人教版七年级下册数学实际问题与二元一次方程组测试题
人教版七年级数学下册8.3实际问题和二元一次方程组同步测试(包含答案)

绝密★启用前8.3 实际问题与二元一次方程组班级:姓名:一、单选题1.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x钱,共同购买该物品的有y人,则根据题意,列出的方程组是()A.8374y xy x-=⎧⎨-=⎩B.8374y xy x-=⎧⎨-=-⎩C.8374y xy x-=-⎧⎨-=-⎩D.8374y xy y-=⎧⎨-=⎩2.某校啦啦操运动员进行分组训练,若每组4人,余2人,若每组5人,则缺3人,设运动员人数为x人,组数为y,则根据题意所列方程组为()A.4253y xx x=+⎧⎨+=⎩B.4253y xy x=+⎧⎨-=⎩C.4253y xy x=-⎧⎨=+⎩D.4253y xy x=-⎧⎨=-⎩3.小明的外婆送来满满一篮鸡蛋,这只篮子最多只能装55只鸡蛋,小明3只一数,结果剩下1只,但忘了数了多少次,只好重数,他5只一数剩下2只,可又忘了数了多少次.他准备再数时,妈妈笑着说“不用数了,共有()只.A.54 B.52 C.48 D.504.某学校的篮球个数比足球个数的3倍多2,篮球个数的2倍与足球个数的差是49,设篮球有x个,足球有y个,可得方程组()A.32249x yy x=+⎧⎨-=⎩B.32249x yx y=+⎧⎨-=⎩C.23249x yx y=-⎧⎨=+⎩D.32249x yx y=-⎧⎨-=⎩5.某班同学参加运土劳动,一部分同学抬土,另一部分同学挑土.已知全班共用土筐64个,扁担41根,求抬土与挑土的各有多少人?如果设抬土的同学有x人,挑土的同学有y人,那么可得到的方程组应为()A.2642412yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2642412xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2642241xyx y⎧+=⎪⎨⎪+=⎩D.264241x yx y+=⎧⎨+=⎩6.甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒就能追上乙;如果甲让乙先跑2秒,那么甲跑4秒就能追上乙.若甲、乙每秒分别跑x y、米,则列出方程组应是()A.5105442x yx y+=⎧⎨-=⎩B.5510424x yx y=+⎧⎨-=⎩C.()551042x yx y y-=⎧⎨-=⎩D.()()51042x yx y⎧-=⎪⎨-=⎪⎩7.某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种8.如图,在长为12cm,宽为9cm的长方形空地上,沿平行于长方形各边的方向分割出三个形状、大小完全相同的小长方形花圃,则其中一个小长方形花圃的周长是()A.10 B.12 C.16 D.14二、填空题9.如图1,在第一个天平上,物块A的质量等于物块B加上物块C的质量;如图2,在第二个天平上,物块A加上物块B的质量等于3个物块C的质量.已知物块A的质量为10g.请你判断:1个物块B的质量是____________g.10.A、B两地相距20千米,甲乙两人分别从A、B两地相向而行,2小时后在途中相遇,然后甲立即返回A地,乙继续向A地走,当甲回到A地时,乙距离A地还有2千米,则甲的速度为____千米/时,乙的速度为_____千米/时.11.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________12.《九章算术》是我国古代一部数学专著,其中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等。
人教版七年级数学下册 8.3 实际问题与二元一次方程组 同步测试题

8.3 实际问题与二元一次方程组同步测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 一个两位数,十位上数字比个位上数字大,且十位上数字与个位上数字之和为,则这个两位数为A. B. C. D.2. 李老师到文具店买,两种笔(两种都买),种笔元支,种笔元支,共花了元钱,则可供李老师选择的购买方案共有( )A.种B.种C.种D.种3. 一列快车和一列慢车的长分别为米和米,若同向行驶,从快车追及慢车起到全部超过,需秒.现设快车的车速为米/秒,慢车的车速为米/秒,则表示其等量关系的式子是()A. B.C. D.4. 某班有人分组活动,若每组人,则余下人;若每组人,则有一组差人,求全班人数和分组数,正确的方程组是A. B.C. D.5. 张老师到文具店购买、两种文具,种文具每件元,种文具每件元,共花了元钱,则可供他选择的购买方案的个数为(两样都买)()A. B. C. D.6. 学校买排球,足球共个,花费元,足球每个元,排球每个元,设买排球个,买足球个,所列方程组为()A. B.C. D.7. 全国足球联赛规定:胜一场得分,平一场得分,负一场不得分.河南建业队比赛了场,踢平的场数是负的场数的倍,共分,则该队踢平了()A.场B.场C.场D.场8. 在“”促销活动中,小芳的妈妈计划用元在某购物网站购买,两种商品,种商品每件元,种商品每件元.若每种商品至少买一件,且种商品的数量多于种商品的数量,则可供小芳的妈妈选择的购买方案有( )A.种B.种C.种D.种9. 如图,周长为的矩形被分成个全等的矩形,则矩形的面积为()A. B. C. D.二、填空题(本题共计9 小题,每题3 分,共计27分,)10. 小强同学生日的月数减去日数为,月数的两倍和日数相加为,则小强同学生日的月数和日数的和为________.11. 小明用元钱去购买笔记本和钢笔共件,已知每本笔记本元,每枝钢笔元,那么小明最多能买________枝钢笔.12. 今有鸡兔同笼,上有头,下有足,则鸡有________只,兔有________只.13. 设甲数为,乙数为,且甲数的倍与乙数的的和是,则可列方程________.14. 已知两个角的和是差是,则这两个角的度数分别是________.15. 一个两位数,十位上的数字比个位上的数字大,如果把十位上的数字与个位上的数字换位置,那么得到的新两位数比原来的两位数的一半还少,那么原来的两位数是________.16. 学校计划购买和两种品牌的足球,已知一个品牌足球元,一个品牌足球元.学校准备将元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有________种.17. 甲、乙、丙三种物品,若购甲个、乙个、丙个共付元;若购甲个、乙个、丙个共付元,则甲、乙、丙各买个共需________元.18. 某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户居民月份高峰时段用电量是空闲时段用电量倍,月份高峰时段用电量比月份高峰时段用电量少,结果月份的用电量和月份的用电量相等,但月份的电费却比月份的电费少,则该地区空闲时段民用电的单价与高峰时段的用电单价的比值为________.三、解答题(本题共计6 小题,共计60分,)19. 李明以两种形式分别储蓄了元和元,一年后全部取出,扣除利息所得税后可得利息元;已知这两种储蓄年利率的和为,求这两种储蓄的年利率各是百分之几?(公民应交利息所得税利息金额)20. 某商店需要购进甲、乙两种商品共件,其进价和售价如表:(注:获利售价-进价)若商店计划销售完这批商品后能获利元,请利用二元一次方程组求甲,乙两种商品应分别购进多少件?21. 