实验3 银行家算法
银行家算法-实验报告

淮海工学院计算机工程学院实验报告书课程名:《操作系统原理》题目:银行家算法班级:学号:姓名:一、实验目的银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。
实验环境Turbo C 2.0/3.0或VC++6.0实验学时4学时,必做实验。
二、实验内容用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。
程序能模拟多个进程共享多种资源的情形。
进程可动态地申请资源,系统按各进程的申请动态地分配资源。
要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。
三、实验说明实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。
初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。
四、实验步骤1、理解本实验中关于两种调度算法的说明。
2、根据调度算法的说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
五、分析与思考1.要找出某一状态下所有可能的安全序列,程序该如何实现?答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述:进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和;通过这个描述来算出系统是否安全,从而找出所有的安全序列。
2.银行家算法的局限性有哪些?答:银行家算法是一种最有代表性的避免死锁的算法。
银行家算法即把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
银行家算法

操作系统银行家算法课后作业一、实验目的加深对多实例资源分配系统中死锁避免方法——银行家算法的理解,掌握Windows 环境下银行家算法的实现方法。
强调对于资源的管理、申请、比较来避免出现死锁的情况,保证系统的正常运行。
二、实验内容1.在Windows 操作系统上,利用DEVC++编写应用程序实现银行家算法。
2.创建n 个线程来申请或释放资源,只有保证系统安全,才会批准资源申请。
三、实验步骤(一)设计思路:银行家算法可分为个主要的功能模块,其描述如下:1.初始化由用户输入数据,分别对运行的进程数、总的资源种类数、总资源数、各进程所需要的最大资源数量(Max),已分配的资源数量赋值。
2.安全性检查算法(1)设置两个工作向量Work=AVAILABLE;FINISH=false;(2)从进程集合中找到一个满足下述条件的进程,FINISH==false;NEED<=Work;如找到,执行(3);否则,执行(4)(3)设进程获得资源,可顺利执行,直至完成,从而释放资源。
Work+=ALLOCATION;Finish=true;(4).如所有的进程Finish= true,则表示安全;否则系统不安全。
3. 银行家算法在避免死锁的方法中,所施加的限制条件较弱,有可能获得令人满意的系统性能。
在该方法中把系统的状态分为安全状态和不安全状态,只要能使系统始终都处于安全状态,便可以避免发生死锁。
银行家算法的基本思想是分配资源之前,判断系统是否是安全的;若是,才分配。
它是最具有代表性的避免死锁的算法。
设进程j提出请求REQUEST [i],则银行家算法按如下规则进行判断。
(1).如果REQUEST [j] [i]<= NEED[j][i],则转(2);否则,出错。
(2).如果REQUEST [j] [i]<= AVAILABLE[j][i],则转(3);否则,出错。
(3).系统试探分配资源,修改相关数据:AVAILABLE[i]-=REQUEST[j][i];ALLOCATION[j][i]+=REQUEST[j][i];NEED[j][i]-=REQUEST[j][i];用到的数据结构:实现银行家算法要有若干数据结构,它们用来表示资源分配系统的状态。
银行家算法实验报告

银行家算法分析、设计与实现一、设计理论描述本设计的目的是通过编写和调试一个系统动态分配资源的简单模拟程序,观察死锁产生的条件,并采用适当的算法,有效地防止和避免死锁地发生。
要求如下:(1)模拟一个银行家算法;(2)初始化时让系统拥有一定的资源;(3)用键盘输入的方式申请资源;(4)如果预分配后,系统处于安全状态,则修改系统的资源分配情况;(5)如果预分配后,系统处于不安全状态,则提示不能满足请求,设计的主要内容是模拟实现动态资源分配。
同时编写和调试一个系统动态资源的简单模拟程序,观察死锁产生的条件,并使用适当的算法,有效的防止和避免死锁的发生。
银行家算法.顾名思义是来源于银行的借贷业务,一定数量的本金要应多个客户的借贷周转,为了防止银行加资金无法周转而倒闭,对每一笔贷款,必须考察其是否能限期归还。
在操作系统中研究资源分配策略时也有类似问题,系统中有限的资源要供多个进程使用,必须保证得到的资源的进程能在有限的时间内归还资源,以供其他进程使用资源。
如果资源分配不得到就会发生进程循环等待资源,则进程都无法继续执行下去的死锁现象。
把一个进程需要和已占有资源的情况记录在进程控制中,假定进程控制块PCB其中“状态”有就绪态、等待态和完成态。
当进程在处于等待态时,表示系统不能满足该进程当前的资源申请。
