三大控制系统的产生、定义、特点、应用及发展趋势

三大控制系统的产生、定义、特点、应用及发展趋势
三大控制系统的产生、定义、特点、应用及发展趋势

PLC\DCS\FCS三大控制系统的产生、定义、特点、应用及发展趋势

自092 王远090857

摘要本文介绍了P L C 、D C S 和F C S 三大控制系统的产生和基本特点、举例说明各种控制器在不同领域中的应用,并阐述了三大控制器的发展趋势。

关键词PLC;DCS;FCS;控制器

1 可编程逻辑控制器(PLC)

1.1可编程逻辑控制器(PLC)的产生

1968年,美国通用汽车公司(GM)为适应汽车型号的不断翻新,想寻找一种能减少重新设计控制系统和接线、降低成本、缩短时间的措施,并设想把计算机功能的完备、灵活通用和继电器控制系统的简单易懂、操作方便、价格便宜等优点结合起来,制成一种通用控制装置,并把计算机的编程方法和程序输入方式加以简化,用面向控制过程、面向用户的“自然语言”

编程,使不熟悉计算机的人也能方便地使用]1[。以此为基准提出了著名的10条技术指标:

(1)编程简单,可在现场方便地编辑及修改程序;

(2)价格便宜,其性价比要高于继电器控制系统;

(3)体积要明显小于继电气控制柜;

(4)可靠性要明显高于继电气控制系统;

(5)具有数据通信功能;

(6)输入可以是AC 115V;

(7)输出为AC 115V,2A以上;

(8)硬件维护方便,最好是插件式结构;

(9)扩展时,原有系统只需做很小改动;

(10)用户程序存储器容量至少可以扩展到4KB]2[。

于是可编程控制器应运而生,1969年美国数字设备公司(DEC)研制出了世界上第1台PLC,并在GM公司的汽车自动装配线上首次使用,获得成功。从此,这项新技术便迅速发展起来。

1.2可编程逻辑控制器(PLC)的定义

1985年1月,国际电工委员会(IEC)对PLC作了明确定义:“可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用可编程序的存储器,用来在其内部存储执行逻辑运算和顺序控制、定时、计数和算术运算等操作的指令,并通过数字的或模拟的输入/输出接口,控制各种类型的机器设备或生产过程。

1.3 PLC的特点。

第一,可靠性高,抗干扰能力强。高可靠性是电气控制设备的关键性能。PLC专为工业控制设计的,在设计和制造过程中采用严格的生产工艺制造,在硬件和软件上都采用了许多抗干扰的措施:如屏蔽、滤波、隔离、故障诊断和自动恢复等;同时PLC是以集成电路为基本元件的电子设备,没有真正的接点,元件的使用寿命长;这些都大大提高了PLC的可靠性和抗干扰性。

第二,编程简单、易学。PLC作为通用工业控制计算机,是面向工矿企业的工控设备,所以它采用了大多数技术人员熟悉的梯形图语言,梯形图语言与继电器原理相似,形象直观,易学易懂。

第三,功能完善。PLC发展到今天,除了具有模拟和数字量输入/输出、逻辑运算和定

时、计数、数据处理、通信等功能外,还可以实现顺序、位置和过程控制。

第四,通用性强。目前PLC的产品已经标准化、系列化、模块化,具有各种数字式、模拟量的输入/输出接口,用户可以根据需求灵活的对系统进行控制;再加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

第五,设计、安装、调试工作量小,维护方便。在传统的继电器控制系统中,逻辑控制功能是通过导线来实现的,要改变控制功能必须改变导线的接线方式。PLC 用软件取代了继电器控制系统中各种功能的继电器,内部不需接线和焊接,只要进行外部接线和程

序编写就可以了,通过执行存储器中的程序实现系统的控制要求]3[。

1.4可编程逻辑控制器(PLC)的应用

1.4.1基于PLC的半钢子午胎全自动裁断机控制系统

半钢子午胎全自动裁断机由前后两工位导开、储布、主机传送带、边缘检测、吸取、对接等装置构图1—1系统组成示意图成,如图1-1所示。装置的控制系统由MELSEC—A可编程序控制器及其伺服控制系统组成。帘布经导开装置导开,通过储布装置张力恒定地输送到主机送布辊,送布辊电机与主机传送带电机配合,将帘布向前定长输送,由裁刀自动规格裁断。

系统采用A2SHCPU-S1作为主机,其I/O点数达2048点,处理速度为0·25μs/步,具有故障监视定时器WDT;采用两块A1SD62高速计数模块用于帘布边缘检测、角度定位等装置上的光电码盘发出的脉冲信号的计数;两块A1SD75P3-S3高精度定位模块用于主机定长、定长送布、吸盘精确吸取、准确对接等的控制,S型加减速功能保证了平滑起动和停车,多种返回原点的方法确保了吸盘回零的准确度;数字I/O全部采用密集安装方式,输出经继电器模板驱动。

半钢子午胎全自动裁断机控制系统由A系列可编程序控制器与J2系列数字交流伺服系统构成,通过人机交互系统完成规格裁断的设定和基本操作。主机传送带满足精度要求的定长控制是对接成功的前提,其中定长控制的参数设置与校正非常重要。通过全数字交流伺服定位系统位置模式控制参数的组合,较好地解决了这一问题。实际运行结果表明:系统综合性

能指标符合工艺要求,定长裁断误差小于±1mm]4[。

1.5可编程逻辑控制器(PLC)的发展趋势

(1)可编程控制技术的标准化

一种自动化产品的竞争力主要在于其满足国际标准化的程度和水平。标准化一方面保证了产品的出厂质量,另一方面也保证了各个厂家产品的互相兼容。所以可编程技术的标准化

势在必行。

(2)CPU处理速度进一步加快

将来会使用64位RISC芯片,实现多CPU并行处理或分时处理或分任务处理,实现各种模块智能化,且部分系统程序用门阵列电路固化。这样PLC执行指令的速度将达到纳秒级。

(3)可编程控制技术的智能化

提高一个系统的智能程度不仅提高系统的品质,在某种意义上也提高了系统的可靠性。

(4)向集成化、通讯化、网络化发展]5[

由于控制内容的复杂化和高难度化, PLC将与PC集成,与DCS集成,与PID集成。网络化和强化通信能力也是PLC的重要发展方向,尤其是以PC为基础的控制产品增长率不断加快。PLC与PC集成,即将计算机、PLC及操作人员的人机接口结合在一起,使PLC能利用计算机丰富的软件资源,而计算机能和PLC的模块交互存取数据。以PC机为基础的控制方法使得用户编程更加方便,而且提供开放的体系结构,用户可以根据需要选择各类、各厂家的PLC或I/O设备进行互联,从而可以降低生成成本和提高生产率。

(5)控制系统分散化

根据分散控制、集中管理的原则, PLC控制系统的I/O模块将直接安装在控制现场,通过通信电缆或光纤与主CPU进行数据通信。这样使控制更有效,系统更可靠。

(6) PLC的新进展-软PLC]6[

计算机软、硬件技术的迅速发展,推动了自动控制技术又取得了一系列新的进展。目前有许多工业用自动控制产品、机电一体化产品开始转向以计算机为平台的控制方式,这就是软PLC。软PLC实际利用软件来实现传统PLC的功能,它最大的优势是具备柔性扩展能力,用户可以选择不同厂家生产的各种硬件产品,充分利用每一软件的最佳特性,组成最佳的控制系统。同时与硬件的连接也十分方便。有很多的I/O卡可以直接内连接到SOFTPLC计算机总线上。从而在软、硬件两方面可以达到工控机和PLC性能的完美结合,方便了性能扩

展和人机交流,是PLC未来的一大发展趋势。

2 集散控制系统(DCS)

2.1集散控制系统(DCS)的产生

最初的工业过程控制是通过单元组合仪表采用原始分散控制,各控制回路相互独立,其优点是某一控制回路出现故障时,不影响其它回路的正常工作,缺点是硬件过多,自动化程度不高,难以实现整个系统的最优控制。随后出现集中控制,它是通过计算机将控制回路的运算、控制及显示等功能集于一身,其优点是硬件成本较低,便于信息的采集和分析,易实现系统的最优控制,缺点是危险集中,局部出现故障会影响整体。鉴于以上原因,人们开始研究集中分散控制,随着控制技术、计算机技术、通信技术、图像显示技术的发展,70年代中期吸收原始分

