10kV电压互感器单相接地与谐振的区别

合集下载

浅析电压互感器谐振分析及抑制措施

浅析电压互感器谐振分析及抑制措施

浅析电压互感器谐振分析及抑制措施发表时间:2018-03-14T11:16:35.520Z 来源:《电力设备》2017年第29期作者:王晓峰[导读] 摘要:电力系统谐振过电压危害很大,严重影响系统的安全稳定运行。

(山东电力建设第三工程公司 266100)摘要:电力系统谐振过电压危害很大,严重影响系统的安全稳定运行。

通过对谐振过电压的研究探讨,提出了抑制铁磁谐振的措施,对电网安全起到有效防范作用。

关键词:铁磁谐振因素原理措施0引言通常情况下,直接接地系统和不接地系统共同组成电力系统接地系统。

直接接地系统的特点是容易产生并联谐振,不接地系统的特点是当发生单相接地时,容易出现串联谐振。

长期以来,电网的安全、稳定运行受到电力系统谐振过电压的严重影响和制约。

铁磁谐振在中性点不接地系统中所占的比例比较大。

当前,铁磁谐振问题随着电网的不断发展,在中性点直接接地系统中变得越加突出、严重,发生的概率也在逐渐增大,公司系统多次发生铁磁谐振引起的过电压案例,对电网的冲击很大,危害很深,应引起足够的重视。

1产生谐振的原因分析1.1外部因素。

有以下4种情况:其一,线路对地电容和线路电阻随着电力线路长度在电力系统中发生的变化也将发生变化,空母线充电或倒母线时,易产生对地电容引起的并联谐振。

其二,在暂态激发条件下,当系统的运行方式发生变化时,电压互感器容易发生铁磁饱和,其电感量L处于非线性变化,当发生雷电感应侵入或线路瞬间接地,特别是当系统出现单相接地时,串联谐振在一定程度上就会容易产生。

其三,直接投入系统的电容发生变化,进而在一定程度上造成谐振,如投入补偿电容器,打开断路器断口时,并联电容容易发生并联谐振。

其四,运行状态发生突变时,分次谐波就会产生,进而在一定程度上使ω发生变化,如拉、合隔离开关,可能产生串联或并联谐振。

1.2内部因素。

也有以下4种情况:其一,由于安装维修人员在变电站施工安装时未对电压互感器有关知识进行培训,对电压互感器工作原理、接线原理知识不扎实,致使电压互感器L端、N端所接二次回路全部重复接地,当系统发生接地后导致电压互感器线圈烧毁。

谐振产生的原因、分类、危害及防范措施

谐振产生的原因、分类、危害及防范措施

谐振产生的原因、分类、危害及防范措施一、谐振的类型一般可认为电力系统中的电容和电阻元件是线性参数,电感元件是非线性参数。

由于振荡回路中包含不同特性的电感元件,谐振有三种不同的类型:1.线性谐振。

谐振回路由不带铁芯的电感元件(如输电线路的电感、变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈,其铁芯中有气隙)和系统中的电容元件所组成。

在正弦电源作用下,当系统自振频率与电源频率相等或接近时,可能产生线性谐振。

2.铁磁谐振。

谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统中的电容元件组成。

受铁芯饱和的影响,铁芯电感元件的电感参数是非线性的,这种含有非线性电感元件的回路,在满足一定谐振条件时,会产生铁磁谐振。

目前在我国的10kV 系统中,运行着大量的电磁式电压互感器(PT),当出现单相直接接地、单相弧光接地、母线空载时突然合闸等情况时,由于电压互感器铁心电感的非线性,很容易发生谐振。

当PT 一次电感与系统对地电容满足谐振条件时,将产生很高的过电压和过电流,从而引起PT一次熔断器烧毁,甚至爆炸,严重威胁电网的安全运行。

3.参数谐振。

谐振回路由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd-Xq间周期变化)和系统电容元件(如空载线路)组成。