“资源需求总量”表示进程在整个执行过程中总共要申请的资源量。
显然,,每个进程的资源需求总量不能超过系统拥有的资源总数, 银行算法进行资源分配可以避免死锁.二、算法描述及数据结构模型1.银行家算法:设进程i提出请求Request[n],则银行家算法按如下规则进行判断。
(1)如果Request[n]>Need[i,n],则报错返回。
(2)如果Request[n]>Available,则进程i进入等待资源状态,返回。
(3)假设进程i的申请已获批准,于是修改系统状态:Available=Available-RequestAllocation=Allocation+RequestNeed=Need-Request(4)系统执行安全性检查,如安全,则分配成立;否则试探险性分配作废,系统恢复原状,进程等待。
计算机操作系统银行家算法实验报告

计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2)。
《计算机操作系统》银行家算法实验

海南大学三亚学院《计算机操作系统》课程设计死锁的避免——银行家算法专业班级:成员:提交时间:一、问题描述(标题:宋体四号)内容:1、解释什么是银行家算法(宋体,小四,行间距1.5倍)银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。
这时系统将该进程从进程集合中将其清除。
此时系统中的资源就更多了。
反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。
请进程等待我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。
若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。
2、银行家算法提出的原因在多道程序系统中,虽可借助于多个进程的并发执行,来改善系统的资源利用率,提高系统的吞吐量,但可能发生一种危险━━死锁。
所谓死锁(Deadlock),是指多个进程在运行中因争夺资源而造成的一种僵局(Deadly_Embrace),当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。
一组进程中,每个进程都无限等待被该组进程中另一进程所占有的资源,因而永远无法得到的资源,这种现象称为进程死锁,这一组进程就称为死锁进程。
计算机操作系统银行家算法实验报告

计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要办法,通过编写一种简朴的银行家算法程序,加深理解有关资源申请、避免死锁等概念,并体会和理解死锁和避免死锁的具体实施办法。
三、问题分析与设计:1、算法思路:先对顾客提出的请求进行正当性检查,即检查请求与否不不大于需要的,与否不不大于可运用的。
若请求正当,则进行预分派,对分派后的状态调用安全性算法进行检查。
若安全,则分派;若不安全,则回绝申请,恢复到原来的状态,回绝申请。
2、银行家算法环节:(1)如果Requesti<or =Need,则转向环节(2);否则,认为出错,由于它所需要的资源数已超出它所宣布的最大值。
(2)如果Request<or=Available,则转向环节(3);否则,表达系统中尚无足够的资源,进程必须等待。
(3)系统试探把规定的资源分派给进程Pi,并修改下面数据构造中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查本次资源分派后,系统与否处在安全状态。
3、安全性算法环节:(1)设立两个向量①工作向量Work。
它表达系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表达系统与否有足够的资源分派给进程,使之运行完毕,开始时先做Finish[i]=false,当有足够资源分派给进程时,令Finish[i]=true。
(2)从进程集合中找到一种能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行环节(3);否则,执行环节(4)。
(3)当进程P 获得资源后,可顺利执行,直至完毕,并释放出分派给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向环节(2)。
计算机操作系统银行家算法实验报告
计算机操作系统实验报告一、实验名称:银行家算法二、实验目的:银行家算法是避免死锁的一种重要方法,通过编写一个简单的银行家算法程序,加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。
三、问题分析与设计:1、算法思路:先对用户提出的请求进行合法性检查,即检查请求是否大于需要的,是否大于可利用的。
若请求合法,则进行预分配,对分配后的状态调用安全性算法进行检查。
若安全,则分配;若不安全,则拒绝申请,恢复到原来的状态,拒绝申请。
2、银行家算法步骤:(1)如果Requesti<or =Need,则转向步骤(2);否则,认为出错,因为它所需要的资源数已超过它所宣布的最大值。
(2)如果Request<or=Available,则转向步骤(3);否则,表示系统中尚无足够的资源,进程必须等待。
