苏州新区二中必修四第二章《平面向量》测试(含答案解析)
苏教版必修四第二章 平面向量 第四讲 向量的数量积 (习题+解析)

苏教版必修四第二章平面向量第四讲向量的数量积(习题+解析)***9. 已知a =(3,-1),b =(21,23),且存在实数k 和t ,使得x =a +(t 2-3)b ,y =-ka +tb ,且x ⊥y ,试求t t k 2+的最小值。
1. ①②④ 解析:①错,因为不存在这样的运算,向量间只能作加、减、乘运算,此题应分子、分母先分开算;②错,因为(a ·b )2=(|a |·|b |cos θ)2=a 2·b 2cos 2θ不一定与a 2·b 2相等;④错,因为a 与c 方向未必一致。
2. -31 解析:由|a |=|a +2b |,两边平方,得|a |2=(a +2b )2=|a |2+4|b |2+4a ·b ,所以a ·b =-|b |2,又|a |=3|b |,所以cos 〈a ,b ba b a 23bb -=-31。
3. 5 解析:∵∠ABO =90°,∴AB ⊥OB ,∴OB ·AB =0,又AB =OB -OA =(2,2)-(-1,t )=(3,2-t ),∴(2,2)·(3,2-t )=6+2(2-t )=0, ∴t =5。
4. -41 解析:选CA ,CB 为基底,则AD =-CA+21CB , 5. 32π 解析:设c =(x ,y ),则(a +b )·c =(-1,-2)·(x ,y )=-x -2y =25,∴x +2y =-25,又|a |=|c |=5,且a ·c =x +2y =|a ||c |·cosα,故cos α=-21,α∈[0,π],α=32π。
6. (3,0) 解析:设点P 坐标为(x,0),则AP =(x -2,-2),BP =(x -4,-1),AP ·BP =(x -2)(x -4)+(-2)×(-1)=x 2-6x +10=(x -3)2+1,当x =3时,AP ·BP 有最小值1,∴点P 的坐标为(3,0)。
高一数学必修4第二章平面向量测试题(含答案)

必修4第二章平面向量基础练习1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是( )A .;)+(B .);++(MC .;-+BM AD M B D .;+-CD OA OC3.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦为( )A .6563B .65C .513D .134. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是() (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数6.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形7.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±8、若平面向量(1,)a x =和(23,)b x x =+-互相平行,其中x R ∈.则a b -=()A. 2-或0;B.C. 2或D. 2或10.9.若),4,3(=A点的坐标为(-2,-1),则B点的坐标为 .10.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .11、ΔABC 中,A(1,2),B(3,1),重心G(3,2),则C 点坐标为________________。
12、设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2+的模; (2)试求向量与的夹角;(3)试求与BC 垂直的单位向量的坐标.13.如图, =(6,1), ,且 。
高中数学 第二章 平面向量 2.1 向量的概念及表示课时训练(含解析)苏教版必修4

§2.1 向量的概念及表示课时目标1.掌握向量的有关概念及向量的几何表示.2.掌握平行向量与相等向量的概念.1.向量的概念(1)向量:既有大小又有________的量叫做向量,如速度、位移、力等. (2)数量:只有大小,没有方向的量称为数量,如面积、体积、质量等. 注意 数量可以比较大小,而向量无法比较大小. 2.向量的几何表示(1)有向线段:带有方向的线段叫做有向线段,其方向是由起点指向终点,以A 为起点、B 为终点的有向线段记作________.有向线段包含三个要素:起点、方向、长度.知道了有向线段的起点、方向、长度,它的终点就惟一确定.(2)向量的有关概念:向量AB →的________称为向量AB →的长度(或称为模),记作|AB →|.长度为________的向量叫做零向量,记作0.长度等于________个单位长度的向量,叫做单位向量.3.平行向量:方向________或________的非零向量叫做平行向量.向量a 与b 平行,通常记为a ∥b .规定零向量与任何向量都________,即对于任意向量a ,都有0∥a . 4.相等向量与共线向量(1)相等向量:________相等且方向相同的向量叫做相等向量.向量a 与b 相等,通常记为a =b .任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.在平面上,两个长度相等且指向一致的有向线段表示同一个向量.(2)共线向量:任意一组平行向量都可以移动到同一________上,因此,平行向量也叫共线向量. 5.相反向量我们把与向量a 长度相等,方向相反的向量叫做a 的________________,记作________,a 与-a 互为________________,并且规定零向量的相反向量仍是____________.于是,对任一向量a 有____________.一、填空题1.下列命题中正确的个数为______.①向量a 与向量b 平行,则a 、b 方向相同或相反;②若向量AB →、CD →满足|AB →|>|CD →|,且AB →与CD →同向,则AB →>CD →; ③若|a |=|b |,则a ,b 的长度相等且方向相同或相反; ④由于0方向不确定,故0不能与任何向量平行; ⑤若向量a 与向量b 方向相反,则a 与b 是相反向量. 2.下列结论中,正确的是________.(填序号)①向量AB →,CD →共线与向量AB →∥CD →同义;②若向量AB →∥CD →,则向量AB →与DC →共线;③若向量AB →=CD →,则向量BA →=DC →;④只要向量a ,b 满足|a |=|b |,就有a =b .3.在四边形ABCD 中,AB →=DC →且|AB →|=|AD →|,则四边形的形状为________. 4.下列说法正确的有________.(填序号)①方向相同的向量叫相等向量;②零向量的长度为0;③共线向量是在同一条直线上的向量;④零向量是没有方向的向量;⑤共线向量不一定相等;⑥平行向量方向相同.5.下列四个命题①若|a |=0,则a =0;②若|a |=|b |,则a =b ,或a =-b ; ③若a ∥b ,则|a |=|b |; ④若a =0,则-a =0.其中正确命题的个数是________.6.给出以下5个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0;⑤a 与b 都是单位向量.其中能使a ∥b 成立的是________.(填写序号) 7.下列命题正确的是________.(填写正确命题的序号) ①向量的模一定是正数;②起点不同,但方向相同且模相等的几个向量是相等向量;③向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在同一直线上. 8.下列命题正确的是________.(填写正确命题的序号) ①a 与b 共线,b 与c 共线,则a 与c 也共线;②任意两个相等的非零向量的始点与终点是一平行四边形的四个顶点; ③向量a 与b 不共线,则a 与b 都是非零向量; ④有相同起点的两个非零向量不平行.9.下列各种情况中,向量的终点在平面内各构成什么图形. ①把所有单位向量移到同一起点;②把平行于某一直线的所有单位向量移到同一起点; ③把平行于某一直线的一切向量移到同一起点. ①__________;②____________;③____________.10.如图所示,E 、F 分别为△ABC 边AB 、AC 的中点,则与向量EF →共线的向量有________________(将图中符合条件的向量全写出来).二、解答题 11.在如图的方格纸上,已知向量a ,每个小正方形的边长为1. (1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?12.如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量;(2)写出与EF →的模大小相等的向量;(3)写出与EF →相等的向量.能力提升 13.如图,已知AA ′→=BB ′→=CC ′→.求证:(1)△ABC ≌△A ′B ′C ′; (2)AB →=A ′B ′→,AC →=A ′C ′→. 14.如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,OC →=c . (1)与a 的模相等的向量有多少个?(2)与a 的长度相等,方向相反的向量有哪些? (3)与a 共线的向量有哪些?(4)请一一列出与a ,b ,c 相等的向量.1.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑. 2.向量不能比较大小,但向量的模可以比较大小.如a >b 没有意义,而|a |>|b |有意义. 3.共线向量与平行向量是同一概念,规定:零向量与任一向量都平行.第2章 平面向量 §2.1 向量的概念及表示知识梳理 1.(1)方向2.(1)AB →(2)大小 0 1 3.相同 相反 平行 4.(1)长度 (2)直线5.相反向量 -a 相反向量 零向量 -(-a )=a 作业设计 1.02.①②③解析 根据平行向量(或共线向量)定义知①②均正确;根据向量相等的概念知③正确;④不正确. 3.菱形解析 ∵AB →=DC →,∴AB 綊DC ,∴四边形ABCD 是平行四边形,又∵|AB →|=|AD →|,∴四边形ABCD 是菱形. 4.②⑤解析 ②与⑤正确,其余都是错误的. 5.2解析 ②③错,①④正确. 6.①③④解析 相等向量一定是共线向量,①能使a ∥b ;方向相同或相反的向量一定是共线向量,③能使a ∥b ;零向量与任一向量平行,④成立. 7.②解析 ①错误.0的模|0|=0.②正确.对于一个向量只要不改变其大小和方向,是可以任意移动的.③错误.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB →、CD →必须在同一直线上. 8.③解析 若b =0,则a 与c 不共线,①不正确;两个相等的非零向量的始点和终点可能共线,②不正确;若a ,b 中有一个是零向量,则a 与b 一定共线,③正确;有相同起点的两个非零向量,若方向相同或相反,则两个向量平行,④不正确. 9.单位圆 相距为2的两个点 一条直线 10.FE →,BC →,CB →解析 ∵E 、F 分别为△ABC 对应边的中点, ∴EF ∥BC ,∴符合条件的向量为FE →,BC →,CB →. 11.解(1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(如图). (2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(如图).12.解 (1)因为E 、F 分别是AC 、AB 的中点,所以EF 綊12BC .又因为D 是BC 的中点,所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →.(3)与EF →相等的向量有:DB →与CD →.13.证明 (1)∵AA ′→=BB ′→,∴|AA ′→|=|BB ′→|,且AA ′→∥BB ′→.又∵A 不在BB ′→上,∴AA ′∥BB ′. ∴四边形AA ′B ′B 是平行四边形. ∴|AB →|=|A ′B ′→|.同理|AC →|=|A ′C ′→|,|BC →|=|B ′C ′→|. ∴△ABC ≌△A ′B ′C ′.(2)∵四边形AA ′B ′B 是平行四边形, ∴AB →∥A ′B ′→,且|AB →|=|A ′B ′→|. ∴AB →=A ′B ′→.同理可证AC →=A ′C ′→.14.解 (1)与a 的模相等的向量有23个.(2)与a 的长度相等且方向相反的向量有OD →,BC →,AO →,FE →.(3)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.(4)与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,FA →;与c 相等的向量有FO →,ED →,AB →.。
