初中数学试讲逐字稿《最简二次根式》
初中数学试讲

初中数学试讲
初中数学试讲
一、教学目标
初中数学试讲的教学目标是使学生在短时间内理解和掌握二次根式的运算方法,充分发挥学生思维能力和逻辑推理能力,提高学生综合解决问题的能力。
二、教学内容
1. 二次根式的定义和基本性质
2. 二次根式的四则运算
3. 二次根式的应用
三、教学过程
1. 二次根式的定义和基本性质
1.1 二次根式的定义
1.2 二次根式的基本性质
2. 二次根式的四则运算
2.1 二次根式的加减运算
2.2 二次根式的乘法运算
2.3 二次根式的除法运算
3. 二次根式的应用
3.1 认识二次根式在几何图形中的应用
3.2 认识二次根式在计算中的应用
3.3 实际问题中的应用
四、教学方法
1. 解析法
2. 演示法
3. 实验法
4. 讨论法
5. 案例法
6. 练习法
7. 活动法
五、教学评价
通过对教学内容的重点讲解和学生的实践操作,学生应能完成以下几点:
1. 理解二次根式的定义和基本性质
2. 掌握二次根式的四则运算方法
3. 能够将二次根式运用到实际问题中去
4. 具有较强的解决数学问题的能力
六、教学反思
1. 教学中学生缺乏独立思考,需要加强课前预习和课后复习。
2. 教学方法上应该更注重实用性,运用更多的案例和活动来增加学生参与度。
3. 教学过程中要注意及时进行学生的错误矫正和答疑解惑,及时给学生反馈。
初中数学 最简二次根式 教学设计示例2 优质公开课赛教获奖教案-_1

初中数学最简二次根式教学设计示例2 优质公开课赛教获奖教案来表示.读作“三次根号下a”,其中a叫做被开方数,3叫做根指数,注意,在前面我们学习平方根的表示方法说过当根指数为2时可以省略不写,现在是立方根了,这个根指数3是绝对不可省的,否则就会与平方根混淆了,例如表示125的立方根,而则表示125的算术平方根.练习:用根号表示下列各数的立方根:3.开立方概念:求一个数的立方根的运算,叫做开立方.4.开立方运算与立方运算互为逆运算.因此,我们可以根据立方运算来求一些数的立方根.例1.求下列各数的立方根:解:(1)∵(-2)(2)∵2(4)∵ (0.6)(5)∵0下面我们思考这样一个问题:一个正数有几个平方根?负数有没有平方根?一个正数有几个立方根?负数有没有立方根?请学生来回答这个问题.由前面刚刚做过的题我们不难看出像8、0.126、103、这样的正数,有一个正的立方根;像-8、、这样的负数有一个负的立方根;0的立方根是0.由此我们得了立方根的性质.5.立方根的性质:(1)正数有一个正的立方根.(2)负数有一个负的立方根.(3)0的立方根是0.这里我们不妨与平方根的性质做个比较,平方根中,正数有两个平方根,它们互为相反数,正数只有一个正的立方根;在平方根中负数是没有平方根的,而负数有一个负的立方根;平方根与立方根唯一相同之处是0的平方根,立方根都是它本身.例2.求下列各式的值:解:(1)∵3(2)∵ (-3) (5)∵(10(6)∵ (10例3.解方程:(1)xx=0.5.(2)3(x-4)x-4=8x=12.尽管我们学习了立方根,而我们也只能由立方根的定义求解x 的立方根为________.(6)的平方根为________.(7)的立方根为________.(8)一个自然数的算术平方根是a,那么与这个自然数相邻的下一个自然数的平方根是____________;立方根是____________.解:(1)±1;1;1.(2)0.(此题学生容易把1也算进去,注意纠正他们的错误.)(3)±1和0.(由此题,再复习一道立方根的性质.)(4)0,1.(此题有学生可能会忘掉0.)(5)-2(此题学生易得出-4的答案,应引导学生将翻译为-8,在求立方根,也有学生将看成得到,讲解时注意)(6)(此题首先让学生把计算出来,再求平方根,而且平方根有两个) (7)-2.(8),(此题引导学生先根据算术平方根来表示被开方数为a探究活动立方根近似值的求法当立方根是一位整数时,很容易求出这个立方根;但当立方根是两位或两位以上的整数时,也能容易地求出吗?例如求140608的立方根,怎样求容易?下面就介绍它的巧妙求法.先用前三位数140来确定立方根的十位数.因为53<140<63 ,所以十位数是5,而不是6.再用最后一位数8来确定立方根的个位数.因为23=8,所以个位数是2.就是说,140608的立方根是52.确定立方根的个位数时要注意下面规律:我们知道:13 =1,43=64,53=125,63=216,93=729,就是说当被开方数的末位数是1、4、5、6、9时,立方根的个位数就等于它本身(1、4、5、6、9);因为23=8,83=512,就是说当被开方数的末位数是8和2时,立方根的个位数就分别是2和8,叫做2与8互换原则;同样还有3与7互换原则(被开方数的末位数分别是3和7,立方根的个位数就分别是7和3).一般地,如果103<a<1003,且a是能开尽立方的数,那么就能用这种方法求a的立方根.请用这种方法求下列各数的立方根:21952,50653,79507,287496,970299.。
八年级数学教学教案:最简二次根式

【概念讲解材料】满足下列条件的二次根式,叫做最简二次根式:(1) 玉林新闻 被开方数的因数是整数,因式是整式;(2) 被开方数中不含能开得尽方的因数或因式.如: 都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式,不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号.又如也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如 .判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.【概念理解学习材料1】例1 下列二次根式中哪些是最简二次根式?哪些不是?为什么?分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.解:最简二次根式有,因为被开方数中含能开得尽方的因数9,所以它不是最简二次根式.说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。
