随机过程讲义

合集下载

随机过程英语讲义-1

随机过程英语讲义-1

An event is a subset of a sample space , and is said to occur if the outcome of the experiment is an element of that subset.
Problem : Write the values of events for problems in case study of sample space for following events: 1、Fewer than 10 transmission are required 2、Less than t0 seconds elapse between message arrivals Solution :1、Fewer than 10 transmission are required A = { 1, 2, … , 9 } 2、 Less than t0 seconds elapse between message arrivals A = { t : 0 ≤ t < t0 }= [ 0, t0 )
左花括号 右花括号
open parenthesis [pə‘renθəsis], open paren 左圆括号 close parenthesis, close paren brakets/ parentheses open bracket 左方括号 close bracket 右方括号 square brackets period, dot 方括号 括号 右圆括号
句号,点 竖线
vertical bar, vertical virgule
& * / // # \ ~
amp;
ampersand, and, reference, ref

随机过程PPT课件

随机过程PPT课件
xk (t), k 1, 2,....., m ; 即 x (t) { xk (t); k 1, 2,....., m } 对 随 机 变 量 x (t )的 各 样 本 函 数 进 行 采 样 , 对 应 于 时 刻 t t1 , t2 , ...., tn 可 设 几 个 离 散 型随机变量:
§2.1 随机过程的概念及其统计特性
1、 随机过程的概念 例子:热噪声电压。(有电子元器件内部微观粒子 (如电子)的随机热运动所引起的端电压。用一 台高灵敏无线电接收机,观测“热噪声电压” (无信号输入),n次观测结果分别 为,X 1 ( t ) ,X 2 ( t ) ,….,X n ( t ) 。 如图所示。可以看出,每次观测到热噪声电压都是 不同的,且在观测之前是不可预测的,即每次的 观测结果是随机的。
只取V0(或t ) 12两个值。
• 3 0 连续型随机序列
• 时间是离散的,状态是连续的。在任一离散 时刻的状态是连续型随机变量。对连续型随
机过程进行等时间间隔采样,即设到连续随 机序列。
• { , ……, }。 X(nt) X (t) X (2t)
X (nt)
• 4 0 离散随机序列
• 状态和时间均是离散的。
• 将连续型随机信号经过数模转换等间隔采 样后,即为离散随机序列。简称为随机序 列或随机数字信号。
• 若采样间隔为 t :X (t) ,X (2t) ……,X (nt)。或记 为: , X (1 ) X ( 2 ) ……,X ( n ) 。
• 以为时间按间隔增长,故常称离散随机序 列为时间序列。这类随机信号是本课程讨 论的主要对象。
• 按随机过程的分布函数(或概率密度)的 不同特性分:
• (1)平稳随机过程; • (2)马儿可夫(Markov)过程; • (3)独立增量过程; • (4)独立随机过程; • 等等

清华大学“应用随机过程” 讲义五

清华大学“应用随机过程” 讲义五
第五讲
2005-1-3
应用随机过程讲义 第五讲
1
• 作业题 1(1~5,9),2,3,14(1),16,
2005-1-3
应用随机过程讲义 第五讲
2
Brown运动
预备知识:随机变量序列的四种收敛性
回忆实数序列的收敛性定义 :
{an , n
≥ 1}, lim n→∞
an
=
a
∀ε > 0, ∃n ≥ 1,当k ≥ n时, 恒有 | ak − a |< ε.
25
随时随地等可能
2005-1-3
应用随机过程讲义 第五讲
26
进一步地, 可得到 E(B(tn+1) | B(t1) = x1,…, B(tn ) = xn ) = xn. 即E(B(tn+1) | B(t1),…, B(tn )) = B(tn ).
Brown运动的鞅性
2005-1-3
应用随机过程讲义 第五讲
m.s.
lim
n→∞
X
n
=
X , 或者 X n
m.s.→ X .(n → ∞)
2005-1-3
应用随机过程讲义 第五讲
11
4. 依分布收敛(弱收敛)
对于r.v.s.{X n , n ≥ 1}, 记 :
Fn (x) = P( X n ≤ x), F (x) = P( X ≤ x) 分别是X n和X的分布函数. 若对F (x)的连续点有 :
24
又根据马氏性, 可得到
B(tn+1)关于B(t1) = x1,…, B(tn+1) = xn的c. p.d. f . 为p(xn+1 − xn , tn+1 − tn ).

