(2)冷却水用量 (12)(3)计算平均传热温度差 (12)(4)总传热系数K (12)(5)估算换热面积 (12)三、工艺结构尺寸 (12)(1)管径和管内流速 (12)(2)管程数和传热管数 (12)(3)平均传热温差校正及壳程数 (13)(4)传热管的排列和分程方法 (14)(5)壳体内径 (14)四、换热器主要传热参数核算 (15)(1)壳程对流传热系数 (15)(2)管程对流传热系数 (16)(3)基于管内表面积的总传热系数 (16)(4)计算面积裕度 (17)化工原理课程设计任务书一、设计任务题目##.#万吨/年甲苯精馏塔冷凝冷却(水冷) 换热系统工艺设计。
二、任务给定条件1.热流条件:流量为10500kg/h的甲苯蒸汽从120℃,0.14 MPa(绝压)冷凝到120℃,0.14 MPa(绝压) 甲苯液,再冷却到30℃;120℃甲苯汽相热焓 140 Kcal/Kg,液相焓53 Kcal/Kg,30℃甲苯液相焓13 Kcal/Kg ;定性温度80℃时甲苯密度810Kg/m3, 比热0.446(Kcal/Kg. ℃) 绝对粘度0.32(cp) ,比热0.104 (Kcal/(m.h. ℃)) 。
管壳式换热器的设计(课程设计)

xxxxxxxxx 大学课程设计说明书设计题目:管壳式换热器的设计学院、系:化学工程与工艺学院(精细化工专业)专业班级:精细2012班学生姓名:xxxxxxxxxxxx指导教师:xxxxxxxxxxxxx成绩:________________________2015年07 月08目录2015年07 月08 (2)目录 (2)一、课程设计题目 (7)二、课程设计内容 (7)1.管壳式换热器的结构设计 (7)2. 壳体及封头壁厚计算及其强度、稳定性校核 (7)3. 筒体水压试验应力校核 (7)4. 鞍座的选择 (7)5. 换热器各主要组成部分选材,参数确定。
(7)6. 编写设计说明书一份 (7)7. 绘制1号装配图一张。
(7)三、设计条件 (8)(1)气体工作压力 (8)(2)壳、管壁温差50℃,t t>t s (8)(3)由工艺计算求得换热面积为105m2。
(8)(4)壳体与封头材料在低合金高强度钢中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。
(8)(5)壳体与支座双面对接焊接,壳体焊接接头系数Φ=0.85 (8)(6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。
(8)四、基本要求 (8)五、说明书的内容 (9)1.符号说明 (9)2.前言 (9)3.材料选择 (9)4.绘制结构草图 (9)5.壳体、封头壁厚设计 (9)6.标准化零、部件选择及补强计算: (10)7.结束语:对自己所做的设计进行小结与评价,经验与收获。
(10)8.主要参考资料。
(10)六、主要参考资料 (10)管壳式换热器的结构设计 (11)1 前言 (12)1.1概述 (12)1.1.1换热器的类型 (12)1.1.2换热器 (13)1.2设计的目的与意义 (14)1.7提高管壳式换热器传热能力的措施 (15)1.8 设计思路、方法 (15)1.8.1换热器管形的设计 (15)1.8.2 换热器管径的设计 (16)1.8.3换热管排列方式的设计 (16)1.8.4 管、壳程分程设计 (16)1.8.5折流板的结构设计 (17)1.8.6管、壳程进、出口的设计 (17)1.9 选材方法 (17)1.9.1 管壳式换热器的选型 (17)1.9.2 流径的选择 (20)1.9.3材质的选择 (21)1.9.4 管程结构 (22)2 壳体直径的确定与壳体壁厚的计算 (22)2.1 管径 (23)2.2 管子数n (24)2.3 管子排列方式,管间距的确定 (24)2.4换热器壳体直径的确定 (24)3 换热器封头的选择及校核 (26)4 容器法兰的选择 (27)5 管板 (28)5.1管板结构尺寸 (28)5.2管板与壳体的连接 (29)5.3管板与管子的连接 (29)5.4管板厚度 (29)6 管子拉脱力的计算 (30)7 计算是否安装膨胀节 (32)8 防冲板 (33)9 折流板设计 (33)9.1折流板的选择 (33)9.2折流板的布置 (36)10 开孔补强 (37)10、1 壳体接管开孔补强 (37)1、确定壳体和接管的计算厚度及开孔直径 (37)2、确定壳体和接管实际厚度,开孔有效补强面积及外侧有效补强高度h (37)3、计算需要补强的金属面积和可以作为补强的金属面积 (38)4、计算Ae (38)5、比较A与eA,)585()18.724(22mmAmmAe=>=, (38)10.2 管箱接管开孔补强 (39)1、确定壳体和接管的计算厚度及开孔直径 (39)2、确定管箱和接管实际厚度,开孔有效补强面积及外侧有效补强高度h (40)3、计算需要补强的金属面积和可以作为补强的金属面积 (40)4、计算Ae (40)5、比较A与eA,)484()24.662(22mmAmmAe=>=, (41)11 接管最小位置 (41)12.鞍座 (42)1.壳体质量1m (42)2.封头质量2m (42)3.管箱质量3m (42)4.附件质量4m (43)5.管子质量5m (43)6.强度校核 (43)符号说明 (44)参考文献 (45)一、课程设计题目管壳式换热器的设计二、课程设计内容1.管壳式换热器的结构设计包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器法兰的选择,管箱的选择,鞍座的选择,接管选择等等。
换热器计算步骤

第2章工艺计算设计原始数据表2—1管壳式换热器传热设计基本步骤(1)了解换热流体的物理化学性质和腐蚀性能(2)由热平衡计算的传热量的大小,并确定第二种换热流体的用量;3确定流体进入的空间4计算流体的定性温度,确定流体的物性数据5计算有效平均温度差,一般先按逆流计算,然后再校核6选取管径和管内流速7计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核8初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的~倍l9选取管长10计算管数NT11校核管内流速,确定管程数12画出排管图,确定壳径D和壳程挡板形式及数量等i13校核壳程对流传热系数14校核平均温度差15校核传热面积16计算流体流动阻力;若阻力超过允许值,则需调整设计;确定物性数据定性温度由饱和水蒸气表可知,蒸汽和水在p=、t>295℃情况下为蒸汽,所以在不考虑开工温度、压力不稳定的情况下,壳程物料应为蒸汽,故壳程不存在相变;对于壳程不存在相变,其定性温度可取流体进出口温度的平均值;其壳程混合气体的平均温度为:t=420295357.52+=℃2-1管程流体的定性温度:T=3103303202+=℃根据定性温度,分别查取壳程和管程流体的有关物性数据;物性参数管程水在320℃下的有关物性数据如下:参考物性数据无机表表2—2壳程蒸气在下的物性数据1:锅炉手册饱和水蒸气表表2—3估算传热面积 