当参数配合恰当时,通过电感的周期性变化,不断向谐振系统输送能量,将会造成参数谐振。

二、铁磁谐振的特点铁磁谐振是电力系统自激振荡的一种形式,其本质是一种LC振荡,是由于变压器、电压互感器等铁磁电感的饱和作用引起的持续性、高幅值谐振过电压现象。

其主要特点为:1、铁磁谐振存在自保持现象。

激发因素消失后,铁磁谐振过电压仍然可以继续长期存在;2、铁磁谐振过电压一般不会非常高,过电压幅值主要取决于铁心电感的饱和程度。

3、谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而下降;4、铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。

浅谈10kV系统产生谐振过电压原因及控制对策

浅谈10kV系统产生谐振过电压原因及控制对策

浅谈10kV系统产生谐振过电压原因及控制对策摘要在10kV配电网中,常常发生电磁式电压互感器烧毁的现象,其原因都是因为某些故障或者不正常运行致使电压互感器内的铁芯饱和,诱发铁磁谐振的产生,致使电压互感器内部产生过电压,过电流,严重威胁电力系统的安全运行。

本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象与机理,产生的条件,提出了控制谐振过电压的措施,与大家交流学习。

关键词铁磁谐振;过电压;防范措施引言长期以来,电力系统铁磁谐振过电压严重威胁着电网的安全运行,在10kV 系统中,电磁式电压互感器引发的铁磁谐振过电压导致的设备事故时有发生。

这种过电压持续时间长,对系统的安全运行构成很大威胁,轻者可导致电压互感器烧损,高压熔丝熔断及匝间短路或爆炸;重者发生避雷器爆炸、母线短路等事故。

本文通过对配电系统电压互感器频繁损坏的现象,简要阐述铁磁谐振的现象,产生的条件及防范措施,总结了针对此类故障采取防范措施的一些运行经验。

1 铁磁谐振过电压产生的机理[1-2]目前,我国企业在35kV或者是其以下的配电网,有许多都是采用中性点和不接地的方式进行运行的,因此其中的很大一部分选用的都是比较传统的消线圈完成接地。

因此在其具体进行运行的问题可以看出,中性点的不接地系统,会受到电压的互感器铁心饱和使得铁磁谐振过的电压相对多一些。

中性点不接地运行方式的电力系统单相接地后,两相电压瞬时升高,三相铁心受到不同的激励而呈现不同程度的饱和,电压互感器各相感抗发生变化(各相电感值不同),中性点位移,产生零序电压。

由于线路电流持续增大,导致电压互感器铁心逐渐磁饱和,其电感值迅速减小,当满足ωL=1/ωC时,产生谐振过电压。

在发生谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。

如果电流尚未达到熔丝的熔断值,但超过了电压互感器额定电流,长时间处于过电流状况下运行,可造成电压互感器烧损。

电力系统中存在着许多非线性感性元件,如发电机、变压器、电压互感器等,这些感性元件和系统中存在的分布电容组成复杂的LC振荡回路,有可能激发铁磁谐振产生过电压。

10kV电压互感器谐振产生原因及对策

10kV电压互感器谐振产生原因及对策

10kV电压互感器谐振产生原因及对策作者:张红平来源:《华中电力》2013年第05期摘要:分析了中性点不接地的10kV配电系统中电磁式电压互感器发生铁磁谐振的原因,并指出其对配电系统和设备所产生的危害,以及提出各种消除谐振的措施,且简要分析了各措施的优缺点。

关键词:电压互感器铁磁谐振消谐中图分类号:TM8350 前言中性点不接地的10kV配电系统中,大多采用电磁式电压互感器(PT),其一、二次绕组接成星形,且中性点直接接地,另三次绕组接成开口三角形,用来监测系统是否出现单相接地。

正常运行时,PT的励磁感抗相对于10kV系统的对地容性阻抗大得多,且三相基本平衡,中性点偏移电压很小,系统不会发生谐振。

但发生某些情况时,会使PT三相励磁电感迅速饱和,且各相饱和程度差别很大,致使三相对地阻抗明显不平衡,系统中性点电压产生偏移,参数匹配得当时使PT励磁电感和三相对地电容构成的回路产生谐振过电压。