散控制和集中控制两者优点,克服其缺点的集中分散控制系统诞生了]7[。

2.2集散控制系统(DCS)的定义

集散控制系统是20世纪70年代中期发展起来的以微处理器为基础的分散型计算机控制系统。它是控制技术(Control)、计算机技术(Computer)、通信技术(Communication)、阴极射线管(CRT)图形显示技术和网络技术相结合的产物。该装置是利用计算机技术对生产

过程进行集中监视、操作、管理和分散控制的一种全新的分布式计算机控制系统]8[。

2.3集散控制系统(DCS)的特点

(1)分级递阶控制。集散控制系统是分级递阶控制系统,它的规模越大,系统重直和水平分

级的范围也越广。最简单的集散控制系统至少在垂直方向分为操作管理级和过程控制级,水平方向各过程控制级之间相互协调,向垂直方向送数据,接受指令,各水平级间也进行数据交换。

(2)分散控制。分散控制是集散控制系统的一个重要特点。分散的含义不单是分散控制,还包括人员地域的分散、功能分散、设备分散、负荷分散、危险分散。目的是危险分散,提高设备使用率。

(3)功能齐全。可完成简单回路调节、复杂多变量模型优化控制,可执行PID控制算法、前馈-反馈复合调节、史密斯预估、预测控制、自适应控制等各种运算,可进行反馈控制,也可进行间断顺序控制、批量控制、逻辑控制、数据采集,可实现监控、显示、打印、输出、报警、历史趋势贮存等各种操作要求。

(4)易操作性。集散控制系统根据对宜人学的研究,结合系统组态、结构方向的知识,为操作工提供了一个非常好的操作环境。为操作员提供的数据、状态等信息易于辨认,报警或事件发生的信息能引起操作员的注意,长时间工作不易疲劳,操作方便、快捷。

(5)安全可靠性高。为了提高系统的可靠性,确保生产持续运行,集散控制系统在重要设备和对全系统有影响的公共设备上采用了后备冗余装置,并引入容错技术。硬件上包括操作站、控制站、通讯线路等都采用双重化配置,使得在某一个单元发生故障的情况下,仍然保持系统的完整性,即使全局性通信或管理失效,局部站仍能维持工作。从软件上采用分段与模块化设计,积木式结构,采用程序卷回或指令复执的容错设计,使系统安全稳定。

(6)采用局部网络通信技术和标准化通信协议。已经采用的国际通信标准有IEEE802、PROW AY和MAP等,这些协议的标准化是集散系统成为开放系统的根本。集散控制系统的开放使各不同制造厂的应用软件有了可移植性,系统间可以进行数据通信,为用户提供广阔的应用场所。

(7)信息存储容量大,显示信息量大,有极强的管理能力,可实现生产过程自动化,工厂自动化、实验室自动化、办公室自动化等目标。

(8)适用于化工生产控制,有良好的性能价格比,不但其硬件适应化工控制,而且软件的适应性也稳定,随着系统开放第三方的应用软件也可方便应用。

2.4集散控制系统(DCS)的应用

2.4.1DCS在我国大中型化肥厂的应用情况

从80年代初期开始,我国多数大、中型化肥企业相继采用DCS系统(如表1)。1981年吉林化肥厂采用CENTUM控制9个氨合成塔机组,1985年云南天然气化肥厂引进TD-3000开发了4套先进节能控制系统,均取得了很好的经济效益和社会效应。泸州天然气化肥厂1986年采用TD-3000后,增产合成氨1·15%;沧州化肥厂1987年引进横河CENTUM控制4套节能系统和辅助锅炉,能耗大幅降低;赤水天然气化肥厂1987年采用VEN-TUM后,吨氨耗降低(0.13~0,15百万大卡),每年增产合成氨4000t。其他化肥厂如辽河化肥厂、大庆化肥厂、四川

天然气化肥厂、中原化肥厂等采用集散控制系统后,投用效果都很好]9[。

2.5集散控制系统(DCS)的发展趋势]10[

(1)开放性。集散控制系统中所使用的设备将趋于通用的产品, 专用的产品将越来越少, 特别是计算机和网络。高性能的工控机、工作站将被大量采用, 通用网络产品也将逐步淘汰专用网络。网络通信规约逐步向得到普遍承认的标准靠拢, 以系统集成的方式构成应用系统方法得到越来越多的应用。

(2)分散化和智能化。智能仪表、智能电子设备及现场总线技术将被大量采用, 集散控制系统的体系结构进一步走向分散化, 直接数字控制将深入到每一个控制回路、现场设备和工位, 因此现场总线网络的发展将成为各厂家注目的焦点。

(3)系统构成的多样化。现在几乎已看不到传统意义上的集散控制系统了, 目前所说的集散控制系统是一种广义的概念, 其中包括传统集散控制系统厂家推出的新一代系统]11[, 也

包括由PLC、高速总线网和专业厂家的组态软件所构成的系统。在不同的应用领域,集散控制系统的构成也各不相同。

(4)综合自动化。系统的发展逐步走向综合自动化, 将来任何系统都不是孤立的, 无法与其它系统互相通信并实现集成的集散控制系统已不再有生命力。

3 现场总线(FCS)

3.1现场总线(FCS)的产生

随着控制、计算机、通信、网络等技术的发展,信息交换沟通的领域迅速扩大,覆盖了从工厂的现场设备到控制、管理的各个层次,从工段、车间、工厂、企业乃至世界各地的市场。信息技术的飞速发展,引起了自动化系统结构的变革,逐步形成了以网络集成自动化系统为基础的信息系统。现场总线(Field-bus)就是顺应这一形势发展起来的新技术。它的出现,标志着

控制技术领域又一个新时代的开始,并将对该领域的发展产生重要的影响]12[。

3.2现场总线(FCS)的定义

现场总线原本是指现场设备之间公用的信号传输线。以后又被定义为应用在生产现场,在测量控制设备之间实现双向串行多节点数字通信的技术]13[。

3.3现场总线(FCS)的特点]14[

FCS 是第五代过程控制系统, 由PLC 或DCS 发展而来,它是21 世纪自动化控制系统

的方向。是3C 技术(Communication,Computer,Contro1)的融合。

(1)适用于本质(本征)安全、危险区域、易变过程、难于对付的非常环境。

(2) 全数字化、智能、多功能取代模拟式单功能仪器、仪表、控制装置。

(3)用两根线联接分散的现场仪表、控制装置, 取代每台仪表的两根线。“现场控制”取代“分散控制”;数据的传输采用“总线”方式。

(4)从控制室到现场设备的双向数字通信总线,是互联的、双向的、串行多节点、开放的数字通信系统取代单向的、单点、并行、封闭的模拟系统。

(5)用分散的虚拟控制站取代集中的控制站。

(6)3 类FCS 的典型应用:连续的工艺过程自动控制如石油化工, 其中“本安防爆”技术是绝对重要的;分立的工艺动作自动控制如汽车制造机器人、汽车; 多点控制如楼宇自动化。

3.4现场总线(FCS)的应用

3.4.1国外火电厂现场总线技术的应用]15[

(1)进入21世纪后,现场总线技术在各个领域都具有了不同程度的应用,尤其是近几年,现场总线技术已经成功应用于火力发电厂的主要工艺系统。比较典型的有位于德国科隆附近RWE集团的尼德豪森电厂(1×950MW),采用了德国Siemens公司的现场总线技术;有位于美国堪萨斯的OPPD能源集团的Nebraska电厂(2×740MW)燃煤机组,采用了Emerson公司的现场总线技术;也有位于美国休斯敦以北的TXU集团的Martin Lake燃煤电厂(3×

880MW),采用了Invensys公司的现场总线技术等;以及位于意大利罗马的TIRRENO POWER 联合循环电厂,瑞士、德国和瑞典的垃圾焚烧发电厂。

(2)国外的大型火电厂,均在锅炉和汽轮机等主系统的监控系统上采用了现场总线技术,其中的典型应用如下:

1)德国Niederraussen电厂(1×950MW),控制系统为西门子TXP-2000,除锅炉安全监控系统(FSSS)、汽轮机控制和保护系统(DEH、ETS)、重要的模拟量控制采用常规方案外,总线的应用基本集中在被控对象,即Profibus-DP的应用,仪表部分采用了HART协议,机组已经投入运行,运行情况良好。

2)意大利TIRRENO POWER联合循环电厂,该工程为改造项目,控制系统为西门子T2000,模拟量仪表和分析仪表采用了Profibus-PA协议,被控对象采用了Profibus-DP协议,即除燃机、汽机控制和保护系统(DEH、ETS)采用常规方案外,基本采用了现场总线。