某公司分两次购进化肥,第一次用了节火车皮和辆汽车,运了化肥,第二次用了节火车皮与辆汽车,共运化肥,问节火车皮和辆汽车能运多少吨化肥?22. 名同学被分配到大、小不同的两种寝室,大寝室每间住人,小寝室每间住人,刚好住满.求大、小寝室各住了多少间.如果设大寝室住了间,小寝室住了间,请列出方程,并写出两个解.23. 已知:用辆型车和辆型车载满货物一次可运货吨;用辆型车和辆型车载满货物一次可运货吨.根据以上信息,解答下列问题:(1)辆型车和辆车型车都载满货物一次可分别运货多少吨?(2)某物流公司现有货物若干吨要运输,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都载满货物,请求出该物流公司有多少吨货物要运输.24. 为了拉动内需,某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共台,政策出台后的第一个月售出这两种型号的汽车共台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长和.在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?若手动型汽车每台价格为万元,自动型汽车每台价格为万元.根据汽车补贴政策,政府按每台汽车价格的给购买汽车的用户补贴,问政策出台后的第一个月,政府对这台汽车用户共补贴了多少万元?参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】D【解答】解:设个位上的数字是,十位上的数字是,依题意得:,解得.则这个两位数是.故选.2.【答案】B【解答】解:设李老师到文具店买种笔支,种笔支,则根据题意得,,∴,∵李老师两种笔都买,∴,都为正整数,∴有∴李老师选择的购买方案共有种.故选.3.【答案】D【解答】解:∵快车的车速为米/秒,慢车的车速为米/秒,∴追击中实际的车速为米/秒,∴根据路程为两车车长的和列方程可得,故选.4.【答案】D【解答】解:设全班人数为人,分了个学习小组;由题意得,若每组人,余下人,;若每组人,不足人,;∴可列出方程组故选.5.【答案】B【解答】设买种文具为件,种文具为件,依题意得:=,则=.∵、为正整数,∴当=时,=;当=时,=;当=时,=;当=时,=;当=时,=;当=时,=(舍去);综上所述,共有种购买方案.6.【答案】D【解答】解:根据买排球,足球共个,得方程;根据足球每个元,排球每个元,共花费元,得方程.可列方程组为.故选.7.【答案】D【解答】此题暂无解答8.【答案】A【解答】解:设种商品买件,种商品买件,则有,即,且,为整数,所以,;,,所以可供小芳妈妈选择的购买方案有种.故选.9.【答案】C【解答】解:设小长方形的长、宽分别为、,依题意得:,解得:,则矩形的面积为.故选.二、填空题(本题共计9 小题,每题 3 分,共计27分)10.【答案】【解答】解:设小强同学生日的月数为,日数为,由题意可列得方程组:,解得,则.故答案为:.11.【答案】【解答】解:设小明一共买了本笔记本,支钢笔,根据题意,可得,可求得因为为正整数,所以最多可以买钢笔支.故答案为:.12.【答案】,【解答】解:设鸡有只,兔有只,故居题意得:,解得:.故答案为:,.13.【答案】【解答】解:∵甲数的倍为,乙数的为,∴根据和为可得方程为:,故答案为.14.【答案】和【解答】解:设这两个角的度数为,则解得故答案为:和.15.【答案】【解答】解:设原来的两位数个位上的数字为,十位上的数字为.则解得所以原来的两位数是.故答案为:.16.【答案】【解答】解:设购买品牌足球个,购买品牌足球个,依题意,得:,∴.∵,均为正整数,∴或或或∴该学校共有种购买方案.故答案为:.17.【答案】【解答】设甲、乙、丙各买个分别需元,元,元,根据题意,得:,①②得:=,方程两边乘以,得=.则甲、乙、丙各买个共需元.18.【答案】【解答】设空闲时段居民用电的单价为元/千瓦时,高峰时段居民用电的单价为元/千瓦时,该用户月份空闲时段居民用电量为千瓦时,则月份高峰时段居民用电量为千瓦时,月份空闲时段居民用电量为千瓦时,月份高峰时段居民用电量为千瓦时,依题意,得:=,解得:,∴该地区空闲时段居民用电的单价比高峰时段的居民用电单价低.三、解答题(本题共计6 小题,每题10 分,共计60分)19.【答案】解:设两种储蓄的年利率分别是,,则解得故两种储蓄的年利率分别是,.【解答】解:设两种储蓄的年利率分别是,,则,解得.故两种储蓄的年利率分别是,.20.【答案】解:设甲,乙两种商品分别购进,件,由题意得解得答:甲商品应购进件,乙商品应购进件.【解答】解:设甲,乙两种商品分别购进,件,由题意得解得答:甲商品应购进件,乙商品应购进件.21.【答案】解:设节火车皮,辆汽车一次分别能装吨,吨化肥.则,解得..答:节火车皮和辆汽车能运吨化肥.【解答】解:设节火车皮,辆汽车一次分别能装吨,吨化肥.则,解得..答:节火车皮和辆汽车能运吨化肥.22.【答案】大寝室住了间,小寝室住了间,由题意,得=.整理,得=.因为、都是正整数,所以当=时,=.当=时,=.当=时,=.当=时,=.当=时,=.【解答】大寝室住了间,小寝室住了间,由题意,得=.整理,得=.因为、都是正整数,所以当=时,=.当=时,=.当=时,=.当=时,=.当=时,=.23.【答案】该物流公司有吨货物要运输.【解答】(1)解:设型车辆运吨,型车辆运吨,由题意得,解之得,所以辆型车满载为吨,辆型车满载为吨.(2)依题意得:(吨).答:该物流公司有吨货物要运输.24.【答案】解:设在政策出台前的一个月销售手动型和自动型汽车分别为,台,根据题意,得解得:答:政策出台前的一个月销售手动型和自动型汽车分别为台和台.手动型汽车的补贴额为:(万元);自动型汽车的补贴额为:(万元);∴(万元).答:政策出台后第一个月,政府对这台汽车用户共补贴万元.【解答】解:设在政策出台前的一个月销售手动型和自动型汽车分别为,台,根据题意,得解得:答:政策出台前的一个月销售手动型和自动型汽车分别为台和台.手动型汽车的补贴额为:(万元);自动型汽车的补贴额为:(万元);∴(万元).答:政策出台后第一个月,政府对这台汽车用户共补贴万元.。
2024-2025学年年七年级数学人教版下册专题整合复习卷8.3 实际问题与二元同步练习(含答案)

2024-2025学年年七年级数学人教版下册专题整合复习卷8.3 实际问题与二元一次方程组(1)同步练习(含答案)8.3 实际问题与二元一次方程组(1) 班级 姓名 座号 月 日 主要内容:列二元一次方程组解决实际问题 一、课堂练习: 1.手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?
2.一旅游者从下午2时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下午回到出发点,已知他走平路时每小时走4千米,爬山时每小时走3千米,下坡时每小时走6千米,问旅游者一共走了多少路? 二、课后作业: 3.解下列方程组:
(1)355135xyyx (2)32134555262yxyx
4. A市至B市的航线长1200km,一架飞机从A市顺风飞往B市需2小时30分,从B市逆风飞往A市需3小时20分.求飞机的平均速度与风速.
① ②
①
② 5.一支部队第一天行军4小时,第二天行军5小时,两天共行军98km,且第一天比第二天少走 2km,第一天和第二天行军的平均速度各是多少?
6.从甲地到乙地的路有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54分,从乙地到甲地需42分.甲地到乙地全程是多少?