【概念理解巩固材料1】正选练习题1判断下列各式是否是最简二次根式?备选选练习题1判断下列各式是否是最简二次根式?【概念理解学习材料2】例2判断下列各式是否是最简二次根式?分析:(1) 显然满足最简二次根式的两个条件.(2) 或解:最简二次根式只有,因为或说明:最简二次根式应该分母里没根式,根式里没分母(或小数).【概念理解巩固材料2】正选练习题2判断下列各式是否是最简二次根式?备选选练习题2判断下列各式是否是最简二次根式?【概念理解学习材料3】例3判断下列各式是否是最简二次根式?分析:最简二次根式应该分母里没根式,根式里没分母(或小数)来进行判断发现和是最简二次根式,而不是最简二次根式,因为在根据定义知也不是最简二次根式,因为解:最简二次根式有和,因为,.【概念理解巩固材料3】正选练习题3判断下列各式是否是最简二次根式? 备选选练习题3判断下列各式是否是最简二次根式?题目可根据学生实际情况选择2-3道.【概念理解学习材料4】例4判断下列各式是否是最简二次根式?分析:被开方数是多项式的要先分解因式再进行观察判断.(1) 不能分解因式,显然满足最简二次根式的两个条件.(2)解:最简二次根式只有,因为.说明:被开方数比较复杂时,应先进行因式分解再观察.【概念理解巩固材料4】正选练习题4判断下列各式是否是最简二次根式?备选选练习题4判断下列各式是否是最简二次根式?题目可根据学生实际情况选择2-3道.3.化简二次根式为最简二次根式方法学习与巩固学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对二次根式化简的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.【化简方法学习材料1】例1把下列二次根式化为最简二次根式分析:本例题中的2道题都是基础题,只要将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面即可.解:。
八年级数学教案数学教案-最简二次根式 教学设计示例4_0912文档

2020八年级数学教案数学教案-最简二次根式教学设计示例4_0912文档EDUCATION WORD八年级数学教案数学教案-最简二次根式教学设计示例4_0912文档前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。
其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。
本文内容如下:【下载该文档后使用Word打开】教学目标1.使学生理解最简二次根式的概念;2.掌握把二次根式化为最简二次根式的方法.教学重点和难点重点:化二次根式为最简二次根式的方法.难点:最简二次根式概念的理解.教学过程设计一、导入新课计算:我们再看下面的问题:简,得到从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便.二、新课答:1.被开方数的因数是整数或整式;2.被开方数中不含能开得尽方的因数或因式.满足上面两个条件的二次根式叫做最简二次根式.例1试判断下列各式中哪些是最简二次根式,哪些不是?为什么?解(l)不是最简二次根式.因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式.整数.(3)是最简二次根式.因为被开方数的因式x2+y2开不尽方,而且是整式.(4)是最简二次根式.因为被开方数的因式a-b开不尽方,而且是整式.(5)是最简二次根式.因为被开方数的因式5x开不尽方,而且是整式.(6)不是最简二次根式.因为被开方数中的因数8=22·2,含有开得尽的因数22.指出:从(1),(2),(6)题可以看到如下两个结论.1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.例2把下列各式化为最简二次根式:分析:把被开方数分解因式或因数,再利用积的算术平方根的性质例3把下列各式化成最简二次根式:分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式.题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式.通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法.答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简.如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简.三、课堂练习1.在下列各式中,是最简二次根式的式子为[]的二次根式的式子有_____个.[]A.2B.3C.1D.03.把下列各式化成最简二次根式:答案:1.B2.B四、小结1.最简二次根式必须满足两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.2.把一个式子化为最简二次根式的方法是:(1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;(2)如果被开方数含有分母,应去掉分母的根号.五、作业1.把下列各式化成最简二次根式:2.把下列各式化成最简二次根式:答案:。
八年级数学《最简二次根式》教学课件

(1) 将x 2 3
y 2 3 代入式中
2.