(易错题)高中数学必修四第二章《平面向量》检测题(包含答案解析)(4)

一、选择题1.已知O 为正三角形ABC 内一点,且满足()10OA OB OC λλ+++=,若OAB 的面积与OAC 的面积之比为3,则λ=( ) A .12B .14C .34D .322.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .33.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .324.已知1a =,2b =,则a b a b ++-的最大值等于( )A .4B C .D .55.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .226.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为AC 的长为( )A .B .3C .3D .7.在ABC 中,D 是BC 的中点,E 是AD 的中点,那么下列各式中正确的是( ) A .DB DC =B .2AD DE =C .2AB AC AD += D .AB AC BC -=8.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b +B .3255a b + C .2133a b +D .1233a b +9.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .410.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+11.设O 是△ABC 20OB OC ++=,则∠BOC =( ) A .6π B .3π C .2π D .23π12.在ABC 中,D 是BC 边上的一点,F 是AD 上的一点,且满足2AD AB AC =+和20FD FA +=,连接CF 并延长交AB 于E ,若AE EB λ=,则λ的值为( ) A .12B .13C .14D .15二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.记集合{|X x b a xc ==+且||||4}a b a b ++-=中所有元素的绝对值之和为(,)S a c ,其中平面向量a ,b ,c 不共线,且||||1a c ==,则(,)S a c 的取值范围是______________.15.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭; ② A 、B 两点间的距离为(12x x -③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号) 16.在ABC 中,AB AC =,E ,F 是边BC 的三等分点,若3AB AC AB AC +=-,则cos EAF ∠=_______________17.设10AB =,若平面上点P 满足对任意的R λ∈,28AP AB λ-≥,PA PB ⋅的最小值为_______.18.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.19.已知,a b 都是单位向量,且a 与b 的夹角是120,||a b -=_________________. 20.在ABC 中,2AB =,32AC =,135BAC ∠=︒,M 是ABC 所在平面上的动点,则w MA MB MB MC MC MA =⋅+⋅+⋅的最小值为________.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k .22.在平面直角坐标系xOy 中,已知点()1,2A -,()1,1B ,()3,1C -. (Ⅰ)求AB 的坐标及AB ;(Ⅱ)当实数t 为何值时,()tOC OB AB +.23.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标. 24.已知()3,2a =-,()2,1b =,O 为坐标原点.(1)若ma b +与2a b -的夹角为钝角,求实数m 的取值范围; (2)设OA a =,OB b =,求OAB 的面积.25.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.26.已知向量()3,1a =-,()1,2b =-,()n a kb k R =-∈. (1)若n 与向量2a b -垂直,求实数k 的值;(2)若向量()1,1c =-,且n 与向量kb c +平行,求实数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,由平面向量的线性运算可得OD OE λ=-,进而可得13OAC AEC S S =△△,即可得解.【详解】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,如图,所以DE 是ABC 的中位线,因为()10OA OB OC λλ+++=,所以()OA OC OB OC λ+=-+, 所以OD OE λ=-,所以D 、E 、O 三点共线,所以111363OAC OAB ABC AEC S S S S ===△△△△,所以13OD ED =即12OD OE =-,所以12λ-=-即12λ=.故选:A. 【点睛】本题考查了平面向量共线、线性运算及基本定理的应用,考查了运算求解能力与转化化归思想,属于中档题.2.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.3.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =|,∴225AB OA OB =+= , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴452555D ⎛ ⎝⎭;则45254525,,5555OE OD λλλ⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 45255,55EA λλ⎛⎫=- ⎪ ⎪⎭;∵34OE EA ⋅=,∴235554λλ⎫⎛⎫⋅-=⎪ ⎪⎪ ⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD上的投影为())1,155ED OD OE λλ⎛⎫=-=-- ⎪ ⎪⎝⎭,当34λ=时,15102ED ⎛⎫==⎪⎪⎝⎭;当14λ=时,35102ED ⎛== ⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A. 4.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252a b a ba b a b a b ++-++-≤=+=,当且仅当a b a b +=-,即a b ⊥时取等号, 故选:C 【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.5.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为316bc =,即得AC 的长. 【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=. 因为ABC 的面积为431sin 43,1623b c bc π⨯⨯⨯=∴=. 所以24316,33b b =∴= 所以33AC =. 故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.7.C解析:C 【解析】依题意ABC 如图所示:∵D 是BC 的中点 ∴DB CD =,故A 错误 ∵E 是AD 的中点 ∴2AD ED =,故B 错误∵AB AD DB =+,AC AD DC =+∴2AB AC AD DB AD DC AD +=+++=,故C 正确∴()AB AC AD DB AD DC DB DC CB -=+-+=-=,故D 错误 故选C8.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x yy z x y zx z+=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555 AD ABBD AB BC AB AC AB AB AC=+=+=+-=+3255a b=+.故选:B【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.9.C解析:C【解析】在ABC∆中,060BAC∠=,5,6AB AC==,D 是AB是上一点,且5AB CD⋅=-,如图所示,设AD k AB=,所以CD AD AC k AB AC=-=-,所以21()2556251552AB CD AB k AB AC k AB AB AC k k ⋅=⋅-=-⋅=-⨯⨯=-=-,解得25k=,所以2(1)35BD AB=-=,故选C.10.C解析:C【分析】先根据题意得1AD=,3CD=2AB DC=,再结合已知和向量的加减法运算求解即可得的答案.【详解】由题意可求得1AD=,3CD=所以2AB DC=,又13BE BC=,则()1133AE AB BE AB BC AB BA AD DC=+=+=+++1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.B解析:B 【分析】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,可得1,2,7===OC OF OE ,利用余弦定理,再利用两角和余弦公式可得3BOC π∠=【详解】不妨设ABC 的外接圆的半径为1,作2=OF OB ,以,OC OF 为邻边作平行四边形COFE ,+=OC OF OE ,所以1,2,7===OC OF OE 2221723cos sin 21777+-∠==∠=⨯⨯EOC EOC , 2273cos sin 2272727∠==∠=⨯⨯EOF EOF 3331cos cos()2727727∠=∠+∠==BOC COE EOF 3π∴∠=BOC故选:B 【点睛】本题考查了平面几何和向量的综合,考查了运算求解能力和逻辑推理能力,属于中档题目.12.C解析:C 【分析】首先过D 做//DG CE ,交AB 于G ,根据向量加法的几何意义得到D 为BC 的中点,从而得到G 为BE 的中点,再利用相似三角形的性质即可得到答案. 【详解】如图所示,过D 做//DG CE ,交AB 于G .因为2AD AB AC =+,所以D 为BC 的中点. 因为//DG CE ,所以G 为BE 的中点, 因为20FD FA +=,所以:1:2AF FD =.因为//DG CE ,所以::1:2AE EG AF FD ==,即12AE EG =. 又因为EG BG =,所以14AE EB =, 故14AE EB =. 故选:C 【点睛】本题主要考查了向量加法运行的几何意义,同时考查了相似三角形的性质,属于中档题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:53⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值. 【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.【分析】由条件有两边平方可得当时当时可得答案【详解】解:因为所以所以两边平方得化简得设向量的夹角为则当时当时所以集合中所有元素的绝对值之和为因为所以所以所以所以的取值范围为【点睛】关键点点睛:此题考 解析:[3,4)【分析】由条件有|2||||2|||4a xc xc a xc x ++=++=,两边平方可得3xa c x ⋅=-,当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,可得答案【详解】解:因为||||4a b a b ++-=,b a xc =+,||||1a c == 所以|2||||2|||4a xc xc a xc x ++=++=, 所以|2|4||a xc x +=-,两边平方得,2244168xa c x x x +⋅+=-+,化简得,3xa c x ⋅=-,设向量,a c 的夹角为θ,(0,)θπ∈,则cos 32x x θ=-, 当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,所以集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--, 因为(0,)θπ∈,所以20cos 1θ≤<, 所以234cos 4θ<-≤,所以212344cos θ≤<-, 所以(,)S a c 的取值范围为[3,4)【点睛】关键点点睛:此题考查向量数量积的性质的运用,解题的关键是由已知条件得到3xa c x ⋅=-,然后设出向量,a c 的夹角为θ,则当0x ≥时,32cos x θ=+,当0x <时,3cos 2x θ=-,从而可得集合X 中所有元素的绝对值之和为233122cos 2cos 4cos θθθ+=+--,再利用三角函数的有界性可求得结果,考查数学转化思想15.