三、新课预习: 7.学校的篮球数比排球数的2倍少3个,篮球数与排球数的比是32,求两种球各有多少个?若设篮球有x个,排球有y个,依题意,得到的方程组是( ) A.2332xyxy B.2332xyxy C.2323xyxy D.2323xyxy 参考答案 一、课堂练习: 1.手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元? 解:设老师捐款x元,学生捐款y元.由题意,得 2900045000yxxy
七年级数学下学期 二元一次方程组测试题及答案(共五套) word版

七年级数学下学期二元一次方程组测试题及答案(共五套) word版一、选择题1.小明去商店购买A B、两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种2.已知xyz≠0,且4520430x y zx y z-+=⎧⎨+-=⎩,则 x:y:z 等于()A.3:2:1B.1:2:3C.4:5:3D.3:4:53.已知甲乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x元,年支出为y元,可列出方程组为()A.40027400 34x yx y-=⎧⎪⎨+=⎪⎩B.4003440027x yx y=+⎧⎪⎨-=⎪⎩C.4002440037x yx y-=⎧⎪⎨-=⎪⎩D.4003740024x yx y-=⎧⎪⎨-=⎪⎩4.已知2xy a=⎧⎨=⎩是方程25x y+=的一个解,则a的值为( )A.1a=-B.1a=C.23a=D.32a=5.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则下列方程组中正确的是()A.()()1836024360x yx y⎧+=⎪⎨-=⎪⎩B.()()1836024360x yx y⎧+=⎪⎨+=⎪⎩C.()()1836024360x yx y⎧-=⎪⎨-=⎪⎩D.()()1836024360x yx y⎧-=⎪⎨+=⎪⎩6.对于实数x,y,定义新运算1x y ax by*=++,其中a,b为常数,等式右边为通常的加法和乘法运算,若3515*=,4728*=,则59*=()A.40 B.41 C.45 D.467.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.675cm28.如图,宽为25cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm9.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,410.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3 B .5 C .4或5 D .3或4或5 11.下列方程中是二元一次方程的是( ) A .(2)(3)0x y +-= B .-1x y =C .132x y=+D .5xy =12.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x y x y =⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A .2+164322x y x y =⎧⎨+=⎩B .2+164327x y x y =⎧⎨+=⎩C .2+114322x y x y =⎧⎨+=⎩D .2+114327x y x y =⎧⎨+=⎩二、填空题13.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的橫、纵坐标都乘以同一种实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′,则a =_____,m =_____,n =_____.若正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,则点F 的坐标为_____.14.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生A 的妻子是__________.15.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.16.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.17.甲乙两人共同解方程组515(1)42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为54x y =⎧⎨=⎩;计算20192018110ab ⎛⎫+-= ⎪⎝⎭________.18.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____. 19.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.20.一人驾驶快船沿江顺流而下,迎面遇到一艘逆流而上的快艇.他问快艇驾驶员:“你后面有轮船开过吗”快艇驾驶员回答:“半小时前我超过一艘轮船”.快船继续航行了半小时,遇到了迎面而来的轮船.已知轮船静水速度是快船静水速度的2倍,那么快艇静水速度是快船的静水速度的____倍.21.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩和24x y =-⎧⎨=-⎩,试写出符合要求的方程组________(只要填写一个即可). 22.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.23.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .24.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 三、解答题25.阅读材料并回答下列问题:当m ,n 都是实数,且满足2m =8+n ,就称点P (m ﹣1,22n +)为“爱心点”. (1)判断点A (5,3),B (4,8)哪个点为“爱心点”,并说明理由; (2)若点A (a ,﹣4)是“爱心点”,请求出a 的值;(3)已知p ,q 为有理数,且关于x ,y 的方程组333x y qx y q⎧+=+⎪⎨-=-⎪⎩解为坐标的点B (x ,y )是“爱心点”,求p ,q 的值.26.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?27.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.28.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?29.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x y x y +=+=的过程.30.对于两个不相等的实数a 、b ,我们规定符号}max{,?a b 表示a 、b 中的较大值,}min{,?a b 表示a 、b 中的较小值.如: }max{2,4?4=, }min{2,4?2=, 按照这个规定,解方程组: }}1{,?{?3{39,311?4max x x ymin x x y-=++=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y , 则210x y +=, 即52xy =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合; 当6x =时,2y =,符合; 当8x =时,1y =,符合, 共3种购买方案, 故选C. 【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键.2.B解析:B 【分析】由4520430x y zx y z-+⎧⎨+-⎩=①=②,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【详解】∵4520430x y zx y z-+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选B.【点睛】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.3.C解析:C【分析】由甲、乙两人的年收入之比为3:2,年支出之比为7:4,得到乙的收入为23x,乙的支出为47y,根据题意找出等量关系,列出方程中选出正确选项即可.【详解】设甲的年收入为x元,年支出为y元,∵甲、乙两人的年收入之比为3:2,年支出之比为7:4,∴乙的收入为23x,乙的支出为47y,根据题意列出方程组得:40024400 37x yx y-=⎧⎪⎨-=⎪⎩.故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,根据题意找出等量关系是解答本题的关键.4.B解析:B【分析】直接把2xy a=⎧⎨=⎩代入方程,即可求出a的值.【详解】解:根据题意,∵2x y a=⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.5.A解析:A 【详解】根据题意可得,顺水速度为:x y +,逆水速度为:x y -,所以根据所走的路程可列方程组为()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩,故选A .6.B解析:B 【分析】根据定义新运算列出二元一次方程组即可求出a 和b 的值,再根据定义新运算公式求值即可. 【详解】解:∵1x y ax by *=++,3515*=,4728*=,∴1535128471a b a b =++⎧⎨=++⎩解得:3725a b =-⎧⎨=⎩∴59*=3752591-⨯+⨯+=41 故选B . 【点睛】此题考查的是定义新运算和解二元一次方程组,掌握定义新运算公式和二元一次方程组的解法是解决此题的关键.7.D解析:D 【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2. 故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.8.C解析:C 【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解. 【详解】设一个小长方形的长为xcm ,宽为ycm ,由图形可知,2524x y x x y +=⎧⎨=+⎩,解得:205x y =⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm 2) . 故选:C . 【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.9.B解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩,∴a 、b 的值分别是3、2. 故选:B .【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.10.C解析:C 【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6. ∵x ,y 均为正整数, ∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴x +y =4或5.11.B解析:B 【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 【详解】解:(2)(3)0x y +-=化简得3260xy x y -+-=,最高次是2次,故A 选项错误;-1x y =是二元一次方程,故B 选项正确;132x y=+不是整式方程,故C 选项错误; 5xy =最高次是2次,故D 选项错误.故选:B 【点睛】本题主要考查的是二元一次方程的概念,正确的掌握二元一次方程的概念是解题的关键.12.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式. 【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩.故选D . 【点睛】此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.二、填空题13.(1,4)【分析】首先根据点A到A′,B到B′的点的坐标可得方程组,,解可得a、m、n的值,设F 点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【详解】由点A解析:1212(1,4)【分析】首先根据点A到A′,B到B′的点的坐标可得方程组312a mn-+=-⎧⎨=⎩,322a mn+=⎧⎨=⎩,解可得a、m、n的值,设F点的坐标为(x,y),点F′点F重合可列出方程组,再解可得F点坐标.【详解】由点A到A′,可得方程组312a mn-+=-⎧⎨=⎩;由B到B′,可得方程组322a mn+=⎧⎨=⎩,解得12122amn⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,设F点的坐标为(x,y),点F′点F重合得到方程组1122122x xy y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14 xy=⎧⎨=⎩,即F(1,4),故答案为:12,12,2,(1,4).【点睛】本题主要考查了坐标与图形变化-平移以及二元一次方程组的应用,关键是正确理解题意,根据点的坐标列出方程组.14.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且与有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答.【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y , 依题意有x 2-y 2=48,即()()48x y x y +-=,∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性,又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩, 解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件,同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件,∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a .故答案为:c .【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.15.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于解析:【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩, 即25217251942a b c b c ++=⎧⎨+=⎩, 其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩. ∴150a +60b +40c =150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.16.90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁解析:90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.【详解】解:设道路一侧植树棵数为x 棵,则78x+=2+102610x -⨯+, 解得x =180,实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010y-+﹣5=()18078678y -+++,解得y =5,则丁植树的时长为1805610-⨯=15,所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).故答案为:90.【点睛】本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过计算两人的植树时间进行比较.17.0【分析】根据题意,将代入方程(2)可得出b的值,代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0【分析】根据题意,将31xy=-⎧⎨=-⎩代入方程(2)可得出b的值,54xy=⎧⎨=⎩代入方程(1)可得出a的值,将a与b的值代入所求式子即可得出结果.【详解】解:根据题意,将31xy=-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将54xy=⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1,∴20192018110a b⎛⎫+-⎪⎝⎭=1-1=0.故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.18.536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1解析:536【分析】由绝对值的性质可得|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,因为a、b、c是整数,且(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,分三种情况讨论:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10,求出a、b、c的值,即可得出最大三位数.【详解】∵|a﹣2|+|a﹣4|≥2,|b|+|b﹣3|≥3,|c﹣1|+|c﹣6|≥5,∴(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)≥30.∵a、b、c是整数,(|a﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.∴要使三位数最大,首先要保证a尽可能大.当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;∴a=5.当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.解得:0≤b≤3,1≤c≤6,∴由a、b、c组成的最大三位数为536.故答案为:536.【点睛】本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.19.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得:,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x yx y-=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x my n=⎧⎨=⎩代入方程组得:20234m nm n-=⎧⎨+=⎩①②,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.20.5【解析】设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,则:0.5(x+a)+(2x-a)=0.5(y-a),解得:y=5x即快艇静水速度是快船的解析:5【解析】设水流速度是a,快船的静水速度是x,快艇的静水速度是y,依题意可得轮船的静水速度为2x,则:0.5(x+a)+(2x-a)=0.5(y-a),解得:y=5x即快艇静水速度是快船的静水速度的5倍,故答案为:5.【点睛】本题考查了一次方程组的应用,找准等量关系是做本题的关键,借助图例可以帮助我们理解题意.题中虽然有三个未知数,但在计算过程中可以抵消一个.21.【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为.解析:28 y x xy=⎧⎨=⎩【分析】从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.【详解】解:根据方程组的解可看出:xy=8,y=2x,∴符合要求的方程组为28 y x xy=⎧⎨=⎩.根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.22.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】 本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 23.48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48设小长方形的长为x cm,宽为y cm,根据图形可得3124x yx y+=⎧⎨-=⎩,①,②①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=482cm.故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 24.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.三、解答题25.(1)A是爱心点,B不是,理由见解析;(2)-2;(3)20,3 p q==-【分析】(1)根据“爱心点”的定义,列出方程组计算即可求解;(2)根据“爱心点”的定义,可得方程组1242m an-=⎧⎪⎨+=-⎪⎩,先求得n,再求得m,进一步得到a的值;(3)解方程组用q 和p 表示x 和y ,代入2m =8+n ,得到关于p 和q 的等式,再根据p ,q 为有理数,求出p ,q 的值.【详解】(1)∵15232m n -=⎧⎪⎨+=⎪⎩, ∴64m n =⎧⎨=⎩, ∵2×6=8+4,∴点A 是爱心点; ∵14282m n -=⎧⎪⎨+=⎪⎩, ∴514m n =⎧⎨=⎩, ∵2×5≠8+14,∴点B 不是爱心点;(2)∵1242m a n -=⎧⎪⎨+=-⎪⎩, ∴n =﹣10,又∵2m =8+n ,∴2m =8+(﹣10),解得m =﹣1,∴﹣1﹣1=a ,即a =﹣2;(3)解方程组3x y q x y q ⎧+=+⎪⎨-=-⎪⎩得2x q y q ⎧=-⎪⎨=⎪⎩, 又∵点B 是“爱心点”满足:1222m q n q ⎧-=-⎪⎨+=⎪⎩,∴142m q n q ⎧=-+⎪⎨=-⎪⎩, ∵2m =8+n ,∴22842q q -+=+-,整理得:64q -=,∵p ,q 是有理数,p =0,﹣6q =4,∴ p=0, q=23 -.【点睛】本题主要考查了解二元一次方程组的应用、点的坐标,同时考查了阅读理解能力及迁移运用能力.26.