1 1 2 3 2 2 1 3 1
3 2 2 1 2( 3 1) 3 2 2 1 2
3
2 ( 2 1) ( 3 1)
2
总结: ①化简时,当被开方数是整数或整数时,一般需要把被 开方数 : 当被开方数是分数或分式时,通常利用 的性质,把分母化成 的形式,再把分母开出来仍 然做结果的 。 ②当一个式子的分母中含有二次根式时,一般应该把它 化简成分母中不含二次根式的式子,也就是把它的分母 进行有理化.
16.2最简二次根式
1.利用二次根式的乘除法法则把下列各式化简:
(1) 12
(2) 45a b
2
(3) 8( x y )
2
2 3
(4) 16 x y
2 3
3a 5b
1 2 3 (5) 9a bc 3
2 2( x y)
125m (6) 4 xy y
2. 练习:判断下列各式中哪些是最简二次根式, 哪些不是?为什么?
1 3
3. 把下列各式化成最简二次根式:
18
27
48
200
3x
2
45a 2b
48ab2
4a3 16a2
巩固练习1、化简:
27 x 3 y 9 x 2
25m4 225m2
巩固练习2、化简:
(5) 2.5
1 (6) 3
(7) 0.04 0.01
2a 5b c
6.化简下列各二次根式:
4 2
2ab ab
6 2
2 3 3
2a 5bc c
2x 4
八年级数学教案数学教案-最简二次根式 教学设计示例3_0926文档

2020八年级数学教案数学教案-最简二次根式教学设计示例3_0926文档EDUCATION WORD八年级数学教案数学教案-最简二次根式教学设计示例3_0926文档前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。
其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。
本文内容如下:【下载该文档后使用Word打开】1.使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式.2.使学生掌握化简一个二次根式成最简二次根式的方法. 3.使学生了解把二次根式化简成最简二次根式在实际问题中的应用.二、教学重点和难点1.重点:能够把所给的二次根式,化成最简二次根式.2.难点:正确运用化一个二次根式成为最简二次根式的方法.三、教学方法通过实际运算的例子,引出最简二次根式的概念,再通过解题实践,总结归纳化简二次根式的方法.四、教学手段利用投影仪.五、教学过程(一)引入新课2,那么它的边长是多少?能不能求出它的近似值?了.这样会给解决实际问题带来方便.(二)新课由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数.总结满足什么样的条件是最简二次根式.即:满足下列两个条件的二次根式,叫做最简二次根式:1.被开方数的因数是整数,因式是整式.2.被开方数中不含能开得尽方的因数或因式.例1指出下列根式中的最简二次根式,并说明为什么.分析:说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式.前面二次根式的运算结果也都是最简二次根式.例2把下列各式化成最简二次根式:说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简.例3把下列各式化简成最简二次根式:说明:1.引导学生观察例题3中二次根式的特点,即被开方数是分数或分式,再启发学生总结这类题化简的方法,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化化简.2.要提问学生问题,通过这个小题使学生明确如何使用化简中的条件.通过例2、例3总结把一个二次根式化成最简二次根式的两种情况,并引导学生小结应该注意的问题.注意:①化简时,一般需要把被开方数分解因数或分解因式.②当一个式子的分母中含有二次根式时,一般应该把它化简成分母中不含二次根式的式子,也就是把它的分母进行有理化. (三)小结1.满足什么条件的根式是最简二次根式.2.把一个二次根式化成最简二次根式的主要方法.(四)练习1.指出下列各式中的最简二次根式:2.把下列各式化成最简二次根式:六、作业教材P.187习题11.4;A组1;B组1.七、板书设计。
人教初中数学八下 《最简二次根式》课件 (高效课堂)获奖 人教数学2022
值范围是(C ) A. a2
C. 2a4
B. a2
D. a2或 a4
21
二次根式化简
1.被开方数是非完全平方数的二次根式化简 例 1 化简 48. 分析:因为,48=16×3=42×3,所以,根据公 式 a b= ab (a≥0,b≥0),就可以把积的是完 全平方数或平方式的部分从二次根号下开出来, 从而实现化简的目的. 解: 48= 16×3= 16× 3= 42× 3=4 3.