(3)系统试探把要求的资源分配给进程Pi,并修改下面数据结构中的数值:Available=Available-Request[i];Allocation=Allocation+Request;Need=Need-Request;(4)系统执行安全性算法,检查此次资源分配后,系统是否处于安全状态。
3、安全性算法步骤:(1)设置两个向量①工作向量Work。
它表示系统可提供进程继续运行所需要的各类资源数目,执行安全算法开始时,Work=Allocation;②布尔向量Finish。
它表示系统是否有足够的资源分配给进程,使之运行完成,开始时先做Finish[i]=false,当有足够资源分配给进程时,令Finish[i]=true。
(2)从进程集合中找到一个能满足下述条件的进程:①Finish[i]=false②Need<or=Work如找到,执行步骤(3);否则,执行步骤(4)。
(3)当进程P获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:Work=Work+Allocation;Finish[i]=true;转向步骤(2)。
实验报告_银行家算法
1. 题目分析1.1 设计目的●理解死锁产生的原因和必要条件●了解避免死锁的几种基本方法●掌握银行家算法及安全性算法1.2 设计内容设计内容包括银行家算法和安全性算法,以及用VC界面实现输出1.3 相关知识概述银行家算法是一种最有代表性的避免死锁的算法。
要解释银行家算法,必须先解释操作系统安全状态和不安全状态。
安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。
安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。
不安全状态一定导致死锁。
安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。
2. 概要设计2.1主要数据结构描述static int MAX[5][3]; //最大需求矩阵static int AVAILABLE[3]; //可利用资源矩阵static int ALLOCATION[5][3]; //分配矩阵static int NEED[5][3]; //需求矩阵因为数组成员MAX,AVAILABLE, ALLOCATION, NEED的值每次调用一次银行家算法,如果分配成功,都会改变,所以将他们设定为静态成员变量。
int Request[3]; //请求向量int Work[3]; //工作向量bool FINISH[5];//标记系统是否有足够的资源分配给进程2.2 流程图(1)银行家算法流程图单击“执行银行家算法”按钮时会调用OnButton1()函数,相当于银行家算法注:只要不按“退出”按钮退出程序,数组MAX,A V AILABLE, ALLOCATION, NEED中会保留上一次执行完后变化的值,不停的单击“进行银行家算法”按钮,程序会在上一次执行完后的基础上反复的执行银行家算法。
(2)安全性算法流程图3. 详细设计3.1 主要算法描述当进程pi提出资源申请时,系统执行下列步骤:(1)若Request≤Need,转(2);否则错误返回(2)若Request≤Available,转(3);否则进程等待(3)假设系统分配了资源,则有:Available:=Available-Request;Allocation:=Allocation+Request;Need:=Need-Request若系统新状态是安全的,则分配完成若系统新状态是不安全的,则恢复原状态,进程等待安全性检查的步骤:(1) Work:=Available;Finish:=false;(2) 寻找满足条件的i:Finish=false;Need≤Work;如果不存在,则转(4)(3) Work:=Work+Allocation;Finish:=true;转(2)(4) 若对所有i,Finish=true,则系统处于安全状态,否则处于不安全状态3.2 程序界面设计4. 编码实现4.1 开发工具简介Visual C++集成开发环境下下实现的4.2 部分程序源码int CSisuoDlg::MAX[5][3]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}};int CSisuoDlg::AVAILABLE[3]={3,3,2};int CSisuoDlg::ALLOCATION[5][3]={{0,1,0},{2,0,0},{3,0,2},{2,1,1},{0,0,2}}; int CSisuoDlg::NEED[5][3]={{7,4,3},{1,2,2},{6,0,0},{0,1,1},{4,3,1}};int CSisuoDlg::safe(){int i,j,k,l=0;int Work[3];bool FINISH[5];int p[5];for(i=0;i<3;i++)Work[i]=AVAILABLE[i];for(i=0;i<5;i++){ FINISH[i]=false;}for(i=0;i<5;i++){if(FINISH[i]==true){ continue;}else{for(j=0;j<3;j++){if(NEED[i][j]>Work[j]){break;}}if(j==3)//找到满足要求的进程{FINISH[i]=true;for(k=0;k<3;k++){Work[k]+=ALLOCATION[i][k];}p[l++]=i;//记录安全序列i=-1;//每次都是从头开始找}else{continue;}}if(l==5){show+="经安全性检查,系统安全,本次分配成功。