热流量根据公式2-1计算:p Q Wc t =∆ 化原 4-31a 2-2将已知数据代入 2-1得:111p Q WC t =∆=60000××310 330-310/3600=式中: 1W ——工艺流体的流量,kg/h ;1p C ——工艺流体的定压比热容,kJ/㎏.K ;1t ∆——工艺流体的温差,℃;Q ——热流量,W;平均传热温差根据 化工原理 4-45 公式2-2计算:1212ln m t t t t t ∆-∆∆=∆∆ 2-3 按逆流计算将已知数据代入 2-3得:()()()()121242033031029541.86420330ln ln 310295m t t t t t ---∆-∆∆===∆-∆-℃式中: m t ∆——逆流的对数平均温差,℃;1t ∆——热流体进出口温差,℃; 2t ∆——冷流体进出口温差,℃; 可按图2-1中b 所示进行计算;图2-1 列管式换热器内流型传热面积根据所给条件选定一个较为适宜的K 值,假设K =400 W/则估算传热面积为:mt K QS ∆=化工原理 式4-43 2-4 将已知数据代入 2-3得: 2m 39.10986.4140067.1831666t =⨯∆=m K Q S式中:S ——估算的传热面积,2m ; K ——假设传热系数,W/m 2.℃;m t ∆——平均传热温差,℃; 考虑的面积裕度,则所需传热面积为:28.12515.188.11215.1'm S S =⨯=⨯= 2-5热流体用量根据公式2-4计算:由化工原理热平衡公式p QW c t=∆ 将已知数据代入 2-4得: kg/h 68.17392)295420(033.367.1831666222=-⨯=∆=t C Q W p 2-6式中Q ——热流量,W ;2p c ——定压比热容,kJ/㎏.℃;2t ∆——热流体的温差,℃;2W ——热流体的质量流量,kg /h ;工艺尺寸 管数和管长1.管径和管内流速根据红书 表3-2 换热管规格表2-4根据 红书 表3-4 取管内流速s m i /1u = ⒉管程数和传热管数 依红书3-9式 un dqv 24π=,可根据传热管内径和流速确定单管程传热管数758.74102.047.70967.164n 22≈=⨯⨯==ππu d qii v s 根 2-7 式中qv——管程体积流量,s 3m ;n ——单程传热管数目;i d ——传热管内径,mm ; u ——管内流体流速,sm ;按单管程计算,依红书3-10,所需的传热管长度为 ()m nd A sop 3.2175025.08.125L =⨯⨯==ππ 2-8式中 L ——按单程管计算的传热管长度,m A p ——传热面积,2m ;do——换热管外径,m;按单管程设计,传热管过长,则应采用多管程,根据本设计实际情况,采用非标准设计,现取传热管长m l 6=,则该换热器的管程数为 456.363.21≈===l L N p 管程 2-9 传热管总根数 300475=⨯=⨯=N n N p s T 根 2-10 式中, 0d ——管子外径,m ;'T N ——传热管总根数,根;0d ——管子外径,m ;3.换热器的实际传热面积,依据红书3-12,203.1413006025.014.3m lN d A T =⨯⨯⨯==π 2-11式中,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DESIGN AND RATING SHELL AND TUBE HEAT EXCHANGERS By John E. Edwards Design and Rating of Shell and Tube Heat Exchangers
PAGE 2 OF 30 MNL 032A Issued 29 August 08, Prepared by J.E.Edwards of P & I Design Ltd, Teesside, UK www.pidesign.co.uk
Contents 1.0 Introduction 2.0 Fundamentals 2.1 Basic Theory 2.2 Heat Transfer Model Selection
3.0 Design Guidelines
Appendices I Thermal Design Models Synopsis II CC-THERM User Guidelines III Thermal Model Selection IV Shortcut Heat Exchanger Design V TEMA Heat Exchanger Layout Designation VI Typical Overall Heat Transfer Coefficients VII Typical Resistance Fouling Coefficients VIII LMTD Correction Factor Ft IX Wolverine Tube General Details X Midland Wire Cordage Turbulator Details XI Tube Dimensional Data XII Shell Tube Count Data
References 1. Hewitt,G.F. et al (1994) Process Heat Transfer, (CRC Press) 2. Perry,R.H. and Green, D. (1984) Perry’s Chemical Engineers Handbook, 6th edition (McGraw Hill)
3. Kern,D.Q. (1950) Process Heat Transfer (McGraw Hill) 4. Coulson,J.M. and Richardson,J.F. (1993) Chemical Engineering Vol 1, 4th edition (Pergamon) 5. Skinnet,R.K. (1993) Coulson & Richardson’s Chemical Engineering Vol 6, 2nd edition (Pergamon) 6. Chemstations,Inc. CHEMCAD THERM Version 5.1 User Guide 7. Schlunder,E.U. (1993) VDI Heat Atlas (Woodhead Publishing) 8. Seider,D.S., Seader,J.D.Seader and Lewin,R.L. Process Design Principles, (John Wiley & Sons, Inc.) [ C20] References of this type are to be found in CC-THERM > Help > Appendix Design and Rating of Shell and Tube Heat Exchangers
PAGE 3 OF 30 MNL 032A Issued 29 August 08, Prepared by J.E.Edwards of P & I Design Ltd, Teesside, UK www.pidesign.co.uk
1. 0 Introduction Shell and tube heat exchangers are used extensively throughout the process industry and as such a basic understanding of their design, construction and performance is important to the practising engineer.
The objective of this paper is to provide a concise review of the key issues involved in their thermal design without having to refer to the extensive literature available on this topic.
The author claims no originality but hopes that the format and contents will provide a comprehensive introduction to the subject and enable the reader to achieve rapid and meaningful results.
The optimum thermal design of a shell and tube heat exchanger involves the consideration of many interacting design parameters which can be summarised as follows:
Process 1. Process fluid assignments to shell side or tube side. 2. Selection of stream temperature specifications. 3. Setting shell side and tube side pressure drop design limits. 4. Setting shell side and tube side velocity limits. 5. Selection of heat transfer models and fouling coefficients for shell side and tube side.
Mechanical 1. Selection of heat exchanger TEMA layout and number of passes. 2. Specification of tube parameters - size, layout, pitch and material. 3. Setting upper and lower design limits on tube length. 4. Specification of shell side parameters – materials, baffle cut, baffle spacing and clearances. 5. Setting upper and lower design limits on shell diameter, baffle cut and baffle spacing.
There are several software design and rating packages available, including AspenBJAC, HTFS and CC-THERM, which enable the designer to study the effects of the many interacting design parameters and achieve an optimum thermal design. These packages are supported by extensive component physical property databases and thermodynamic models.
It must be stressed that software convergence and optimisation routines will not necessarily achieve a practical and economic design without the designer forcing parameters in an intuitive way. It is recommended that the design be checked by running the model in the rating mode.
It is the intention of this paper to provide the basic information and fundamentals in a concise format to achieve this objective.
The paper is structured on Chemstations CC-THERM software which enables design and rating to be carried out within a total process model using CHEMCAD steady state modelling software.
However the principles involved are applicable to any software design process. In the Attachments a Design Aid is presented which includes key information for data entry and a shortcut calculation method in Excel to allow an independent check to be made on the results from software calculations.
Detailed mechanical design and construction involving tube sheet layouts, thicknesses, clearances, tube supports and thermal expansion are not considered but the thermal design must be consistent with the practical requirements.