这种过电压的发生可导致设备的损坏,对系统造成谐波污染等问题。

1 电压互感器产生谐振的原因10kV配电系统是不接地系统,但其星形接法的PT高压侧中性点必须直接接地,同时10kV母线和线路有对地电容,其等值电路见图1,其中EA,EB,EC为三相电源电动势。

此时各相对地励磁电感LA=LB=LC=L0与母线和线路对地等值电容C0间组成独立的振荡回路。

在正常运行条件下,励磁电感LA = LB =LC = L0,各相对地导纳YA=YB=YC=Y0,三相对地负载是平衡的,电网的中性点电位约为零,即不发生中性点电位偏移。

但是当电网发生冲击扰动使一相或两相的对地电压瞬间升高。

现在假定,由于扰动的结果,A相对地电压瞬间提高,这使得A相PT的励磁电流突然增大而发生饱和,其等值励磁电感LA相应减小,以致YA≠Y0,这样三相对地负荷不平衡,中性点发生偏移电压UN,根据基尔霍夫第一定律。

可以得出:导纳YA决定于励磁电感LA和C0大小,如果正常状态下的,那么扰动结果使LA减小,可能使新的。

【精品文档】-中性点不接地系统中PT一次或二次保险一相熔断与单相接地故..

【精品文档】-中性点不接地系统中PT一次或二次保险一相熔断与单相接地故..

1. PT 一次或二次保险熔断现象的分析中性点不接地系统中PT 二次线圈有两套,一个接成星形且中性点接地,用以测量相电压和线电压,以及供给保护装置和电度表、功率表等所需的电压;另一套接成开口三角形,供保护装置。

1.1单相PT 接成Y0/Y0,磁路为单独的回路。

如果一次A 相保险熔断,二次A 相无感应电压,但AB 相或AC 相线电压测量回路串过B 相相电压或C 相相电压,结果使AB 相或AC 相线电压测量回路和A 相相电压测量回路形成串联回路,因此A 相相电压、AB 相线电压、AC 相线电压仍有指示,只不过由于回路内阻的存在,它们的指示正比于回路内阻的大小,即内阻大的指示电压高,内阻小的电压低。

二次保险一中性点不接地系统中PT 一次或二次保险一相熔断与单相接地故障、谐振过电压现象的区别武辉 王亚平 沧州供电公司 061000相熔断的分析与以上分析相同。

1.2三相PT 的磁路是互相连通的,当A 相一次保险熔断时,二次A 相能感应一些电压,A 相相电压、AB 相线电压、AC 相线电压的数值要比上述1.1分析要高一些,因为上述1.1分析的情况是B 相的感应电压在A 相相电压、AB 相线电压串联回路或是C 相的感应电压A 相相电压、AC 相线电压串联回路中进行分配;三相PT 二次一相保险熔断时和上述1.1分析结果相同。