3)美国Nebraska(OPPD)电厂(740MW),控制系统采用了Emerson的OV A TION系统,除锅炉安全监控系统(FSSS)、汽轮机控制和保护系统(DEH、ETS)、重要的模拟量控制采用常规方案外,总线的应用范围约为50%。

4)意大利的联合循环电厂,控制系统采用了FOXBORO公司的I/A系统,现场总线的应用范围是900个FF仪表,9300个Profibus对象,6000点常规I/O。

3.4.2国内火电厂现场总线技术的应用

(1)近几年,国内已经有相当一部分燃煤电厂在辅助车间系统采用了现场总线技术,如华能玉环电厂(2×1000MW)化学水处理、工业废水系统;广东河源电厂(2×600MW)净废水处理系统、华能巢湖电厂(2×600MW)化学水处理系统、华能九台电厂(2×600MW)水、煤、灰全厂辅助车间系统、华能秦岭电厂(2×600MW)水、煤、灰全厂辅助车间系统、国华宁海电厂(2×1000MW)的脱硫系统等。

(2)同时也有一些电厂在主厂房内机炉主系统上应用了现场总线技术,如河北三河电厂(2×350M W)的热网系统、天津北疆电厂(2×1000MW)的热网系统等;以及在2009年底投入运行的华能九台电厂(2×600MW)单元机组、华能金陵电厂(2×1000MW)单元机组,其中九台电厂约有30%的仪表控制系统采用了现场总线设备,金陵电厂约有50%的仪表控制系统采用了现场总线设备。正在进行设计的神华胜利发电厂2×660MW机组工程,大约有60%左右的仪表控制系统采用现场总线设备,为目前国内最大的现场总线技术应用燃煤机组项目。

3.5现场总线(FCS)的发展趋势]16[

虽然现场总线的标准统一还有种种问题,但现场总线控制系统的发展却已经是一个不争的事实。随着现场总线思想的日益深入人心,以及基于现场总线的产品和应用的不断增多,这种新一代控制系统正逐渐浮出水面,现场总线控制系统体系结构日益清晰,具体发展趋势表现在以下几个方面:

(1)现场总线控制系统是全面数字化、网络化的控制系统这体现在位于现场的传感器/执行器一级也全部实现数字化、智能化,它们彼此之间以及与控制器之间通过现场总线构成工业现场的局域网络,进而连接到上层控制网、管理网甚至互联网,形成一个无所不在的网络系统,

信息可以在现场、车间、工厂、公司总部之间自由流动。

(2)现场总线控制系统的网络结构向简单的方向发展。早期的MAP模型由7层组成,现在某些公司提出了3层、2层结构自动化,还有的公司甚至提出1层结构,由以太网一通到底。目前比较达成共识的是3层设备、2层网络的3+2结构。3层设备是位于底层的现场设备,如传感器/执行器,以及各种分布式I/O设备等;位于中间的控制设备,如PLC、工业控制计算机、专用控制器等;位于上层的是操作设备,如操作站、工程师站、数据服务器、一般工作站等。2层网络是现场设备与控制设备之间的控制网,以及控制设备与操作设备之间的管理网。

(3)现场总线控制系统大量采用成熟、开放、通用的技术。如在管理网的通信协议上,越来越多的企业采用最流行的TCP/ IP协议加以太网,操作设备一般采用工业PC机甚至普通PC机,制设备则采用标准的PLC或工业控制计算机等,而控制网络就是各种现场总线的应用领域。由此可见,新型的现场总线控制系统与传统的控制系统(如DCS、PLC)之间并不是完全取而代之的关系,而是继承、融合、提高的关系。例如现场总线控制系统与DCS之间结构有相似之处,但在底层用现场总线取代了传统的4~20 mA信号,在功能方面发生重大变化。现场总线控制系统常常采用标准的PC做操作站,PLC做控制站,在控制站上装有现场总线的通信模块,可与现场总线的智能设备相连,从而降低了系统的成本,提高了系统的开放性。

参考文献

[1] 郝战存. 可编程控制器发展综述[M]. 河北工业科技,2004.

[2] 胡学林.可编程控制器原理及应用.电子工业出版社,2010,12.

[3] 宋秀玲. PLC在中国的发展及应用前景[M]. 和田师范专科学校学报,2010,6.

[4] 纪文刚,张宁,张吉月. 半钢子午胎全自动裁断机PLC控制系统[M].工业仪表与自动化装置,2003.

[5] 祝永华,郁炜,叶文通. PLC的网络化发展趋势[J].电气时代,2003.

[6] 欧阳三泰,周琴,欧阳希. 软PLC控制技术综述[M].电气传动,2005.

[7]、[9] 王晓刚. 集散控制系统的发展[M].贵州化工,2001,8.

[8] 张学申,叶西宁.集散控制系统及其应用.机械工业出版社,2006.

[10] 吕增芳. 集散控制系统发展概述[M].机械管理开发,2008,6.

[11] 张岳..集散控制系统及现场总线..机械工业出版社,2006:

[12]、[16] 王杰. 现场总线技术的现状与发展[M].电气传动自动化,2005.

[13] 阳宪惠.现场总线技术及其应用.清华大学出版社,2008.

[14] 杨岭. P L C 、D C S 、F C S 三大控制系统的特点及应用[M].工业技术,2007.

[15] 马欣欣. 现场总线技术在大型火电厂的应用[M].中国仪器仪表,2012.

十二校联合《教育学基础》配套题库-课后习题(教育目的)

第3章教育目的 1.说明教育目的内涵及教育目的对教育活动质的规定性。 答:(1)教育目的的内涵 教育目的是指教育要达到的预期效果,反映对教育在人的培养规格标准、努力方向和社会倾向性等方面的要求。狭义的教育目的特指一定社会为所属各级各类教育人才培养所确立的总体要求。广义的教育目的是指对教育活动具有指向性作用的目的领域,含有不同层次预期实现的目标系列。它不仅标示着一定社会对教育培养人的要求,也标示着教育活动的方向和目标,是教育活动的出发点和归宿。 (2)教育目的对教育活动质的规定性 教育目的对教育活动的质的规定性是教育目的的基本特点之一。它是指教育目的对教育活动的社会倾向和人的培养具有质的规定性,主要表现在: ①对教育活动具有质的规定性。一般而言,一个国家的教育目的总体上都内在地含有对教育“为谁培养人”、“为谁服务”的基本规定。这种质的规定性在于明确教育进行人才培养的社会性质和根本方向,以便使其培养出与一定社会要求相一致的人。如果偏离了社会要求或违背了社会性质,社会必然要通过各种方式对其教育进行批评、整顿、改造,严重的甚至予以取消。 ②对教育对象的发展具有质的规定性,主要体现为两方面:一方面规定了教育对象培养的社会倾向,即要使教育对象成为哪个阶级、哪个社会的人,为哪个阶级、哪个社会服务;另一方面规定了培养对象应有的基本素质,即要使教育对象在哪些方面得到发展,应养成哪

些方面的素质等。 由此可见,教育目的作为培养人的总体要求,总是内在地决定着教育的社会性质和教育对象发展的素质。而这种对教育活动所具有的质的规定性,使它自身对各种教育活动的要求具有很强的原则性,成为社会在总体上把握教育活动及人才培养性质和方向的根本所在。坚持了所确定的教育目的,把握了它所具有的质的规定性,就能够从根本上保证教育对人的培养与社会发展要求相一致。 2.说明各类教育目的的特点及其在实践中应如何正确地看待和把握它们。 答:(1)各类教育目的的特点 同人类社会生活和活动的目的一样,教育目的也带有意识性、意欲性、可能性和预期性的特点。除此之外,各类教育目的还有两个较为明显的特点: ①各类教育目的对教育活动都具有质的规定性 第一,教育目的对教育活动具有质的规定性。即教育目的对教育活动的社会倾向和人的培养具有质的规定性。一般而言,一个国家的教育目的和各级各类教育的目标都会对教育活动的社会倾向和人的培养目的方面做出规定,对这种质的规定性在于明确教育进行人才培养的社会性质和根本方向,以便使其培养出与一定社会要求相一致的人。 第二,对教育对象的发展具有质的规定性。主要体现为两方面:一方面规定了教育对象培养的社会倾向,即要使教育对象成为哪个阶级、哪个社会的人,为哪个阶级、哪个社会服务;另一方面规定了培养对象应有的基本素质,即要使教育对象在哪些方面得到发展,应养成哪些方面的素质等。 ②各类教育目的都具有社会性和时代性 教育是培养人的社会活动,无不受到社会及各个时代的制约,这也就使得教育目的在历