银行家算法 实验报告
淮海工学院计算机工程学院实验报告书课程名:《操作系统原理》题目:银行家算法班级:学号:姓名:一、实验目的银行家算法是操作系统中避免死锁的典型算法,本实验可以加深对银行家算法的步骤和相关数据结构用法的更好理解。
实验环境TurboC2.0/3.0或VC++6.0实验学时4学时,必做实验。
二、实验内容用C语言编写一个简单的银行家算法模拟程序,用银行家算法实现资源分配。
程序能模拟多个进程共享多种资源的情形。
进程可动态地申请资源,系统按各进程的申请动态地分配资源。
要求程序具有显示和打印各进程的某一时刻的资源分配表和安全序列;显示和打印各进程依次要求申请的资源数量以及为某进程分配资源后的有关资源数据的情况。
三、实验说明实验中进程的数量、资源的种类以及每种资源的总量Total[j]最好允许动态指定。
初始时每个进程运行过程中的最大资源需求量Max[i,j]和系统已分配给该进程的资源量Allocation[i,j]均为已知(这些数值可以在程序运行时动态输入),而算法中其他数据结构的值(包括Need[i,j]、Available[j])则需要由程序根据已知量的值计算产生。
四、实验步骤1、理解本实验中关于两种调度算法的说明。
2、根据调度算法的说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
五、分析与思考1.要找出某一状态下所有可能的安全序列,程序该如何实现?答:要找出这个状态下的所有可能的安全序列,前提是要是使这个系统先处于安全状态,而系统的状态可通过以下来描述:进程剩余申请数=最大申请数-占有数;可分配资源数=总数-占有数之和;通过这个描述来算出系统是否安全,从而找出所有的安全序列。
2.银行家算法的局限性有哪些?答:银行家算法是一种最有代表性的避免死锁的算法。
银行家算法即把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
《计算机系统操作系统》银行家算法实验
海南大学三亚学院《计算机操作系统》课程设计死锁的避免——银行家算法专业班级:成员:提交时间:一、问题描述(标题:宋体四号)内容:1、解释什么是银行家算法(宋体,小四,行间距1.5倍)银行家算法又称“资源分配拒绝”法,其基本思想是,系统中的所有进程放入进程集合,在安全状态下系统受到进程的请求后试探性的把资源分配给他,现在系统将剩下的资源和进程集合中其他进程还需要的资源数做比较,找出剩余资源能满足最大需求量的进程,从而保证进程运行完成后还回全部资源。
这时系统将该进程从进程集合中将其清除。
此时系统中的资源就更多了。
反复执行上面的步骤,最后检查进程的集合为空时就表明本次申请可行,系统处于安全状态,可以实施本次分配,否则,只要进程集合非空,系统便处于不安全状态,本次不能分配给他。
请进程等待我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。
操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。
当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。
若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。
2、银行家算法提出的原因在多道程序系统中,虽可借助于多个进程的并发执行,来改善系统的资源利用率,提高系统的吞吐量,但可能发生一种危险━━死锁。
所谓死锁(Deadlock),是指多个进程在运行中因争夺资源而造成的一种僵局(Deadly_Embrace),当进程处于这种僵持状态时,若无外力作用,它们都将无法再向前推进。
一组进程中,每个进程都无限等待被该组进程中另一进程所占有的资源,因而永远无法得到的资源,这种现象称为进程死锁,这一组进程就称为死锁进程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 银行家算法
一、实验目的
模拟银行家算法,用银行家算法实现资源分配
二、实验内容
已知进程{P0,P1,P2,P3,P4},有三类系统资源A、B、C的数量分别为
10、5、7,在T0时刻的资源分配情况如下图所示:
资源情况
进程
Max Allocation Need Available
A B C A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3 3 3 2
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1
(1)若进程P1请求资源,发出请求向量Request1(1,0,2),编
写程序用银行家算法判断系统能否将资源分配给它;
(2)若进程P2提出请求Request(0,1,0),用银行家算法程序验
证系统能否将资源分配给它。
#include
#include
#define RESOURCE 3
#define PRO 5
class Process
{
public :
int max[RESOURCE];
int allocation[RESOURCE];
int need[RESOURCE];
int request[RESOURCE];
public:
//对资源第一次分配
void Inital(int index,int allo,int n)