随机过程 北京理工课件

随机过程 北京理工课件

π
2 2
2
3 2 2
P
π F (x; ) = 4

1 3
0, 1 , 3 2 , 3 1,
1 3
x < 2 2
1 3

2 ≤ x < 2 2 ≤ x < x ≥ 3 2 2 3
2 2 2
X(
π
2
) = A cos π

0, π F ( x, ) = 2 1,
4
随机过程 的有限维分布族
对任意固定的t∈ , 是一维随机变量, 对任意固定的 ∈T,X(t)是一维随机变量 其分 是一维随机变量 布函数是P{X(t)≤x}, 记为 记为F(x; t), 即 布函数是 F(x; t)= P{X(t)≤x}, 为随机过程X(t)的一维分布函数。 的一维分布函数。 称F(x; t)为随机过程 为随机过程 的一维分布函数 如对任意两个固定t 是二个随 如对任意两个固定 1 , t2∈T , X(t1) , X(t2)是二个随 机变量, 机变量,称 F(x1, x2 ; t1, t2) = P{X(t1)≤x1, X(t2) ≤x2} 为随机过程X(t) 的二维分布函数; 的二维分布函数; 为随机过程 一般地,对任意固定的t 一般地,对任意固定的 1, t2, … , tn∈T。X(t1), 。 个随机变量, X(t2) , … , X(tn)是n个随机变量,称 是 个随机变量 F(x1, …, xn ; t1, …, tn) = P{X(t1)≤x1, …, X(tn)≤xn} 5 为随机过程X(t) 的n 维分布函数 维分布函数. 为随机过程
= 0 取值仅一个0,且知 P ( X ( ) = 0) = 1 取值仅一个0 2 2

随机过程-第一章

随机过程-第一章
• 或叙述为 若对每一个时刻t∈T,都有定义在E上 的随机变量X(t,e),则称一族随机变量
• {X(t, e),t∈T ,e∈Ω} 为一随机过程。
• 其实际意义就是: 若一物理过程,当时间t(或广义时间)固定,
过程所处的状态是随机的(不确定的),则此
过程就为随机过程。对该过程的一次记录(或
一个观察)就是一个现实,或称作随机过程的
一个样本函数或样本曲线。 • 固定t0,X(t0)是随机变量。 • 固定e0,X(t,e0)是一个现实,是t的函数,记 为 x(t)。
例4:具有随机初位相的简谐波。 X(t)=acos(ω0t+Φ),-∞<t<+∞, 其中a与ω0是正常数, Φ是在[0,2π]上均匀分布的随机变量。 一方面,随机过程X(t)是一族随机变量。 对每个固定t0, X(t0)= acos(ω0t+Φ)是个 随机变量。对(-∞,+∞)上有多少个t, 就对应多少个随机变量。∴对(-∞,+∞) 所有t,X(t)看作一族随机变量。 另一方面,随机过程是一族样本函数(曲线) 对样本空间Ω中每个基本事件e对应一个样本 函数,本例,Φ在Ω=[0,2π] 上任给定一个 相 位φi=e,就对应一个样本曲线,如:书P 4。
例6: 利用抛掷硬币的试验定义一个随机过程。
X(t) { sin π t,出现正面 ,记为记为 ω 0 e ,出现反面, 记 ω 1
t
(t R)
写出X(t)的所有样本函数(现实)
二、随机过程的的分布(有限维分布族) 1、对任意固定的t0∈T,随机过程X(t)的状态 X(t0)是一维随机变量, 其分布函数是P{X(t0)≤x} F(x,t0) 由于t的任意性,称F(x; t) = P{X(t) ≤x } 为随机过程X(t)的一维分布函数。 F(x,t)是与t有关的一维分布函数,在t,x平 面上是X(t)落在区间(X(t) ≤x)上的概率。

随机过程课件

随机过程课件

随机过程课件随机过程课件随机过程是概率论与数理统计中的重要概念,它描述了随机变量随时间的演化规律。

在现代科学和工程领域,随机过程被广泛应用于信号处理、通信系统、金融市场等众多领域。

本文将介绍随机过程的基本概念、分类以及一些常见的应用。

一、随机过程的基本概念随机过程是一族随机变量的集合,它描述了随机变量随时间的变化。

在数学上,随机过程可以用函数的形式表示,即X(t),其中t表示时间,X(t)表示在时间t时刻的随机变量。

随机过程可以分为离散时间和连续时间两种类型。

离散时间随机过程是指随机变量在离散时间点上的演化,例如抛硬币的结果、骰子的点数等。

连续时间随机过程是指随机变量在连续时间上的演化,例如股票价格的变动、电信号的传输等。

二、随机过程的分类根据随机过程的性质和演化规律,可以将其分为多种类型。

常见的分类包括马尔可夫过程、泊松过程、布朗运动等。

1. 马尔可夫过程马尔可夫过程是指在给定当前状态下,未来的演化只与当前状态有关,与过去的状态无关。

马尔可夫过程具有“无记忆”的特性,常用于描述具有时序性质的问题,如排队系统、信道传输等。

2. 泊松过程泊松过程是一种用于描述随机事件的发生次数的随机过程。

它具有独立增量和无记忆性的特点,常用于描述到达率恒定的随机事件,如电话呼叫、交通流量等。

3. 布朗运动布朗运动是一种连续时间的随机过程,其演化规律由随机变量驱动。

布朗运动具有连续性、无界性和马尔可夫性等特点,广泛应用于金融市场、物理学等领域。

三、随机过程的应用随机过程在现代科学和工程领域有着广泛的应用。

以下列举几个常见的应用领域。

1. 信号处理随机过程在信号处理中起到了重要的作用。

通过对信号进行建模,可以利用随机过程的理论和方法对信号进行分析和处理,如图像压缩、语音识别等。

2. 通信系统随机过程在通信系统中也有着重要的应用。

通过对信道的建模,可以利用随机过程的理论来分析和优化通信系统的性能,如误码率分析、信道编码等。

《随机过程》教程.ppt


无穷大的分类
0, 1 ,2 ,3,……(自然数集合的无限多 为0, 0集合的所有子集构成的集合的 “无限多(势)”为1 , 1集合的所有 子集构成的集合的势为2 , ……),在数 学上已经严格证明: 0, 1 ,2 ,3,等之 间不能建立双射的关系。
对于无穷大,“整体大于部分”的直觉不再成立
对于自然数集 N 1,2,3,4,5,L ,偶数集合
原像集
像集 单射(不同的原
f
像具有不同的像)
f a1 f a2
满射(每一个像都有原像)
原像集
像集
f
b, a, s.t.
b f a
双射(既是单射,又是满射)
原像集
像集
f
从直觉上承认能建立双射关系的两 个集合,其所含元素的“个数”一样多。
可数和不可数的定义
凡是能和自然数集合或者自然数集合的 一个子集建立双射关系的集合称为可数 集合;否则称为不可数集合。 可数和不可数是人类认识“无穷”所产 生的概念,是对无穷的分类。 已经证明连续的区间,和实数集等都是 不可数集合:[1,2],(0.1,0.01),R,等等
事件和Borel集
事件:样本空间中满足一定条件的全体 元素构成子集,“一定条件”有事件的 意义,因此称样本空间的子集为事件。
(举例说明)
不可能事件 必然事件 基本事件:可数和不可数 Borel集:规定了事件的全体及其相容性
概率空间的定义
阅读讲解p.16定义2.1 理解概率空间
概率空间是对随机现象的基本建模方法 概率空间有三个要素:样本空间、Borel事
《随机过程》教程
第三讲 随机对象(一)
本章要义(阅读引言部分)
本章介绍如何对随机现象建立数学模型。

随机过程课件chapter6随机过程概念


的有限维分布函数族.
17
2.3 二维随机过程
(1) 互相关函数: RXY s, t
E
[X s Y t ].
,参数集 T , ,如果对于每个 ,总
有一个普通的时间函数 X , t , t T 与之对应,这样对
于所有的 ,就可得到一族时间 t 的函数,称函数
族 X , t , 是参数为 T 的随机过程,族中每一函
数称为该随机过程的样本函数.
为 T 的普通函数,那么, X , t , t T 是一族样本函数.
把 X , t , , t T 所有可能的取值的全体称为
随机过程的状态空间或相空间.当 t 1 随机过程的概念
几个随机过程的实例.
例 1.1 考虑抛掷一颗骰子的实验,设 X n 是第 n 次抛掷的点
因 A, B 独立,故 E AB E A E B 0 ,则
BUPT
4
3
X t 1, RX s, t st , s, t T .
13
2.2数字特征
例 2.2 设 X t A cos 0t B sin 0t , t R, R是实数集 ,
称为 X t , t T 的有限维分布函数族. X t 的有限维分布函
数族 F 完整地确定了该过程的统计特性.
BUPT
9
2.2数字特征
定 义 2.2 设 X t , t T 为 随 机 过 程 , 若 对 任 意 的
t T,E[ X 2 t ]< ,则称 X t 为二阶矩过程.
论深刻、应用又及其广泛的学科.
BUPT
1
1 .1 随机过程的概念

随机过程知识点

第一章:预备知识§1.1 概率空间随机试验,样本空间记为Ω。

定义1.1 设Ω是一个集合,F 是Ω的某些子集组成的集合族。

如果 (1)∈ΩF ;(2)∈A 若F ,∈Ω=A A \则F ; (3)若∈n A F , ,,21=n ,则∞=∈1n nAF ;则称F 为-σ代数(Borel 域)。

(Ω,F )称为可测空间,F 中的元素称为事件。

由定义易知: .216\,,)5)4(111F A A A i F A F B A F B A F i i n i i n i i i ∈=∈∈∈∈∅∞=== ,,则,,,)若(;则若(;定义1.2 设(Ω,F )是可测空间,P(·)是定义在F 上的实值函数。

如果()()()()∑∞=∞==⎪⎪⎭⎫ ⎝⎛∅=⋂≠=Ω≤≤∈1121,,,31210,)1(i i i i j i A P A P A A j i A A P A P F A 有时,当)对两两互不相容事件(;)(;任意则称P 是()F ,Ω上的概率,(P F ,,Ω)称为概率空间,P(A)为事件A 的概率。

定义1.3 设(P F ,,Ω)是概率空间,F G ⊂,如果对任意G A A A n ∈,,,21 ,,2,1=n 有: (),11∏===⎪⎪⎭⎫⎝⎛ni i n i i A P A P则称G 为独立事件族。

§1.2 随机变量及其分布随机变量X ,分布函数)(x F ,n 维随机变量或n 维随机向量,联合分布函数,{}T t X t ∈,是独立的。

§1.3随机变量的数字特征定义1.7 设随机变量X 的分布函数为)(x F ,若⎰∞∞-∞<)(||x dF x ,则称)(X E =⎰∞∞-)(x xdF为X 的数学期望或均值。

上式右边的积分称为Lebesgue-Stieltjes 积分。

方差,()()[]EY Y EX X E B XY --=为X 、Y 的协方差,而 DYDX B XYXY =ρ为X 、Y 的相关系数。

随机过程实验讲义

随机过程实验讲义刘继成华中科技大学数学与统计学院2011-2012年上半年为华中科技大学数学系本科生讲授随机过程课程参考资料前言 (1)第一章Matlab 简介 (2)第二章简单分布的模拟 (6)第三章基本随机过程 (9)第四章Markov过程 (12)第五章模拟的应用和例子 (16)附录各章的原程序 (51)参考文献 (75)若想检验数学模型是否反映客观现实,最自然的方法是比较由模型计算的理论概率和由客观试验得到的经验频率。

不幸的是,这两件事都往往是费时的、昂贵的、困难的,甚至是不可能的。

此时,计算机模拟在这两方面都可以派上用场:提供理论概率的数值估计与接近现实试验的模拟。

模拟的第一步自然是在计算机程序的算法中如何产生随机性。

程序语言,甚至计算器,都提供了“随机”生成[0,1]区间内连续数的方法。

因为每次运行程序常常生成相同的“随机数”,因此这些数被称为伪随机数。

尽管如此,对于多数的具体问题这样的随机数已经够用。

我们将假定计算机已经能够生成[0,1]上的均匀随机数。

也假定这些数是独立同分布的,尽管它们常常是周期的、相关的、……。

……本讲义的安排如下,第一章是Matlab简介,从实践动手角度了解并熟悉Matlab环境、命令、帮助等,这将方便于Matlab的初学者。

第二章是简单随机变量的模拟,只给出了常用的Matlab 模拟语句,没有堆砌同一种变量的多种模拟方法。

对于没有列举的随机变量的模拟,以及有特殊需求的读者应该由这些方法得到启发,或者参考更详细的其他文献资料。

第三章是基本随机过程的模拟。

主要是简单独立增量过程的模拟,多维的推广是直接的。

第四章是Markov过程的模拟。

包括服务系统,生灭过程、简单分支过程等。

第五章是这些模拟的应用。

例如,计算概率、估计积分、模拟现实、误差估计,以及减小方差技术,特别给读者提供了一些经典问题的模拟,通过这些问题的模拟将会更加牢固地掌握实际模拟的步骤。

平稳过程的模拟、以及利用平稳过程来预测的内容并没有包含在本讲义之内,但这丝毫不影响该内容的重要性,这也是将会增补进来的主要内容之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档