emc存储容灾技术解决方案

EMC VNX5400 存储容灾技术解决方案 2017年8月 易安信电脑系统(中国)有限公司 1

一、需求分析 随着各行业数字化进程的推进,数据逐渐成为企事业单位的运营核心,用户对承载数据的存储系统的稳定性要求也越来越高。虽然不少存储厂商能够向用户提供稳定性极高的存储设备,但还是无法防止各种自然灾难对生产系统造成不可恢复的毁坏。为了保证数据存取的持续性、可恢复性和高可用性,远程容灾解决方案应运而生,而远程复制技术则是远程容灾方案中的关键技术之一。 远程复制技术是指通过建立远程容灾中心,将生产中心数据实时或分批次地复制到容灾中心。正常情况下,系统的各种应用运行在生产中心的计算机系统上,数据同时存放在生产中心和容灾中心的存储系统中。当生产中心由于断电、火灾甚至地震等灾难无法工作时,则立即采取一系列相关措施,将网络、数据线路切换至容灾中心,并且利用容灾中心已经搭建的计算机系统重新启动应用系统。 容灾系统最重要的目标就是保证容灾切换时间满足业务连续性要求,同时尽可能保持生产中心和容灾中心数据的连续性和完整性,而如何解决生产中心到容灾中心的数据复制和恢复则是容灾备份方案的核心内容。 本方案采用EMC MirrorView 复制软件基于磁盘阵列(VNX5300-VNX5400)的数据复制技术。它是由磁盘阵列自身实现数据的远程复制和同步,即磁盘阵列将对本系统中的存储器写I/O操作复制到远端的存储系统中并执行,保证生产数据和备份数据的一致性。由于这种方式下数据复制软件运行在磁盘阵列内,因此较容易实现生产中心和容灾容灾中心的生产数据和应用数据或目录的实时拷贝维护能力,且一般很少影响生产中心主机系统的性能。如果在容灾中心具备了实时生产数据、备用主机和网络环境,那么就可以当灾难发生后及时开始业务系统的恢复。 2

过程控制系统习题解答

《过程控制系统》习题解答 1-1 试简述过程控制的发展概况及各个阶段的主要特点。 答:第一个阶段50年代前后:实现了仪表化和局部自动化,其特点: 1、过程检测控制仪表采用基地式仪表和部分单元组合式仪表 2、过程控制系统结构大多数是单输入、单输出系统 3、被控参数主要是温度、压力、流量和液位四种参数 4、控制的目的是保持这些过程参数的稳定,消除或减少主要扰动对生产过程的影响 5、过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入、单输出的定值控制系统的分析和综合问题 第二个阶段60年代来:大量采用气动和电动单元组合仪表,其特点: 1、过程控制仪表开始将各个单元划分为更小的功能,适应比较复杂的模拟和逻辑规律相结合的控制系统 2、计算机系统开始运用于过程控制 3、过程控制系统方面为了特殊的工艺要求,相继开发和应用了各种复杂的过程控制系统(串级控制、比值控制、均匀控制、前馈控制、选择性控制) 4、在过程控制理论方面,现代控制理论的得到了应用 第三个阶段70年代以来:现代过程控制的新阶段——计算机时代,其特点: 1、对全工厂或整个工艺流程的集中控制、应用计算系统进行多参数综合控制 2、自动化技术工具方面有了新发展,以微处理器为核心的智能单元组合仪表和开发和广泛应用 3、在线成分检测与数据处理的测量变送器的应用 4、集散控制系统的广泛应用 第四个阶段80年代以后:飞跃的发展,其特点: 1、现代控制理论的应用大大促进了过程控制的发展 2、过程控制的结构已称为具有高度自动化的集中、远动控制中心 3、过程控制的概念更大的发展,包括先进的管理系统、调度和优化等。 1-2 与其它自动控制相比,过程控制有哪些优点?为什么说过程控制的控制过程多属慢过程? 过程控制的特点是与其它自动控制系统相比较而言的。 一、连续生产过程的自动控制 连续控制指连续生产过程的自动控制,其被控量需定量控制,而且应是连续可调的。若控制动作在时间上是离散的(如采用控制系统等),但是其被控量需定量控制,也归入过程控制。 二、过程控制系统由过程检测、控制仪表组成 过程控制是通过各种检测仪表、控制仪表和电子计算机等自动化技术工具,对整个生产过程进行自动检测、自动监督和自动控制。一个过程控制系统是由被控过程和检测控制仪表两部分组成。 三、被控过程是多种多样的、非电量的 现代工业生产过程中,工业过程日趋复杂,工艺要求各异,产品多种多样;动态特性具有大惯性、大滞后、非线性特性。有些过程的机理(如发酵等)复杂,很难用目前过程辨识方法建立过程的精确数学模型,因此设计能适应各种过程的控制系统并非易事。 四、过程控制的控制过程多属慢过程,而且多半为参量控制 因为大惯性、大滞后等特性,决定了过程控制的控制过程多属慢过程;在一些特殊工业生产过程中,采用一些物理量和化学量来表征其生产过程状况,故需要对过程参数进行自动检测和自动控制,所以过程控制多半为参量控制。

过程控制系统习题答案

什么是过程控制系统?其基本分类方法有哪几种? 过程控制系统通常是指连续生产过程的自动控制,是自动化技术中最重要的组成部分之一。基本分类方法有:按照设定值的形式不同【定值,随动,程序】;按照系统的结构特点【反馈,前馈,前馈-反馈复合】。 热电偶测量的基本定律是什么?常用的冷端补偿方式有哪些 均质材料定律:由一种均匀介质或半导体介质组成的闭合回路中,不论截面和长度如何以及沿长度方向上的温度分布如何,都不能产生热电动势,因此热电偶必须采用两种不同的导体或半导体组成,其截面和长度大小不影响电动势大小,但须材质均匀; 中间导体定律:在热电偶回路接入中间导体后,只要中间导体两端温度相同,则对热电偶的热电动势没有影响; 中间温度定律:一支热电偶在两接点温度为t 、t0 时的热电势,等于两支同温度特性热电偶在接点温度为t 、ta和ta、t0时的热电势之代数和。只要给出冷端为0℃时的热电势关系,便可求出冷端任意温度时的热电势,即 由于冷端温度受周围环境温度的影响,难以自行保持为某一定值,因此,为减小测量误差,需对热电偶冷端采取补偿措施,使其温度恒定。冷端温度补偿方法有冷端恒温法、冷端补偿器法、冷端温度校正法和补偿导线法。 为什么热电阻常用三线制接法?试画出其接线原理图并加以说明。 电阻测温信号通过电桥转换成电压时,热电阻的接线如用两线接法,接线电阻随温度变化会给电 桥输出带来较大误差,必须用三线接法,以抵消接线电阻随温度变化对电桥的影响。 对于DDZ-Ⅲ型热电偶温度变送器,试回答: 变送器具有哪些主要功能? 变送器的任务就是将各种不同的检测信号转换成标准信号输出。 什么是变送器零点、零点迁移调整和量程调整? 热电偶温度变送器的输入电路主要是在热电偶回路中串接一个电桥电路。电桥的功能是实现热电偶的冷端补偿和测量零点的调整。