{
allocation[index] = allo;
need[index] = n;
}
//某个进程需要资源
void Request(int index,int req)
{
request[index] = req;
}
};
//检测安全性
bool Safe(int work[],Process pro[])
{
bool finish[PRO];
for(int i=0;i
finish[i] =false;
}
int j=0; //用来表示资源下标
int k=0;
int index[PRO];
for(i=0;i
for(int m=0;m
if(work[j] >= pro[m].need[j] && work[j+1] >= pro[m].need[j+1]
&& work[j+2] >= pro[m].need[j+2] && finish[m] == false)
{
finish[m] = true;
index[k++] = m;
for(int j=0;j
work[j] = work[j] + pro[m].allocation[j];
}
}
}
}
for(i=0;i
if(finish[i] ==false)
{
printf("该申请资源数量不合法,不存在安全序列~\n");
return false;
}
}
printf("该进程申请的资源数量合法,其安全序列为:\n{");
for(i=0;i
{
printf(" p%d;",index[i]);
}
}
printf("}\n");
return true;
}
//用来比较所申请的资源是否满足要求
bool Compare(int index,int avaliable[],Process pro[])
{
for(int i=0;i
if(pro[index].need[i] < pro[index].request[i] || avaliable[i] <
pro[index].request[i])
return false;
}
return true;
}
//
void Require(int index, bool check,int avaliable[], Process pro[])
{
if(check == false)
{
printf("第一次分配资源造成死锁,不合理。请重新分配资源!");
}
else
{
//某个进程请求分配的资源
//print("请输入哪个进程需要多少");
int a,b,c;
printf("请分别输入A、B、C类资源对应的数量:");
scanf("%d%d%d",&a,&b,&c);
pro[index].Request(0,a); //102
pro[index].Request(1,b);
pro[index].Request(2,c);
//申请资源后,对其检验所申请的数量是否符合相应的要求
int m=0;
if(Compare(index,avaliable,pro)) //注意这里,在这里如果request[0]第一个满足条件就
进行修改
{
for(int i=0;i
pro[index].allocation[i] += pro[index].request[i];
pro[index].need[i] -= pro[index].request[i] ;
avaliable[i] -= pro[index].request[i] ;
}
}
else
{
printf("该类资源申请数量不合法!\n");
return;
}
int ava[RESOURCE];
for(int i=0;i
ava[i] = avaliable[i];
}
Safe(ava,pro);
}
}
void main()
{
//定义进程
Process p[5];
//将进程初始化
int avaliable[RESOURCE] = {3,3,2};
p[0].Inital(0,0,7); //(第一个数字第几表示第几类资源,第二个表示allocation,第三个表示need)
p[0].Inital(1,1,4);
p[0].Inital(2,0,3);
p[1].Inital(0,2,1);
p[1].Inital(1,0,2);
p[1].Inital(2,0,2);
p[2].Inital(0,3,6);
p[2].Inital(1,0,0);
p[2].Inital(2,2,0);
p[3].Inital(0,2,0);
p[3].Inital(1,1,1);
p[3].Inital(2,1,1);
p[4].Inital(0,0,4);
p[4].Inital(1,0,3);
p[4].Inital(2,2,1);
//先对第一次分配实行安全检查
char y='y';
int a[RESOURCE];
int index; //用于标注进程的下标
for(int i=0;i
a[i] = avaliable[i];
}
bool check = Safe(a,p); //在这里a数组里面的值被改变了
while(y=='y')
{
printf("\n请输入哪个进程要申请资源:");
scanf("%d",&index);
Require(index,check,avaliable,p);
printf("是否继续申请资源?(y|n)");
getchar();
scanf("%c",&y);
}
}
实验结果: