八年级数学中心对称图形测试卷
2020-2021学年八年级数学苏科版下册第9章《中心对称图形—平行四边形》基础训练卷(三)

八年级下册数学第9章《中心对称图形—平行四边形》基础训练卷(三)一.选择题1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.菱形具有而平行四边形不具有的性质是()A.对角线互相垂直B.两组对角分别相等C.对角线互相平分D.两组对边分别平行3.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为()A.4.8 B.5 C.9.6 D.104.如图,在正方形ABCD中,E位DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.15°B.10°C.20°D.25°5.如图,将△AOB绕点O逆时针方向旋转45°后得到△A′OB′,若∠AOB=10°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°6.如图,由两个长为9,宽为3的全等矩形叠合而得到四边形ABCD,则四边形ABCD面积的最大值是()A.15 B.16 C.19 D.207.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3 cm B.6 cm C.9 cm D.12 cm8.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()A.30°B.35°C.40°D.50°9.如图,已知▱ABCD的面积为24cm2,点P是边CD上的一动点,则图中阴影部分的面积为()A.6cm2B.9cm2C.12cm2D.15cm210.如图,在矩形ABCO中,点B的坐标为(1,3),则AC的长为()A.3 B.C.D.2二.填空题11.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=.12.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm.13.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为.14.如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为.15.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为.三.解答题16.如图,BD是△ABC的角平分线,过点作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.17.如图,在5×5的方格纸中,每个小正方形的边长均为1,A,B两点均在小正方形的顶点上,请按下列要求,在图1,图2中各画一个四边形(所画四边形的顶点均在小正方形的顶点上)(1)在图1中画四边形ABCD,使其为中心对称图形.(2)在图2中画以A,B,E,F为顶点的平行四边形,且其中一条对角线长等于3.18.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)写出△A1B1C1的顶点坐标;(3)求出△A1B1C1的面积.19.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;DA的形状,并说明理由.(2)如图2,当α=30°时,试判断四边形BC120.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.参考答案一.选择题1.解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.2.解:A、正确.对角线互相垂直是菱形具有而平行四边形不具有的性质;B、错误.两组对角分别相等,是菱形和平行四边形都具有的性质;C、错误.对角线互相平分,是菱形和平行四边形都具有的性质;D、错误.两组对边分别平行,是菱形和平行四边形都具有的性质;故选:A.3.解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=4,OB=OD=3,∴AB=5,∴S=AC•BD=AB•DH,菱形ABCD∴DH==4.8.故选:A.4.解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:A.5.解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=10°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣10°=35°,故选:C.6.解:如图1,作AE⊥BC于E,AF⊥CD于F,,∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形的宽都是3,∴AE=AF=3,=AE•BC=AF•CD,∵S四边形ABCD∴BC=CD,∴平行四边形ABCD是菱形.如图2,当菱形的一条对角线为矩形的对角线时,四边形ABCD的面积最大,,设AB=BC=x,则BE=9﹣x,∵BC2=BE2+CE2,∴x2=(9﹣x)2+32,解得x=5,∴四边形ABCD面积的最大值是:5×3=15.故选:A.7.解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm)故选:B.8.解:∵CC′∥AB,∠CAB=75°,∴∠C′CA=∠CAB=75°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=30°.故选:A.9.解:如图,作PE⊥AB于点E,S△ABP =AB•PE=S平行四边形,∵▱ABCD的面积为24cm2,∴△ABP的面积为12cm2,∴阴影部分的面积为12cm2,故选:C.10.解:连接OB,过B作BM⊥x轴于M,∵点B的坐标是(1,3),∴OM=1,BM=3,由勾股定理得:OB=,∵四边形OABC是矩形,∴AC=OB,∴AC=,故选:B.二.填空题(共5小题)11.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7cm,∴DF=CF﹣CD=7﹣4=3cm,故答案为:3cm.12.解:∵∠ACB=90°,D为AB中点,∴AB=2CD,∵CD=6cm,∴AB=12cm,∵E、F分别是BC、CA的中点,∴EF=AB=6cm,故答案为:6.13.解:如图,取AB的中点E,连接OE、CE,则BE=×2=1,在Rt△BCE中,由勾股定理得,CE==,∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值=+1.故答案为:+1.14.解:∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,=AB×3=BC×3,∴S四边形ABCD∴AB=BC,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,在△ABE中,AB2=BE2+AE2,即AB2=AB2+32,解得AB=2,=BC•AE=2×3=6.∴S四边形ABCD故答案是:6.15.解:如图,连接MC,M'C,∵AC=4,BC=2,∴AB===2,∵M是AB的中点,∴CM=AB=,∵Rt△ABC绕点C顺时针旋转90°得到Rt△A′B′C,∴∠A′CM′=∠ACM,∵∠ACM+∠MCB=90°,∴∠MCB+∠BCM′=90°,又∵CM=C′M′,∴△CMM′是等腰直角三角形,∴MM′=CM=,故答案为:.三.解答题(共5小题)16.证明:(1)∵DE∥BC,DF∥AB,∴四边形DEBF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF=∠ABC,∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,∴FH=DF,DH=FH=DF,∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC=DH=DF=6,∴DF=2,∴菱形BEDF的边长为2.17.解:(1)如图1,四边形ABCD为所作;(2)如图2,四边形ABEF为所作.18.解:(1)如图所示,△A1B1C1即为所求;(2)点A 1(2,﹣1)、B 1(4,﹣5)、C 1(5,﹣2);(3)S △A 1B 1C 1=3×4﹣×1×3﹣×2×4﹣×1×3=5.19.解:(1)BE =BF .理由如下:∵AB =BC ,∴∠A =∠C ,∵△ABC 绕点B 顺时针旋转角α(0°<α<90°)得△A 1BC 1, ∴AB =BC =BC 1,∠A =∠C =∠C 1,∠ABE =∠C 1BF , 在△ABE 和△C 1BF 中,∴△ABE ≌△C 1BF ,∴BE =BF(2)四边形BC 1DA 是菱形.理由如下:∵AB =BC =2,∠ABC =120°,∴∠A =∠C =30°,∴∠A 1=∠C 1=30°,∵∠ABA 1=∠CBC 1=30°,∴∠ABA 1=∠A 1,∠CBC 1=∠C ,∴A1C1∥AB,AC∥BC1,∴四边形BC1DA是平行四边形.又∵AB=BC1,∴四边形BC1DA是菱形.20.解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.。
初中数学浙教版八年级下册第4章 平行四边形4.3 中心对称-章节测试习题

章节测试题1.【题文】你能否画出一条直线,同时把如图所示的两个图形分成形状、大小都相同的两个部分?你还有什么发现?【答案】图形见解析.【分析】作出圆和正方形的对称中心,过这两个点作一条直线,则这条直线把两个图形分成形状、大小都相同的两个部分.【解答】解:如图:结论:过既是轴对称图形又是中心对称图形的对称中心的直线一定把原图形分成形状、大小都相同的两个部分.2.【题文】如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△A BC以点C为旋转中心旋转180,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.【答案】(1)见解析(2)见解析(3)(-1,0)【分析】(1)根据图中的网格结构分别找出点A、B绕点C旋转180°后的对应点A1、B1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的位置,然后顺次连接即可;(3)根据旋转的性质,确定出旋转中心即可.【解答】解:(1)△A1B1C如图所示;(2)△A2B2C2如图所示;(3)如图所示,旋转中心为(﹣1,0)..3.【题文】如图,在正方形网格中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为(-2,4)、(-2,0)、(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O对称的△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.(3)在△ABC、△A1B1C1、△A2B2C2中,△A2B2C2与______成中心对称,其对称中心的坐标为______.【答案】(1)图形见解析;(2)点B2、C2的坐标分别为(0,-2),(-2,-1);(3)△A1B1C1;(1,-1).【分析】(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可;(3)连接B1B2与C1C2相交,得出其交点H的坐标即可.【解答】解:(1)△ABC关于原点O对称的△A1B1C1如图所示:(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1);(3)△A1B1C1;(1,-1).4.【题文】在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-4,5),C(-5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.【答案】作图见解析.【分析】(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.5.【题文】如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A, D1,D 三点的坐标分别是(0,4),(0,3),(0,2).(1)对称中心的坐标;(2)写出顶点B, C, B1 , C1的坐标.【答案】(0,);B(-2,4)C(-2,2)(2,1)(2,3).【分析】(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.【解答】解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).6.【题文】如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′,使它和△ABC关于点O成中心对称;(2)请在方格网中标出所有的D 点,使以点A,O,C′,D为顶点的四边形是平行四边形.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)根据中心对称的作法,找出对称点,即可画出图形,(2)根据平行四边形的判定,画出使以点A、O、C′、D为顶点的四边形是平行四边形的点即可.【解答】解:(1)画△A′B′C′和△ABC关于点O成中心对称的图形如下:(2)根据题意画图如下:7.【题文】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.【答案】(1)作图见解析, A1(﹣2,2);(2)作图见解析,A2(4,0);(3)作图见解析,A3(﹣4,0).【分析】根据题意画出相应的三角形,确定出所求点坐标即可.【解答】解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).8.【题文】△ABC在平面直角坐标系中的位置如图所示.(1)作△ABC关于原点O成中心对称的△A1B1C1.(2)请写出点B关于y轴对称的点B2的坐标______.若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值______(写出满足的一个即可).【答案】(1)作图见解析;(2)B2(1, 1);满足即可【分析】(1)利用网格结构找出点A、B、C原点成中心对称的A1、B1、C1的位置,然后顺次连接即可;(2)根据图形平移的性质画出平移后的△A2B2C2即可.【解答】解:(1)如图,(2)B2(1, 1);满足即可9.【题文】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;111222点C2的坐标.【答案】(1)C1(4,4);(2)C2(﹣4,﹣4).【分析】(1)利用关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分,分别找出A、B、C的对应点,顺次连接,即得到相应的图形;(2)利用对应点到旋转中心的距离相等,以及对应点与旋转中心所连线段的夹角等于旋转角,即可作出图形.【解答】解:(1)如图所示:C1的坐标为:(-1,4);(2)如图所示:C2的坐标为:(-1,-4).10.【题文】如图,方格纸中的每个小方格都是正方形,△ABC的顶点均在格点上,建立平面直角坐标系.1111______.(2)将原来的△ABC绕着点(﹣2,1)顺时针旋转90°得到△A2B2C2,试在图上画出△A2B2C2的图形.【答案】(1)(6,﹣1)(2)作图见解析【分析】(1)连接AO并延长至A1,使A1O=AO,连接BO并延长至B1,使B1O=BO,连接CO并延长至C1,使C1O=CO,然后顺次连接A1、B1、C1即可得到△A1B1C1;再根据平面直角坐标系的特点写出点A1的坐标即可;(2)根据旋转变换,找出点A、B、C绕点(﹣2,1)顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)如图所示,△A1B1C1即为所求三角形,点A1的坐标是A1(6,﹣1);故答案为:(6,﹣1);(2)如图所示,△A2B2C2即为所求作的三角形.11.【题文】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为______ .【答案】(1)画图见解析;(2)(2,-1).【分析】(1)、根据网格结构找出点A、B关于点C成中心对称的点A1、B1的位置,再与点A顺次连接即可;根据网格结构找出点A、B、C平移后的对应点A2、B2、C2的位置,然后顺次连接即可;(2)、根据中心对称的性质,连接两组对应点的交点即为对称中心.【解答】解:(1)、△A1B1C如图所示,△A2B2C2如图所示; (2)、如图,对称中心为(2,﹣1).12.【题文】如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5格得△A1B1C1,画出平移后的△A1B1C1;(2)画出△ABC关于点B成中心对称的图形;(3)在直线l上找一点P,使△ABP的周长最小.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示: △A1B1C1即为所求(2) 如图所示: △DEF即为所求(3) 如图所示: P点位置,使△ABP的周长最小.13.【题文】知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四(填“>”“<”“=”);边形DEFC(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O 的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).【答案】(1)=;(2)作图见解析;(3)作图见解析.【分析】(1)根据知识背景即可求解;(2)先找到两个矩形的中心,然后过中心作直线即可;(3)先分成两个矩形,找到中心,然后过中心作直线即可.【解答】解:(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S 四边形AEFB=S四边形DEFC;(2)如图所示:(3)如图所示:14.【题文】如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)以原点O为对称中心作△ABC的中心对称图形,得到△A1B1C1,请画出△A1B1C1,并直接写出A1、B1、C1的坐标;(2)再将△A1B1C1绕着点A1顺时针旋转90°,得到△A1B2C2,请画出△A1B2C2,并直接写出点B2、C2的坐标.【答案】(1)作图见解析;(2)A1(2,1);B1(2,4);C1(4,2);B2(5,1);C2(3,-1).【分析】(1)根据网格结构找出点A、B、C关于原点O的对称点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标;(2)根据网格结构找出点B1、C1绕着点A1顺时针旋转90°后的点B2、C2的位置,然后与点A1顺次连接即可,再根据平面直角坐标系写出点B2、C2的坐标.【解答】解:(1)△A1B1C1如图所示;A1(2,1),B1(2,4),C1(4,2);(2)△A1B2C2如图所示;B2(5,1),C2(3,-1).15.【题文】如图所示的正方形网格中,△A BC的顶点均在格点上,请在所给直角坐标系中按要求画图.(1)将△ABC向右平移1个单位长度,再向上平移4个单位长度,请画出平移后的△A1B1C1.(2)画出△ABC关于坐标原点O成中心对称的△A2B2C2.【答案】见解析【分析】(1)直接利用平移的性质得出各点坐标,进而得出答案;(2)直接利用关于原点对称点的性质得出各点坐标,进而得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.16.【题文】△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.按要求作图:①画出△ABC关于原点O的中心对称图形△;②画出将△ABC绕点C顺时针旋转90°得到△.【答案】①作图见解析;②作图见解析【分析】(1)连接BO并延长BO到点B1,使得BO=OB1,得到点B1,同理可得点A1,C1,连接点B1,A1,C1,可得到△;(2)根据网格结构以及平面直角坐标系的特点,找出点A、B绕点C顺时针旋转90°的对应点的位置,然后顺次连接即可.【解答】解:①如图,△为所作;②如图,△为所作.17.【题文】在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.【答案】(1)作图见解析;(2)如图所示,点A的坐标为(0,1),点C的坐标为(-3,1);(3)如图所示,点B2的坐标为(3,-5),点C2的坐标为(3,-1).【分析】(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(-3,1);(3)△A2B2C2如图所示,B2(3,-5),C2(3,-1).18.【题文】如图,已知四边形ABCD及点O.求作:四边形A′B′C′D′,使得四边形与四边形ABCD关于O点中心对称【答案】作图见解析.【分析】根据中心对称的性质,连结AO并延长到A′,使OA′=OA,则点A和点A′关于点O对称,同样作出点B、C、D的对应点B′、C′、D′,则四边形A′B′C′D′为满足条件的四边形.【解答】解:如图,四边形A′B′C′D′为所作.19.【题文】如图,它是一个8×10的网格,每个小正方形的边长均为1 ,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.(1)画出△ABC关于直线OM对称的△.(2)画出△ABC关于点O的中心对称图形△.(3)△与△组成的图形是轴对称图形吗?如果是,请画出对称轴.△与△组成的图形__________(填“是”或“不是”)轴对称图形.【答案】(1)画图见解析;(2)画图见解析;(3)是,画对称轴见解析.【分析】(1)根据△ABC与△A1B1C1关于直线OM对称进行作图即可;(2)根据△ABC与△A2B2C2关于点O成中心对称进行作图即可;(3)一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:(1)如图, △即为所求;(2)如图, △即为所求;(3)如图, △与△组成的图形是轴对称图形,其对称轴为直线l.20.【题文】如图,已知△ABC和点求作△ABC关于点C成中心对称的△A1B1C1,保留作图痕迹,不要求写过程.【答案】作图见解析.【分析】延长AC到A1,使得AC=A1C,延长BC到B1,使得BC=B1C,连接B1A1即可.【解答】解:。
2020-2021学年苏科版数学八年级下册第九章 中心对称图形—平行四边形 综合题练习

苏科版数学八年级下册第九章《中心对称图形—平行四边形》综合题练习1.如图,已知平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F 两点,垂足是点O.(1)求证:△AOE≌△COF;(2)问:四边形AFCE是什么特殊的四边形?(直接写出结论,不需要证明).2.如图,在正方形ABC1D1中,AB=1,连接AC1,以AC1为边作第二个正方形AC1C2D2,连接AC2,以AC2为边作第三个正方形AC2C3D3.(1)求第二个正方形AC1C2D2和第三个正方形AC2C3D3的边长;(2)请直接写出按此规律所作的第7个正方形的边长.3.如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.(1)求证:EG=CF;(2)将△ECF绕点E逆时针旋转90°,请在图中直接画出旋转后的图形,并指出旋转后CF与EG的位置关系.4.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN 于E,连结AE、CD.(1)求证:AD=CE;(2)试判断四边形ADCE的形状,并说明理由.5.如图所示,在Rt△ABC中,∠ABC=90°,将Rt△ABC绕点C按顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在的直线翻转180°得到△ABF.且使C、B、F三点在一条直线上,连接AD.(1)求证:四边形AFCD是菱形;(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形?为什么?6.如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)证明:四边形EGFH是平行四边形;(2)EF和BC满足什么关系时,平行四边形EGFH是正方形?7.如图,菱形ABCD(图1)与菱形EFGH(图2)的形状、大小完全相同.且点A、C、E、G在同一直线上,点M是线段AG的中点.那么菱形EFGH可由菱形ABCD经一次图形变换得到,这次图形变换可以是轴对称变换、平移变换和旋转变换.请你具体描述这三种变换.(轴对称变换已描述)轴对称变换:菱形ABCD以线段AG的垂直平分线为对称轴作轴对称变换得到菱形EFGH.平移变换:旋转变换:8.如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接CE,当CE平分∠BCD时,求证:CE⊥BF.9.如图,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:△BED≌△CFD;(2)当∠A=90°时,试判断四边形DF AE是何特殊四边形?并说明理由.10.如图,在▱ABCD中,DE⊥AB于点E,BF⊥AD于点F,(1)说明:;(2)▱ABCD周长为12,AD:DE=3:2,求DE+BF的值.11.