第三章 教育目的

第三章教育目的 ★导入:人的一切有意义的活动都是有一个既定的目标。目标就像上帝之手一样,会牵引着我们向着正确的方向前进。目的的特征:1、明确的意识性。2、主体的自觉自愿性。 3、实现的可能性。 4、实现的预期性。(以高考为例)。因而,人类社会的各种活动都是带有目的性的,教育活动也不例外。 第一节教育目的的类型及其功能 一、教育目的的含义及特点 (一)、教育目的 教育目的是指教育要达到的预期结果,反映了教育在人的培养规格、努力方向和社会倾向性等方面的要求。教育目的不仅规定着一定社会(国家或地区)对教育培养人的要求,也标志着教育活动的方向和目标,是教育活动的出发点和归宿。 教育目的主要回答了两问题:一是规定教育“为谁培养人”,这是关于教育活动的质的规定性;二是“培养什么样的人”,这是关于教育对象的质的规定性。 狭义的教育目的:特指一定社会为所属各级各类教育的人才培养所确立的总体要求,是整个教育意欲达到的根本所在。 广义的教育目的:指对教育活动具有指向作用的目的领域,含有不同的层次,其结构层次有上下之分,依次为:教育目的—培养目标—课程目标—教学目标等。 (二)、教育目的与教育方针 一致性:教育目的与教育方针在对教育社会性质的规定上具有内在一致性,两者都含有“为谁培养人”的规定性,都是一定社会各级各类教育在其性质和方向上不得违背的根本指导原则。 区别:1、内容范围:教育方针所含的内容比教育目的更多些。教育目的一般只包含“为谁培养人”和“培养什么样的人”的问题。教育方针还含有“怎样培养人”的问题和教育事业发展的基本原则。 2、侧重点:教育目的在对人的培养的质量规格方面要求较为明确;教育方针在“办什么样的教育”、“怎样办教育”方面显得更为突出。 (三)、教育目的的基本特点 1、教育目的对教育活动具有质的规定性 (1)对教育活动具有质的规定性:“为谁培养人”“为谁服务”的基本规定。人才培养的社会性质和根本方向,培养出与一定社会要求相一致的人。 (2)对教育对象的发展具有质的规定性 A、规定了教育对象培养的社会倾向:成为哪个阶级、哪个社会的人——政治倾向 B、规定了教育对象应有的基本素质: 2、教育目的具有社会性和时代性 中国古代:亲王贵胄接受教育,平民所受教育是为了统治阶级,能够为官,教育带有浓厚的阶级性。倡导儒学,儒学为主流。《管子》帝王之术 中国近代:半殖民半封建。 洋务运动:西学中用,维持清政府饿统治。 五四文化运动:教育的目的是希望提高全民素质,唤起国人的觉悟。 中国现代:维护社会主义利益,为社会主义服务。 (四)、教育目的的确定实质是对教育本质的认识 教育是为了人的发展还是为了社会的发展;是以人为本还是以社会为本;教育的本质到

PLCDCSFCS三大控制系统的基本特点及区别

PLC、DCS、FCS三大控制系统的基本特点及区别 PLC (1)从开关量控制发展到顺序控制、运送处理,是从下往上的。 (2)连续PID控制等多功能,PID在中断站中。 (3)可用一台PC机为主站,多台同型PLC为从站。 (4)也可一台PLC为主站,多台同型PLC为从站,构成PLC网络。这比用PC机作主站方便之处是:有用户编程时,不必知道通信协议,只要按说明书格式写就行。 (5)PLC网格既可作为独立DCS/TDCS,也可作为DCS/TDCS的子系统。 (6)大系统同DCS/TDCS,如TDC3000、CENTUMCS、WDPFI、MOD300。 (7)PLC网络如Siemens公司的SINEC—L1、SINEC—H1、S4(错了,去掉)、S5、S6(错了,去掉)、S7等,GE公司的GENET、三菱公司的MELSEC—NET、MELSEC—NET/MINI。 (8)主要用于工业过程中的顺序控制,新型PLC也兼有闭环控制功能。 (9)制造商:GOULD(美)、AB(美)、GE(美)、OMRON(日)、MITSUBISHI(日)、Siemens (德)等。 DCS或TDCS (1)分散控制系统DCS与集散控制系统TDCS是集4C(Communication,Computer, Control、CRT)技术于一身的监控技术。 (2)从上到下的树状拓扑大系统,其中通信(Communication)是关键。 (3)PID在中断站中,中断站联接计算机与现场仪器仪表与控制装置。 (4)是树状拓扑和并行连续的链路结构,也有大量电缆从中继站并行到现场仪器仪表。(5)模拟信号,A/D—D/A、带微处理器的混合。 (6)一台仪表一对线接到I/O,由控制站挂到局域网LAN。 (7)DCS是控制(工程师站)、操作(操作员站)、现场仪表(现场测控站)的3级结构。(8)缺点是成本高,各公司产品不能互换,不能互操作,大DCS系统是各家不同的。(9)用于大规模的连续过程控制,如石化等。 (10)制造商:Bailey(美)、Westinghous(美)、HITACH(日)、LEEDS & NORTHRMP(美)、SIEMENS(德)、Foxboro(美)、ABB(瑞士)、Hartmann & Braun(德)、Yokogawa(日)、Honewell(美国)、Taylor(美)等。 3 FCS (1)基本任务是:本质(本征)安全、危险区域、易变过程、难于对付的非常环境。(2)全数字化、智能、多功能取代模拟式单功能仪器、仪表、控制装置。 (3)用两根线联接分散的现场仪表、控制装置、PID与控制中心,取代每台仪器两根线。(4)在总线上PID与仪器、仪表、控制装置都是平等的。 (5)多变量、多节点、串行、数字通信系统取代单变量、单点、并行、模拟系统。 (6)是互联的、双向的、开放的取代单向的、封闭的。 (7)用分散的虚拟控制站取代集中的控制站。 (8)由现场电脑操纵,还可挂到上位机,接同一总线的上一级计算机。 (9)局域网,再可与internet相通。 (10)改变传统的信号标准、通信标准和系统标准入企业管理网。 (11)制造商:美Honeywell 、Smar 、Fisher— Rosemount、 AB/Rockwell、Elsag— Bailey 、Foxboro 、Yamatake 、日Yokogawa、欧 Siemens、 GEC—Alsthom 、Schneider、 proces—Data、 ABB等。 (12)3类FCS的典型

教育目的与全面发展教育要点

第三章教育目的与全面发展教育 [教学目标] 1.表述教育目的含义,教育目的与教育方针的关系,教育目的的功能; 2.理解教育目的确立的依据,教育目的的价值取向问题及应注意的问题; 3.明确社会主义教育目的的理论基础; 4.掌握现阶段我国社会主义教育目的的基本内容和精神实质; 5.明确教育目的确立的基本依据,了解实现教育目的策略; 6.全面发展教育内容。 [教学重点与难点] 教育目的概念及教育目的的功;教育目的的价值取向与注意的问题;现阶段我国教育目的内容与精神实质;马克思关于人的全面发展学说。 [教学方法] 以讲授法、讨论法为主 [授课时数] 3课时 [教学内容] 第一节教育目的 一、教育目的的类型及功能 (一)教育目的含义 教育目的是指教育要达到的预期结果,反映对教育在人的培养规格标准、努力方向和社会倾向性等方面的要求。 狭义教育目的特指一定社会为所属各级各类教育人才培养所确定的总体要求。 (二)教育目的与教育方针 (三)教育目的的类型 (1)价值性教育目的和操作性教育目的 (2)终极性教育目的和发展性教育目的(理想的和现实的) (3)正式决策的教育目的和非正式决策的教育目的(方针政策法令之中的和教育思想、教育理论之中的) (4)实然教育目的与应然教育目的 (四)教育目的功能——出发点与归宿 1)导向功能;2)调控功能;3)评价功能;4)激励功能。 二、制定教育目的的依据 1、社会依据——一是要根据社会关系现实和发展的需要,二是要根据社会生产和科学技术发展的需要。 2、人的依据——身心发展特点与需要 社会本位的价值取向 个人本位的价值取向 文化本位论 生活本位论

价值取向中的人与社会的关系: (1)要把满足人的需要与社会需要结合起来; (2)满足社会需要与满足人的需要相结合,在实际运行过程中应作动态的、发展的把握,二者互为基点; (3)价值实现的实践着眼点,要落在人的发展上。 三、教育目的选择价值取向 (一)价值取向 社会本位的价值取向 个人本位的价值取向 文化本位论 生活本位论 (二)价值取向中的人与社会的关系: (1)要把满足人的需要与社会需要结合起来; (2)满足社会需要与满足人的需要相结合,在实际运行过程中应作动态的、发展的把握,二者互为基点; (3)价值实现的实践着眼点,要落在人的发展上。 (三)教育目的的价值取向确立应注意的问题 1、社会价值取向确立应注意的问题 1)以可持续发展的理念为指导 2)适应与超越的问题: 适应,是指教育对现实社会当前需要的符合性; 超越,是指教育对现实社会当前的超出性,是教育基于现实社会当前的发展趋势或可能,在体现现实社会未来发展要求,满足现实社会未来需要方面所具有的努力状态。 3)功利价值与人文价值的问题: 教育的功利性,即它自身活动所产生的社会物质生产、经济发展及物质利益满足方面的功用性和效益,这方面的意义体现教育在社会中的功利性价值。 教育的人文性,即它自身活动对社会精神生活、文化发展、价值精神建构方面所产生的作用和效果,这方面的意义体现为教育在社会中的人文价值。 4)民族性与世界性问题——国际化和本土化 2、人的价值取向确立应注意的问题 1)人的社会化和个性化问题 2)人的理性与非理性问题:、 3)科技素质与人文素质问题 四、我国教育目的 (一)我国教育目的制定的理论基础 马克思主义关于人的全面发展学说 人的全面发展含义:表现为人的体力和智力得到充分自由的发展。 基本内容: 1)旧式分工导致人的片面发展; 2)人的发展与社会生产发展相一致; 3)大机器工业生产要求人的全面发展,并为人的全面发展提供了物质基础; 4)实现人的全面发展的根本途径是教育同生产劳动相结合。 (二)我国现阶段的教育目的 1 现阶段教育目的的表述 1995年《中华人民共和国教育法》:“教育必须为社会主义现代化建设服务,必须与生产劳动相结合,培养德、智、体等全面发展的社会主义事业的建设者和接班人。”