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++ ∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确.对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 两点间的距离为()()2222211212212112()()2x x e y y e x x y y e e -+-+--,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.16.【分析】以ABAC 为邻边作平行四边形ABCD 根据得到再根据得到平行四边形ABCD 是菱形则设利用勾股定理分别求得的长度在中利用余弦定理求解【详解】如图所示:以ABAC 为邻边作平行四边形ABCD 则因为所解析:1314【分析】以AB ,AC 为邻边作平行四边形ABCD ,根据3AB AC AB AC +=-,得到3AD CB =, 再根据AB AC =,得到平行四边形ABCD 是菱形,则CB AD ⊥,设3CB =,利用勾股定理分别求得EF ,,AE AF 的长度,在AEF 中利用余弦定理求解. 【详解】 如图所示:以AB ,AC 为邻边作平行四边形ABCD ,则,AB AC AD AB AC CB +=-=, 因为3AB AC AB AC +=-,所以3AD CB =,设3CB =3AD =, 因为AB AC =,所以平行四边形ABCD 是菱形, 所以CB AD ⊥,所以AB AC EF ====,所以3AE AF ===,所以2222121113cos 214AE AF EF EAF AE AF +-+-∠===⋅. 故答案为:1314【点睛】本题主要考查平面向量的平行四边形法则以及余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.17.【分析】建立如图所示的坐标系则设则所以从而结合可得对任意恒成立则必然成立可得而从而可求得结果【详解】解:以线段的中点为原点以所在的直线为轴以其中垂线为轴建立直角坐标系则设则所以因为所以化简得由于上述 解析:9-【分析】建立如图所示的坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=,所以2(21010,2)AP AB x y λλ-=+-,从而2(21010,2)AP AB x y λλ-=+-,结合28AP AB λ-≥,可得222100(20040)4404360x x x y λλ-+++++≥,对任意R λ∈恒成立,则0∆≤必然成立,可得4y ≥,而2225PA PB x y ⋅=+-216259x ≥+-≥-,从而可求得结果 【详解】解:以线段AB 的中点为原点,以AB 所在的直线为x 轴,以其中垂线为y 轴,建立直角坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=, 所以2(21010,2)AP AB x y λλ-=+-,因为28AP AB λ-≥,所以22(21010)464x y λ+-+≥,化简得222100(20040)4404360x x x y λλ-+++++≥, 由于上述不等式对任意R λ∈恒成立,则0∆≤必然成立,222(20040)4100(440436)0x x x y ∆=+-⨯⨯+++≤,解得4y ≥,所以4y ≥或4y ≤-, 因为(5,),(5,)PA x y PB x y =---=--, 所以2225PA PB x y ⋅=+-, 因为x ∈R ,216y ≥,所以2222516259x y x +-≥+-≥-, 即9PA PB ⋅≥-,所以PA PB ⋅的最小值为9-, 故答案为:9-【点睛】此题考查向量的数量积运算,考查数形结合思想,考查计算能力,属于中档题18.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-【分析】延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.19.【分析】根据数量积公式得出的值再由得出答案【详解】故答案为:【点睛】本题主要考查了由数量积求模长属于中档题 3【分析】根据数量积公式得出a b ⋅的值,再由2||()a b a b -=-得出答案. 【详解】111cos1202a b ⋅=⨯⨯︒=-22222||()2||2||1113a b a b a a b b a a b b ∴-=-=-⋅+=-⋅+=++=3【点睛】本题主要考查了由数量积求模长,属于中档题.20.【分析】以A 为原点AC 所在直线为x 轴建系如图所示根据题意可得ABC 坐标设可得的坐标根据数量积公式可得的表达式即可求得答案【详解】以A 为原点AC 所在直线为x 轴建立坐标系如图所示:因为所以设则所以=当时 解析:283-【分析】以A 为原点,AC 所在直线为x 轴,建系,如图所示,根据题意,可得A 、B 、C 坐标,设(,)M x y ,可得,,MA MB MC 的坐标,根据数量积公式,可得w 的表达式,即可求得答案.【详解】以A 为原点,AC 所在直线为x 轴,建立坐标系,如图所示:因为2AB =,32AC =135BAC ∠=︒, 所以(0,0),(2,2),(32,0)A B C -,设(,)M x y ,则(,),(2,2),(32,)MA x y MB x y MC x y =--=---=--, 所以(2)(2)w MA MB MB MC MC MA x x y y =⋅+⋅+⋅=++22)(32)(2)(2)x x y y x x y -++-+=22222222834232263()3()333x x y x y -+--=-+--, 当222,33x y ==时,w 有最小值,且为283-, 故答案为:283- 【点睛】解题的关键是建立适当的坐标系,求得点坐标,利用数量积公式的坐标公式求解,考查分析理解,计算化简的能力,属基础题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(Ⅰ)(2,1)AB =-,5AB =Ⅱ)3t = 【分析】(Ⅰ)根据点A ,B 的坐标即可求出(2,1)AB =-,从而可求出||AB ;(Ⅱ)可以求出(13,1)tOC OB t t +=-+,根据()//tOC OB AB +即可得出2(1)(1)(13)30t t t +---=-=,解出t 即可.【详解】(Ⅰ)∵()1,2A -,()1,1B ,∴(2,1)AB =- ∴2||25AB ==(Ⅱ)∵()3,1C -,∴(13,1)tOC OB t t +=-+. ∵()tOC OB AB +∴2(1)(1)(13)30t t t +---=-=,∴3t =【点睛】考查根据点的坐标求向量的坐标的方法,根据向量的坐标求向量长度的方法,以及平行向量的坐标关系. 23.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ== ∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--= 即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题.24.(1)116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭;(2)72S =.【分析】(1)由题意,求得,2ma b a b +-的坐标,令()()20ma b a b +⋅-<,解得65m <,再由当12m =-时,得到2a b -与ma b +方向相反,求得12m ≠-,即可求解; (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅,结合向量的夹角公式和向量的坐标运算,即可求解. 【详解】(1)由题意,向量()3,2a =-,()2,1b =,可得()32,21ma b m m +=+-+,()21,4a b -=--,令()()20ma b a b +⋅-<,即32840m m --+-<,解得65m <, 当12m =-时,12ma b a b +=-+, 此时2a b -与ma b +方向相反,夹角为π,不合题意,∴12m ≠-, 综上可得,实数m 的取值范围为116,,225⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭. (2)设AOB θ∠=,OAB 面积为S ,则1sin 2S a b θ=⋅, 因为222sin 1cos 1a b a b θθ⎛⎫⋅ ⎪=-=- ⎪⋅⎝⎭, 又由()3,2a =-,()2,1b =, 可得()22222224sin 651649S a b a b a bθ=⋅=-⋅=-=,解得72S =, 即OAB 的面积为72OAB S=. 【点睛】 本题主要考查了向量的角公式,向量的数量积的坐标运算的综合应用,其中解答中熟记向量的基本概念,以及向量的数量积和夹角公式的坐标运算是解答的关键,着重考查推理与运算能力.25.(1)1;(2)【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABC S AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC ,所以向量(1,4),(4,1)AB m AC =--=--,又因为AB AC ⊥,所以4(1)40m --+=,解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--,所以4,17AB AC ==所以11422ABC S AB AC =⨯⨯=⨯= 【点睛】本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题. 26.(1)53-;(2)12-. 【分析】(1)求出()3,12n k k =--+,解方程(3)(7)(12)40k k --⨯-++⨯=即得解;(2)由已知得()1,21kb c k k +=+--,解方程(3)(21)(12)(1)k k k k --⋅--=+⋅+即得解.【详解】(1)由已知得()3,12n a kb k k =-=--+, ()27,4a b -=-, 所以()20n a b ⊥-=,即(3)(7)(12)40k k --⨯-++⨯=,解得53k =-; (2)由已知得()1,21kb c k k +=+--,因为()//n kb c +,所以(3)(21)(12)(1)k k k k --⋅--=+⋅+,解得12k =-. 【点睛】本题主要考查平面向量的线性运算,考查向量垂直平行的坐标表示,意在考查学生对这些知识的理解掌握水平.。
数学苏教版必修4 第2章 平面向量 综合检测 Word版含解析

(时间:分钟,满分:分)一、填空题(本大题共小题,每小题分,共分.请把答案填在题中横线上)设平面向量=(,),=(-,),则-=.解析:∵=(,),=(-,),∴-=(,)-(-,)=(,).答案:(,)在四边形中,=,且=,那么四边形为.解析:由=可得四边形是平行四边形,由=得四边形的一组邻边相等,一组邻边相等的平行四边形是菱形.答案:菱形已知(,),(,-),(,-),若、、共线,则等于.解析:∵=(-,-),=(-,-),又∵∥,∴(-)·(-)-(-)·(-)=得-(-)=,解得=-.答案:-有下列命题:①++=;②(+)·=·+·;③若的起点为(,),终点为(-,),则与轴正向夹角的余弦值是.其中正确命题的序号是.解析:∵++=,∴①错;②是数量积的分配律,正确;在③中,=(,-)与轴正向夹角的余弦值是,故③正确.答案:②③点是三角形所在平面内的一点,满足·=·=·,则点是△的.解析:∵·=·,∴·(-)=,∴·=,∴⊥.同理⊥,⊥,∴为垂心.答案:垂心若==,⊥且+与-也互相垂直,则的值为.解析:∵⊥,∴·=,又∵(+)⊥(-),∴(+)·(-)=,得-=,又==,==,解得=.答案:已知=(,),⊥,且的起点为(,),终点为(,),则等于.解析:=(-,-),∵⊥,∴·=,即(-)+(-)=,解得=,所以等于(-,).答案:(-,)等边△的边长为,=,=,=,那么·+·+·等于.解析:由已知===,∴·+·+·=°+°+°=-.答案:-若向量、、是单位向量,且满足+λ+=,与的夹角为,则实数λ=.解析:由+λ+=,得=--λ,∴()=(--λ)=+λ·+λ,∴λ+λ-=,解得λ=或-.答案:-或在▱中,与交于点,是线段的中点,的延长线交于点.若=,=,则=.解析:如图.∵△∽△,∴==.∴==.∴=.∴=+=+=+(+)=+=+.答案:+已知、、-的模分别为,,,则与的夹角为.解析:∵(-)=,∴-·+=,∴·=;∴θ==,又θ∈[,π],∴θ=.答案:已知向量、的夹角为,=,=,则+-的值是.解析:∵·==××=,∴+=+·+=+×+=,-=-·+=-×+=,∴+-=×=,∴+-=.答案:已知=,=,与的夹角为°,=+,=-,⊥,则的值为.解析:·=°=,∵⊥,∴·=,即(+)(-)=,∴+(-)·-=,∴+(-)-=,解得=.答案:在△中,为边上一点,=,若是边上一动点且=,则·(+)的最小值为.解析:因为=+,=+,且=-,所以+=++(+)=.设=(≤≤),故·(+)=·=-(-)≥-,所以当=时,·(+)的最小值为-.答案:-二、解答题(本大题共小题,共分.解答时应写出文字说明、证明过程或演算步骤) (本小题满分分)如图,梯形中,∥,且=,、是、的中点,设=,=,试以、为基底表示、.解:∵∥且=,∴==;又=,∴=+=+;又=-,∴=+-=-;过作∥,则为中点,∴=;∴==-=-.(本小题满分分)已知=,=,与的夹角为°.求()(-)·(+);()-.。