1.3当两相同时熔断时,故障两相电压降低很大(接近于零),而其它一相指示正常。

1.4.1PT 一次保险熔断的原因:1)、电压互感器内部线圈短路接地,螺丝松动、导线受潮、绝缘损坏致过热等。

2)、套管或外绝缘破裂放电,或有火花放电、拉弧现象。

3)、由于谐振造成过电压,使电压互感器激磁电流增大,使高压保险熔断。

4)、由于电压互感器二次保险选择不当,二次过负荷或短路造成高压保险熔断。

1.4.2二次保险熔断的原因:1)、由于误碰、异物、污秽潮湿、小动物造成二次短路使二次保险熔断或二次空开跳闸。

2)、由于保护装置内部故障,分路开关选择不当。

单相接地的现象及处理方法

单相接地的现象及处理方法

单相接地的现象及处理方法2在小电流接地的配电网中,一般装设有绝缘监察装置。

当配电网发生单相接地故障时,由于线电压的大小和相位不变(仍对称),况且系统的绝缘水平是按线电压设计的,所以不需要立即切除故障,尚可继续运行不超过2h。

但非故障相对地电压升高1.732倍,这对系统中的绝缘薄弱点可能造成威胁。

此外,在仍可继续运行时间内,由于接地点接触不良,因而在接地点会产生瞬然熄的间歇性电弧放电,并在一定条件激励下产生谐振过电压,这对系统绝缘造成的危害更大。

为此,必须尽快处理排除单相接地故障,确保电网安全可靠运行。

1 单相接地故障的特征单相接地(1)配电系统发生单相接地故障时,变电所绝缘监察装置的警铃响,“××母线接地”光字牌亮。

中性点经消弧线圈接地的,还有“消弧线圈动作”的光字牌。

(2)当生发接故障时,绝缘监察装置的电压表指示为:故障相相电压降低或接近零,另两相电压高于相电压或接近于线电压。

如是稳定性接地,电压表指示无摆动,若是电压表指针来回摆动,则表明为间歇性接地。

(3)当发生弧光接地产生过电压时,非故障相电压很高,电压表指针打到头。

同时还伴有电压互感器一次熔丝熔断,严重时还会烧坏互感器。

但在某些情况下,配电系统尚未发生接地故障,系统的绝缘没有损坏,而是由于产生不对称状态等,绝缘监察也会报出接地信号,这往往会引起误判断而停电查找。

2 单相接地信号虚与实的判断(1)电压互感器高压熔断器一相熔断报出接地信号时,如果故障相对地电压降低,而另两相电压升高,线电压不变,此情况则为单相接地故障。

(2)变电所母线或架空导线的不对称排列;线路中跌落式熔断器一相熔断;使用RW型跌落式开关控制长线路的倒闸操作不同期等,均会造成三相对地电容不平衡,从而使中性点电压升高而报出接地信号,此情况多发生在操作时,而线路实际上并未发生接地。

(3)在合闸空母线时,由于励磁感抗与对地电抗形成不利组合而产生铁磁谐振过电压,也会报出接地信号。

简述10KV线路单相接地处理方法 程浩

简述10KV线路单相接地处理方法 程浩

简述10KV线路单相接地处理方法程浩摘要:在小电流接地系统中,单相接地是一种常见的临时性故障,多发生在暴雨、台风等恶劣天气。

为此本文就中性点经消弧线圈接地的10KV配电线路单相接地故障发生的原因进行简单分析并对发生后的处理方法以及技术推广应用进行简单阐述。

关键词:10KV配电线路;单相接地;技术推广一、概述10KV线路发生单相接地后,故障相对地电压降低,非故障两相的相电压升高,但线电压却依然对称,因而不影响对用户的连续供电,系统可运行1~2h。

但是若发生单相接地故障时电网长期运行,因非故障的两相对地电压升高√3倍,可能使绝缘击穿,发展成为相间短路。

还可能使电压互感器铁心严重饱和,导致电压互感器严重过负荷而烧毁。

同时弧光接地可能引起全系统过电压,对设备造成损害,严重影响供电可靠性。

二、10kV线路单相接地故障种类2.1完全接地即金属性接地,此时故障相的电压降到零,非故障相的电压升高到线电压,电压互感器开口三角处的电压达到整定值,电压继电器动作,发出接地信号。

2.2不完全接地即非金属性接地,此时故障相的电压降低,但不为零,非故障相的电压升高,它们大于相电压,但达不到线电压,此时电压互感器开口三角处处的电压达到整定值,电压继电器动作,发出接地信号。

2.3间歇性接地即弧光接地,接地点电弧间歇性地熄灭与重燃,引起电网运行状态的瞬息变化,导致电磁能的强烈振荡,并在非故障相和故障相产生暂态过电压,非故障相的最大过电压为线电压的3.5倍,故障相的最大过电压为2倍。

三、10kV线路单相接地故障的判断及处理3.1故障判断(1)一相电压降为零,另两相电压升高至线电压,发出接地信号,此为完全接地。

(2)一相电压降低但不为零,另两相电压升高但小于线电压,发出接地信号,此为不完全接地。

(3)一相电压降低但不为零,另两相电压升高至线电压,发出接地信号,此为电弧接地。

(4)一相电压降为零,另两相电压未升高,发出接地信号,此为母线电压互感器二次熔断件熔断一相。

10千伏线路接地故障对设备造成的重要影响及措施

10千伏线路接地故障对设备造成的重要影响及措施

10千伏线路接地故障对设备造成的重要影响及措施随着社会经济以及科学技术的快速发展,人们的生活水平得到了极大的提升,而对于我国电力事业而言,随之而来的是经济建设快速发展的压力以及人们对电力资源需求的增加,因此,如何解决10千伏线路接地故障对设备造成的影响是目前各电力单位所面临的问题。

电力早就成为了人们生产生活中不可缺少的东西,而线路的接地故障则会导致电路的中断,给人们的正常生活带来了很大的影响。

本文分析了10千伏线路接地故障对设备造成的影响,并提出了具体的解决措施。

标签:10千伏;接地故障;措施;设备引言经济的飞速发展使社会对用电的需求持续增加,我国为了更好的应对现状,不断扩大10千伏配网的建设规模,满足了国内工厂、居民的用电需求,促进了国家经济与社会的持续发展。

但是随着配网运行的范围越来越广,由于其运行周期的延长以及其他内外各种因素的共同作用,总是会出现各种配网故障,其中较为常见且影响范围较广的就是接地故障。

一、10千伏线路接地故障对设备造成的影响(一)接地故障对变电设备的影响10千伏线路接地故障会对变电设备带来多种影响,其中反应最明显的就是电压互感器,具体表现为当电压互感器的铁芯走向饱和状态时,其对应的励磁电流则会突然急剧上升。

如果不能及时解决问题,电压互感器就有可能被烧毁,甚至引发较大的安全事故。

还有单相接地故障的发生将直接导致电压的骤变,电压会从初始状态逐渐变为谐振过电压,当此时的电压作用于变电器时,会降低变电设备的绝缘性,导致机器出现击穿故障,可能会导致火灾。

(二)接地故障对配电设备的影响10千伏线路接地故障会对配电设备产生影响,它会产生比原来电压大几倍甚至几十倍的电压使线路上的绝缘子被击穿,最终出现短路。

短路情况还属于危害性较小的情况,如果情况严重,可能会直接导致配电器烧坏,除此之外,还可能导致线路上的熔断器、避雷器等装置的绝缘部分被损毁,产生巨大的经济损失,还有可能造成安全事故[1]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10kV
电压互感器单相接地与谐振的区别
发表时间:
2009-12-25T15:16:58.187Z 来源:《中小企业管理与科技》2009年10月上旬刊供稿 作者: 康万银
[导读] 电压互感器是一种仪表用变压器,是一、二次系统的联络元件,它能正确地反映电气设备的正常运行和故障情况
康万银
(承德供电兴隆分公司)
摘要:本论文从理论上分析了
10kV电压互感器单相接地与谐振的区别。
关键词:电压互感器
接地与谐振 区别
0
引言

在电力系统中,电压互感器是一种仪表用变压器,是一、二次系统的联络元件,它能正确地反映电气设备的正常运行和故障情况。正
确区分电压互感器单相接地与谐振对实际工作有很大帮助。
1
电压互感器单相接地

在中性点不接地系统中,当系统发生单相接地故障时,系统仍可以在故障状态下继续运行一段时间,有供电连续性高的优点。但不接
地系统发生单相接地故障后,非故障相会产生较高的过电压,影响系统设备的绝缘性能和使用寿命,后果是出现更频繁的故障。
1.1
当中性点不接地系统中发生金属永久性单相接地时,如A相接地(针瓶、吊瓶、悬瓶、避雷器击穿、配电变压器绕相绝缘击穿
等),则
UAN=0,非接地相UBN和UCN的电压表指示由正常的58V升高到线电压100V,电压互感器开中三角两端出现几十伏电压(正常时

3V),起动绝缘检查继电器发出接地信号并报警。
1.2
当系统发生非金属性短路接地时,即高电阻、电弧、树障等单相接地。如A相发生接地,则UAN的电压比正常相电压要低,其余两