PLC、DSC、FCS三大控制系统的特点和差异

PL C、DCS、FCS三大控制系统的特点和差异 FCS是由PLC发展而来的;而在另一些行业,FCS又是由DCS发展而来的,所以FCS与PLC及DCS之间有着千丝万缕的联系,又存在着本质的差异。本文试就PL C、DCS、FCS三大控制系统的特点和差异作一分析,指出它们之间的渊源及发展方向。 摘要: 本文对PL C、DCS、FCS三大控制系统的特点和差异进行了分析,指出了三种控制系统之间的渊源及发展方向。 关键词: 可编程序控制器(PLC)分散控制系统(DCS)现场总线控制系统(FCS) 1.前言 上世纪九十年代走向实用化的现场总线控制系统,正以迅猛的势头快速发展,是目前世界上最新型的控制系统。现场总线控制系统是目前自动化技术中的一个热点,正受到国内外自动化设备制造商与用户越来越强烈的关注。现场总线控制系统的出现,将给自动化领域带来又一次革命,其深度和广度将超过历史的任何一次,从而开创自动化的新纪元。 在有些行业,FCS是由PLC发展而来的;而在另一些行业,FCS又是由DCS 发展而来的,所以FCS与PLC及DCS之间有着千丝万缕的联系,又存在着本质的差异。本文试就PL C、DCS、FCS三大控制系统的特点和差异作一分析,指出它们之间的渊源及发展方向。 2.PL

C、DCS、FCS三大控制系统的基本特点 目前,在连续型流程生产自动控制(PA)或习惯称之谓工业过程控制中,有三大控制系统,即PL C、DCS和FCS。它们各自的基本特点如下: 2.1 PLC (1)从开关量控制发展到顺序控制、运送处理,是从下往上的。 (2)连续PID控制等多功能,PID在中断站中。 (3)可用一台PC机为主站,多台同型PLC为从站。 (4)也可一台PLC为主站,多台同型PLC为从站,构成PLC网络。这比用PC机作主站方便之处是: 有用户编程时,不必知道通信协议,只要按说明书格式写就行。 (5)PLC网格既可作为独立DCS/TDCS,也可作为DCS/TDCS的子系统。 (6)大系统同DCS/TDCS,如T DC3000、CENTUMCS、WDPFI、MOD300。 (7)PLC网络如Siemens公司的SINEC—L 1、SINEC—H 1、S 4、S 5、S 6、S7等,GE公司的GENET、三菱公司的MELSEC—NET、MELSEC— NET/MINI。 (8)主要用于工业过程中的顺序控制,新型PLC也兼有闭环控制功能。

过程控制系统习题答案

过程控制系统习题 答案

什么是过程控制系统?其基本分类方法有哪几种? 过程控制系统一般是指连续生产过程的自动控制,是自动化技术中最重要的组成部分之一。基本分类方法有:按照设定值的形式不同【定值,随动,程序】;按照系统的结构特点【反馈,前馈,前馈-反馈复合】。 热电偶测量的基本定律是什么?常见的冷端补偿方式有哪些 均质材料定律:由一种均匀介质或半导体介质组成的闭合回路中,不论截面和长度如何以及沿长度方向上的温度分布如何,都不能产生热电动势,因此热电偶必须采用两种不同的导体或半导体组成,其截面和长度大小不影响电动势大小,但须材质均匀; 中间导体定律:在热电偶回路接入中间导体后,只要中间导体两端温度相同,则对热电偶的热电动势没有影响; 中间温度定律:一支热电偶在两接点温度为t 、t0 时的热电势,等于两支同温度特性热电偶在接点温度为t 、ta和ta、t0时的热电势之代数和。只要给出冷端为0℃时的热电势关系,便可求出冷端任意温度时的热电势,即 由于冷端温度受周围环境温度的影响,难以自行保持为某一定值,因此,为减小测量误差,需对热电偶冷端采取补偿措施,使其温度恒定。冷端温度补偿方法有冷端恒温法、冷端补偿器法、冷端温度校正法和补偿导线法。 为什么热电阻常见三线制接法?试画出其接线原理图并加以说明。

电阻测温信号经过电桥转换成电压时,热电阻的接线如用两线接法,接线电阻随温度变化会给电桥输出带来较大误差,必须用三线接法,以抵消接线电阻随温度变化对电桥的影响。 对于DDZ-Ⅲ型热电偶温度变送器,试回答: 变送器具有哪些主要功能? 变送器的任务就是将各种不同的检测信号转换成标准信号输出。 什么是变送器零点、零点迁移调整和量程调整? 热电偶温度变送器的输入电路主要是在热电偶回路中串接一个电桥电路。电桥的功能是实现热电偶的冷端补偿和测量零点的调整。 大幅度的零点调整叫零点迁移。实用价值是:有些工艺的参数变化范围很小,例如,某设备的温度总在500~1000度之间变化。如果仪表测量范围在0 ~1000度之间,则500℃以下测量区域属于浪费。因为变送器的输出范围是一定的。可经过零点迁移,配合量程调整,使仪表的测量范围在500~1000℃之间,可提高测量精度。

教师招聘考试《教育学》重要考点三:教育的目的

【考点1】教育目的及其特点 教育目的规定了把受教育者培养成什么样的人,是培养人的质量规格与标准,是对受教育者的总的要求。教育目的一般由国家或国家教育行政部门制定,指导一定时期的各级各类教育工作。 狭义的教育目的是指国家对把受教育者培养成什么样的人才提出的总的要求。广义的教育目的是指人们对受教育者的期望,即希望受教育者通过教育在身心诸方面发生什么样的变化或产生怎样的结果,其结构层次有上下位次之分,依次为教育目的——培养目标——课程目标——教学目标等。教育目的有两个较为明显的特点,其一是教育目的对教育活动具有质的规定性,其二是教育目的具有社会性和时代性。 【考点2】教育目的的基本类型 从教育目的作用的特点看,有价值性和功用性之分;从其要求的特点看,有终极性和发展性之分;从被实际所重视的程度看,有正式决策和非正式决策之分。 价值性教育目的,即具有价值判断意义的教育目的,含有一定价值观实现要求的教育目的,表示人才培养所具有的某种价值取向,是指导教育活动最根本的价值内核。 功用性教育目的,即教育在发展人从事或作用于各种事物的活动性能方面所预期的结果,内含对人的功用性发展的指向和要求,在教育实践中以能力、技能技巧等方面的具体要求呈现出来。 终极性教育目的,也称理想的教育目的,是指具有终极结果的教育目的,表示各种教育及其活动在人的培养上最终要实现的结果,它蕴涵着人的发展要求具有“完人”的性质。 发展性教育目的,也称现实的教育目的,是指具有连续性的教育目的,表示教育及其活动在发展的不同阶段所要实现的各种结果,表明对人培养的不同时期、不同阶段前后具有衔接性的各种要求。 正式决策的教育目的是指被社会一定权力机构确定并要求所属各级各类教育都必须遵循的教育目的。 非正式决策的教育目的是指蕴涵在教育思想、教育理论中的教育目的,它不是被社会一定权力机构正式确立而存在的,而是借助一定的理论主张和社会根基而存在的。 内在教育目的即具体教育过程要实现的直接目的,是对具体教育活动预期结果的直接指向,内含对学习者情意品行、知识认知、行为技能等方面发展变化预期的结果,通过某门课程及其教学目标或某一单元、某一节课的教学目标体现出来的可预期的具体结果。 外在教育目的是指教育目的领域位次较高的教育目的,他体现一个国家或地区的教育在人的培养上所预期达到的总目标和结果,是一个国家或地区对所属各级各类教育培养人的普遍的原则要求。 【考点3】教育目的的功能 教育目的的功能是指教育目的对实际教育活动所具有的作用,主要包括:对教育活动的定向功能;对教育活动的调控功能;对教育活动的评价功能。以上三个功能相互联系、综合体现。定向功能伴随评价功能和调控功能而发挥;调控功能的发挥需要以定向功能和评价功能为依据;评价功能的发挥凭借定向功能。 【考点4】确立教育目的的依据

软件定义存储SDS(software-defined storage)

软件定义存储SDS(software-defined storage) 2013/7/22 软件定义存储导言:IT领域,新概念总是另人应接不暇,数据中心已经提出向软件进行输出(即软件定义数据中心SDDC),于是有了存储也由软件来进行控制的概念,也就是说软件定义存储。 软件定义存储简介 软件定义存储(software-defined storage)是现存操作系统或监管程序中一种扩展的存储软件,它不需要特定的虚拟机来运行。核心理念为在任何存储上运行的应用都能够在用户定义的策略的驱动下自动工作。【相关概念:软件定义网络SDN、软件定义数据中心SDDC】软件定义存储将存储服务从存储系统中抽象出来,且可同时向机械硬盘及固态硬盘提供存储服务。这样定义和虚拟化存储颇为相似,但是虚拟化存储多数情况下只能在专门的硬件设备上使用。对于许多厂商来说虚拟化存储都要使用自己为其量身定制的设备;或者是在特定服务器上加载的一款软件。不过,它可以被认为是一个用行业标准的服务器硬件来提供存储服务(包括一些存储功能,比如重复数据删除、远程复制、快照和自动精简配置)的软件层。 软件定义存储的目标:将复杂的存储系统封装成为易操作的服务,用户可以通过一个软件或者管理界面方便的管理自己所有的存储资源和内容。软件定义存储是现存操作系统或监管程序中一种扩展的存储软件,它不需要特定的虚拟机来运行。 软件定义存储厂商 Fusion-io的软件定义存储 在2012年Fusion-io的一篇《Fusion-io:软件定义存储的推手—闪存》提到在软件定义的数据中心里,存储是不可或缺的一部分。存储都是通过软件来实现部署、配置和管理的。软件定义存储是软件定义数据中心这一概念的一部分。在这个软件定义的数据中心里,一个应用需要的所有虚拟化存储、网络、服务器和安全资源都可以通过软件进行定义,并自动进行分配。而软件定义存储这一市场的快速发展离不开闪存,因为现在闪存式服务器中储存热数据的最佳设备。从这点看,Fusion-io的闪存策略确实有向软件定义存储倾斜的必要。 为了加快向软件定义存储形象的转变,Fusion-io收购ID7,ID7创立于2006年,其最被人熟知的是软件定义存储(SDS)策略,另外ID7还是Linux存储子系统SCST的开发者,两家公司已经在一起共同开发了ION数据加速软件,这个软件主要用于将服务器转换成为存储贡献设备。 EMC押注虚拟存储新星ScaleIO EMC已经确认对以色列虚拟存储业新贵ScaleIO进行收购,ScaleIO的ECS(即弹性融合存储)软件能够将一台服务器的直连存储(简称DAS)转化为共享式SAN(即存储区域网络)。事实上,ECS属于一种虚拟存储设备(简称VSA),因此其市场定位与惠普的纯软件StoreVirtual 产品存在竞争关系。配备于旧款LeftHand iSCSI SAN控制器中的该软件已经充分证实了自身的可用性;而向服务器环境的进军将使其以SAN的姿态与用户见面。 根据SacleIO公司的说法,其技术足以将数以千计的服务器以集群化形式整合在虚拟SAN(即VSAN)当中,通过每台服务器为整套VSAN分别处理I/O任务,从而带来更强的I/O 性能与存储容量。VSAN支持动态规模调整,我们注意到这一特性明显属于软件定义存储方案的衍生产品。 相关的厂家还有SwiftStack公司,SwiftStack是建立一个完整的软件定义存储解决方案,

PLC、DCS、FCS三大控制系统的特点和差异

PLC、DCS、FCS三大控制系统的特点和差异 前言 上世纪九十年代走向实用化的现场总线控制系统,正以迅猛的势头快速发展,是目前世界上最新型的控制系统。现场总线控制系统是目前自动化技术中的一个热点,正受到国内外自动化设备制造商与用户越来越强烈的关注。现场总线控制系统的出现,将给自动化领域带来又一次革命,其深度和广度将超过历史的任何一次,从而开创自动化的新纪元。 在有些行业,FCS是由PLC发展而来的;而在另一些行业,FCS 又是由DCS发展而来的,所以FCS与PLC及DCS之间有着千丝万缕的联系,又存在着本质的差异。本文试就PLC、DCS、FCS三大控制系统的特点和差异作一分析,指出它们之间的渊源及发展方向。 2.PLC、DCS、FCS三大控制系统的基本特点 目前,在连续型流程生产自动控制(PA)或习惯称之谓工业过程控制中,有三大控制系统,即PLC、DCS和FCS.它们各自的基本特点如下:2.1 PLC (1)从开关量控制发展到顺序控制、运送处理,是从下往上的。 (2)连续PID控制等多功能,PID在中断站中。 (3)可用一台PC机为主站,多台同型PLC为从站。 (4)也可一台PLC为主站,多台同型PLC为从站,构成PLC网络。这比用PC机作主站方便之处是:有用户编程时,不必知道通信协议,只要按说明书格式写就行。 (5)PLC网格既可作为独立DCS/TDCS,也可作为DCS/TDCS的

子系统。 (6)大系统同DCS/TDCS,如TDC3000、CENTUMCS、WDPFI、MOD300.(7)PLC网络如Siemens公司的SINECL1、SINECH1、S4、S5、S6、S7等,GE公司的GENET、三菱公司的MELSECNET、MELSECNET/MINI.(8)主要用于工业过程中的顺序控制,新型PLC 也兼有闭环控制功能。 (9)制造商:GOULD(美)、AB(美)、GE(美)、OMRON(日)、MITSUBISHI(日)、Siemens(德)等。 2.2 DCS或TDCS (1)分散控制系统DCS与集散控制系统TDCS是集4C (Communication,Computer,Control、CRT)技术于一身的监控技术。 (2)从上到下的树状拓扑大系统,其中通信(Communication)是关键。 (3)PID在中断站中,中断站联接计算机与现场仪器仪表与控制装置。 (4)是树状拓扑和并行连续的链路结构,也有大量电缆从中继站并行到现场仪器仪表。 (5)模拟信号,A/DD/A、带微处理器的混合。 (6)一台仪表一对线接到I/O,由控制站挂到局域网LAN.(7)DCS是控制(工程师站)、操作(操作员站)、现场仪表(现场测控站)的3级结构。 (8)缺点是成本高,各公司产品不能互换,不能互操作,大DCS