(1)5040ab;(2)竖式无盖礼品盒200个,横式无盖礼品盒400个.【分析】(1)由图示利用板材的长列出关于a、b的二元一次方程组求解;(2)根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数,然后根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,然后求解即可.【详解】解:(1)由题意得:310200330200a ba b,解得:5040ab,答:图甲中a与b的值分别为:50、40;(2)由图示裁法一产生A型板材为:3×625=1875,裁法二产生A型板材为:1×125=125,所以两种裁法共产生A型板材为1875+125=2000(张),由图示裁法一产生B型板材为:1×625=625,裁法二产生A型板材为,3×125=375,所以两种裁法共产生B型板材为625+375=1000(张),设裁出的板材做成的竖式有盖礼品盒有x个,横式无盖礼品盒有y个,则A型板材需要(4x+3y)个,B型板材需要(x+2y)个,则有43200021000x yx y,解得200400xy.【点睛】本题考查的知识点是二元一次方程组的应用,关键是根据已知先列出二元一次方程组求出a、b的值,根据图示列出算式以及关于x、y的二元一次方程组.+27.(1)七(1)班有47人,七(2)班有51人;(2)如果两个班联合起来买票,不可以买单价为9 元的票,省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:7 10879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x人,七(2)班有y人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。
七年级数学下册 实际问题与二元一次方程组 专题测试(有答案)

实际问题与二元一次方程组 专题测试1.某校七年级一班40名同学为“希望工程”捐款,共捐款100元,捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可列方程组(A )A .⎩⎪⎨⎪⎧x +y =272x +3y =66B .⎩⎪⎨⎪⎧x +y =272x +3y =100 C .⎩⎪⎨⎪⎧x +y =273x +2y =66 D .⎩⎪⎨⎪⎧x +y =273x +2y =1002.已知某轮船载重量为500吨,容积为2 000立方米,现有甲、乙两种货物待装,甲种货物每吨体积是7立方米,乙种货物每吨体积是2立方米,求怎样装货才能最大限度地利用船的载重量和容积?设装甲、乙两种货物分别是x 吨、y 吨,于是列方程组为(A )A .⎩⎪⎨⎪⎧x +y =5007x +2y =2 000B .⎩⎪⎨⎪⎧x +y =2 0007x +2y =500 C .⎩⎪⎨⎪⎧x =500-y 2x +7y =2 000 D .⎩⎪⎨⎪⎧x +y =2 0002x +7y =5003.一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x °,∠2=y °,则可得到的方程组为(D )A .⎩⎪⎨⎪⎧x =y -50x +y =180B .⎩⎪⎨⎪⎧x =y +50x +y =180C .⎩⎪⎨⎪⎧x =y -50x +y =90D .⎩⎪⎨⎪⎧x =y +50x +y =904.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m 长的彩绳截成2 m 或1 m 的彩绳,用来做手工编织,在不造成浪费的前提下,不同的截法有(C )A .1种B .2种C .3种D .4种5.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是20g .6.小明在拼图时,发现8个一样大小的长方形,如图1所示,恰好可以拼成一个大的矩形.小红看见了,说:“我来试一试,”结果小红七拼八凑,拼成如图2那样的正方形,咳!怎么中间还留下了一个洞,恰好是边长为2 cm 的小正方形!你能帮他们解开其中的奥秘吗?(提示:能求出小长方形的长和宽吗?)解:设长方形长为x ,宽为y ,由题意得⎩⎪⎨⎪⎧3x =5y ,2y -x =2.解得⎩⎪⎨⎪⎧x =10,y =6. 答:长方形长为10 cm ,宽为6 cm .7.某运动员在一场篮球比赛中的技术统计如表所示:注:表中出手投篮次数和投中次数均不包括罚球.根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.解:设本场比赛中该运动员投中2分球x 个,3分球y 个,依题意得⎩⎪⎨⎪⎧10+2x +3y =60,x +y =22.解得⎩⎪⎨⎪⎧x =16,y =6. 答:本场比赛中该运动员投中2分球16个,3分球6个.8.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm ,放入一个大球水面升高3cm ; (2)如果要使水面上升到50 cm ,应放入大球、小球各多少个?解:设应放入x 个大球,y 个小球.由题意得⎩⎪⎨⎪⎧3x +2y =50-26,x +y =10.解得⎩⎪⎨⎪⎧x =4,y =6. 答:应放入4个大球,6个小球.9.某旅行社组织一批游客外出旅游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算? 解:(1)设这批游客的人数是x 人,原计划租用45座客车y 辆.根据题意,得⎩⎪⎨⎪⎧45y +15=x ,60(y -1)=x.解得⎩⎪⎨⎪⎧x =240,y =5. 答:这批游客的人数是240人,原计划租用45座客车5辆. (2)租45座客车:240÷45≈5.3(辆), 所以需租6辆,租金为220×6=1 320(元). 租60座客车:240÷60=4(辆),所以需租4辆,租金为300×4=1 200(元). 所以租用4辆60座客车更合算.10.小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:(1)小丽买了自动铅笔、记号笔各几支?(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?解:(1)设小丽购买自动铅笔x 支,记号笔y 支,根据题意,得⎩⎪⎨⎪⎧x +y =8-(2+2+1),1.5x +4y =28-(6+9+3.5),解得⎩⎪⎨⎪⎧x =1,y =2. 答:小丽购买自动铅笔1支,记号笔2支.(2)设小丽购买软皮笔记本m 本,自动铅笔n 支,根据题意可得:92m +1.5n =15,∵m ,n 为正整数,∴⎩⎪⎨⎪⎧m =1,n =7.或⎩⎪⎨⎪⎧m =2,n =4.或⎩⎪⎨⎪⎧m =3,n =1. 答:共3种方案:1本软皮笔记本与7支记号笔;2本软皮笔记本与4支记号笔;3本软皮笔记本与1支记号笔.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (48)

人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)某农民收了400多个橙子(不到500个),把这些橙子20个装一盒或者12个装一盒,都是多5个,这个农民一共收了______个橙子.【答案】420或485 【解析】 【分析】由题意可知, 20个装一盒多5个,说明橙子的数量减去多的5个,刚好能被20整除,也就是橙子的数量减去5个后是20的倍数,同理橙子的数量减去5个后也是12的倍数.利用计算20和12的公倍数的方式和橙子数量大概的范围在400~500之间,判断橙子是数量即可.【详解】由分析可知,橙子的数量减去5个后都能够整除20与12,所以橙子的数量减去5个后的数量是20与12的公倍数.因为橙子的数量大于400小于500,所以橙子的数量减去5个后的数量大于395小于495.分别分解质因数20=225⨯⨯,12=223⨯⨯,所以20与12 的最小公倍数是223560⨯⨯⨯=找到20与12的公倍数大于395小于495的有420,480. 所以橙子的数量应为425和485个 故答案应为425或485 【点睛】本题考查了两数公倍数的应用,特别注意两数的公倍数很多,首先找到两数的最小公倍数,然后依次扩大倍数,定位到合适范围内的数.22.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.【答案】64. 【解析】 【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分, 根据题意得:19112182104x y x y +=⎧⎨+=⎩,解得:62xy=⎧⎨=-⎩,答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.23.在长为12米、宽为9米的长方形空地上,沿平行于长方形各边的方向分割出三个形状、大小一样的小长方形花圃(如图),设小长方形的长为xm,宽为ym可得方程组______.【答案】21229 x yx y+=⎧⎨+=⎩【解析】【分析】由图形可看出:小矩形的2个长+一个宽=12m,小矩形的2个宽+一个长=9m,设出长和宽,列出方程组即可得答案.【详解】小长方形的长为xm,宽为ym可得:21229 x yx y+=⎧⎨+=⎩故答案为21229 x yx y+=⎧⎨+=⎩【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.24.已知方程组212x yx y n-=-⎧⎨+=⎩和2x y mx y+=⎧⎨-=⎩的解相同,则2m﹣n=_____.【答案】5 【解析】【分析】方程组212x yx y-=-⎧⎨-=⎩的解就是原来方程组的解,据此求得x、y的值,再代回方程组求得m和n的值,继而代入计算可得.【详解】解:由题意得212x yx y-=-⎧⎨-=⎩,解得:53 xy=⎧⎨=⎩将x=5,y=3代入x+2y=n,得:n=11,代入x+y=m,得:m=8,∴2m﹣n=2×8﹣11=5,故答案为5.【点睛】本题考查了解二元一次方程组和方程组的解.这类题目的解题关键是掌握方程组解法中的加减消元法和代入法.25.如图,将一张长为17,宽为11的长方形纸片,去掉阴影部分,恰可以围成一个宽是高2倍的长方体纸盒,这个长方体纸盒的容积是_________.【答案】56 【解析】 【分析】设长为y ,高为x ,则宽为2x ,依据图中想数据列方程组,即可得到这个长方体纸盒的容积.【详解】解:设长为y ,高为x ,则宽为2x ,依题意得2x y 11x 2x x y x 17+=⎧⎨++++=⎩, 解得27x y =⎧⎨=⎩,∴这个长方体纸盒的容积是42756⨯⨯=,故答案为56. 【点睛】考查了展开图折成几何体,解决问题的关键是通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.26.已知关于x ,y 的二元一次方程()()a 1x a 2y 52a 0-+++-=,当a 每取一个值时就有一方程,而这些方程有一个公共解,则这个公共解是_______________.【答案】31x y =⎧⎨=-⎩【解析】 【分析】将已知方程按a 整理得(x+y-2)a=x-2y-5,要使这些方程有一个公共解,说明这个解与a 的取值无关,即这个关于a 的方程有无穷多个解,所以只须x+y-2=0且x-2y-5=0.联立以上两方程即可求出结果.【详解】解:将方程化为a 的表达式:(x+y-2)a=x-2y-5,由于x ,y 的值与a 的取值无关,即这个关于a 的方程有无穷多个解,所以有20250x y x y +-=⎧⎨--=⎩ ,解得3{1x y ==- .故答案为:3{1x y ==- .【点睛】本题考查关于x 的方程ax=b 有无穷解的条件:a=b=0,二元一次方程组的解法.解题的关键在于将已知方程按a 整理以后,能够分析得出这个方程的解与a的取值无关,即这个关于a的方程有无穷多个解,从而转化为求解关于x、y的二元一次方程组.27.若关于x,y的二元一次方程组210x ymx y-=⎧⎨+=⎩的解均为正整数,m也是正整数,则满足条件的所有m值的和为____.【答案】6【解析】【分析】先求出x的值(用m表示),再根据x、m的值均为正整数,推出满足条件的所有m的值.【详解】解:①+②得,(m+1)x=12,x=121m+,当m=1时,x=6,y=6-2=4;当m=2时,x=4,y=4-2=2;当m=3时,x=3,y=3-2=1;当m=4时,x=125,y=125-2=25;当m=5时,x=2,y=2-2=0;当m=6时,x=127,y=127-2=27-;当m=7时,x=32,y=32-2=12-;当m=8时,x=43,y=43-2=23-;当m=9时,x=65,y=65-2=45-;m=10时,x=1211,y=1211-2=1011-;m=11时,x=1,y=1-2=-1;当x=12时,x=1213,y=121421313-=-.可见,满足条件的m值为1,2,3;其和为1+2+3=6.故答案为:6.【点睛】本题考查解二元一次方程组,要注意两点:(1)会解方程组;(2)推出的m值,使x、y均为正整数.28.已知|x-2y|+(3x-4y-2)2=0,则xy=______.【答案】2【解析】【详解】解:∵|x-2y|+(3x-4y-2)2=0,∴342=02=0x yx y--⎧⎨-⎩,解得:=2=1 xy⎧⎨⎩,∴xy=2,故答案为:2.【点睛】由非负数的性质列出关于x、y的方程组,解之求得x和y的值,代入计算可得.本题考查了解二元一次方程组.这类题目的解题关键是掌握方程组解法中的加减消元法和代入法,也考查了非负数的性质.29.如图,数轴上每相邻两点相距一个单位长度,点A、B对应的数分别是a、b,且b-3a=10,那么A点所表示的数是______.【答案】-1【解析】【分析】观察数轴上A、B的位置,得b-a=8,与b-3a=10构成方程组,求解即可.【详解】解:由数轴知,A、B间的距离是8个单位长度,即b-a=8①,∵b-3a=10②,①-②,得2a=-2,∴a=-1.故答案为-1.【点睛】本题考查了两点间的距离及数轴的相关知识,构造关于a、b的方程组是解决本题的关键.30.某公司有A,B,C三种货车若干辆,A,B,C每辆货车的日运货量之比为1:2:3,为应对双11物流高峰,该公司重新调配了这三种货车的数量,调配后,B货车数量增加一倍,A,C货车数量各减少50%,三种货车日运货总量增加25%,按调配后的运力,三种货车在本地运完一堆货物需要t天,但A,C两种货车运了若干天后全部被派往外地执行其它任务,剩下的货物由B货车运完,运输总时间比原计划多了4天,且B货车运输时间刚好为A,C两种货车在本地运输时间的6倍,则B货车共运了______天.【答案】24【解析】【分析】设出调配前A,B,C三种货车的辆数以及每辆货车的日运货量,再根据题目的条件列出关系式求解即可得出答案.【详解】解:根据比例设A,B,C每辆货车的日运货量为m,2m,3m,调配前A,B,C三种货车分别为a辆,b辆,c辆,则调配后A,C类货车分别为0.5a辆,0.5c辆,B类货车为2b辆,依题意,得:(am+2bm+3cm)(1+25%)=0.5am+2b×2m+0.5c×3m,①t(0.5am+2b×2m+0.5c×3m)=(t+4)×(2b×2m)+(0.5am+0.5c×3m)×46t+②由①,得0.5a+1.5c=b,代入②,5bt=4b(t+4)+b×46t+,解得t=20,∴t+4=24.故答案是:24.【点睛】考查列代数式.用字母表示出A,B,C每辆货车的辆数以及日货运量来建立等量关系是解题的关键.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (21)
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)已知甲、乙两种商品的原价和为200元。
因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%。
求甲、乙两种商品的原单价各是多少元。
【答案】甲、乙两种商品的原单价各是50元、150元.【解析】试题分析:设甲乙两种商品的单价,利用调整价格前后的价格关系,列方程组求解.试题解析:2000.9 1.1 1.05200x yx y+=⎧⎨+=⨯⎩,解得50150 xy=⎧⎨=⎩.答:甲、乙两种商品的原单价各是50元、150元.62.甲乙两地相距60千米,A、B两人骑自行车分别从甲乙两地相向而行,如果A比B先出发半小时,B每小时比A多行2千米,那么相遇时他们所行的路程正好相等。
求A、B两人骑自行车的速度。
(只需列出方程即可)【答案】设甲的速度是x千米/小时,乙的速度是y千米/小时,2 303012 x yx y+=⎧⎪⎨-=⎪⎩【解析】试题分析:设甲的速度,乙的速度,利用甲乙速度关系和相遇时间关系列方程组,求解.试题解析:设甲的速度是x 千米/小时,乙的速度是y 千米/小时, 2303012x y x y +=⎧⎪⎨-=⎪⎩. 63.某校体操队和篮球队的人数是5:6,排球队的人数比体操队的人数2倍少5人,篮球队的人数与体操队的人数的3倍的和等于42人,求三种队各有多少人?【答案】体操队10人,排球队15人,篮球队12人【解析】试题分析:设体操队,排球队,篮球队,按照倍数关系列方程组,求解. 试题解析:设体操队人数是x ,排球队人数是y ,篮球队人数是z ,由题意得, 5:625342x y y x z x =⎧⎪=-⎨⎪+=⎩:, 解得101512x y z =⎧⎪=⎨⎪=⎩. 答:体操队人数是10,排球队15人,篮球队12人.点睛:列方程(组)的具体步骤是:⑴审题.弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么.⑵设元(未知数).①直接未知数②间接未知数(往往二者兼用).一般来说,未知数越多,方程越易列,但越难解.⑶用含未知数的代数式表示相关的量.⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程.一般地,未知数个数与方程个数是相同的.⑸解方程及检验.⑹答案.64.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?【答案】两种债券各有150、250元.【解析】试题分析:设每种债券的价值,利用总金额和收益列二元一次方程组求解. 试题解析:设甲种债券x 元,乙种y 元,40010%12%45x y x y +=⎧⎨+=⎩, 解得150250x y =⎧⎨=⎩. 答:甲种债券150元,乙种债券250元.65.现有一种饮料,它有大、中、小3种包装,其中1个中瓶比2个小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,三种包装的饮料每瓶各多少元?【答案】大包装饮料每瓶5元,中包装饮料每瓶3元,小包装饮料每瓶1.6元【解析】【试题分析】根据等量关系,列方程组即可.【试题解析】设大、中、小包装的饮料每瓶分别为x元、y元、z元,则20.20.49.6y zx y zx y z=-⎧⎪=++⎨⎪++=⎩,解得531.6xyz=⎧⎪=⎨⎪=⎩.答:大包装饮料每瓶5元,中包装饮料每瓶3元,小包装饮料每瓶1.6元.【方法点睛】这是一道三元一次方程组的应用题.找出等量关系是解决问题的关键.66.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类且定价为15元的图书.书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同,问学校获奖的同学有多少人?【答案】(1)签字笔和笔记本的单价分别是1.5元与3.5元;(2)学校获奖的同学有48人【解析】【试题分析】(1)可根据“1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元”列方程组并解方程组;(2)可根据“购买图书总数超过50本可以享受8折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同”列一元一次方程,并解方程即可.【试题解析】(1)设签字笔和笔记本的单价分别是x 元与y 元,由题意可得28.52313.5x y x y +=⎧⎨+=⎩,解得 1.53.5x y =⎧⎨=⎩答:签字笔和笔记本的单价分别是1.5元与3.5元(2)设学校获奖的同学有z 人,由题意可得()150.81215z z ⨯+=解得48z = 答:学校获奖的同学有48人.【方法点睛】本题目是一道二元一次方程组的实际应用题.主要是根据等量关系列方程组.67.已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行),某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:(1)现在该公司收购了140吨蔬菜,如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求15天刚好加工完140吨蔬菜,则应如何分配加工时间?【答案】(1)见解析;(2)10天进行精加工,5天进行粗加工.【解析】【分析】(1)按已知把已知表中的前两个数据都乘以140完成表格;而3中18天只能精加工6×18=108(吨),所以为()10845014010810051800⨯+-⨯=(元);(2)由题意列二元一次方程组求解.【详解】(1)当全部直接销售时140×100=14000(元);当全部粗加工后销售时250×140=35000(元);当尽量精加工,剩余部分直接销售时()18645014018610051800⨯⨯+-⨯⨯=(元);所以依次填:14000,35000,518000;(2)设应安排x 天进行精加工,y 天进行粗加工,根据题意得:18616140x y x y +=⎧⎨+=⎩,解得:105x y =⎧⎨=⎩, 答:应安排10天进行精加工,5天进行粗加工.68.为表彰在某活动中表现积极的同学,老师决定购买文具盒与钢笔作为奖品.已知5个文具盒、2支钢笔共需100元;3个文具盒、1支钢笔共需57元.那么每个文具盒、每支钢笔各多少元?【答案】每个文具盒14元,每支钢笔15元【解析】【试题分析】设每个文具盒x 元,每支钢笔y 元,然后根据花费100元与57元分别列出方程组,解二元一次方程组即可.【试题解析】设每个文具盒x 元,每支钢笔y 元,则52100357x y x y +=⎧⎨+=⎩,解得1415x y =⎧⎨=⎩,所以每个文具盒14元,每支钢笔15元. 69.“中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元,求A 、B 两种型号的空调的购买价各是多少元?【答案】A 、B 两种型号的空调购买价分别为2120元、2320元【解析】试题分析:根据题意,设出A 、B 两种型号的空调购买价分别为x 元、y 元,然后根据“已知购买1台A 型号的空调比1台B 型号的空调少200元,购买2台A 型号的空调与3台B 型号的空调共需11200元”,列出方程求解即可.试题解析:设A 、B 两种型号的空调购买价分别为x 元、y 元,依题意得:2002311200y x x y -=⎧⎨+=⎩解得:21202320x y =⎧⎨=⎩答:A、B两种型号的空调购买价分别为2120元、2320元70.为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费),规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.以下是张磊家2014年3月和4月所交电费的收据,问该市规定的第一阶梯电价和第二阶梯电价分别为每度多少元?【答案】第一阶梯电价每度0.5元,第二阶梯电价每度0.6元【解析】试题分析:设第一阶梯电价每度x元,第二阶梯电价每度y元,根据两张收据中的用电量、金额列方程组求解即可.试题解析:设第一阶梯电价每度x元,第二阶梯电价每度y元,由题意可得:20020112 20065139x yx y+=⎧⎨+=⎩,解得0.50.6xy=⎧⎨=⎩.答:第一阶梯电价每度0.5元,第二阶梯电价每度0.6元.点睛:本题关键设出两个未知数,根据已知条件列方程组求解.。
人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组 同步练习(含答案) (1)
实际问题与二元一次方程组同步练习一.选择题(共12小题)1.某校教师举行茶话会,若每桌坐12人,则空出一张桌子;若每桌坐10人,还有10人不能就坐,问:该校有多少名教师?共准备了多少张桌子?若设该校的教师有x人,共准备了y张桌子,则根据题意可列出方程组()A.B.C.D.2.把若干只鸡兔关在同一个笼子里,从上面数,有11个头;从下面数,有32条腿.则笼中的兔子共有()A.3只B.4只C.5只D.6只3.甲种物品每个1kg,乙种物品每个2.5kg,现购买甲种物品x个,乙种物品y个,共30kg.若两种物品都买,则所有可供购买方案的个数为()A.4 B.5 C.6 D.74.一个两位数的十位数字与个位数字的和是7.如果把这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的二位数,则这个二位数是()A.36 B.25 C.61 D.165.如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为()A.60cm B.120cm C.312cm D.576cm6.我国民间流传着许多趣味算题,他们多以顺口溜的形式表达,请大家看这样的一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?请你猜想一下:几个老头几个梨?()A.3个老头4个梨B.4个老头3个梨C.5个老头6个梨D.7个老头8个梨7.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()A.562.5元B.875元C.550元D.750元8.为确保信息安全,信息需加密传输,发送方将明文加密文件传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a、b对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1 B.1,-3 C.-3,1 D.-1,39.某同学上学时步行,回家时坐车,路上一共用90min,若往返都坐车,全部行程只需要30min,若往返都步行,全部行程需要(假定步行、坐车的平均速度不变)()A.100 min B.120 min C.150 min D.160 min10.已知某三种图书的价格分别为10元,15元,20元.某学校计划恰好用500元购买上述图书30本,每种图书至少一本,则不同的购书方案有()种.A.10 B.9 C.12 D.1111.某果农要用绳子捆扎甘蔗,有三种规格的绳子可以使用:长绳子1米,每根能捆7根甘蔗;中等长度的绳子0.6米,每根能捆5根甘蔗;短绳子0.3米,每根能捆3根甘蔗.果农最后捆扎好了23根甘蔗,则果农总共最少使用多少米的绳子()A.2.9 B.2.7 C.2.4 D.2.112.某体育文具用品店老板两次购进排球,篮球的个数和费用如表:已知店老板两次购进排球,篮球的单价一样,且一个排球和一个篮球的总价为100元,则b 的值是()A.224 B.276 C.280 D.332二.填空题(共5小题)13.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文:“用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,问长木长多少尺?”设绳长x尺,长木为y尺,可列方程组为.14.某商店购进一批衬衫,甲顾客以7折的优惠价格买了20件,而乙顾客以8折的优惠价格买了5件,结果商店都获利200元,那么这批衬衫的进价为元,售价为元.15.一次智力竞赛有20题选择题,每答对一道题得5分,答错一道题扣2分,不答题不给分也不扣,小亮答完全部测试题共得65分,那么他答错了道题.16.小明郊游,早上9时下车,先走平路然后登山,到山顶后又原路返回到下车处,正好是下午2时.若他走平路每小时行4千米,爬山时每小时走3千米,下山时每小时走6千米,小明从下车到山顶走了千米(途中休息时间不计).17.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为元.三.解答题(共5小题)18.“春蕾”爱心社给甲、乙两所学校捐赠图书共5000本,已知捐给甲校的图书比捐给乙校的2倍少700本,求捐给甲、乙学校图书各多少本?19.为了防治“新型冠状病毒”,某市某小区购买了若干瓶消毒剂和若干支红外线测温枪,积极号召主动接受测温和各楼道做好消毒工作.其中,每瓶消毒剂5元,每支红外线测温枪560元,总共消费金额为3000元.问本次小区购买消毒剂的数量和测温枪的数量.20.《九章算术》是我国古代第一部数学专著,此专著中有这样一道题:今有共买鹅,人出九,盈十一;人出六,不足十六,问人数、鹅价几何?这道题的意思是:今有若干人共买一只鹅,若每人出9文钱,则多出11文钱;若每人出6文钱,则相差16文钱,求买鹅的人数和这只鹅的价格.21.某工厂去年的利润(总产值-总支出)为300万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为810万元,去年的总产值、总支出各是多少万元?22.滴滴快车是一种便捷的出行工具,计价规则如表:小明与小亮各自乘坐滴滴快车,到同一地点约见,已知到达约见地点时他们的实际行车里程分别为6公里与8.5公里.设小明乘车时间为x分钟,小亮乘车时间为y分钟.(1)则小明乘车费为元(用含x的代数式表示),小亮乘车费为元(用含y的代数式表示);(2)若小明比小亮少支付3元钱,问小明与小亮的乘车时间哪个多?多几分钟?(3)在(2)的条件下,已知乘车时间较少的人先到达约见地点等候,等候时间是他自己乘车时间的一半,且比另一人乘车时间的三分之一少2分钟,问他俩谁先出发?先出发多少分钟?参考答案1-5:ACBDB 6-10:ABACB 11-12:CB13\、14、200;30015、516、1017、4018、设捐给甲校图书x本,捐给乙校图书y本,依题意,得:解得:答:捐给甲校图书3100本,捐给乙校图书1900本.19、设本次小区购买消毒剂的数量和测温枪的数量分别为x和y,根据题意可得:5x+560y=3000,当y=1时,x=488,当y=2时,x=376,当y=3时,x=264,当y=4时,x=152,当y=5时,x=40,答:本次小区购买消毒剂的数量和测温枪的数量分别为488,1或376,2或264,3或152,4或40,5.20、买鹅的人数有9人,鹅的价格为70文21、设去年总产值为x万元,总支出为y万元,根据题意得:解得:答:去年的总产值、总支出各是1800万元、1500万元.22、:(1)小明乘车费为(0.3x+10.8)元(用含x的代数式表示),小亮乘车费为(0.3y+16.5)元.故答案为(0.3x+10.8),(0.3y+16.5).(2)由题意:10.8+0.3x+3=16.5+0.3y,∴x-y=9,∴小明比小亮的乘车时间多,多9分钟.(3)由(2)可知:小亮乘车时间为y分钟,小明乘车时间为(y+9)分钟.由题意:解得y=6.∴小明的乘车时间为6+9=15(分钟),小亮等候的时间为3(分钟),∴小明比小亮先出发,先出发的时间=15-6-3=6(分钟),答:明比小亮先出发,先出发6分钟。
2021七年级下学期数学第八章8.3实际问题与二元一次方程组测试卷、练习卷(带答案解析)
8.3实际问题与二元一次方程组测试卷、练习卷(带答案解析)一、选择题(本大题共10小题,共30.0分)1. “十⋅一”国庆期间,学校组织466名八年级学生参加社会实践活动,现己准备了49座和37座两种客车共10辆,刚好坐满,设49座客车x 辆,37座客车y 辆.根据题意,得( )A. {x +y =1049x +37y =466 B. {x +y =1037x +49y =466 C. {x +y =46649x +37y =10D. {x +y =46637x +49y =102. 《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x 斤,一只燕的重量为y 斤,则可列方程组为( )A. {5x +6y =15x −y =6y −x B. {6x +5y =15x +y =6y +x C. {5x +6y =14x +y =5y +xD. {6x +5y =14x −y =5y −x3. 2020年2月某敬老院为了更好的保护好老人,预防老人们感染新冠病毒,用4800元购进A ,B 口罩共160件,其中A 型口罩每件24元,B 型口罩每件36元.设购买A 型口罩x 件,B 型口罩y 件,依题意列方程组正确的是( )A. {x +y =16036x +24y =4800 B. {x +y =16024x +36y =4800 C. {36x +24y =160x +y =4800D. {24x +36y =160x +y =48004. 我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x 只,兔y 只,可列方程组为( )A. {x +y =352x +2y =94 B. {x +y =354x +2y =94 C. {x +y =354x +4y =94D. {x +y =352x +4y =945. 《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,余三;问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,多余3钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为( )A. {y =5x +45y =7x +3B. {y =5x −45y =7x +3C. {y =5x +45y =7x −3D. {y =5x −45y =7x −36. 母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有( )A. 3种B. 4种C. 5种D. 6种7. 一道习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程x3+y4=5460,则另一个方程正确的是( )A. x 4+y 3=4260B. x 5+y 4=4260C. x 4+y 5=4260D. x 3+y 4=42608. 《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A. {y −8x =3y −7x =4B. {y −8x =37x −y =4C. {8x −y =3y −7x =4D. {8x −y =37x −y =49. 秀山到怀化路程全长288 km ,一辆小汽车和一辆客车同时从秀山、怀化两地相向而行,经过1小时50分钟相遇,相遇时小汽车比客车多行驶40 km ,设小汽车和客车的平均速度分别为x km/h 和y km/h ,则下列方程组正确的是( ).A. {x +y = 401.5(x +y ) = 288 B. {x −y = 401.5(x +y ) = 288C. {x −y = 40 116(x +y ) = 288D. {116(x −y ) = 40116(x +y ) = 28810. 七年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,则下列方程组中正确的是A. {x+y=2462y=x−2B. {x+y=2462x=y+2C.{x+y=2462x=y−2D. {x+y=2462y=x+2二、填空题(本大题共4小题,共12.0分)11.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折之后,买500件A商品和500件B商品用了9600元,比不打折少花元。