如图,E是正方形ABCD外的一点,连接AE、BE、DE,且∠EBA=∠ADE,点F在DE上,连接AF,BE=DF.(1)求证:△ADF≌△ABE;(2)小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由.12.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥BD交CB的延长线于点G.(1)求证:DE∥BF;(2)问∠G为多少度时,四边形DEBF是菱形.并证明你的结论.13.如图,平行四边形ABCD中,点E是AD的中点,连接BE并延长交CD的延长线于点F.(1)求证:△ABE≌△DFE;(2)连接CE,当CE平分∠BCD时,求证:ED=FD.14.如图,在矩形ABCD中,AD=2AB,点F是AD的中点,△AEF是等腰直角三角形,∠AEF=90°,连接BE,DE,AC.(1)求证:△EAB≌△EFD;(2)求的值.15.如图,P是边长为1的正方形ABCD对角线AC上一点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:PE=PD;(2)PE⊥PD.参考答案1.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC(平行四边形的对边相互平行).∴∠EAO=∠FCO,∠AEO=∠CFO(两直线平行,内错角相等);∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,∠EAO=∠FCO,∠AEO=∠CFO,OA=OC.∴△AOE≌△COF(AAS);(2)由(1)知,△AOE≌△COF,则OE=OF,∴AC垂直平分EF,又∵AC的垂直平分线是EF,∴四边形AFCE是菱形.2.解:(1)∵四边形ABC1D1是正方形,∴∠B=90°,BC1=AB=1,∴AC1==,即第二个正方形AC1C2D2的边长为,∵四边形AC1C2D2是正方形,∴∠AC1C2=90°,C1C2=AC1=,∴AC2==2,即第三个正方形AC2C3D3的边长是2;∁n D n的边长为()n﹣1,则第七个正方(2)由上述过程可得出,第n个正方形AC n﹣1形的边长为8.3.(1)证明:∵正方形ABCD,点G,E为边AB、BC中点,∴AG=EC,△BEG为等腰直角三角形,∴∠AGE=180°﹣45°=135°,又∵CF为正方形外角平分线,∴∠ECF=90°+45°=135°,∴∠AGE=∠ECF,∵∠AEF=90°,∴∠GAE=90°﹣∠AEB=∠CEF,∴△AGE≌△ECF,∴EG=CF;(2)解:画图如图所示,旋转后CF与EG平行.4.(1)证明:∵MN是AC的垂直平分线,∴OA=OC,∠AOD=∠EOC=90°.∵CE∥AB,∴∠DAO=∠ECO,在△ADO与△CEO中,,∴△ADO≌△CEO(ASA),∴AD=CE;(2)解:四边形ADCE是菱形.理由如下:由(1)得OA=OC,AD=CE,∴四边形ADCE是平行四边形,∵AC⊥DE,∴平行四边形ADCE是菱形.5.(1)由旋转60°得到AC=DC,∠ACB=∠ACD=60°,△ACD是等边三角形∴AD=DC=AC,又∵Rt△ABC沿着AB所在的直线翻转180°,易证△AFC是等边三角形,∴AD=DC=FC=AF∴四边形AFCD是菱形(2)四边形ABCG是矩形由(1)知△ACD是等边三角形,DE⊥AC于E∴AE=EC,易证△AEG≌△CEB∴AG=BC∴四边形ABCG是平行四边形,且∠ABC=90°∴平行四边形ABCG是矩形.6.证明:(1)∵G、F分别是BE、BC的中点,∴GF∥EC,同理FH∥BE.∴四边形EGFH是平行四边形;(2)EF和BC满足关系:且EF⊥BC时,平行四边形EGFH是正方形,证明:连接EF,GH.∵G、H分别是BE,CE的中点,∴GH∥BC.∵EF⊥BC,∴EF⊥GH.∵又∵四边形EGFH是平行四边形,∴四边形EGFH是菱形,∵EF=BC,GH=BC,∴EF=GH.∴平行四边形EGFH是正方形.7.解:平移变换:菱形ABCD沿AC方向(或从左往右)平移线段AE(或CG)的长得到菱形EFGH.旋转变换:菱形ABCD以点M为旋转中心顺时针(或逆时针)旋转180°得到菱形EFGH.8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD=∠FDE.(1分)又∵点E是AD的中点,∴AE=DE.在△ABE与△DFE中,∵∠BAD=∠FDE,AE=DE,∠BEA=∠FED,∴△ABE≌△DFE.(4分)(2)证明:∵△ABE≌△DFE∴DF=AB又∵CD=AB∴CF=2CD(5分)∵CE平分∠BCD∴∠BCE=∠FCE.又∵AD∥BC∴∠BCE=∠DEC(6分)∴∠FCE=∠DEC∴DE=CD(7分)又∵AE=DE∴BC=2CD,∴CF=BC(8分)又∵CE平分∠BCD,∴CE⊥BF.(9分)9.(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°(1分)∵D是BC的中点,∴BD=CD(2分)∵AB=AC,∴∠B=∠C,∴∠EDB=∠FDC,∴△BED≌△CFD(3分)(2)解:∵∠BED=∠CFD=∠A=90°∴四边形DF AE为矩形.(4分)∵△BED≌△CFD,∴DE=DF,(5分)∴四边形DF AE为正方形.(6分)10.(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱ABCD=AB•DE=AD•BF,∴=;(2)∵=,且=,∴==,又∵▱ABCD的周长为12,∴AD+AB=×12=6,∴=,∴DE+BF=4.11.证明:(1)∵四边形正ABCD是正方形,∴AB=AD,∵在△ADF和△ABE中,,∴△ADF≌△ABE;(2)理由如下:由(1)有△ADF≌△ABE,∴AF=AE,∠3=∠4,在正方形ABCD中,∠BAD=90°,∴∠BAF+∠3=90°,∴∠BAF+∠4=90°,∴∠EAF=90°,∴△EAF是等腰直角三角形,∴EF2=AE2+AF2,∴EF2=2AE2,∴EF=AE,即DE﹣DF=AE,∴DE﹣BE=AE.12.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∴DE∥BF;(2)∵∠G=90°.理由:AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴DE=BE(直角三角形斜边上的中线等于斜边的一半),∵四边形DFBE是平行四边形,∴四边形DEBF是菱形.13.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAD=∠FDE,又∵点E是AD的中点,∴AE=DE.在△ABE与△DFE中,∵∠BAD=∠FDE,AE=DE,∠BEA=∠FED,∴△ABE≌△DFE.(2)证明:∵△ABE≌△DFE,∴DF=AB,又∵CD=AB,∴CF=2CD,∵CE平分∠BCD,∴∠BCE=∠FCE.又∵AD∥BC,∴∠BCE=∠DEC,∴∠FCE=∠DEC,∴DE=CD,∵CD=DF,∴DE=DF.14.(1)证明:∵△AEF是等腰直角三角形,∴∠EAF=∠EF A=45°,EA=EF,又∵∠BAD=90°,∠EFD+∠EF A=180°,∴∠EAB=∠EFD=135°,又∵AD=2AB,FD=AD,∴AB=FD,∴△EAB≌△EFD;(2)解:如图,连接BD.∵∠AEF=90°,∴△EFD可由△EAB绕点E逆时针旋转90°得到,∴EB=ED,且∠BED=90°.∴△BED也是等腰直角三角形.∴BD=,∵四边形ABCD是矩形,∴AC=BD.∴=.15.证明:(1)①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90度.又∵PB=PE,∴BF=FE,∴GP=FE,∴△EFP≌△PGD(SAS).∴PE=PD;(2)∵△EFP≌△PGD,∴∠1=∠2.∴∠1+∠3=∠2+∠3=90度.∴∠DPE=90度.∴PE⊥PD.证法二证明:(1)∵四边形ABCD是正方形,AC为对角线,∴BC=DC,∠BCP=∠DCP=45°.∵PC=PC,∴△PBC≌△PDC(SAS).∴PB=PD,∠PBC=∠PDC.又∵PB=PE,∴PE=PD;(2)∵PB=PE,∴∠PBE=∠PEB,∴∠PEB=∠PDC,∴∠PEB+∠PEC=∠PDC+∠PEC=180°,∴∠DPE=360°﹣(∠BCD+∠PDC+∠PEC)=90°,∴PE⊥PD.。
中心对称 浙教版八年级数学下下册同步练习(含解析)

浙教版八下 4.3 中心对称一、选择题(共8小题)1. 下面图形中,是中心对称图形但不是轴对称图形的是( )A. B.C. D.2. 下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B.C. D.3. 下列所述图形中,既是轴对称图形又是中心对称图形的是( )A. 等腰三角形B. 等边三角形C. 菱形D. 平行四边形4. 下列图形中,是中心对称图形,但不是轴对称图形的是( )A. 等腰三角形B. 平行四边形C. 长方形D. 五边形5. 已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是( )A. B.C. D.6. 下列数学符号中,不是中心对称图形的是( )A. ∽B. =C. ∥D. >7. 关于中心对称的两个图形的对称中心,下列说法正确的是( )A. 两个图形的交点B. 连接两对对应点,两条线段所在直线的交点C. 对应角的角平分线交点D. 两条对应线段所在直线的交点8. 关于中心对称的两个图形中,下列不相等的量是( )A. 对应线段B. 对应角C. 对应图形的面积D. 对称中心到各点的距离二、填空题(共6小题)9. 若两个图形成中心对称,分别联结这两个图形的两对对应点,所得两条直线的交点就是.10. 平面内,一个图形绕着一个定点旋转180∘后,能与另一个图形重合,叫做这两个图形,也叫做这两个图形,这个定点叫做,这两个图形中的对应点,也叫做关于这个定点的.11. 把一个图形绕着某一点旋转180∘,如果它能够与另一个图形重合,那么这两个图形就关于这个点对称,这个点叫做对称中心.对称点的连线段被对称中心.12. 下列图中是中心对称图形的有.13. 判断(对的打“√”,错的打“×”)(1)线段是中心对称图形,对称中心是它的中点.( )(2)平行四边形是中心对称图形,对称中心是两条对角线的交点.( )(3)圆是中心对称图形,两个圆关于某点成中心对称.( )(4)若两个图形关于某点旋转重合,则这两个图形构成中心对称关系.( )14. 在方格纸中,选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是.三、解答题(共7小题)15. 请把下面这个图形补画成中心对称图形,并用点O表示对称中心(最少画三个).16. 在图中网格上按要求画出图形,并回答问题:(1)先画出△ABC关于直线a的轴对称图形△A1B1C1,再画出△A1B1C1关于直线b 的轴对称图形△A2B2C2.(2)在(1)的条件下,请判断△A2B2C2与△ABC的位置关系为.17. 如图,画出这个图形关于点M的中心对称的图形.18. 如图,已知△ABC和点Aʹ,如果△AʹBʹCʹ与△ABC关于点O成中心对称,且点A的对应点为点Aʹ,请画出点O和△AʹBʹCʹ.19. 如图,已知两个字母“F”成中心对称,请画出它们的对称中心O.20. 画出半圆关于点O的中心对称的图形.21. 如图,在△ABC中,点D是边AB的中点,画出△BCD关于点D的中心对称的图形.答案1. A【解析】在平面内,把一个图形绕着某个点旋转180∘,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.轴对称图形的定义为:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.直线叫做对称轴.根据中心对称图形和轴对称图形的定义可知:A选项:图形是中心对称图形,不是轴对称图形,符合题意,故A正确;B选项:图形既不是中心对称图形,也不是轴对称图形,不符合题意,故B错误;C选项:图形既是中心对称图形,也是轴对称图形,不符合题意,故C错误;D选项:图形是中心对称图形,不是轴对称图形,不符合题意,故D错误.2. A【解析】选项A,是轴对称图形,不是中心对称图形;选项B,只是中心对称图形;选项C,既是轴对称图形,又是中心对称图形;选项D,既不是轴对称图形,又不是中心对称图形.3. C【解析】菱形既是轴对称图形,又是中心对称图形.故选C.4. B5. B【解析】A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.6. D7. B8. D9. 对称中心10. 关于这个定点对称,成中心对称,对称中心,对称点11. 平分12. (1),(3)13. √,√,×,×14. ②15.16. (1)图略(2)关于点O成中心对称17.所以此图为所求.18.所以点O为对称中心,△AʹBʹCʹ为所求三角形.19.所以点O为对称中心.20.所以此图为所求.21.所以△AʹCʹD为所求作三角形.。
人教版初中数学八年级上单元试卷第章 轴对称【B卷】(解析版)

第13章轴对称B卷一、单选题1. ( 3分) 下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】A【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】A.即是轴对称图形,又是中心对称图形.故该选项正确;B.是轴对称图形,但不是中心对称图形.故该选项错误;C.是中心对称图形,但不是轴对称图形.故该选项错误;D.是中心对称图形,但不是轴对称图形.故该选项错误.故答案为:A【分析】根据轴对称图形和中心对称图形的概念即可判断.2. ( 3分) 如图,在△ABC中,BC=8,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长为18,则AC的长等于()A. 6B. 8C. 10D. 12【答案】C【考点】线段垂直平分线的性质【解析】【解答】由已知条件,利用线段垂直平分线的性质得AE+CE=BE+CE,再利用给出的周长即可求出AC的长.∵△BCE的周长等于18cm,BC=8cm∴BE+EC=10cm∵DE垂直平分AB∴AE=BE∴AE+EC=10cm,即AC=10cm【分析】由△BCE的周长及BC的长可求出BE与EC的和,根据相段的垂直平分线的性质可求出AE=BE,进而求出AC的长。
3. ( 3分) 点P(2,﹣3)关于x轴的对称点是()A. (﹣2,3)B. (2,3)C. (﹣2,-3)D. (2,﹣3)【答案】B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【分析】根据平面直角坐标系中对称点的规律解答.4. ( 3分) 下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】B【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.进行分析即可.5. ( 3分) 用两个完全相同的直角三角形拼下列图形:(1)平行四边形,(2)矩形,(3)菱形,(4)正方形,(5)等腰三角形,(6)等边三角形,一定可以拼成的图形是()A. (1)(4)(5);B. (2)(5)(6);C. (1)(2)(3);D. (1)(2)(5).【答案】D【考点】三角形全等及其性质,等腰三角形的判定,平行四边形的判定,矩形的判定【解析】【解答】解:根据题意,用形状和大小完全相同的直角三角形一定能拼出平行四边形、矩形和等腰三角形,共3种图形.画出图形如下所示:故答案为:D.【分析】根据全等三角形的性质、平行四边形的判定方法、矩形的判定方法、菱形的判定方法、正方形的判定方法、等腰三角形的判定方法、等边三角形的判定方法,动手操作或画图即可判断.6. ( 3分) 等腰三角形的一个内角是70°,则它顶角的度数是( )A. 70°B. 70°或40°C. 70°或50°D. 40°【答案】B【考点】三角形内角和定理,等腰三角形的性质【解析】【解答】解:本题可分两种情况:①当70°角为底角时,顶角为180°−2×70°=40°;②70°角为等腰三角形的顶角;因此这个等腰三角形的顶角为40°或70°.故答案为:B.【分析】首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.7. ( 3分) 下列与防疫有关的图案中不是轴对称图形的有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】轴对称图形【解析】【解答】解:AB、为轴对称图形,对称轴为等边三角形的高,符合题意;CD、没有对称轴,不是轴对称图形,不符合题意;故答案为:B.【分析】根据轴对称图形特点分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合.8. ( 3分) 若a、b、c为△ABC的三条边,且满足条件:点(a+c,a)与点(2b,﹣b)关于x轴对称,则△ABC的形状是()A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形【答案】B【考点】等边三角形的判定,关于坐标轴对称的点的坐标特征【解析】【解答】∵点(a+c,a)与点(2b,﹣b)关于x轴对称,∴a+c=2b,a=b,∴a=b=c,∴△ABC的形状是等边三角形.故答案为:B【分析】根据关于x轴对称的点横坐标相同、纵坐标互为相反数的特征,可得a+c=2b,a=b,可得a=b=c,判定△ABC的形状是等边三角形。
复习训练卷1(图形的旋转、中心对称、平行四边形)-2020-2021学年苏科版八年级数学下册

阶段复习提升训练卷(图形的旋转、中心对称、平行四边形)-20-21苏科版八年级数学下册一、选择题1、民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .2、等边三角形绕着它的中心O 旋转,若旋转后的三角形能与自身重合,则旋转角最小是( ) A .360︒ B .240︒ C .120︒ D .60︒3、如图,在ABC ∆中,90ACB ∠=︒,将ABC ∆绕点C 逆时针旋转θ角到DEC ∆的位置,这时点B 恰好落在边DE 的中点,则旋转角θ的度数为( ) A .60︒ B .45︒ C .30︒ D .55︒(3) (4) (7)4、如图,将ABC ∆绕点A 顺时针旋转60︒得到AED ∆,若4AB =,3AC =,2BC =,则ABE ∆的面积为 .5、将AOB ∆绕点O 旋转180︒得到DOE ∆,则下列作图正确的是( ) A .B .C .D .6、一个图形旋转后得到的图形与原来的图形有如下的关系对应角相等;对应线段相等;对应点到旋转中心的距离相等;连接对应点所成的线段相等;每对对应点与旋转中心连线所成的角都相等,它们都等于旋转角;其中正确的有A. 5个B. 4个C. 3个D. 2个7、如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠8、如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( ) A .5 B .8 C .11或5 D .11或14(8) (9) (11) 9、如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,BC=10,则EF 长为( ) A .1 B .1.5 C .2 D .2.5 10、已知平行四边形ABCD ,对角线6AC =、8BD =,则该平行四边形四条边中最长边...a 的取值范围是( ) A 77a ≤< B .57a ≤< C .17a << D 437a ≤< 二、填空题11、把图中的风筝图案,绕着它的中心O 旋转,旋转角至少为 度时,旋转后的图形能与原来的图形重合.12、在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形、等腰梯形,其中有 个旋转对称图形.13、下列图形中,①等腰三角形;②平行四边形;③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正五边形,是中心对称图形的有 (填序号)14、在ABCD 中,:3:5AB BC =,它的周长是32,则BC =______.15、如图,E 为ABCD 外一点,且EB BC ⊥,ED CD ⊥,若55E ∠=︒,则A ∠的度数为________.(15) (16) (17)16、如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD=16cm 2,S △BQC=25cm 2,则图中阴影部分的面积为 cm 2.17、如图,▱ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ′,则DB ′的长为18、如图,平行四边形ABCD 中,AB=4,BC=5,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于21PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是_______.(18) (19) (20)19、如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____. 20、如图,在平行四边形ABCD 中,5AB =,8BC =,ABC ∠和BCD ∠的角平分线分别交AD 于点E和F ,若6BE =,则CF =____________三、解答题21、如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A ,B ,C 均在格点上. (1)ACB ∠的大小为 (度)(2)在如图所示的网格中,以A 为中心,取旋转角等于BAC ∠,把ABC ∆逆时针旋转,请用无刻度的直尺,画出旋转后的ABC ∆,并简要说明旋转后点C 和点B 的对应点点C '和点B '的位置是如何而找到的(不要求证明)22、如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F.求证:(1)AE=CF;(2)四边形AECF是平行四边形.23、如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.24、如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠BFA=60°,BE=43,求平行四边形ABCD的周长.25、如图,在▱ABCD中,BD是它的一条对角线,过A、C两点分别作AE⊥BD,CF⊥BD,E、F为垂足.(1)求证:四边形AFCE是平行四边形.(2)若AD=15cm,AE=12cm,AB=20cm,过点C作CH⊥AB,求CH的长.26、如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;DP=;BQ=;CQ=.(2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?27、如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作OE⊥BC交BC于点E.过点O作FG⊥AB交AB、CD于点F、G.(1)如图1,若BC=5,OE=3,求平行四边形ABCD的面积;(2)如图2,若∠ACB=45°,求证:AF+FO=2EG.28、如图,ABC∆是边长为6的等边三角形,D是中点,E是边BC上一动点,连结DE,将DE绕点D逆时针旋转60︒得DF,连接CF.若7CF=,求BE的长29、如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.30、如图,P 是正方形ABCD 内一点,连接PA 、PB 、PC ,将∆ABP 绕点B 顺时针旋转到'CBP ∆的位置. (1)旋转中心是点______ ,点P 旋转的度数是______ 度; (2)连接’PP ,'BPP ∆的形状是______ 三角形; (3)若PA=2,PB=4,∠APB=135 . 求'BPP ∆的周长;求PC 的长.31、在▱ ABCD 中,BE 平分∠ABC 交 E .(1)如图 1,若∠D =30°,AB =6,求△ABE 的面积;(2)如图 2,过点 A 作 A F ⊥DC ,交 D C 的延长线于点 F ,分别交 B E ,BC 于点 G ,H , 且 A B =AF .求证:ED ﹣AG =FC .阶段复习提升训练卷(图形的旋转、中心对称、平行四边形)-20-21苏科版八年级数学下册(答案)一、选择题1、民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【解析】A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,不是中心对称图形,故本选项正确;C .既不是轴对称,也不是中心对称图形,故本选项错误;D 、是轴对称图形,也是中心对称图形,故本选项错误. 故选:B .2、等边三角形绕着它的中心O 旋转,若旋转后的三角形能与自身重合,则旋转角最小是( ) A .360︒ B .240︒ C .120︒ D .60︒【解析】3603120︒÷=︒,∴该图形绕中心至少旋转120度后能和原来的图案互相重合.故选:C .3、如图,在ABC ∆中,90ACB ∠=︒,将ABC ∆绕点C 逆时针旋转θ角到DEC ∆的位置,这时点B 恰好落在边DE 的中点,则旋转角θ的度数为( )A .60︒B .45︒C .30︒D .55︒ 【解析】90ACB ∠=︒,B 为DE 的中点,BC BE BD ∴==,将ABC ∆绕点C 逆时针旋转θ角到DEC ∆的位置,CB CE ∴=,CB CE BE ∴==, ECB ∴∆为等边三角形,60ECB ∴∠=︒,60ACD ECB ∴∠=∠=︒,故选:A .4、如图,将ABC ∆绕点A 顺时针旋转60︒得到AED ∆,若4AB =,3AC =,2BC =,则ABE ∆的面积为 .【解析】将ABC ∆绕点A 顺时针旋转60︒得到AED ∆,60BAE ∴∠=︒,BA AE =,ABE ∴∆是等边三角形,4BE AB ∴==,ABE ∴∆的面积1423432=⨯⨯=,故答案为:43.5、将AOB ∆绕点O 旋转180︒得到DOE ∆,则下列作图正确的是( ) A .B .C .D .【解析】AOB ∆与DOE ∆关于点O 中心对称的只有D 选项.故选:D . 6、一个图形旋转后得到的图形与原来的图形有如下的关系对应角相等;对应线段相等;对应点到旋转中心的距离相等;连接对应点所成的线段相等;每对对应点与旋转中心连线所成的角都相等,它们都等于旋转角;其中正确的有A. 5个B. 4个C. 3个D. 2个解答:B7、如图,在ABCD 中,对角线AC ,BD 相交于点O ,E 、F 是对角线AC 上的两点,给出下列四个条件,其中不能判定四边形DEBF 是平行四边形的有( )A .AE CF =B .DE BF =C .ADE CBF ∠=∠D .ABE CDF ∠=∠ 解:A 、∵AE CF =,∴AO=CO ,由于四边形ABCD 是平行四边形,则BO=DO ,∴四边形DEBF 是平行四边形; B 、不能证明四边形DEBF 是平行四边形;C 、∵四边形ABCD 是平行四边形,∴AD=BC ,∠DAE=∠BCF ,又∠ADE=∠CBF ,∴△DAE ≌△BCF (ASA ),∴AE=CF ,同A 可证四边形DEBF 是平行四边形;D 、同C 可证:△ABE ≌△CDF (ASA ),∴AE=CF ,同A 可证四边形DEBF 是平行四边形; 故选:B .8、如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14 解:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=AO ,∵AOD △与AOB 的周长相差3,∴AB-AD=3,或AD-AB=3, ∵AB=8,∴AD 的长为5或11, 故选C . 9、如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,BC=10,则EF 长为( )A .1B .1.5C .2D .2.5【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==,∴AFB FBC ∠=∠,∴BF 平分ABC ∠,∴ABF FBC ∠=∠,∴AFB ABF ∠=∠, ∴6AF AB ==, 同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=.故选:C .10、已知平行四边形ABCD ,对角线6AC =、8BD =,则该平行四边形四条边中最长边...a 的取值范围是( )A 77a ≤<B .57a ≤<C .17a <<D 437a ≤<解:如图所示:四边形ABCD 是平行四边形,AD >AB , 132OA AC ∴==,142OD BD ==, 在△AOD 中,由三角形的三边关系得:4-3<AD <4+3,∴1<AD <7, 当四边相等时易得边长为5,∴5≤AD <7.故选:B .二、填空题11、把图中的风筝图案,绕着它的中心O 旋转,旋转角至少为 度时,旋转后的图形能与原来的图形重合.【解析】该图形被平分成四部分,旋转90度的整数倍,就可以与自身重合,旋转角至少为90︒.故答案为:9012、在下列图形中:等腰三角形、等边三角形、正方形、正五边形、平行四边形、等腰梯形,其中有 个旋转对称图形.【解析】在等腰三角形、等边三角形、正方形、正五边形、平行四边形、等腰梯形中只有等边三角形、正方形、正五边形、平行四边形是旋转对称图形.故答案为4;13、下列图形中,①等腰三角形;②平行四边形;③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正五边形,是中心对称图形的有 (填序号)【解析】是中心对称图形的有:②平行四边形;④圆;⑤正六边形;⑥菱形.故答案为:②④⑤⑥.14、在ABCD 中,:3:5AB BC =,它的周长是32,则BC =______.解:设3,5AB x BC x ==由题意得,()23532x x += 解得2x =所以BC=10. 故答案为10.15、如图,E 为ABCD 外一点,且EB BC ⊥,ED CD ⊥,若55E ∠=︒,则A ∠的度数为________.【详解】∵EB BC ⊥,ED CD ⊥,∴90EBC EDC ∠=∠=︒.∵E EBC EDC C ∠+∠+∠+∠=360︒,∴180E C ∠+∠=︒,且55E ∠=︒,∴125C ∠=︒. ∵四边形ABCD 是平行四边形,∴A ∠=125C ∠=︒. 故答案为:125︒.16、如图,在▱ABCD 中,E 、F 分别是AB 、DC 边上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S △APD=16cm 2,S △BQC=25cm 2,则图中阴影部分的面积为 41 cm 2.17、如图,▱ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B ′,则DB ′的长为解答:解:∵四边形ABCD 是平行四边形,BD=2,∴BE=BD=1.如图2,连接BB ′.根据折叠的性质知,∠AEB=∠AEB ′=45°,BE=B ′E . ∴∠BEB ′=90°,∴△BB ′E 是等腰直角三角形,则BB ′=BE=.又∵BE=DE ,B ′E ⊥BD ,∴DB ′=BB ′=. 故答案是:.18、如图,平行四边形ABCD 中,AB=4,BC=5,以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于21PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是_______.【详解】由作图可知,CE 平分BCD ∠,BCE DCE ∴∠=∠.四边形ABCD 是平行四边形,//AB CD ∴,E DCE ∴∠=∠,E BCE ∴∠=∠, BE BC ∴=.∵AB=4,5BC =,541AE BE AB BC AB ∴=-=-=-=. 故答案为1.19、如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.解:如图1,连接OE ,∵四边形ABCD 是平行四边形,∴OA=OC=3,AD ∥BC ,∴∠DAC=∠ACB ,又∵DAC EAC ∠=∠,∴∠ACB=∠EAC ,∴AE=EC=4,∴△AEC 是等腰三角形,∴OE ⊥AC ,在Rt △AOE 中,由勾股定理得,AO 2+OE 2=AE 2,∴32+OE 2=42,∴OE=7, ∴167372AEC s =⨯⨯=, 故答案是:37.20、如图,在平行四边形ABCD 中,5AB =,8BC =,ABC ∠和BCD ∠的角平分线分别交AD 于点E和F ,若6BE =,则CF =____________【详解】平行四边形ABCD 中,BE 平分ABC ∠,CF 平分BCD ∠,∴ABE CBE ∠=∠,BCF DCF ∠=∠,∵//AB CD ,∴+=180ABC DCB ∠∠︒,CBE AEB ∠=∠,BCF DFC ∠=∠,∴+=90CBE BCF ∠∠︒,ABE AEB ∠=∠,DCF DFC ∠=∠,∴AE=AB=5,DF=DC=5, ∵AD=BC=8,∴AF=AD-DF=3,∴EF=AE-AF=2,延长CG 使CG EF =,∴EFCG 为平行四边形,∴2CG EF ==,10BG =,EG CF =, ∴=BCF G ∠∠,∴90BEG ∠=︒∵6BE =,10BG =,∴22221068EG BG BE =-=-=,∴8CF EG ==.故答案为:8.三、解答题21、如图,在每个小正方形的边长为1的网格中,ABC ∆的顶点A ,B ,C 均在格点上.(1)ACB ∠的大小为 (度)(2)在如图所示的网格中,以A 为中心,取旋转角等于BAC ∠,把ABC ∆逆时针旋转,请用无刻度的直尺,画出旋转后的ABC ∆,并简要说明旋转后点C 和点B 的对应点点C '和点B '的位置是如何而找到的(不要求证明)【解析】(1)32AC =42BC =52AB =222AB AC BC ∴=+,90ACB ∴∠=︒,故答案为90.(2)如图,延长AC 到格点B ',使得52AB AB '==,取格点E ,F ,G ,H ,连接EG ,FH 交于点Q ,取格点E ',F '.G ',H ',连接E G '',F H ''交于点Q ',作直线AQ ',直线B Q '交于点C ',△AB C ''即为所求.22、如图,在平行四边形ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别为E 、F .求证:(1)AE =CF ;(2)四边形AECF 是平行四边形.【解析】证明:(1)∵四边形ABCD 是平行四边形.∴AD ∥BC ,AD =BC .∴∠ADE =∠CBF .∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°.∵在△ADE 与△CBF 中⎪⎩⎪⎨⎧=∠=∠∠=∠CB AD CBF ADE CFBAED ,∴△ADE ≌△CBF (AAS ),∴AE =CF . (2)∵AE ⊥BD ,CF ⊥BD ,∴∠AEF =∠CFE =90°.∴AE ∥CF .又∵AE =CF ,∴四边形AECF 是平行四边形.23、如图,四边形ABCD 中AC 、BD 相交于点O ,延长AD 至点E ,连接EO 并延长交CB 的延长线于点F ,∠E =∠F ,AD =BC .(1)求证:O 是线段AC 的中点:(2)连接AF 、EC ,证明四边形AFCE 是平行四边形.【解析】证明:(1)∵∠E =∠F ,∴AD ∥BC ,∵AD =BC ,∴四边形ABCD 是平行四边形,∴AC ,BD 互相平分;即O 是线段AC 的中点.(2)∵AD ∥BC ,∴∠EAC =∠FCA ,在△OAE 和△OCF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠COF AOE CO AO FCO EAO , ∴△OAE ≌△OCF (ASA ). ∴OE =OF ,∴四边形AFCE 是平行四边形.24、如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F .(1)求证:BF =CD ;(2)连接BE ,若BE ⊥AF ,∠BFA =60°,BE =43,求平行四边形ABCD 的周长.【解析】(1)∵四边形ABCD 为平行四边形,∴AB =CD ,AD ∥BC ,∴∠FAD =∠AFB ,又∵AF 平分∠BAD ,∴∠FAD =∠FAB .∴∠AFB =∠FAB .∴AB =BF ,∴BF =CD ;(2)解:由(1)知:AB =BF ,又∵∠BFA =60°,∴△ABF 为等边三角形,∴AF =BF =AB ,∠ABF =60°,∵BE ⊥AF ,∴点E 是AF 的中点.在Rt △BEF 中,∠BFA =60°,BE =43,∴EF =4,BF =8,∴AB =BF =8,∵四边形BACD 是平行四边形,∴AB =CD ,AD =BC ,AB ∥CD ,∴∠DCF =∠ABC =60°=∠F ,∴CE =EF ,∴△ECF 是等边三角形,∴CE =EF =CF =4,∴BC =8﹣4=4,∴平行四边形ABCD 的周长为8+8+4+4=24.25、如图,在▱ABCD 中,BD 是它的一条对角线,过A 、C 两点分别作AE ⊥BD ,CF ⊥BD ,E 、F 为垂足.(1)求证:四边形AFCE 是平行四边形.(2)若AD =15cm ,AE =12cm ,AB =20cm ,过点C 作CH ⊥AB ,求CH 的长.【解析】(1)证明:如图,连接AC 交BD 于点O∵四边形ABCD 是平行四边形,∴AD =BC ,AO =CO ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEO =∠CFO =90°,在△AOE 和△COF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠CO AO COF AOE CFO AEO ,∴△AOE ≌△COF (AAS ),∴EO =FO ,∵AO =CO ,∴四边形AECF 是平行四边形;(2)解:在Rt △ABE 中,由勾股定理得:BE==16, 在Rt △AED 中,由勾股定理得:DE =9, ∴BD =16+9=25,∴S ▱ABCD =2S △ABD =2×21×25×12=AB ×CH =20CH , ∴CH =15.26、如图,在四边形ABCD 中,AD ∥BC ,AD =12cm ,BC =15cm ,点P 自点A 向D 以1cm /s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm /s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为t (s ).(1)用含t 的代数式表示:AP = ;DP = ;BQ = ;CQ = .(2)当t 为何值时,四边形APQB 是平行四边形?(3)当t 为何值时,四边形PDCQ 是平行四边形?【解析】(1)t ,12﹣t ,15﹣2t ,2t(2)根据题意有AP =t ,CQ =2t ,PD =12﹣t ,BQ =15﹣2t .∵AD ∥BC ,∴当AP =BQ 时,四边形APQB 是平行四边形.∴t =15﹣2t ,解得t =5.∴t =5s 时四边形APQB 是平行四边形;(3)由AP =tcm ,CQ =2tcm ,∵AD =12cm ,BC =15cm ,∴PD =AD ﹣AP =12﹣t ,如图1,∵AD ∥BC ,∴当PD =QC 时,四边形PDCQ 是平行四边形.即:12﹣t =2t ,解得t =4s , ∴当t =4s 时,四边形PDCQ 是平行四边形.27、如图,在平行四边形ABCD 中,O 是对角线AC 的中点,过点O 作OE ⊥BC 交BC 于点E .过点O 作FG ⊥AB 交AB 、CD 于点F 、G .(1)如图1,若BC =5,OE =3,求平行四边形ABCD 的面积; (2)如图2,若∠ACB =45°,求证:AF +FO=2EG .【解析】(1)连接BD ,∵平行四边形ABCD ,∴BD 过点O ,∴S △OBC =21BC •OE =21×5×3=215, ∴平行四边形ABCD 的面积=4S △OBC =30; (2)过点E 作EH ⊥EG ,与GC 的延长线交于点H ,如图2,∵OE ⊥BC ,∴∠OEG +∠OEC =∠GEC +∠CEH =90°,∴∠OEG =∠CEH ,∵∠ACB =45°,∴∠COE =45°,∴OE =CE ,∵平行四边形ABCD 中,AB ∥CD , 又FG ⊥AB ,∴FG ⊥CD ,∴∠EOG +∠ECG =360°﹣90°﹣90°=180°,∵∠ECH +∠ECG =180°,∴∠EOG =∠ECH ,∴△OEG ≌△CEH (ASA ),∴OG =CH ,EG =EH ,∵四边形ABCD 是平行四边形,∴OA =OC ,AB ∥CD ,∴∠OAF =∠OCG ,∵∠AOF =∠COG ,∴△OAF ≌△OCG (ASA ),∴AF =CG ,OF =OG ,∵CG +CH =GH ,∴AF +OF =GH ,∵∠GEH =90°,EG =EH ,∴GH=2EG ,∴AF +OF=2EG .28、如图,ABC 是边长为6的等边三角形,D 是AB 中点,E 是边BC 上一动点,连结DE ,将DE 绕点D 逆时针旋转60︒得DF ,连接CF .若7CF =,求BE 的长【解析】连接CD ,当点F 在直线CD 的右侧时,如图1中,取BC 的中点M ,连接DM ,MF ,延长MF交CD 于N ,ABC ∆是等边三角形,60B ∴∠=︒,BA BC =,AD DB =,CM MB =,DB BM ∴=,BMD ∴∆是等边三角形,60BDM EDF ∴∠=∠=︒,DB DM =,BDE MDF ∴∠=∠,DE DF =,()BDE MDF SAS ∴∆≅∆,FM BE ∴=,60FMD B ∠=∠=︒,FMD BDM ∴∠=∠,//MF AB ∴,CM MB =,CN ND ∴=,1322NM BD ∴==, AD BD =,CA CB =,CD AB ∴⊥,90CDB ∴∠=︒,6BC =,3BD =,33CD ∴=,33CN ∴=,90CNM CDB ∠=∠=︒, 7CF =,271742NF ∴=-=, 31122BE FM ∴==-=. 当点F 在直线CD 的左侧时,如图2中,同法可得13222FM BE ==+=, 综上所述,满足条件的BE 的值为1或2.29、如图1,在△ABC 中,∠A=36°,AB=AC ,∠ABC 的平分线BE 交AC 于E .(1)求证:AE=BC ;(2)如图(2),过点E 作EF ∥BC 交AB 于F ,将△AEF 绕点A 逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB ?若存在,求出相应的旋转角α;若不存在,请说明理由.【解答】(1)证明:∵AB=BC ,∠A=36°,∴∠ABC=∠C=72°,又∵BE 平分∠ABC ,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C ﹣∠CBE=72°,∴∠ABE=∠A ,∠BEC=∠C ,∴AE=BE ,BE=BC ,∴AE=BC .(2)证明:∵AC=AB 且EF ∥BC ,∴AE=AF ;由旋转的性质可知:∠E′AC=∠F′AB ,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB ,理由:由(1)可知AE=BC ,所以,在△AEF 绕点A 逆时针旋转过程中,E 点经过的路径(圆弧)与过点C 且与AB 平行的直线l 交于M 、N 两点,如图:①当点E 的像E′与点M 重合时,则四边形ABCM 为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°. ②当点E 的像E′与点N 重合时,由AB ∥l 得,∠AMN=∠BAM=72°,∵AM=AN ,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM +∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB .30、如图,P 是正方形ABCD 内一点,连接PA 、PB 、PC ,将∆ABP 绕点B 顺时针旋转到'CBP ∆的位置.(1)旋转中心是点______ ,点P 旋转的度数是______ 度;(2)连接’PP ,'BPP ∆的形状是______ 三角形;(3)若PA=2,PB=4,∠APB=135 .求'BPP ∆的周长;求PC 的长.解答:(1)∵P 是正方形ABCD 内一点,△ABP 绕点B 顺时针旋转到△CBP ′的位置,∴旋转中心是点B ,点P 旋转的度数是90度;(2)根据旋转的性质BP=BP ′,∵旋转角为90°,∴△BPP ′是等腰直角三角形;(3)①∵PB=4,∴PP ′=,∴△BPP ′的周长=PB+P ′B+PP ′=;②∵∠BP ′C=∠BPA=135°,∴∠PP ′C=∠BP ′C ﹣∠BP ′P=135°﹣45°=90°,在Rt △PP ′C 中,PC=.31、在▱ ABCD 中,BE 平分∠ABC 交 A D 于点 E .(1)如图 1,若∠D =30°,AB 6,求△ABE 的面积;(2)如图 2,过点 A 作 A F ⊥DC ,交 D C 的延长线于点 F ,分别交 B E ,BC 于点 G ,H , 且 A B =AF .求证:ED ﹣AG =FC .【解答】(1)解:作BO⊥AD于O,如图1所示:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∠ABC=∠D=30°,∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BQ=AB=,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AE=AB=,∴△ABE的面积=AE×BO=××=;(2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示:∵AB=AE,AQ⊥BE,∴∠ABE=∠AEB,BQ=EQ,∴PB=PE,∴∠PBE=∠PEB,∴∠ABP=∠AEP,∵AB∥CD,AF⊥CD,∴AF⊥AB,∴∠BAF=90°,∵AQ⊥BE,∴∠ABG=∠F AP,在△ABG和△F AP中,,∴△ABG≌△AFP(ASA),∴AG=FP,∵AB∥CD,AD∥BC,∴∠ABP+∠BPC=180°,∠BCP=∠D,∵∠AEP+∠PED=180°,∴∠BPC=∠PED,在△BPC和△PED中,,∴△BPC≌△PED(AAS),∴PC=ED,∴ED﹣AG=PC﹣AG=PC﹣FP=FC.。
八年级数学上册第三章单元测试试题
日期:2022年二月八日。
第三章中心对称图形〔一〕制卷人:打自企;成别使;而都那。
审核人:众闪壹;春壹阑;各厅……日期:2022年二月八日。
一.选择题:1.在等边三角形、平行四边形、矩形、菱形、正方形、等腰梯形中,既是中心对称图形又是轴对称图形的有 ( )A.1个 B.2个 C.3个 D.4个2.正方形具有而菱形不一定具有的性质是〔〕A.对角线互相垂直B.对角线互相平分C.对角线相等D.对角线平分一组对角3.平行四边形的对角线长为x、y,一边长为12,那么x、y的值可能是〔〕A.8和14 B.10和14 C.18和20 D.10和344.以下说法中,正确的选项是 ( ) A.一组对边平行的四边形是平行四边形 B.有一个角是直角的四边形是矩形C.四条边相等的四边形是菱形 D.对角线互相垂直平分的四边形是正方形5.以下说法中,不正确的选项是( )A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形日期:2022年二月八日。
D .一组对边相等且有一个角是直角的四边形是矩形 6.下面说法正确的选项是〔 〕A .一个三角形中,至多只能有一个锐角B .一个四边形中,至少有一个锐角C .一个四边形中,四个内角可能全是锐角D .一个四边形中,不能全是钝角 7.如图:在□ABCD 中,AE⊥BC 于E ,AF⊥CD 于F 。
假设AE=4,AF=6,且□ABCD 的周长为40,那么ABCD 的面积为〔 〕 A .24B .36C .40D .488.顺次连接四边形四边中点所组成的四边形是菱形, 那么原四边形为〔 〕A .平行四边形B .菱形C .对角线相等的四边形D .直角梯形9.平行四边形ABCD 的周长为2a ,两条对角线相交于O ,△AOB 的周长比△BOC 的周长大b ,那么AB 的长为〔 〕A .2ba -B .2ba +C .22ba + D .22ba + 10.假如菱形的边长是3,一条对角线的长也是3,那么菱形的一个锐角是 ( ) A .50° B .55° C .60° D 120° 11.菱形的周长为20cm ,两邻角的比为1:2,那么较长的对角线长为〔 〕 A .4.5 cmB .4 cmC .53 cmD .43 cm12.在四边形ABCD 中,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD 中任选两个使四边形ABCD为平行四边形的选法有〔 〕 A .3B .4C .5D .6日期:2022年二月八日。
2021-2022学年北师大版八年级数学下册《3-3中心对称》同步练习题(附答案)
2021-2022学年北师大版八年级数学下册《3-3中心对称》同步练习题(附答案)一.选择题1.栖霞市文明城市建设中,大力开展“垃圾分类”知识宣传活动,活动中推出下列图标(不包含文字),则其中是中心对称图形的是()A.可回收物B.有害垃圾C.厨余垃圾D.其他垃圾2.在以下四个标志中,既是轴对称图形又是中心对称图形的有()A.B.C.D.3.在平面直角坐标系中,点P(﹣2,﹣4)关于原点对称的点的坐标是()A.(2,﹣4)B.(2,4)C.(﹣2,4)D.(﹣2,﹣4)4.已知点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,则a与b的值分别为()A.﹣3;1B.﹣1;3C.1;﹣3D.3;﹣15.如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE6.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′7.在平面直角坐标系xOy中,△ABC与△A'B'C'关于原点O成中心对称的是()A.B.C.D.8.如图,已知△ABC与△DEF成中心对称,则对称中心是()A.点C B.点DC.线段BC的中点D.线段FC的中点二.填空题9.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.10.如图,△ABC和△DEC关于点C成中心对称,若AC=,AB=1,∠BAC=90°,则AE的长是.11.如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=4,OD=3,则阴影部分的面积之和为.12.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则直线l的函数关系式为.13.如图中阴影部分是由4个完全相同的正方形拼接而成,若要在①,②,③,④四个区域中的某个区域处添加一个同样的正方形,使它与阴影部分组成的新图形是中心对称图形,则这个正方形应该添加在处(填写区域对应的序号).14.直角坐标系中,已知点A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,点A3关于y轴对称点A4,点A4关于原点对称点A5…,按此规律,则点A2020的坐标为.三.解答题(共6小题)15.如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.16.作出与△ABC关于点E成中心对称的图形.17.如图,已知四边形ABCD和点P,画四边形A'B'C'D',使四边形A'B'C'D'与四边形ABCD 关于点P成中心对称.18.如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.19.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出△ABC各个顶点的坐标;(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;(3)求线段BC的长.20.课外兴趣小组活动时,老师提出了如下问题:(1)如图1,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.[感悟]解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.(2)解决问题:受到(1)的启发,请你证明下列命题:如图2,在△ABC中,D是BC 边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF,若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明.参考答案一.选择题1.解:A.不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意.故选:B.2.解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.既是轴对称图形,又是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:B.3.解:点P(﹣2,﹣4)关于原点对称的点的坐标是(2,4),故选:B.4.解:∵点A(a+b,4)与点B(﹣2,a﹣b)关于原点对称,∴解得.故选:B.5.解:根据旋转的性质可知,点A与点D是对应点,BO=EO,AB∥DE,∠ACB=∠DFE≠∠FDE.故选:C.6.解:∵△ABC与△A′B′C′关于点O成中心对称,∴点A与点A′是对称点,BO=B′O,AB∥A′B′,故A,B,C正确,故选:D.7.解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(﹣,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;故选:D.8.解:△ABC与△DEF成中心对称,则对称中心是线段FC的中点,故选:D.二.填空题9.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.10.解:∵△ABC和△DEC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=1,AC=CD=,∠D=BAC=90°,∴AD=DE=1,∴AE===.故答案为:.11.解:如图,∵直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB ⊥a于点B,A'D⊥b于点D,OB=4,OD=3,∴AB=3,∴图形①与图形②面积相等,∴阴影部分的面积之和=长方形ABOE的面积=3×4=12.故答案为:12.12.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线方程为y=kx,则3=k,k=,∴直线l解析式为y=x,故答案为:y=x.13.解:把正方形添加在②处,使它与阴影部分组成的新图形是中心对称图形,故答案为:②.14.解:∵点A(3,2),∴点A关于y轴的对称点为A1是(﹣3,2);点A1关于原点的对称点为A2是(3,﹣2);点A2关于x轴的对称点为A3是(3,2),显然此为一循环,……按此规律,2020÷3=673…1,∴点A2020的坐标是(﹣3,2).故答案为:(﹣3,2).三.解答题15.解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).16.解:依次寻找点A、B、C关于点E的中心对称点,顺次连接,所作图形如下所示:17.解:如图,四边形A'B'C'D'为所作.18.证明:如图,连接AD、BC,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵点E、F关于点O中心对称,∴OF=OE,∴AO﹣EO=CO﹣FO,∴AE=CF.19.解:(1)A(﹣4,3),C(﹣2,5),B(3,0);(2)如图所示:点A′的坐标为:(﹣4,﹣3),B′的坐标为:(﹣3,0),点C′的坐标为:(2,﹣5);(3)线段BC的长为:=5.20.解:(1)延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD),∴CF=BG,DF=DG,∵DE⊥DF,∴EF=EG.在△BEG中,BE+BG>EG,即BE+CF>EF.(2)若∠A=90°,则∠EBC+∠FCB=90°,由(1)知∠FCD=∠DBG,EF=EG,∴∠EBC+∠DBG=90°,即∠EBG=90°,∴在Rt△EBG中,BE2+BG2=EG2,∴BE2+CF2=EF2.。
2020-2021学年苏科版八年级下册数学第九章《中心对称图形》单元测试
初二数学第九章《中心对称图形》单元测试班级姓名学号一、选择题:(本题共10小题,每小题3分,共30分)1.下列图案中,不是中心对称图形的是( )2.如图,在□ABCD中,BM平分∠ABC,交CD于点M,且MC=2,□ABCD的周长是14,则DM的长为( ) CA.1B.2C.3D.43.如图,已知□ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为( ) BA.13B.14C.18D.234.如图,矩形ABCD的两条对角线相交于点O,∠BOC=120°,BO=4,则矩形的边BC的长是( ) DA.6B.8C.63D.43第2题第3题第4题5.下列说法中,正确的是( )A.一组对边平行的四边形是平行四边形;B.有一个角是直角的四边形是矩形;C.四条边相等的四边形是菱形;D.对角线互相垂直平分的四边形是正方形.6.如图,在菱形ABCD中,AB=5,对角线AC与BD相交于点O,且AC:BD=3:4,AE⊥CD 于点E,则AB的长是( ) BA.4B.245C.5D.125第6题第7题第8题7.如图,在四边形ABCD中;对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是( ) BA.AB=AD;B.AC=BD;C.AC⊥BD;D.∠ABO=∠CBO8.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是( ) BA.20°B.22.5°C.40°D.67.5°9.如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F 的坐标为( ) DA.(-2,3)B.(-3,5)C.(5,-2)D.(-1,5)第9题第10题10.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值为( ) CA. 3B. 4C.5D.6二、填空题:(本题满分24分)11.在平行四边形ABCD中,∠B+∠D=200°,则∠A=.12.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△DEC,连接AD,若∠BAC=25°,则∠BAD= . 70°13.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC =62°,则∠DFE的度数为. 56°第12题第13题第14题14.如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=. 20°15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长为.24cm第15题第16题第17题16.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(-2,0),点D在y轴上,则点C 的坐标是. (-5,4)17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC 于点D,PE⊥CB于点E,连结DE,则DE的最小值为. 4.818.平面直角坐标系中,平行四边形OABC的边OC在x轴的正半轴,点B(6,2)、C(4,0),直线y=2x+1以每秒1个单位的速度向下平移,经过秒,该直线将平行四边形OABC 面积平分.三、解答题:(本题满分46分)19.(5分)如图,已知: AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF. 求证:四边形BECF是平行四边形.20.(5分)如图,点O是菱形ABCD对角线的交点,DE∥AC,CEBD,连接OE.求证:OE=BC.21.(6分如图,在四边形ABCD中,∠BAC=90°,E是BC的中点,AD∥BC,AE∥DC,EF⊥CD于点F.(1)求证:.四边形AECD是菱形;(2)若AB=6,BC=10,求EF的长.22.(6分)如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、:H分别是BD、AC的中点,当AB、CD满足什么条件时,有EF⊥GH?请证明你的结论.23.(8分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO 并延长到点E,使OE=OD,连接AE、BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24.(8分)如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处;BE交AD于点P.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长.25.(8分)如图,在平面直角坐标系中,四边形ABCD是梯形,AD∥BC,E是BC的中点,BC=12,点A坐标是(0,4),CD所在直线的函数关系式为y=-x+9,点P是BC边上一个动点,(1)当PB= 时,以点P、A、D、E为顶点的四边形为平行四边形;(2)在(1)的条件下,点P在BC边上运动过程中,以点P、A、D、B为顶点的四边形能否构成菱形?试说明理由.。
2020-2021学年苏科版数学八年级下册第9章《中心对称图形—平行四边形》常考题专练(二)
八年级下册第9章《中心对称图形—平行四边形》常考题专练(二)1.如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接AC、BE.(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.2.如图,已知正方形ABCD的边长是2,∠EAF=m°,将∠EAF绕点A顺时针旋转,它的两边分别交BC、CD于点E、F,G是CB延长线上一点,且始终保持BG=DF.(1)求证:△ABG≌△ADF;(2)求证:AG⊥AF;(3)当EF=BE+DF时:①求m的值;②若F是CD的中点,求BE的长.3.已知,如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,F是BC延长线上的一点,且EF∥DC.(1)求证:四边形CDEF是平行四边形;(2)若EF=2cm,求AB的长.4.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.5.在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.6.一块矩形纸片,利用割补的办法可以拼成一块与它面积相等的平行四边形(如图1所示):请你根据图1作法的提示,利用图2画出一个平行四边形,使该平行四边形的面积等于所给的矩形面积.要求:(1)画出的平行四边形有且只有一个顶点与B点重合;(2)写出画图步骤;(3)写出所画的平行四边形的名称.7.如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E(1)试说明:BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由.8.如图,已知△ABC和△AEF中,∠B=∠E,AB=AE,BC=EF,∠EAB=25°,∠F=57°;(1)请说明∠EAB=∠FAC的理由;(2)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.9.