UBN和UCN为58~100V,电压互感器开口三角处两端有约70V电压,达到绝缘检查继电器起动值,发出接地信号并报警。

1.3
当系统发生单相接地时,故障点流过电容电流,未接地的两相相电压增高√3倍,这将严重影响线路和电气设备的安全运行(此时
电压互感器的励磁阻抗很大,故流过的电流很小)。但是,一旦接地故障点消除,非接地相在故障期间已充的电荷只能通过电压互感器高
压线圈经其自身的接地点接入大地。在这一瞬间电压突变过程中,电压互感器高压线圈的非接地两相的励磁电流就要突然增大,甚至饱
和,由此构成相间串联谐振。由于接地电弧熄灭时间不同,故障点的切除就不一样。因此,不一定在每次出现单相接地故障时,电压互感
器高压线圈中都要产生很大的激磁电流,其高压侧熔断器的情况也有所不同。
2
电压互感器谐振

在系统谐振时,电压互感器将产生过电压使电流激增,此时除了造成一次侧熔断器熔断外,还将导致电压互感器烧毁。在个别情况
下,还会引起避雷器、变压器、断路器的套管发生闪络或爆炸。对于
Y0/Y0电磁式电压互感器,在正常情况下线路发生的单相接地不会出现
铁磁谐振过电压,只有在下列条件下,才可能引发铁磁谐振。
2.1
由于小型变压器的绝缘老化,以致线圈绝缘击穿引起匝间、层间短路。虽然电网在中性点不接地,单相接地电流不大,但较之变
压器的一次负荷电流要大得多。当配电变压器内部发生单相接地故障时,故障电流通过抗电能力强的绝缘油对地放电,也会产生不稳定的
电弧激发电网谐振。
2.2
随意带负荷拉开分支线路隔离刀闸,或带负荷拉开配电变压器的高压跌落保险,造成刀闸间弧光短路而引发谐振。
2.3
运行人员操作程序不规范,未拉开电压互感器高压侧刀闸,电压互感器直接向空母线送电,引起电压互感器铁磁谐振。
2.4
运行中的电压互感器谐振过电压可在三相同时发生,出现各相电压严重不平衡。将电压互感器负载全部退出,重新测量其结果与
未退出负载前相同。检查电压互感器一次侧熔断器完好,在排除主变和电压互感器本身故障的可能性后,甩开电压互感器的避雷器,电压
显示与未甩开避雷器之前相同,而且每次投入时的电压表指示数值均有变化。这是由于各相母线对地的相位不同,对地电容的大小有差
异。另外,每次投入电压互感器时,各相的接触电阻以及同期性都随力量、速度的变化而变化,所以各相的谐振程度就不相同。
2.5
各相对地参数不平衡,加上合闸瞬间相位角的即性原因,导致一相至两相,甚至三相同时出现谐振现象。如果发生的是分频谐
振,因其频率较低,电压表会有周期性振动,但由于此时的感抗小,电压互感器的激磁电流很大,往往会将电压互感器烧毁。
3
消除铁磁谐振的技术措施
3.1
选择励磁特性好的电压互感器或改用电容式电压互感器。
3.2
在同一个10kV配电系统中,应尽量减少电压互感器的台数。
3.3
在三相电压互感器一次侧中性点串接单相电压互感器或在电压互感器二次开口三角处接入阻尼电阻。
3.4
在母线上接入一定大小的电容器,使容抗(Xc)与感抗(XL)的比值小于0.01可避免谐振。
3.5
系统中性点装设消弧线圈。
3.6
采用自动调谐原理的接地补偿装置,通过过补、全补和欠补的运行方式,来较好地解决此类问题。
4
结论

综上所述,单相接地与谐振故障现象有着根本区别。正常情况下,当系统发生单相接地故障时,仍可在故障状态下继续运行一段时
间。铁磁谐振产生的过电压对设备的影响最大,切不可将电压互感器谐振误判为单相接地而延误了处理时间。

相关文档
最新文档