人教版七年级下《实际问题与二元一次方程组》习题精选及答案
再探实质问题与二元一次方程组习题优选(一)一、选择题1.已知甲、乙两数之和是42,甲数的 3 倍等于乙数的 4 倍,求甲、乙两数.设甲数为x,乙数为 y,由题意可得方程组()A.B.C.D.2.甲、乙两条绳共长 17 m,假如甲绳减去乙两条绳各长多少?若设甲绳长 x m,乙绳长,乙绳增添 1 m,两条绳长相等,求甲、y m,则得方程组()A.B.C.D.3.一条船在一条河上的顺水航速是逆流航速的 3 倍,这条船在静水中的航速与河水的流速之比是()A. 3∶1B. 2∶1C. 1∶1D. 5∶24.甲、乙两个两位数,若把甲数放在乙数的左侧,构成的四位数是乙数的201 倍;若把乙数放在甲数的左侧,构成的四位数比上边的四位数小1188,求这两个数.假如甲数为x,乙数为 y,则得方程组是()A.B.C.D.5.学校总务处与教务处各领了相同数目的信封和信笺,总务处每发出一封信都只用1张信笺,教务处每发出一封信都用 3 张信笺.结果,总务处用掉了全部的信封,但余下50张信笺;而教务处用掉了全部信笺,但余下50 个信封.则两地方领的信笺张数、信封个数分别为()A. 150,100B. 125,75C. 120,70D. 100,150二、填空题6.两数之差为7,又知此两数各扩大 3 倍后的和为45,则这样的两个数分别为________。
7.武炜购置8 分与枚数分别为 _________。
10 分邮票共16 枚,花了一元四角六分,购置8 分和10 分的邮票的共积8.在 1996 年全国足球甲级23 分,按竞赛规则,胜一场得A 组的前11轮(场)竞赛中,大连万达队保持连续不败,3 分,平一场得 1 分,那么该队共胜了________场。
9.某车间有28 名工人,生产一种螺栓和螺母,每人每日均匀能生产螺栓12 只或螺母18 只,要求一个螺栓配两个螺母,应分派______人生产螺栓,____人生产螺母,才能使螺栓与螺母恰巧配套。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新Word 实际问题与二元一次方程组 测试题 一、选择题 1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? ( ) . A.200(30-x)+50(30-y) = 1800 B.200(30-x)十50(30-x-y)=1800 C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=1800 2.现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为( ) A.129 B.120 C.108 D.96 3.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ). A.288元 B.322 元 C.288元或316元 D.332元或363元 4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了 ( ). A.18道 B.19道 C.20道 D.21道 5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有 ( ).
A.2592362yxxy B.2592362xyxy C.2592236xyxy D.259236xyxy 6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系? ( )
A. B.
C. D. 二、填空题 7.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需 分钟. 8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度
是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm,则木桶中水的深度是 cm. 最新Word 9.一个水池有两个进水管,单独开甲管注满水池需2小时,单独开乙管注满水池需3小时,两个同时开注满水池的时间是_________小时.
10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只. 11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________. 12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A与________个砝码C的质量相等.
三、解答题 13.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表: 商品 价格 A B
进价(元/件) 1200 1000 售价(元/件) 1350 1200 (总利润=单件利润×销售量) (1)该商场第1次购进A、B两种商品各多少件? (2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元? 最新Word 14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?
15.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润. 甲 乙 丙 每辆汽车能装的数量(吨) 4 2 3 每吨水果可获利润(千元) 5 7 4 (1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆? (2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示) (3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?
最新Word 【答案与解析】 一、选择题 1. 【答案】D; 【解析】由已知,卖出甲鞋(30-x)双,则送出乙鞋也是(30-x)双,那么乙卖出[30-(30-x)-y]双,卖出甲鞋的钱数加上卖出乙鞋的钱数就等于1800元,由此得出答案. 2.【答案】D. 【解析】设1艘大船的载客量为x人,一艘小船的载客量为y人.
由题意可得:,
解得, ∴3x+6y=96. ∴3艘大船与6艘小船,一次可以载游客的人数为96人. 3. 【答案】C; 【解析】解:一次性购物超过100元,但不超过300元一律9折,则在这个范围内最低付款90元,因而第一次付款80元,没有优惠; 当第二次购物是第二种优惠,可得出原价是 252÷0.9=280(元)(符合超过100不高于300).则两次共付款:80+280=360元,超过300元,则一次性购买应付款:360×0.8=288元; 当第二次付款是超过300元时:可得出原价是 252÷0.8=315(符合超过300元), 则两次共应付款:80+315=395元,则一次性购买应付款:395×0.8=316元. 故一次性购买应付款:288元或316元. 4. 【答案】B;
【解析】设李刚答错的题为x道,答对的题y道,则他不答的题2x道,且有
225474xyyxy
,
解得192xy. 5. 【答案】B; 【解析】注意了解生活常识:抬土即两个人需要一根扁担和一个箩筐;挑土即一个人需要一根扁担和两个箩筐. 6. 【答案】B; 【解析】设馒头每颗x元,包子每颗y元,根据题意王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=52,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y)=90,联立方程即可得到所求方程组. 二、填空题 7. 【答案】40; 【解析】解:设李师傅加工1个甲种零件需要x分钟,加工1个乙种零件需要y分钟,
依题意得:, 最新Word 由①+②,得 7x+14y=140, 所以x+2y=20, 则2x+4y=40, 所以李师傅加工2个甲种零件和4个乙种零件共需40分钟. 故答案是:40. 8.【答案】20;
【解析】设两根铁棒的长度分别是a,b(a>b),则有24,3555abab 解得30,25.ab
所以4205b,∴ 木桶中水的深度为20cm 9.【答案】. 【解析】设两个同时开注满水池的时间是x小时,由题意得 (+)x=1,解得:x=.答:两个同时开注满水池的时间是小时. 10.【答案】7, 29; 【解析】设买茶壶x只,那么赠x只茶杯,所以要买(36-2x)茶杯,然后根据共付款171元即可列出方程,解方程就可以解决问题. 11.【答案】150元,50元; 【解析】设甲、乙两种商品的定价分别为x元,y元,则:
0.80.6100500.60.810030xyxy
,
解得15050xy. 12. 【答案】2. 【解析】此题可以分别设砝码A、B、C的质量是x,y,z.然后根据两个天平列方程组,消去y,得到x和z之间的关系即可. 三、解答题 13.【答案】 解:(1)设购进A种商品x件,B种商品y件,
根据题意得
化简得, 解之得. 答:该商场购进A、B两种商品分别为200件和150件; 最新Word (2)由于A商品购进400件,获利为 (1350﹣1200)×400=60000(元), 从而B商品售完获利应不少于75000﹣60000=15000(元), 设B商品每件售价为x元,则 150(x﹣1000)≥15000, 解之得x≥1100. 所以B种商品最低售价为每件1100元.
14.【解析】 解:设平均每分钟1道正门可通过x名学生,1道侧门可通过y名学生.
由题意,得2(2)5604()800xyxy,
解得12080xy. 答:平均每分钟1道正门可通过120名学生,l道侧门可通过80名学生. 15.【解析】 解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:
,
解得:. 答:装运乙种水果的车有2辆、丙种水果的汽车有6辆. (2)设装运乙、丙水果的车分别为a辆,b辆,得:
,
解得. 答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆. (3)总利润:5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+216.
∵, ∴13≤m≤15.5, ∵m为正整数, ∴m=13,14,15, ∴当m=15时,总利润最大:10×15+216=366(千元), 答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.