苏教版高中数学必修四单元检测试题及参考答案(第2章:平面向量A卷)

苏教版高中数学必修四单元检测试题第 2章平面向量(A(时间:120分钟满分:160分一、填空题 (本大题共 14小题,每小题 5分,共 70分1.与向量 a =(1, 3 的夹角为 30°的单位向量是 ____________.2.已知三个力 f1=(-2,-1 , f2=(-3,2 , f3=(4,-3 同时作用于某物体上一点,为使物体保持平衡,现加上一个力 f4,则 f4=________.3. 设平面向量 a1, a2, a3满足 a1-a2+a3=0, 如果平面向量 b1, b2, b3满足 |bi|=2|ai|, 且 ai 顺时针旋转 30°后与 bi 同向,其中 i =1,2,3,则 b1-b2+b3=________.4.若 a 与 b 满足 |a|=|b|=1, 〈 a , b 〉=60°,则 a ·a +a ·b =________.5.若向量 a =(1,1, b =(1,-1 , c =(-1,2 ,则 c =________.(用 a , b 表示6.若向量 a =(1,1, b =(2,5, c =(3, x ,满足条件 (8a-b ·c =30,则 x =________. →→7.设点 A(1,2、 B(3,5,将向量 AB 按向量 a =(-1,-1 平移后得到A ′ B ′为 ________.8.若a =(λ, 2 , b =(-3,5 ,且 a 与 b 的夹角是钝角,则λ的取值范围是 ________.9.已知向量 a =(2,-1 , b =(-1, m , c =(-1,2 ,若 (a+b ∥ c ,则 m =________.→·→=________. 10.在菱形 ABCD 中,若 AC =2,则 CAAB11.已知向量 a 和向量 b 的夹角为 30°, |a|=2, |b|=3,则向量 a 和向量 b 的数量积a ·b =________.12.已知非零向量 a , b ,若 |a|=|b|=1,且 a ⊥ b ,又知 (2a+3b ⊥ (ka-4b ,则实数 k 的值为 ________.13.。
(压轴题)高中数学必修四第二章《平面向量》测试题(有答案解析)(3)
一、选择题1.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .1C .1-D 12.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A B .210C .10D .203.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( )A .1B .2C .5D .34.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .D 5.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-7.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .38.若2a b c ===,且0a b ⋅=,()()0a c b c -⋅-≤,则a b c +-的取值范围是( )A .[0,2]B .[0,2]C .22,222]-+D .[222,2]-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( )A .0B .4,C .16,0D .4,010.已知ABC 中,3AB AC ==,且||||AB AC AB AC +=-,点D ,E 是BC 边的两个三等分点,则AD AE ⋅=( ) A .3B .4C .5D .611.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( )A .6B .83C .127D .412.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23二、填空题13.已知向量()3,2OA =,()2,1OB =,O 点为坐标原点,在x 轴上找一个点M ,使得AM BM ⋅取最小值,则M 点的坐标是___________.14.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.15.在△ABC 中,D 为BC 中点,直线AB 上的点M 满足:32(33)()AM AD AC R λλλ=+-∈,则AM MB=__________.16.在ABC 中,90,6C CA CB ∠=︒==,P 为ABC 所在平面内一动点,则()CP AP BP ⋅+的最小值为________.17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.已知(2,1)a =-,(1,)b t =,若(2)a b a -⊥,则b =__________ 19.已知(2,3),(4,7)a b ==-,则向量b 在a 方向上的投影为_________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.如图,在菱形ABCD 中,1,22BE BC CF FD ==.(1)若EF x AB y AD =+,求32x y +的值; (2)若||6,60AB BAD =∠=︒,求AC EF ⋅. 22.已知向量()sin ,cos a x x =,()3,1b =-,[]0,x π∈.(1)若a b ⊥,求x 的值;(2)记()f x a b =⋅,求()f x 的最大值和最小值以及对应的x 的值. 23.已知平面向量34,55a ⎛⎫= ⎪⎝⎭,2||2b =,a与b 夹角为4π.(1)求向量a 在b 方向上的投影; (2)求a b -与a b +夹角的余弦值.24.(1)已知非零向量1e 、2e 不共线,欲使12ke e +和12e ke +共线,试确定实数k 的值. (2)已知向量1a =,2b =,()()23a b a b +⊥-,求a 与b 夹角的大小.25.(1)已知向量()1,3a =,(),2b m =,()3,4c =,且()3a b c -⊥,求实数m 的值;(2)已知(3,2)a =,(2,1)b =-,若a b λ+与a b λ+平行,求实数λ的值26.在ABC 中,G 为ABC 的重心,过G 点的直线分别交,AB AC 于,P Q 两点,且,AP h AB AQ k AC ==,(1)求11h k+的值; (2)设,APQ ABC S S △△分别表示,APQ ABC △△的面积,求APQ ABCS S的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 2.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.3.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.4.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±.故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 5.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.6.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.7.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+, 所以13a b ⋅=,则()2263a b a b +=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()43326a a ba b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.8.D解析:D 【解析】如图所示:OA a =,OB b =,OC c =,OD a b =+ ∵()()0a c b c -⋅-≤,∴点C 在劣弧AB 上运动,a b c +-表示C 、D 两点间的距离CD .CD 的最大值是BD =2,CD 最小值为OD 2222-=.故选D9.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ32sinθ+1),所以|2|a b -2=(2cosθ3-2+(2sinθ+1)2=8﹣3cosθ+4sinθ=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.B解析:B 【分析】由||||AB AC AB AC +=-知,0AB AC ⋅=,根据平面向量的线性运算可推出2133AD AB AC =+,1233AE AB AC =+,故21123333AD AE AB AC AB AC ⎛⎫⎛⎫⋅=+⋅+ ⎪ ⎪⎝⎭⎝⎭,展开后代入数据进行运算即可.【详解】解:∵||||AB AC AB AC +=-,∴0AB AC ⋅=, ∵点D 是BC 边的三等分点, ∴11()33AD AB BD AB BC AB AC AB =+=+=+-2133AB AC =+.同理可得,1233AE AB AC =+, ∴()2221122(3339)3AD AE AB AC AB AC AB AC ⎛⎫⋅=+⋅+=+ ⎪⎝⎭2(99)49=⨯+=.故选:B. 【点睛】本题考查平面向量数量积运算、模的运算、平面向量基本定理,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意基底的选择.11.A解析:A 【分析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△,设,,OAB OAC y OBC S x S S z ===△△△, ∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin ''2141sin 2OA B OABOA OB A OB S S OA OB AOB ⋅∠==⋅∠△△,即114x t =,同理16y t =,121z t =,11161462121ABC S x y z t t t t =++=++=△, ∴6216121ABC OBCtS S t ==△△.故选:A .【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性.12.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.二、填空题13.【分析】设点的坐标是求出再利用配方法可得答案【详解】设点的坐标是即因为向量所以当时有最小值此时点的坐标是故答案为:【点睛】方法点睛:平面向量求最值有三种常见方法:1几何法;2三角函数有界法;3二次函解析:5,02⎛⎫⎪⎝⎭【分析】设M 点的坐标是(),0t ,求出AM BM ⋅,再利用配方法可得答案.【详解】设M 点的坐标是(),0t ,即(),0OM t =, 因为向量()3,2OA =,()2,1OB =, 所以()3,2AM OM OA t =-=--,()2,1BM OM OB t =-=--, ()()()()3221AM BM t t ⋅=--+-⨯- 22575824t t t ⎛⎫=-+=-+ ⎪⎝⎭,当52t =时,AM BM ⋅有最小值74,此时M 点的坐标是5,02⎛⎫⎪⎝⎭, 故答案为:5,02⎛⎫ ⎪⎝⎭. 【点睛】方法点睛:平面向量求最值有三种常见方法:1、几何法;2、三角函数有界法;3、二次函数配方法.14.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.15.1【解析】设∵D 为BC 中点所以可以化为3x=λ()+(3-3λ)化简为(3x-λ)=(3-2λ)只有3x-λ=3-2λ=0时(3x-λ)=(3-2λ)才成立所以λ=x=所以则M 为AB 的中点故答案为1解析:1 【解析】设 AM AB λ=,∵D 为BC 中点,所以12AD AB AC ()=+,() 3233AM AD AC λλ=+- 可以化为3x AB =λ(AB AC +)+(3-3λ)AC ,化简为(3x-λ)AB =(3-2λ)AC ,只有3x-λ=3-2λ=0时,(3x-λ)AB =(3-2λ)AC 才成立,所以λ=32,x=12所以12AM AB =,则M 为AB 的中点 故答案为1点睛:本题考查向量的基本定理基本定理及其意义,考查向量加法的三角形法则,考查数形结合思想,直线AB 上的点M 可设成 AM AB λ=,D 为BC 中点可得出12AD AB AC ()=+,代入已知条件整理可得.16.【分析】建立坐标系利用向量的坐标运算公式将用的坐标表示利用配方法求得最小值【详解】由题意可建立如图所示的直角坐标系易知设则故当且仅当时取得等号∴所求最小值为故答案为:【点睛】本题考查向量的数量积的坐 解析:9-【分析】建立坐标系,利用向量的坐标运算公式将()CP AP BP ⋅+用(),P x y 的坐标表示,利用配方法求得最小值. 【详解】由题意可建立如图所示的直角坐标系,易知()()()6,0,0,6,0,0A B C ,设(),P x y , 则(,),(6,),(,6)CP x y AP x y BP x y ==-=-,故2233 ()(26)(26)229922CP AP BP x x y y x y⎛⎫⎛⎫⋅+=-+-=-+---⎪ ⎪⎝⎭⎝⎭.当且仅当32x y==时取得等号,∴所求最小值为9-,故答案为:9-.【点睛】本题考查向量的数量积的坐标运算和配方法求最值,关键在于建立坐标系,用(),P x y的坐标表达所求的向量的数量积,属中档题.17.【解析】由得设=n所以+n=+n()=(1-n)=m由n=得m=1-n=解析:3 11【解析】由13AN NC=,得14AN AC=.设BP=n BN,所以AP AB BP AB=+=+n BN =AB+n(AN AB-)=(1-n)14AB nAC+=m211AB AC+.由14n=211,得m=1-n=311.18.【分析】根据向量垂直得数量积为0从而求得的值利用求模公式求得向量的模【详解】若则即求得故故答案为:【点睛】本题主要考查平面向量数量积的坐标运算及向量的模的求法意在考查学生的数学运算的学科素养属中档题65【分析】根据向量垂直得数量积为0,从而求得t的值,利用求模公式求得向量的模.【详解】(2,1)a =-,(1,)b t =,2a b -()3,2t =--,若(2)a b a -⊥,则(2)0a b a -⋅=,即()620t ++=,求得8t故 b ==【点睛】本题主要考查平面向量数量积的坐标运算及向量的模的求法,意在考查学生的数学运算的学科素养,属中档题.19.【分析】根据向量的数量积的坐标运算求得结合向量的投影的概念即可求解【详解】由向量可得所以向量在方向上的投影数列为故答案为:【点睛】本题主要考查了向量的数量积的坐标运算以及向量的投影的概念其中解答中熟【分析】根据向量的数量积的坐标运算,求得13,13a b a ⋅==,结合向量的投影的概念,即可求解. 【详解】由向量(2,3),(4,7)a b ==-,可得222(4)3713,23a b a ⋅=⨯-+⨯==+=,所以向量b 在a 方向上的投影数列为cos ,13a b b a b a⋅===【点睛】本题主要考查了向量的数量积的坐标运算,以及向量的投影的概念,其中解答中熟记向量的投影的概念,以及向量的数量积的坐标运算公式是解答的关键,着重考查运算与求解能力.20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量解析:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.【分析】由向量的坐标运算求出2a b -,并求出它的模,用2a b -除以它的模,得一向量,再加上它的相反向量可得结论. 【详解】由题意2(1,3)(4,1)(3,4)a b -=--=-,∴22(3)5a b -=-=,又234,552a ba b -⎛⎫=- ⎪⎝⎭-, ∴c =34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭. 故答案为:34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.【点睛】易错点睛:本题考查求单位向量,一般与a 平行的单位向量有两个,它们是相反向量:a a±.只写出一个向量a a是错误的.三、解答题21.(1)1-;(2)9-. 【分析】(1)利用平面向量基本定理,取AB AD 、为基底,利用向量加减法可解; (2)把所有的向量用基底AB AD 、表示后,计算AC EF ⋅. 【详解】解:(1)因为1,22BE BC CF FD ==, 所以12122323EF EC CF BC DC AD AB =+=-=-,所以21,32x y =-=, 故213232132x y ⎛⎫+=⨯-+⨯=- ⎪⎝⎭. (2)∵AC AB AD =+, ∴2212121()23236AC EF AB AD AD AB AD AB AB AD ⎛⎫⋅=+⋅-=--⋅⎪⎝⎭∵ABCD 为菱形∴||=||6AD AB = ∴2211||||cos 66AC EF AB AB BAD ⋅=--∠. 11136369662=-⨯-⨯⨯=-,即9AC EF ⋅=-.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则; (2)树立“基底”意识,利用基向量进行线性运算. 22.(1)6x π=;(2)23x π=时,()f x 取到最大值2,0x =时,()f x 取到最小值1-.【分析】(1)利用向量垂直的坐标表示可求得tan 3x =,结合x 的范围可求得x 的值; (2)将函数化简为()2sin 6f x x π⎛⎫=-⎪⎝⎭,根据x 的范围可求得6x π-的范围,结合正弦函数图象可确定最大值和最小值取得的点,进而求得结果. 【详解】解:(1)因为a b ⊥,所以sin co 30s b x x a =-=⋅,于是sin tan s co x x x ==又[]0,x π∈,所以6x π=;(2)()())sin ,1cos f x a x b x =⋅=⋅-cos x x =-2sin 6x π⎛⎫=- ⎪⎝⎭.因为[]0,x π∈,所以5,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 从而12sin 26x π⎛⎫-≤-≤ ⎪⎝⎭于是,当62x ππ-=,即23x π=时,()f x 取到最大值2; 当66x ππ-=-,即0x =时,()f x 取到最小值1-.【点睛】本题考查平面向量垂直的坐标表示、平面向量与三角函数的综合应用,涉及到三角函数最值的求解问题;求解三角函数最值的关键是能够利用整体对应的方式,结合正弦函数的图象来进行求解.23.(1)2;(2) 5. 【解析】试题分析:(1)由向量数量积的几何意义可求向量a 在b 方向上的投影; (2)由向量夹角公式可求a -b 与a +b 的夹角的余弦值 试题 (1)|a |=|(34,55)|=1 ∴向量a 在b 方向上的投影为a cosθ=a ?bb=(2)cos<a -b ,a +b>=()()a b a b a b a b-+-+|a -b |2=|a |2+|b |2-2ab =12,|a b - |a b +|2=|a |2+|b |2+2ab =52,|a b +|=102(a b -)(a b +)=a 2-b 2=12cos<,ab a b -+>=()()a b a b a b a b-+-+=24.(1)1k =±;(2)3π. 【分析】(1)本题首先可以根据12ke e +和12e ke +共线得出()1212ke e e ke λ+=+,然后通过计算即可得出结果;(2)本题首先可根据()()23a b a b +⊥-得出()()230a b a b +⋅-=,然后根据1a =以及2b =求出1cos 2θ=,最后根据[]0,θπ∈即可得出结果. 【详解】(1)因为12ke e +和12e ke +共线,非零向量1e 、2e 不共线,所以存在唯一实数λ使()1212ke e e ke λ+=+,即1212ke e e ke λλ+=+,则1k kλλ=⎧⎨=⎩,即21k =,1k =±, 故当1k =±时,12ke e +和12e ke +共线.(2)因为()()23a b a b +⊥-,所以()()22233520a b a b a a b b+⋅-=+⋅-=,令a 与b 夹角为θ, 因为1a =,2b =,所以2235231512cos 240a a b b θ+⋅-=⨯+⨯⨯⨯-⨯=,解得1cos 2θ=, 因为[]0,θπ∈,所以a 与b 的夹角3πθ=.【点睛】本题考查向量共线以及向量垂直的相关性质,若非零向量a 、b 共线,则存在唯一实数λ使λab ,若非零向量a 、b 垂直,则0a b ⋅=,考查计算能力,是中档题.25.(1)1m =-;(2)1λ=±. 【分析】(1)先求()313,3a b m -=--,再根据向量垂直的坐标运算即可求得1m =-; (2)先计算()32,21a b λλλ+=+-,()23,2a b λλλ+=+-+,再根据向量共线的坐标运算求解即可得1λ=±. 【详解】解:(1)根据题意有:()()()31,33,213,3a b m m -=-=--,∵ ()3a b c -⊥,∴ ()()3313120a b c m -⋅=⨯--=,解得1m =-,所以实数m 的值为:1m =-.(2)根据题意:()()()3,22,132,21a b λλλλλ+=+-=+-,()()()3,22,23,2a b λλλλλ+=+-=+-+,∵ a b λ+与a b λ+平行,∴ ()()()()32223210λλλλ+-+-+-=,解得:1λ=±. 【点睛】本题考查向量的坐标运算,向量垂直与平行的坐标表示,考查运算能力,是基础题. 26.(1)3;(2)49. 【分析】(1)G 为ABC 的重心,可得1331AG AB AC =+,再由,,P G Q 三点共线,利用共线的充要条件可得(1)AG AP AQ λλ=+-,结合已知和向量的基本定理,即可求出,h k 关系;(2)由三角形面积公式可得APQ ABCS hk S=,利用(1)中结论,结合基本不等式,即可求出结论. 【详解】(1)设BC 中点为D ,则,,A G D 三点共线, 且211333AG AD AB AC ==+, ,,P G Q 三点共线,存在唯一的λ,使得(1)(1)AG AQ QP AP AQ hAB k AC λλλλλ=+=+-=+-,,AB AC 不共线,131(1)3h k λλ⎧=⎪⎪⎨⎪-=⎪⎩, 整理得31()1,31h h k h k k=+=+; (2)1||||sin 21||||sin 2APQ ABC AP AQ BACS hk S AB AC BAC⋅⋅∠==⋅⋅∠ 114))911()((299k h h k h k h k =+++≥+=, 当且仅当23h k ==时,等号成立.APQ ABCS S的最小值为49. 【点睛】本题考查向量基本定理以及共线充要条件的应用,注意运用基本不等式求最值,属于中档题.。
苏教版必修四第二章 平面向量 第三讲 向量的坐标表示2 平面向量的坐标运算(学案含答案)
苏教版必修四第二章平面向量第三讲向量的坐标表示2 平面向量的坐标运算(学案含答案)(2)平面向量的坐标运算①已知向量a =(x 1,y 1),b =(x 2,y 2)和实数λ,那么a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1); ②已知A (x 1,y 1),B (x 2,y 2),O 为坐标原点,则OA OB AB -==(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1),即一个向量的坐标等于该向量终点的坐标减去起点的坐标。
【要点诠释】向量的坐标运算(1)向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标。
(2)解题过程中要注意方程思想的运用及正确使用运算法则。
【核心突破】点的坐标与向量的坐标的区别和联系① 在直角坐标平面内,以原点为起点的向量也叫位置向量。
位置向量OA a =,点A 的位置被向量a 唯一确定,此时A 的坐标与向量a 的坐标统一为(,)x y ;② 相等向量的坐标是相同的,但起点、终点坐标可以不同,如A (3,5),B (6,8),AB =(3,3);若C (-5,3),D (-2,6),CD =(3,3),显然,AB CD =,,A B 但,C D 四点坐标各不相同。
【重要提示】向量的坐标的作用利用向量的坐标表示,可把向量问题中的几何属性代数化,使问题的解决达到程序化,从而降低了思维难度,有利于问题的解决。
考点二:平面平行的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2)(a ≠0),如果a ∥b ,那么x 1y 2-x 2y 1=0;反过来,如果x 1y 2-x 2y 1=0,那么a ∥b 。
【核心归纳】两个向量共线条件的表示方法已知a =(x 1,y 1),b =(x 2,y 2),(1)当b ≠0时,a =λb ;(2)x 1y 2-x 2y 1=0;(3)当x 2y 2≠0时,2121y y x x =,即两向量的相应坐标成比例。
高中数学 第二章 平面向量章末检测(B)(含解析)苏教版
第2章 平面向量(B)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知向量a =(4,2),b =(x,3),且a ∥b ,则x 的值是________.2.设向量a =(m -2,m +3),b =(2m +1,m -2),若a 与b 的夹角大于90°,则实数m 的取值范围是________.3.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b=________.4.平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则AD →·BD →=________. 5.已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与向量b 的夹角是________. 6.关于平面向量a ,b ,c ,有下列四个命题: ①若a ∥b ,a ≠0,则存在λ∈R ,使得b =λa ; ②若a ·b =0,则a =0或b =0;③存在不全为零的实数λ,μ使得c =λa +μb ; ④若a ·b =a ·c ,则a ⊥(b -c ). 其中正确的命题是________.(填序号)7.已知|a |=5,|b |=3,且a ·b =-12,则向量a 在向量b 上的投影等于________. 8.a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________.9.已知向量a =(6,2),b =(-4,12),直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为________.10.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )=________.11.在△ABC 中,AR →=2RB →,CP →=2PR →,若AP →=mAB →+nAC →,则m +n =________.12.P 是△ABC 内的一点,AP →=13(AB →+AC →),则△ABC 的面积与△ABP 的面积之比为________.13.已知向量OP →=(2,1),OA →=(1,7),OB →=(5,1),设M 是直线OP 上任意一点(O 为坐标原点),则MA →·MB →的最小值为________.14.定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法正确的是________.(填相应说法的序号) ①若a 与b 共线,则a ⊙b =0; ②a ⊙b =b ⊙a ;③对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b );④(a ⊙b )2+(a ·b )2=|a |2|b |2.二、解答题(本大题共6小题,共90分) 15.(14分)如图所示,以向量OA →=a ,OB →=b 为边作AOBD ,又BM →=13BC →,CN →=13CD →,用a ,b 表示OM →、ON →、MN →.16.(14分)已知a ,b 的夹角为120°,且|a |=4,|b |=2, 求:(1)(a -2b )·(a +b );(2)|a +b |; (3)|3a -4b |.17.(14分)已知a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,且存在实数k 和t ,使得x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ,试求k +t2t的最小值.18.(16分)设OA →=(2,5),OB →=(3,1),OC →=(6,3).在线段OC 上是否存在点M ,使MA ⊥MB ?若存在,求出点M 的坐标;若不存在,请说明理由.19.(16分)设两个向量e 1、e 2满足|e 1|=2,|e 2|=1,e 1、e 2的夹角为60°,若向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,求实数t 的取值范围.20.(16分)已知线段PQ 过△OAB 的重心G ,且P 、Q 分别在OA 、OB 上,设OA →=a ,OB →=b ,OP →=m a ,OQ →=n b .求证:1m +1n=3.第2章 平面向量(B)1.6解析 ∵a ∥b ,∴4×3-2x =0,∴x =6.2.(-43,2)解析 ∵a 与b 的夹角大于90°,∴a ·b <0, ∴(m -2)(2m +1)+(m +3)(m -2)<0,即3m 2-2m -8<0,∴-43<m <2.3.12解析 AB →=(a -2,-2),AC →=(-2,b -2), ∵AB →∥AC →,∴(a -2)(b -2)-4=0,∴ab -2(a +b )=0,该等式两边同除以ab ,可得ab -2a +bab=0,∴1-2⎝⎛⎭⎪⎫1a +1b=0, ∴1a +1b =12. 4.8解析 ∵AD →=BC →=AC →-AB →=(-1,-1), ∴BD →=AD →-AB →=(-1,-1)-(2,4)=(-3,-5), ∴AD →·BD →=(-1,-1)·(-3,-5)=8. 5.π3解析 ∵a (b -a )=a ·b -|a |2=2,∴a ·b =3,∴cos 〈a ,b 〉=a ·b |a |·|b |=31×6=12,∴〈a ,b 〉=π3.6.①④解析 由向量共线定理知①正确;若a ·b =0,则a =0或b =0或a ⊥b ,所以②错误;在a ,b 能够作为基底时,对平面上任意向量,存在实数λ,μ使得c =λa +μb ,所以③错误;若a ·b =a ·c ,则a (b -c )=0,所以a ⊥(b -c ),所以④正确,即正确命题序号是①④. 7.-4解析 向量a 在向量b 上的投影为|a |cos 〈a ,b 〉=|a |·a ·b |a ||b |=a ·b |b |=-123=-4.8.7解析 ∵|5a -b |2=(5a -b )2=25a 2+b 2-10a ·b =25×12+32-10×1×3×(-12)=49.∴|5a -b |=7. 9.2x -3y -9=0解析 设P (x ,y )是直线上任意一点,根据题意,有AP →·(a +2b )=(x -3,y +1)·(-2,3)=0,整理化简得2x -3y -9=0.10.-35解析 由已知得4b =-3a -5c ,将等式两边平方得(4b )2=(-3a -5c )2,化简得a ·c =-35.同理由5c =-3a -4b 两边平方得a ·b =0,∴a ·(b +c )=a ·b +a ·c =-35. 11.79解析 AP →=AC →+CP →=AC →+23CR →=AC →+23(23AB →-AC →)=49AB →+13AC →故有m +n =49+13=79.12.3解析 设△ABC 边BC 的中点为D ,则 S △ABC S △ABP =2S △ABD S △ABP =2ADAP.∵AP →=13(AB →+AC →)=23AD →,∴AD →=32AP →,∴|AD →|=32|AP →|.∴S △ABCS △ABP=3. 13.-8解析 设OM →=tOP →=(2t ,t ),故有MA →·MB →=(1-2t,7-t )·(5-2t,1-t )=5t 2-20t +12=5(t -2)2-8,故当t =2时,MA →·MB →取得最小值-8. 14.①③④解析 若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,故①正确.由于a ⊙b =mq -np ,又b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,故②不正确.对于③,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,故③正确.对于,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,故④正确.15.解 BA →=OA →-OB →=a -b . ∴OM →=OB →+BM →=OB →+13BC →=OB →+16BA →=16a +56b .又OD →=a +b .ON →=OC →+CN →=12OD →+16OD →=23OD →=23a +23b , ∴MN →=ON →-OM → =23a +23b -16a -56b=12a -16b. 16.解 a ·b =|a ||b |cos 120°=4×2×⎝ ⎛⎭⎪⎫-12=-4. (1)(a -2b )·(a +b )=a 2-2a ·b +a ·b -2b 2=42-2×(-4)+(-4)-2×22 =12.(2)∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=16+2×(-4)+4=12. ∴|a +b |=2 3.(3)|3a -4b |2=9a 2-24a ·b +16b 2=9×42-24×(-4)+16×22=16×19,∴|3a -4b |=419.17.解 由题意有|a |=32+-12=2,|b |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫322=1. ∵a·b =3×12-1×32=0,∴a⊥b .∵x·y =0,∴[a +(t 2-3)b ](-k a +t b )=0.化简得k =t 3-3t4.∴k +t 2t =14(t 2+4t -3)=14(t +2)2-74.即t =-2时,k +t 2t 有最小值为-74.18.解 设OM →=tOC →,t ∈[0,1],则OM →=(6t,3t ),即M (6t,3t ).MA →=OA →-OM →=(2-6t,5-3t ), MB →=OB →-OM →=(3-6t,1-3t ). 若MA ⊥MB , 则MA →·MB →=(2-6t )(3-6t )+(5-3t )(1-3t )=0.即45t 2-48t +11=0,t =13或t =1115.∴存在点M ,M 点的坐标为(2,1)或⎝ ⎛⎭⎪⎫225,115. 19.解 由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得2t e 1+7e 2·e 1+t e 2|2t e 1+7e 2|·|e 1+t e 2|<0,即(2t e 1+7e 2)·(e 1+t e 2)<0.整理得:2t e 21+(2t 2+7)e 1·e 2+7t e 22<0.(*) ∵|e 1|=2,|e 2|=1,〈e 1,e 2〉=60°. ∴e 1·e 2=2×1×cos 60°=1∴(*)式化简得:2t 2+15t +7<0.解得:-7<t <-12.当向量2t e 1+7e 2与e 1+t e 2夹角为180°时,设2t e 1+7e 2=λ(e 1+t e 2) (λ<0). 对比系数得⎩⎪⎨⎪⎧2t =λ7=λtλ<0,∴⎩⎪⎨⎪⎧λ=-14t =-142∴所求实数t 的取值范围是⎝⎛⎭⎪⎫-7,-142∪⎝ ⎛⎭⎪⎫-142,-12.20.证明 如右图所示,∵OD →=12(OA →+OB →)=12(a +b ),∴OG →=23OD →=13(a +b ).∴PG →=OG →-OP → =13(a +b )-m a =(13-m )a +13b . PQ →=OQ →-OP →=n b -m a . 又P 、G 、Q 三点共线,所以存在一个实数λ,使得PG →=λPQ →. ∴(13-m )a +13b =λn b -λm a , ∴(13-m +λm )a +(13-λn )b =0. ∵a 与b 不共线,∴⎩⎪⎨⎪⎧13-m +λm =0, ①13-λn =0, ②由①②消去λ得:1m +1n=3.。
苏教版必修四第二章 平面向量 第四讲 向量的数量积 (习题+解析)
1. 下列式子:①2a ba ⋅=b a;②(a ·b )2=a 2·b 2;③a ·a ·a =a 3;④(a ·b )·c =a ·(b ·c ) 其中错误的序号为________。
*2. (安徽高考)若非零向量a ,b 满足|a |=3|b |=|a +2b |,则a 与b 夹角的余弦值为_______。
**3. (山东高考)在平面直角坐标系xOy 中,已知OA =(-1,t ),OB =(2,2),若∠ABO =90°,则实数t 的值为________。
*4. 在边长为1的正三角形ABC 中,设=2,=3,则·=________。
**5. 已知向量a =(1,2),b =(-2,-4),|c |=5,若(a +b )·c =25,则a 与c 的夹角是________。
**6. 已知向量=(2,2),=(4,1),O 为坐标原点,在x 轴上取一点P 使AP →·BP→有最小值,则点P 的坐标是________。
**7. 已知|a |=5,|b |=4,且a 与b 的夹角为60°,则当k 为何值时,向量k a -b 与a +2b 垂直?**8. 已知|a |=2,|b |=3,a 和b 的夹角为45°,求当向量a +λb 与a +b 的夹角为锐角时λ的取值范围。
***9. 已知a =(3,-1),b =(21,23),且存在实数k 和t ,使得x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ,试求tt k 2+的最小值。
1. ①②④ 解析:①错,因为不存在这样的运算,向量间只能作加、减、乘运算,此题应分子、分母先分开算;②错,因为(a ·b )2=(|a |·|b |cos θ)2=a 2·b 2cos 2θ不一定与a 2·b 2相等;④错,因为a 与c 方向未必一致。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A 1B .1C .1D 12.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( ) A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)3.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52 C .3 D .72 4.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +5.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-6.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-7.已知向量12AB ⎛⎫= ⎝⎭,5AC =,3AB BC ⋅=,则BC =( )A .3B .C .4D .8.已知ABC ∆为等边三角形,则cos ,AB BC =( )A .B .12-C .12D 9.直线0ax by c 与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( )A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-10.ABC 中,5AB =,10AC =,25AB AC =,点P 是ABC 内(包括边界)的一动点,且32()55AP AB AC R λλ=-∈,则||AP 的最大值是( )A .332B .37C .39D .4111.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( ) A .22B .122+C .222+D .4212.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56π B .23π C .3πD .6π 二、填空题13.如图,已知四边形ABCD ,AD CD ⊥,AC BC ⊥,E 是AB 的中点,1CE =,若//AD CE ,则AC BD ⋅的最小值为___________.14.在ABC 中,AB AC =,E ,F 是边BC 的三等分点,若3AB AC AB AC +=-,则cos EAF ∠=_______________15.在ABC 中,90,6C CA CB ∠=︒==,P 为ABC 所在平面内一动点,则()CP AP BP ⋅+的最小值为________.16.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.已知ABC 的三边长3AC =,4BC =,5AB =,P 为AB 边上任意一点,则()CP BA BC ⋅-的最大值为______________.19.在AOB 中,已知1OA =,3OB =2AOB π∠=.若点C ,D 满足971616OC OA OB =-+,()12CD CO CB =⋅+,则CD CO ⋅的值为_______________.20.已知夹角为θ的两个单位向量,a b ,向量c 满足()()0a c b c -⋅-=,则c 的最大值为______.三、解答题21.三角形ABC 中,D 为BC 上一点,2BD DC =,设AD a =,AC b =,可以用a ,b 来表示出AD ,方法如下:方法一:23AD AB A D BC B B ==++,∵BC AC AB =-,∴21212()33333AD AB AC AB AB AC a b =+-=+=+. 方法二:13AC CD AC AD CB =+=+,∵CB AB AC =-,∴11212()33333AD AC AB AC AB AC a b =+-=+=+. 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且2BD DC =,∴13FD CD AB CB ==,13FD AE AB ==.∵//ED AC ,2BD DC =.∴23ED BD AC BC ==,得23ED AF AC ==.∴12123333AD AE ED AE AF AB AC a b =+=+=+=+. 请参照上述方法之一(用其他方法也可),解决下列问题:(1)三角形ABC 中,D 为BC 的中点,设AB a =,AC b =,试用a ,b 表示出AD ;(2)设D 为直线BC 上任意一点(除B 、C 两点),BD kDC =.点A 为直线BC 外任意一点,AB a =,AC b =,证明:存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=.22.如图,在扇形OAB 中,120AOB ∠=︒,半径2OA OB ==,P 为弧AB 上一点.(1)若OA OP ⊥,求PA PB ⋅的值; (2)求PA PB ⋅的最小值. 23.解答下列问题:(1)求平行于直线3x+4y- 2=0,且与它的距离是1的直线方程; (2)求垂直于直线x+3y -5=0且与点P( -1,0)的距离是3105的直线方程.24.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角.25.已知()()cos ,sin ,2sin ,2cos OP OQ θθθθ==+-,其中[)0,2θ∈π,求PQ 的最大值,并指出PQ 取得最大值时OP 与OQ 夹角的大小. 26.已知a =(1,2)b =(-3,2),当k 为何值时. (1)ka b +与3a b -垂直; (2)ka b +与3a b -平行.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC +=, 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=-.当且仅当AP AB AC --与AB AC +方向相反时,等号成立. 因此,AP 的最小值为231-. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 2.C解析:C 【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C-,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=, 可得2cos303=,2sin301,所以()3,1B -- ,)3,1C-,设(),P x y ,因为点P 是其内一点,所以33,10x y -<<-<<,()(),3,13AP AB x y x y ⋅=⋅-=--,当3x =-1y =-时AP AB ⋅最大为((()3314-⨯---=, 当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-, 故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值. 3.B解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.4.D解析:D 【分析】根据向量的加法的几何意义即可求得结果. 【详解】在ABC ∆中,M 是BC 的中点, 又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目.5.B解析:B 【分析】求出2a b -)=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答. 6.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.7.B解析:B 【分析】首先设出点A (0,0)、C (x ,y )的坐标,由已知条件5AC =,3AB BC ⋅=列出关于x 、y 的方程组,然后根据向量的差的计算性质表示出向量BC 的坐标形式,并表示出向量BC 的模,将以上列出的关于x 、y 的式子整体带入即可求得BC .【详解】 设(0,0)A ,(),C x yBC AC AB =-()13,,2x y ⎛⎫⎝- =⎪⎪⎭13,2x y ⎛⎫-- ⎪ ⎪⎝⎭= 3AB BC ⋅=1313,,322x y ⎛⎫⎛⎫∴⋅--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 即38x y += (1)5AC =又2225x y ∴+= (2) 2213()22C x y B ⎛⎫-+- ⎪ ⎝=⎪⎭ 22(3)1x y x y =+-++将(1)(2)代入上式解得:258132BC =-+=故选B 【点睛】本题考查了向量的坐标运算以及向量模的计算,其中考查了整体代换的思想方法,属于中档题目,计算中选择合适的解题方法,尽量要避免通过解方程求解点C 的坐标然后再求解向量BC 的模,否则就会大大的增加计算量,甚至出现解题错误.8.B解析:B 【分析】判断,AB BC 两向量夹角容易出错,是23π,而不是3π【详解】由图发现,AB BC 的夹角不是B 而是其补角23π,21cos ,cos32AB BC π<>==- 【点睛】本题考查的是两向量夹角的定义,属于易错题,该类型题建议学生多画画图.9.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-, ()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.10.B解析:B 【分析】以A 为原点,以AB 所在的直线为x轴,建立平面直角坐标系,根据向量的坐标运算求得3)y x =-,当该直线与直线BC 相交时,||AP 取得最大值.【详解】解:ABC 中,5AB =,10AC =,25AB AC =,510cos 25A ∴⨯⨯=,1cos 2A =,60A ∴=︒,90B =︒; 以A 为原点,以AB 所在的直线为x 轴,建立如图所示的坐标系, 如图所示,5AB =,10AC =,60BAC ∠=︒,(0,0)A ∴,(5,0)B ,(5C,,设点P 为(,)x y ,05x ,03y ,3255AP AB AC λ=-, (x ∴,3)(55y =,20)(55λ-,(32λ=-,)-,∴32x y λ=-⎧⎪⎨=-⎪⎩,3)y x ∴-,①直线BC 的方程为5x =,②,联立①②,得5x y =⎧⎪⎨=⎪⎩此时||AP 最大,||AP ∴=故选:B .【点睛】本题考查了向量在几何中的应用问题,建立直角坐标系是解题的关键,属于中档题. 11.C解析:C【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】 ∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c b m n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M 2M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立,又OC 的最大值是圆M 的直径22∴d 最大值为222.故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.12.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果.