第1章自动控制系统的基本概念

第1章自动控制系统的基本概念 内容提要: 本章通过开环与闭环控制具体实例,讲述自动控制系统的基本概念(如被控制对象、输入量、输出量、扰动量、开环控制系统、闭环控制系统及反馈的概念)、反馈控制任务、控制系统的组成及原理框图的绘制、控制系统的基本分类、对控制系统的基本要求。 1.1 概述 在科学技术飞速发展的今天,自动控制技术起着越来越重要的作用。所谓自动控制,是指在没有人直接参与的情况下,利用控制装置使被控对象(机器设备或生产过程)的某个参数(即被控量)自动地按照预定的规律运行。例如,数控车床按照预定程序自动地切削工件,化学反应炉的温度或压力自动地维持恒定,人造卫星准确地进入预定轨道运行并回收,宇宙飞船能够准确地在月球着陆并返回地面等,都是以应用高水平的自动控制技术为前提的。 自动控制理论是控制工程的理论基础,是研究自动控制共同规律的技术科学。自动控制理论按其发展过程分成经典控制理论和现代控制理论两大部分。 经典控制理论在20世纪50年代末已形成比较完整的体系,它主要以传递函数为基础,研究单输入、单输出反馈控制系统的分析和设计问题,其基本内容有时域法、频域法、根轨迹法等。 现代控制理论是20世纪60年代在经典控制理论的基础上,随着科学技术的发展和工程实践的需要而迅速发展起来的,它以状态空间法为基础,研究多变量、变参数、非线性、高精度等各种复杂控制系统的分析和综合问题,其基本内容有线性系统基本理论、系统辨识、最优控制等。近年来,由于计算机和现代应用数学研究的迅速发展,使控制理论继续向纵深方向发展。目前,自动控制理论正向以控制论、信息论、仿生学为基础的智能控制理论深入。 1.2 自动控制的基本方式 在工业生产过程中,为了提高产品质量和劳动生产率,对生产设备、机器和生产过程需要进行控制,使之按预定的要求运行。例如,为了使发电机能正常供电,就必须使输出电压保持不变,尽量使输出电压不受负荷的变化和原动机转速波动的影响;为了使数控机床能加工出合格的零件,就必须保证数控机床的工作台或者刀架的位移量准确地跟随进给指令进给;为了使加热炉能保证生产出合格的产品,就必须对炉温进行严格的控制。其中,发电机、机床、加热炉是工作的机器装备;电压、刀架位移量、炉温是表征这些机器装备工作状态的物理参量;额定电压、进给的指令、规定的炉温是在运行过程中对工作状态物理参量的要求。 被控制对象或对象:将这些需要控制的工作机器装备称为被控制对象或对象,如发电机、机床。

FCS、DCS、PLC三大控制系统的特点各差异

FCS、DCS、PLC三大控制系统的特点各差异 1.前言?上世纪九十年代走向实用化的现场总线控制系统,正以迅猛的势头快速发展,是目前世界上最新型的控制系统。现场总线控制系统是目前自动化技术中的一个热点,正受到国内外自动化设备制造商与用户越来越强烈的关注。现场总线控制系统的出现,将给自动化领域带来又一次革命,其深度和广度将超过历史的任何一次,从而开创自动化的新纪元。?在有些行业,fcs是由plc发展而来的;而在另一些行业,fcs又是由dcs发展而来的,所以fcs与plc及dc s之间有着千丝万缕的联系,又存在着本质的差异。本文试就plc、dcs、fcs三大控制系统的特点和差异作一分析,指出它们之间的渊源及发展方向。?2.plc、dcs、fcs三大控制系统的基本特点目前,在连续型流程生产自动控制(pa)或习惯称之谓工业过程控制中,有三大控制系统,即plc、dcs和fcs.它们各自的基本特点如下:2.1 plc (1)从开关量控制发展到顺序控制、运送处理,是从下往上的。?(2)连续pid控制等多功能,pid在中断站中。(3)可用一台 (4)也可一台plc为主站,pc机为主站,多台同型plc为从站。? 多台同型plc为从站,构成plc网络。这比用pc机作主站方便之处是:有用户编程时,不必知道通信协议,只要按说明书格式写就行。?(5)plc网格既可作为独立dcs/tdcs,也可作为dcs/tdcs的子系统。(6)大系统同dcs/tdcs,如tdc3000、centumcs、wdpfi、mod300.(7)plc网络如siemens公司的sinec—l1、s

inec—h1、s4、s5、s6、s7等,ge公司的genet、三菱公司的melsec—net、melsec—net/mini.(8)主要用于工业过程中的顺序控制,新型plc也兼有闭环控制功能。?(9)制造商:go uld(美)、ab(美)、ge(美)、omron(日)、mitsubishi(日)、siemens(德)等。? 2.2 dcs或tdcs?(1)分散控制系统dcs 与集散控制系统tdcs是集4c(communication,computer, control、crt)技术于一身的监控技术。?(2)从上到下的树状拓扑大系统,其中通信(communication)是关键。(3)pid在中断站中,中断站联接计算机与现场仪器仪表与控制装置。?(4)是树状拓扑和并行连续的链路结构,也有大量电缆从中继站并行到现场仪器仪表。(5)模拟信号,a/d—d/a、带微处理器的混合。?[URL=http://bbs.examda.com/]考试大论坛?[/URL](6)一台仪表一对线接到i/o,由控制站挂到局域网lan.(7)dcs是控制(工程师站)、操作(操作员站)、现场仪表(现场测控站)的3级结构。 (8)缺点是成本高,各公司产品不能互换,不能互操作,大dcs系统是各家不同的。(9)用于大规模的连续过程控制,如石化等。?(10)制造商:bailey(美)、westinghous(美)、hitach(日)、le eds &northrmp(美)、siemens(德)、foxboro(美)、abb (瑞士)、hartmann& braun(德)、yokogawa(日)、honewell(美国)、taylor(美)等。?2.3 fcs (1)基本任务是:本质(本征)安全、危险区域、易变过程、难于对付的非常环境。(2)全数字化、智能、多功能取代模拟式单功能仪器、仪表、控制装置。

自动控制原理基本概念总结

《自动控制原理》基本概念总结 1.自动控制系统的基本要求是稳定性、快速性、准确性 2.一个控制系统至少包括控制装置和控制对象 3.反馈控制系统是根据被控量和给定值的偏差进行调节的控制系统 4.根据自动控制系统是否形成闭合回路来分类,控制系统可分为开环控制系统、闭环控制系统。 根据信号的结构特点分类,控制系统可分为:反馈控制系统、前馈控制系统和前馈-反馈复合控制系统。根据给定值信号的特点分类,控制系统可分为:恒值控制系统、随动控制系统和程序控制系统。 根据控制系统元件的特性分类,控制系统可分为:线性控制系统、非线性控制系统。 根据控制信号的形式分类,控制系统可分为:连续控制系统、离散控制系统。 5.令线性定常系统传递函数的分母多项式为零,则可得到系统的特征方程 6.系统的传递函数完全由系统的结构和参数决定 7.对复杂系统的方框图,要求出系统的传递函数可以采用梅森公式 8.线性控制系统的特点是可以应用叠加原理,而非线性控制系统则不能 9.线性定常系统的传递函数,是在零初始条件下,系统输出信号的拉氏变换与输入信号的拉氏变换的比。 10.信号流图中,节点可以把所有输入支路的信号叠加,并把叠加后的信号传送到所有的输出支路。 11.从控制系统稳定性要求来看,系统一般是具有负反馈形式。 12.组成控制系统的基本功能单位是环节。 13.系统方框图的简化应遵守信号等效的原则。 14.在时域分析中,人们常说的过渡过程时间是指调整时间 15.衡量一个控制系统准确性/精度的重要指标通常是指稳态误差 16.对于二阶系统来说,系统特征方程的系数都是正数是系统稳定的必要条件 17.若单位反馈系统在阶跃函数作用下,其稳态误差ess为常数,则此系统为0型系统 18.一阶系统的阶跃响应无超调 19.一阶系统 G(s)= K/(Ts+1)的T越大,则系统的输出响应达到稳态值的时间越长。 20.控制系统的上升时间tr、调整时间tS等反映出系统的快速性。 21.二阶系统当0<ζ<1时,如果ζ增加,则输出响应的最大超调量将减小。 22.对于欠阻尼的二阶系统,当阻尼比ξ保持不变时,无阻尼自然振荡频率ωn越大,系统的超调量σp不变 23.在单位斜坡输入信号作用下,?II型系统的稳态误差 ess=0 24.衡量控制系统动态响应的时域性能指标包括动态和稳态性能指标。 25.分析稳态误差时,将系统分为0型系统、I型系统、II型系统…,这是按开环传递函数中的积分环节数来分类的。 26.二阶系统的阻尼系数ξ=时,为最佳阻尼系数。这时系统的平稳性与快速性都较理想。 27.系统稳定性是指系统在扰动消失后,由初始偏差状态恢复到原来的平衡状态的性能。 28.系统特征方程式的所有根均在根平面的左半部分是系统稳定的充要条件。 29.如果系统中加入一个微分负反馈,将使系统的超调量减小。 30.确定根轨迹与虚轴的交点,可用劳斯判据判断。 31.主导极点的特点是距离虚轴很近。 32.根轨迹上的点应满足的幅角条件为∠G(s)H(s)等于±(2l+1)π (l=0,1,2,…) 33.如果要求系统的快速性好,则闭环极点应距离虚轴越远越好。 34.根轨迹的分支数等于特征方程的阶数/开环极点数,起始于开环传递函数的开环极点,终止于开环传递函数的开环零点。 35. 根轨迹与虚轴相交时,在该交点处系统处于临界稳定状态,系统阻尼为0

相关文档
最新文档