9
练习1.将以下二次根式化成最||简二次根式.
(1)m 5n (m0) (2) 714x7x2(x1) 24m
(3) xy y
x4y3 x3y4 x2 2xyy2
(x
y)
(4)a 1 a
(0<x<y)
10
练习2、 把以下各式化成最||简二次
根式:4 1 1
〔解〔1〕1〕4
2
11 4
3 4
x
3 2
问题1 如图 ,把一张纸对折 ,剪出一个图案〔折 痕处不要完全剪断〕 ,再翻开这张对折的纸 ,就得到了 美丽的窗花.观察得到的窗花 ,你能发现它们有什么共
同的特点吗 ?
探索新知
如果一个平面图形沿一条直线折叠 ,直线两旁的部 分能够互相重合 ,这个图形就叫做轴对称图形 ,这条直 线就是它的对称轴.这时 ,我们也说这个图形关于这条
分析:上述做法 有中 注, 意没 到 a当 1时, 2
a10, (a1)2 a1 1a
正解: a
a
aa
原式 ( a1)21a11a1, a10 a a aa 2 a
即 a111a12a,当 a1时, 原 4-1式 31
aaa aa
2
2 2 20
最新讲课稿1:二次根式
04
二次根式的应用
解决实际问题
计算土地面积
通过使用二次根式,可以计算出土地的面积,这对于土地测量和 规划非常重要。
计算建筑物的体积
在建筑设计和工程中,使用二次根式可以计算出建筑物的体积,从 而确保建筑物的安全性和稳定性。
计算物体的运动轨迹
在物理中,使用二次根式可以计算出物体的运动轨迹,这对于预测 物体的运动轨迹和速度非常重要。
01
$x^2$
02
$x^2 - 1$
03
$sqrt{x^2}$
04
$sqrt{x^2 - 1}$
提高练习题
总结词
难度稍高,考查学生对二次根 式的运算和化简能力。
化简题
$sqrt{4x^2}$
计算题
$sqrt{9} times sqrt{4}$
应用题
已知直角三角形斜边长为 $sqrt{13}$,一条直角边长为 $sqrt{3}$,求另一条直角边的长。
二次根式的混合运算
总结词
掌握二次根式的混合运算是进行复杂二次根式运算的关键,需要灵活运用加减乘除法则。
详细描述
在进行二次根式的混合运算时,我们需要根据题目要求,灵活运用加减乘除法则进行计算。例如,对于 $sqrt{5} + sqrt{20} - sqrt{5} times sqrt{20}$,我们可以先进行乘法运算,再进行加减法运算,得到结 果为$-15$。
综合练习题
总结词
涉及多个知识点,考查学 生对二次根式的综合运用 能力。
证明题
证明$sqrt{2} + sqrt{3} > sqrt{6}$。
解答题
求函数$y = sqrt{x^2 + 1}$的值域。
第4讲 最简二次根式与同类二次根式(教师版)
第4讲 最简二次根式与同类二次根式【学习目标】最简二次根式和同类二次根式是八年级数学上学期第一章第一节内容,是进一步研究二次根式运算的的知识基础.重点是最简二次根式、同类二次根式的判断,难点是同类二次根式的合并及最简二次根式的化简.【基础知识】1、最简二次根式的概念:(1)被开方数中各因式的指数都为1;(2)被开方数不含分母. 被开方数同时符合上述两个条件的二次根式,叫做最简二次根式. 2、同类二次根式的概念:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.【考点剖析】考点一:最简二次根式的概念例1.判断下列二次根式是不是最简二次根式: (1)42a ; (2)324x ;(3)a b -;(4)22a b +.【难度】★【答案】(1)是;(2)不是;(3)是;(4)是.【解析】(1)被开方数中各因式的指数都为1;(2)被开方数不含分母. 同时符合上述两个条件的二次根式,叫做最简二次根式,所以(1)(3)(4)是最简二次根式.【总结】本题考查了最简二次根式的概念.例2.判断下列二次根式是不是最简二次根式: (1); (212x - (3 1.5()a b +.【难度】★【答案】(1)不是;(2)不是;(3)不是.【解析】(1)被开方数中各因式的指数都为1;(2)被开方数不含分母. 同时符合上述两个条件的二次根式,叫做最简二次根式,所以这三个二次根式均不是最简二次根式.【总结】本题考查了最简二次根式的概念.例3.判断下列二次根式是不是最简二次根式: (1)23(21)(1)a a a ++≥-;(2)22()()(0)x y x y x y --≥≥;(3)2961a a ++. 【难度】★【答案】(1)不是;(2)不是;(3)不是.【解析】(1)被开方数中各因式的指数都为1;(2)被开方数不含分母.同时符合上述两个条件的二次根式,叫做最简二次根式,因为已知的三个二次根式中,每个被开方数里都含有指数为2的因式,所以这三个二次根式均不是最简二次根式.【总结】本题考查了最简二次根式的概念.例4.将下列二次根式化成最简二次根式:(1)12;(2)324(0)x y y >; (3)(0a <,0b <,0c <).【难度】★【答案】(1)23; (2)2xy x ; (3)233abc ac .【解析】(1)1223=; (2)3242x y xy x =; (3)32522733a b c abc ac =. 【总结】本题主要考查利用二次根式的性质进行化简.例5.将下列二次根式化成最简二次根式:(12248xy y -0y <); (222()()(0)a b a b a b -+≥≥;(3322(1)x x x x -+>.【难度】★★【答案】(1)22y x --; (2)()a b a b +- (3)(1)x x - 【解析】(1222484(2)22xy y y x y x ----; (2222()()()()()a b a b a b a b a b a b -++-+- (33222(1)(1)x x x x x x x -+=--.【总结】本题主要考查利用二次根式的性质进行化简.例6.将下列二次根式化成最简二次根式: (1);(2)31.5a ;(3)23b a(0b <)(4)(0a >,0b >,0c >).【难度】★★ 【答案】(1)263; (2)62a a ; (3)33b aa-; (4). 【解析】(1);(2)333361.5==222a a a a a a =; (3)223==333b b b aa a a-; (4).【总结】本题主要考查利用二次根式的性质进行化简.例7.将下列二次根式化成最简二次根式:(1)2(0)()a ba b a b +<<-;(2)(0)m nm n m n+>>-; (3)53(2)(2)(2)a a a +>-.【难度】★★【答案】(1); (2)22m n m n --; (3)222(2)4(2)a a a +--. 【解析】(1);(2)22==m n m n m n m n m n m n++----; (3)55222323(2)(2)(2)2(2)4===(2)(2)(2)2(2)a a a a a a a a a a a +++++------. 【总结】本题主要考查利用二次根式的性质进行化简,注意被开方数的各因式的符号.例8.如果174a ++2311a a +【难度】★★【答案】.【解析】12a +=,1a ∴=;原式=2311211+=. 【总结】本题考查了二次根式的化简以及最简二次根式的概念.简二次根式是特殊的二次根式,他需要满足: (1)被开方数的因数是整数版,字母因式是整式; (2)被开方数中不含能开的尽方的因数或因式 所以把式子化成最简二次根式时1、当被开方数是整数或整数的积时,一般是先分解因数,再运用积的算术平方根的性质进行化简2、当被开方数是数的和差时,应先求出这个和差的结果再化简3、当被开方数是单项式时,应先把指数大于2的因式化为(a?)2或者(a?)2·a 的形式再化简;当被开方数是多项式时,应先把多项式分解因式再化简,但需注意,被移出根号的因式是多项式的需加括号.4、被开方数是分式时,应先把分母化为平方的形式,再运用商的算术平方根的性质化简;当被开方数是分式的和差时,要先通分,再化简 考点二:同类二次根式的概念:例1.判断下列各组的二次根式是否为同类二次根式? (1)24,48,;(2)4x y ,33(0)x y x <,32(0)xy y -<.【难度】★【答案】(1)不是; (2)不是. 【解析】(1)24=26;48=43;13=126.(2)42=x y x y ;333x y x xy =-;322xy y xy -=.【总结】本题主要考查同类二次根式的概念,先化简再判断.例2.判断下列各组的二次根式是否为同类二次根式?师生总结1、 满足最简二次根式的条件是什么?2、如何将一个二次根式化成最简二次根式?(1)和;(2)22345+和.【难度】★【答案】(1)是; (2)不是.【解析】(1)26279a abb b =;.(2)223415+=;115496-=. 【总结】本题主要考查同类二次根式的概念,先化简再判断.例3.合并下列各式中的同类二次根式: (1)112232323-++; (2)3xy a xy b xy -+;(3);(4).【难度】★ 【答案】(1)72332+; (2)(3)a b xy -+; (3)342; (4)(3)2b a ab b b ab +--. 【解析】(1)11723223232332-++=+ (2); (3); (4).【总结】本题主要考查二次根式的加减运算,注意先化简后合并.例4.判断下列各组的二次根式是否为同类二次根式? (1)32a a a +和;(2)和.【难度】★★【答案】(1)不是; (2)不是. 【解析】(1)3221a a a a a +=+;. (2);2323232a a ab a b a b+=++.【总结】本题主要考查同类二次根式的概念,先化简再判断.例5.若最简二次根式2a b a b +-3a b -+是同类二次根式,求a 、b 的值.【难度】★★【答案】53a b ==-,. 【解析】由题意得:,解得:.【总结】本题主要考查最简二次根式和同类二次根式的概念,然后根据题意列出方程组并求解.例6.当3x =-时,二次根式2257m x x ++的值为5,求m 的值.【难度】★★ 【答案】.【解析】把3x =-代入得:105m =,解得:22m =. 【总结】本题主要考查二次根式的化简求值.例7.合并下列各式中的同类二次根式: (1)12112127333-+;(2)1(40.540.125)2123--+; (3)4223141361234xy x x y x x+-. 【难度】★★ 【答案】(1)233; (2)4323+; (3)452x .【解析】(1);(2)122343(40.540.125)212=2242323433--+-⨯-+=+; (3)4223141361234xy x x y x x+-= .【总结】本题主要考查二次根式的加减运算,注意先化简后合并.例8.计算:(132775282x =+ (2)773549x x +【难度】★★ 【答案】(1)116x =; (2)57x <. 【解析】(1)63656116x ==; (2)772x ->- 572x ->, 57x <.【总结】本题主要考查利用二次根式的性质求解不等式和方程.【过关检测】1.(2019宝山实验10月考17)【答案】D;【解析】解=答案选D.2.(市西2020期末1)在下列二次根式中,与是同类二次根式的是()【答案】C【解析】解:A. 与不是同类二次根式; B. 与不是同类二次根式;C.=;故选C.=2x3.(嘉定区2019期中16)B.【答案】C【解析】解:A BC D C.4.(浦东新区2020期末1)下列各式中,属于同类二次根式的是()B. C. 3 D.【答案】C【解析】解:A所以它们不是同类二次根式;故本选项错误;B、C、3它们是同类二次根式;故本选项正确;D C.5.(徐汇龙华2019期中16)下列二次根式中,最简二次根式是( )C.【答案】D【解析】解:A 、20a =4×5a ,被开方数含有能开的尽方的因数,不是最简二次根式,所以本选项不符合题意;B 、被开方数含有分母,不是最简二次根式,所以本选项不符合题意;C 、a 2b 4=(ab 2)2,被开方数含有能开的尽方的因数,不是最简二次根式,所以本选项不符合题意;D D.6(浦东四署2019期中3 )【答案】A ;【解析】解:A =B能合并;C D A.7.(徐教院附2019期中15)化简0)y <=________ 【答案】【解析】解:由二次根式的概念可知,20xy -≥,∴0x -≥,又∵y <0=-8.(西延安2019期中3222=2.9. (2019大同10月考7中,最简二次根式是 .【解析】解中被开方数含分母,3a 指数不是1.10. (松江区2019期中3)若最简二次根式122-x 和x 334-是同类二次根式,那么=x ________. 【答案】7;【解析】解:因为最简二次根式是同类二次根式,所以21343x x -=-,解得x=7.11.(2019浦东四署10月考15)是同类二次根式,则ab 的值是 . 【答案】18;22534a b b =⎧⎨+=-⎩,解得,所以ab=18.。
初中二年级数学课件-《最简二次根式》PPT模板2
化简二次根式的步骤是:
1)把被开方数(或式)化成积的形式,即分 解因式。 2)化去根号内的分母,即分母有理化。
3)将根号内能开得尽方的因数(式)开出来。
练习一
把下列各式化成最简二次根式:
(1) 32 4 2
(2) 2 a b3 3 2ab ab
上一页
例题选讲二
例2 把下列各式化成最简二次根式:
(1) 4 11 2
;(2)x
y x3
(3) m n (m n 0) mn
解(1)4 11 4
2
34
2
3 2
4
3 2
2 2
46 2
2
6
(2) x
y x3
x y x3
x y xx
yx xx
xy x
练习二
把下列各式化成最简二次根式:
(1)
0.8
2
5 5
(2) 4 1 3 2
22
(3)
20a 2b c
解: 1
2
1
2
1 2
2 2
2 2
1.414 2
0.707 0.71
8 2 2 2 1.414 2.828 2.8 上一页
最简二次根式的定义
满足下列条件的二次根式,叫做最简二 次根式。
(1)被开方数中的各因式的指数都为1
(2)被开方数不含分母
辨析训练一
判断下列各式是否为最简二次根式?
满足下列条件的二次根式,叫做最简二次根式。 (1)被开方数中的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式; (3)分母中不含根号。
2.如何化二次根式为最简二次根式 .
感谢大家观看
最新学习可编辑资料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学《最简二次根式》
1、题目:最简二次根式
2、内容:
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
我们把满足上述两个条件的二次根式,叫做最简二次根式(simplest quadratic radical).
在二次根式的运算中,一般要把最后结果化为最简二次根式,并且分母中不含二次根式.
3.基本要求:
(1)引导学生发现最简二次根式的特点;
(2)配合教学内容适当板书;
(3)教学过程中有互动环节;
(4)试讲时间10分钟。
4、答辩题目
(1)理解最简二次根式时要提醒学生注意哪些内容? [专业知识类]
(2)本节课的教学目标是什么? [教学设计类]
初中数学《最简二次根式》主要教学过程及板书设计
教学过程
(一)提出问题,创设情境
问题1:前面我们已经学习了二次根式的乘除法法则,接下来考考大家,用自己喜欢的方法对下列式子进行化简计
算。
学生活动:学生独立完成,教师巡视指导,对于共性问题,做好补充,对于做的好的,加以鼓励表扬。
(四)总结提高
这节课你又哪些收获?谈谈你的感受!
作业:课件上练习题1,2.
板书设计
答辩题目解析
1.理解最简二次根式时要提醒学生注意哪些内容?【专业知识问题】
【参考答案】
(1)被开方数必须满足定义中的两个条件,缺一不可。
(2)把二次根式化成最简二次根式的一般步骤:
①把根号下的带分数或者小数化成假分数;
②被开方数是多项式的要进行因式分解;
③将被开方数中能开得尽方的因数或因式,用他的算术平方根代替后移到根号外;
④化去分母中的根号;
⑤约分。
(3)二次根式计算的最后结果应为最简二次根式。
2.本节课的教学目标是什么?【教学设计问题】
【参考答案】
本节课的教学目标是:
知识与技能目标:知道什么是最简二次根式,能利用二次根式的乘除法则进行化简。
过程与方法目标:在对二次根式进行化简的过程中,体会用特殊到一般以及类比的方法解决什么是最简二次根式的问题的能力。
情感态度与价值观:通过本节课的学习,认识到事物之间是相互联系,相互作用的。