如图1,已知Rt△ABC中,AB=BC,AC=2,把一块含30°角的三角板DEF的直角顶点D 放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),点C在DE上点B在DF上.(1)求重叠部分△BCD的面积;(2)如图2,将直角三角板DEF绕D点按顺时针方向旋转30度,DE交BC于点M,DF交AB于点N,①请说明DM=DN;②在此条件下重叠部分的面积会发生变化吗?若发生变化,请求出重叠部分的面积,若不发生变化,请说明理由;(3)如图3,将直角三角板DEF绕D点按顺时针方向旋转α度(0<α<90),DE交BC于点M,DF交AB于点N,则DM=DN的结论仍成立吗?重叠部分△DMN的面积会变吗?(请直接写出结论不需说明理由)10.如图①,在正方形ABCD中,点E,F分别在AB、BC上,且AE=BF.(1)试探索线段AF、DE的数量关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图②中补全图形,并说明理由.参考答案1.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵CE=DC,∴AB=EC,AB∥EC,∴四边形ABEC是平行四边形;(2)∵由(1)知,四边形ABEC是平行四边形,∴FA=FE,FB=FC.∵四边形ABCD是平行四边形,∴∠ABC=∠D.又∵∠AFC=2∠ADC,∴∠AFC=2∠ABC.∵∠AFC=∠ABC+∠BAF,∴∠ABC=∠BAF,∴FA=FB,∴FA=FE=FB=FC,∴AE=BC,∴四边形ABEC是矩形.2.解:(1)证明:在正方形ABCD中,AB=AD=BC=CD=2,∠BAD=∠C=∠D=∠ABC=∠ABG=90°.∵BG=DF,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS);(2)证明:∵△ABG≌△ADF,∴∠GAB=∠FAD,∴∠GAF=∠GAB+∠BAF=∠FAD+∠BAF=∠BAD=90°,∴AG⊥AF;(3)①解:△ABG≌△ADF,∴AG=AF,BG=DF.∵EF=BE+DF,∴EF=BE+BG=EG.∵AE=AE,在△AEG和△AEF中.,∴△AEG≌△AEF(SSS).∴∠EAG=∠EAF,∴∠EAF=∠GAF=45°,即m=45;②若F是CD的中点,则DF=CF=BG=1.设BE=x,则CE=2﹣x,EF=EG=1+x.在Rt△CEF中,CE2+CF2=EF2,即( 2﹣x)2+1 2=( 1+x)2,得x=.∴BE的长为.3.(1)证明:如图,∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.又EF∥DC,∴四边形CDEF是平行四边形;(2)解:由(1)知,四边形CDEF是平行四边形,则DC=EF=2cm.∵点D是Rt△ABC斜边AB的中点,∴DC=AB,∴AB=2DC=4cm.4.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠E=∠DCM,在△AEM和△DCM中,,∴△AEM≌△DCM(AAS),∴AE=CD,∴AE=AB;(2)∵BM平分∠ABC,∴∠ABM=∠CBM,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBM=∠AMB,∴∠ABM=∠AMB,∴AB=AM,∵AB=AE,AM=DM,∴点M是AD的中点,∴BC=2AM,∴BC=BE,∴△BCE是等腰三角形.∵BM平分∠ABC,∴BM⊥CE.5.解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.6.解:作图:如图所示(1)过点C作射线CE(不过A、D点);(2)过点B作射线BF∥CE,且交DA的延长线于点F;(3)在CE上任取一点G,连接BG;(4)过点F作FE∥BG,交射线CE于点E,则四边形BGEF为所画的平行四边形.7.解:(1)证明:∵∠BAC=90°,∴∠BAD+∠EAC=90°,又∵BD⊥AE,CE⊥AE,∴∠BDA=∠AEC=90°,∠BAD+∠ABD=90°,∴∠ABD=∠EAC,又∵AB=AC,∴△ABD≌△CAE,∴BD=AE,AD=CE,∵AE=AD+DE=CE+DE,∴BD=DE+CE.(2)同理可得,DE=BD+CE;(3)同理可得,DE=BD+CE.8.解:(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠C=∠F,∠BAC=∠EAF,∴∠BAC﹣∠PAF=∠EAF﹣∠PAF,∴∠BAE=∠CAF=25°;(2)通过观察可知△ABC绕点A顺时针旋转25°,可以得到△AEF;(3)由(1)知∠C=∠F=57°,∠BAE=∠CAF=25°,∴∠AMB=∠C+∠CAF=57°+25°=82°.9.解:(1)连结BD.∵AB=BC,AC=2,∴CD=AD=1,则△BCD的面积是×CD•BD=×1×1=;(2)作DQ⊥BC,DP⊥AB分别于点Q,P,又∵AB=BC,CD=AD,∴∠A=∠C,∴△CDQ≌△ADP,∴DQ=DP,则四边形BQDP是正方形.∵∠EDQ+∠QDN=∠NDP+∠QDN∴∠EDQ=∠NDP又∵∠MQD=∠NPD∴△MDQ≌△NDP,∴DM=DN,∴直角三角板DEF绕D点按顺时针方向旋转30度,此条件下重叠部分的面积等于正方形BQDP的面积是DQ2=()2=.(3)DM=DN的结论仍成立,重叠部分△DMN的面积会变.10.解:(1)AF=DE.∵ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°,∵AE=BF,∴△DAE≌△ABF,∴AF=DE.(2)四边形HIJK是正方形.如下图,H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠BAF+∠AED=90°,∴∠AOE=90°∴∠KHI=90°,∴四边形HIJK是正方形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
D
CB
A
A
B
C
D
E
秋季学期单元测试题(三)..
八年级数学..
(测试内容:第三章 中心对称图形(一)§3.1-§3.4)
班别 座号 姓名 成绩
说明:1.可以使用计算器,但未注明精确度的计算问题不得采取近似计算,建议根据题型特
点把握好使用计算器的时机...
2.本试卷满分100分,在90分钟内完成.相信你一定会有出色的表现!
一、填空题:本大题共10小题;每小题3分,共30分.请将答案填写在题中的横线上.
1.如图1,△ABC经旋转后得到另一图形△A'BC',则点A的对应点
是 ,点C的对应点是 ...
2.如图1,△ABC经旋转后得到另一图形△A'BC',则线段AB的对
应线段是 ,线段AC的对应线段是 ,线段BC的对应
线段是 .
3.如图1,△ABC经旋转后得到另一图形△A'BC',则∠A的对应角是 ,∠ABC的对
应角是 ,∠C的对应角是 ...
4.如图1,△ABC经旋转后得到另一图形△A'BC',则旋转中心是 ,旋转角是 .
5.一个正三角形绕其一个顶点按同一方向连续旋转五次,每次转过的角度为60°,旋转前
后所有的图形共同组成的图案是 .
6.一个正方形要绕它的中心至少旋转 度,才能和原来的图形重合.
7.如图,△ABC为等边三角形,D为BC中点,△AEB是△ADC绕点A
旋转60°得到的,则∠ABE= 度;若连结DE,则△ADE为
__________三角形.
8.如图,以△ABC的边AB、AC为边分别向外侧作等腰直角△ABD、△ACE,
则将△ADC绕点A逆时针旋转______度可得到△ABE,此时CD与BE有
_______________的关系.
9.在□ABCD中,∠A+∠C=200°,∠A= ,∠B .
10.如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH相交于点O,
那么图中除□ABCD外共有______个平行四边形.
图1
E
D
C
B
A
B
C
D
E
A
B
C
D
E
F
G
H
O
二、选择题:本大题共8小题;每小题3分,共24分.在每小题给出的四个选项中,只有一
项是正确的,请将正确答案前的字母填入题后的括号内.每小题选对得3分,选错,不
选或多选均得零分.
11.下列图形中是中心对称图形的是 ··························································· ( ).
(A) (B) (C) (D)
12.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ······················ ( ).
(A) (B) (C) (D)
13. 下列情形不属于旋转的是 ···································································· ( ).
(A)电风扇的扇叶在不停转动 (B)时钟上的秒针不停地转动
(C)单摆上转动的小球 (D)笔直的铁轨上飞驰而过的火车
14. 下列图形中:①等边三角形;②正五角星形;③正方形;④圆.
属于旋转对称图形的有 ······································································· ( ).
(A)1个 (B)2个 (C)3个 (D)4个
15. 下列说法中正确的是 ·········································································· ( ).
(A)旋转对称图形一定是轴对称图形 (B)旋转对称图形一定不是轴对称图形
(C)轴对称图形一定是旋转对称图形 (D)以上说法均不正确
16. 把26个英文大写字母看成图案:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z,
则成中心对称图案的字母共有 ······························································ ( ).
(A)4个 (B)5个 (C)6个 (D)7个
17.下列各组条件中,不能判定四边形ABCD为平行四边形的一组是 ················ ( ).
(A)AB=CD,AD=BC (B)AB∥CD,AB=CD
(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC
18. 以不共线的三点为顶点作平行四边形可作出 ············································ ( ).
(A)1个 (B)2个 (C)3个 (D)4个
D
A
C
三、解答题:本大题共4小题,共46分.解答应写出文字说明或演算步骤.
19.(11分)如图,在△ABC中,AD是中线.
(1)(3分)读语句画图:延长AD到点E,使DE=AD,连结BE、CE;
(2)(4分)填空:点A与点 关于点 成中心对称,线段AB与线段 关
于点 成中心对称;
(3)(4分)写出所有关于点D成中心对称的三角形.
20.(11分)如图,在10×5的正方形网格中,每个小正方形的边长均为单位1,将△ABC
向右平移4个单位,得到△A′B′C′,再把△A′B′C′绕点A′逆时针旋转90°,得到△A″B″C″.
请你画出△A′B′C′和△A″B″C″.
C
B
A
21.(12分)以给出的图形“〇、〇、△、△、=”(两个相同的圆、两个相同的三角形、两
条平行线)为构件,各设计一个构思独特且有意义的轴对称图形和中心对称图形.举例:如
图所示,左框中是符合要求的一个图形,你还能构思出其他的图形吗?请在右框中画出与之不
同的图形.
22.(12分)如图,△ABC的两条中线AM、CN交于点G,在AM的延长线上取MD=GM,
在CN的延长线上取NE=GN,连结BD、CD、BG、BE、AE. 请指出图中所有的平行四边
形,并分别写出理由.
2006年秋季学期八年级数学单元测试【三】答案 第1页(共1页)
八年级数学参考答案
一、填空题:(每小题3分,共30分)
1.A′,C′;2.A′B,A′C′,BC′;3.∠A′,∠A′BC′,∠C′;4.B,∠ABA′
5.中心对称图形也是轴对称图形;6.90;7.60,等边;8.90,互相垂直且相等;9.100,
80;10.8.
二、选择题:(每小题3分,共24分)
题号
11 12 13 14 15 16 17 18
答案 C B D D D D C C
三、解答题:
19.解:(1)图略;(2)E,D,CE,D;(3)△ABD与△EDC,△ACD与△EBD,△ABC
与△ECB,△ABE与△ECA.
20.解:图略.
21.解:图略.
22.解:□AEBG(对角线互相平分),
□
BGCD(对角线互相平分),
□
BEGD(两组对边分别平行).