【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE ,所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅ 2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭ 2214sin 12θ⎛⎫=-- ⎪⎝⎭, 当21sin 2θ=时,AC BD ⋅取得最小值1-, 故答案为:1-.【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【分析】以ABAC 为邻边作平行四边形ABCD 根据得到再根据得到平行四边形ABCD 是菱形则设利用勾股定理分别求得的长度在中利用余弦定理求解【详解】如图所示:以ABAC 为邻边作平行四边形ABCD 则因为所 解析:1314【分析】以AB ,AC 为邻边作平行四边形ABCD ,根据3AB AC AB AC +=-,得到3AD CB =, 再根据AB AC =,得到平行四边形ABCD 是菱形,则CB AD ⊥,设3CB =EF ,,AE AF 的长度,在AEF 中利用余弦定理求解.【详解】如图所示:以AB ,AC 为邻边作平行四边形ABCD ,则,AB AC AD AB AC CB +=-=, 因为3AB AC AB AC +=-, 所以3AD CB =,设3CB =3AD =,因为AB AC =,所以平行四边形ABCD 是菱形,所以CB AD ⊥,所以223333,223AB AC EF ⎛⎫⎛⎫==+== ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以22332126AE AF ⎛⎫⎛⎫==+= ⎪ ⎪ ⎪⎝⎭⎝⎭ 所以2222121113993cos 21421212AE AF EF EAF AE AF +-+-∠===⋅⋅. 故答案为:1314【点睛】本题主要考查平面向量的平行四边形法则以及余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.15.【分析】建立坐标系利用向量的坐标运算公式将用的坐标表示利用配方法求得最小值【详解】由题意可建立如图所示的直角坐标系易知设则故当且仅当时取得等号∴所求最小值为故答案为:【点睛】本题考查向量的数量积的坐 解析:9-【分析】建立坐标系,利用向量的坐标运算公式将()CP AP BP ⋅+用(),P x y 的坐标表示,利用配方法求得最小值.【详解】由题意可建立如图所示的直角坐标系,易知()()()6,0,0,6,0,0A B C ,设(),P x y ,则(,),(6,),(,6)CP x y AP x y BP x y ==-=-, 故2233()(26)(26)229922CP AP BP x x y y x y ⎛⎫⎛⎫⋅+=-+-=-+--- ⎪ ⎪⎝⎭⎝⎭. 当且仅当32x y ==时取得等号, ∴所求最小值为9-,故答案为:9-.【点睛】本题考查向量的数量积的坐标运算和配方法求最值,关键在于建立坐标系,用(),P x y 的坐标表达所求的向量的数量积,属中档题.16.【分析】由已知得再两边平方求得代入可求得答案【详解】因为所以又因为所以即又所以所以所以故答案为:【点睛】本题考查向量的线性运算向量的数量积以及向量的模的计算属于中档题解析:25-【分析】 由已知得()c a b =-+,再两边平方22+2+25a a b b⋅=,求得0a b ⋅=,代入可求得答案.【详解】 因为0a b c ++=,所以()c a b =-+,又因为5c =,所以()225a b +=,即22+2+25a a b b ⋅=,又3a =,4b =, 所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-,故答案为:25-.【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311 【解析】 由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN=AB +n (AN AB -)=(1-n )14AB n AC +=m 211AB AC +. 由14n=211,得m=1-n=311. 18.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题 解析:9【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案.【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C ,∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈, ∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 .【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题. 19.【分析】以为基底向量表示再由数量积的运算律定义计算即可【详解】∵∴D 为OB 的中点从而∴∵∴∴故答案为:【点睛】本题考查平面向量的数量积需要根据题意确定基底向量再根据平面向量基本定理表示所求的向量数量 解析:1564【分析】以,OA OB 为基底向量表示CD CO ,,再由数量积的运算律、定义计算即可.【详解】 ∵1()2CD CO CB =+,∴D 为OB 的中点,从而12OD OB =, ∴97191161621616CD CO OD OA OB OB OA OB =+=-+=+ ∵1OA =,OB =2AOB π∠=,∴0OA OB ⋅= ∴9197()()16161616CD CO OA OB OA OB ⋅=+⋅- 221(817)256OA OB =-1(8173)256=-⨯1564=. 故答案为:1564. 【点睛】 本题考查平面向量的数量积,需要根据题意确定基底向量,再根据平面向量基本定理表示所求的向量数量积,进而根据数量积公式求解.属于中档题.20.【分析】建立平面直角坐标系设出向量的坐标得出向量的终点的轨迹方程再运用点与圆的位置关系可以得到的最大值【详解】由已知建立平面直角坐标系设又所以所以点在以为圆心以为半径的圆上所以的最大值为所以的最大值 解析:cossin 22θθ+【分析】建立平面直角坐标系,设出向量a b c ,,的坐标,得出向量c 的终点C 的轨迹方程,再运用点与圆的位置关系可以得到||c 的最大值.【详解】由已知建立平面直角坐标系,设()()()10cos ,sin ,,OA a OB b OC c x y θθ======,,,又()()0a c b c -⋅-=, 所以()22+1+cos sin +cos 0x x y y θθθ-⋅-⋅=, 所以点C 在以1+cos sin ,22P θθ⎛⎫ ⎪⎝⎭为圆心,以sin 2R θ=为半径的圆上,所以c 的最大值为+cos +sin 222OP R θθθ==, 所以c 的最大值为cossin 22θθ+, 故答案为:cossin 22θθ+. 【点睛】本题考查求向量的模的最值,建立平面直角坐标系,设出向量坐标,得出向量的终点的轨迹方程是解决本题的关键,属于中档题. 三、解答题21.(1)1122AD a b =+;(2)证明过程见详解. 【分析】(1)根据题干中所给的方法,结合向量的线性运算,可分别求解;(2)根据题干中所给的方法,由向量的线性运算,用a ,b 表示出AD ,即可得出结论成立.【详解】(1)因为D 为BC 的中点,方法一: 12AD AB BD AB BC =+=+,∵BC AC AB =-, ∴11221)22(221AD AB AC AB AB AC a b =+-=+=+; 方法二: 21AC CD AC AD CB =+=+,∵CB AB AC =-, ∴111221)2(221AD AC AB AC AB AC a b =+-=+=+; 方法三:如图所示,过点D 作AC 的平行线,交AB 于点E ,过点D 作AB 的平行线,交AC 于点F ,则四边形AEDF 为平行四边形.∵//DF AB 且BD DC =,∴21FD CD AB CB ==,21FD AE AB ==. ∵//ED AC ,BD DC =.∴12ED BD AC BC ==,得12ED AF AC ==. ∴11212212AD AE ED AE AF AB AC a b =+=+=+=+; (2)因为D 为直线BC 上任意一点(除B 、C 两点),BD kDC =,显然1k ≠-; 所以1k BD BC k =+,11CB k CD =+, 方法一: 1AD AB BD AB BC k k =+++=,∵BC AC AB =-, ∴1111111()k k k AD AB AC AB AB AC a b k k k k k +++++=+-=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 方法二:11A AC CD AC CB D k =++=+,∵CB AB AC =-, ∴11111111()k k k k AD AC AB AC A k k B AC a b k ++=+-=+++=++; 即存在唯一实数对11k λ=+,1k k μ=+,使得:AD a b λμ=+,且1λμ+=; 方法三:若点D 位于点B 左侧,如图,过点D 作//DM AB ,过点A 作//AM BC ,交DM 于点M ,则AMDB 为平行四边形,1k AM BD BC k ==+,所以11()AD AB AM AB BC AB k k k k AC AB =++=-+++=111111k k AB AC a b k k k k ++++=+=+; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于点C 右侧,如图,过点D 作//DN AC ,过点A 作//AN BC ,交DN 于点N ,则ANDC 为平行四边形, 11AN CD BC k ==+,因此11A AC AN AC CB D k =++=+111111(1)k k k AB AC AB AB AC a b k k k k k +++=+++-+=+=, 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 若点D 位于BC 之间,则0k >;如图所示,过点D 作AC 的平行线,交AB 于点P ,过点D 作AB 的平行线,交AC 于点Q ,则四边形APDQ 为平行四边形.∵//DQ AB 且BD DC =,∴11QD CD AB C k B =+=,11Q k D AP AB =+=, ∵//PD AC ,BD DC =.∴1PD BD AC BC k k =+=,得1k k PD AQ AC =+=. ∴111111AD AP AQ AB AC k k a b k k k k =+=++=++++; 即存在唯一实数对1k k λ=+,11k μ=+,使得:AD a b λμ=+,且1λμ+=; 综上,存在唯一实数对λ,μ,使得:AD a b λμ=+,且1λμ+=. 【点睛】思路点睛:利用平面向量的一组基底表示向量时,只需根据向量的线性运算法则,结合平面向量基本定理,逐步求解即可.22.(1)223-;(2)2-. 【分析】(1)先通过倒角运算得出30POB ∠=︒,120APB ∠=︒,再在POB 中,由余弦定理可求得62PB =-,然后根据平面向量数量积的定义cos PA PB PA PB APB ⋅=⋅∠,代入数据进行运算即可得解;(2)以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦,结合平面向量数量积的坐标运算,用含有α的式子表示出PA PB ⋅,再利用三角恒等变换公式和正弦函数的图象即可得解.【详解】(1)当OA OP ⊥时,如图所示,∵120AOB ∠=︒,∴1209030POB ∠=︒-︒=︒,18030752OPB ︒-︒∠==︒,∴7545120APB ∠=︒+︒=︒,在POB 中,由余弦定理,得 222222cos 22222cos30843PB OB OP OB OP POB =+-⋅∠=+-⨯⨯⨯︒=- ∴84362PB =-=,又222PA OA ==∴1cos 22622232PA PB PA PB APB ⎛⎫⋅=⋅∠=⨯-=- ⎪⎝⎭(2)以O 为原点,OA 所在直线为x 轴建立如图所示的平面直角坐标系,则()2,0A ,∵120AOB ∠=︒,2OB =,∴(3B -,设()2cos ,2sin P αα,其中20,3πα⎡⎤∈⎢⎥⎣⎦, 则()()22cos ,2sin 12cos 32sin PA PB αααα⋅=--⋅-- 2222cos 4cos 23sin 4sin αααα=--+-+2cos 2324sin 26πααα⎛⎫=--+=-++ ⎪⎝⎭. ∵20,3πα⎡⎤∈⎢⎥⎣⎦,∴5,666πππα⎡⎤+∈⎢⎥⎣⎦,1sin ,162πα⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦, ∴当62ππα+=,即3πα=时,PA PB ⋅取得最小值为2-.【点睛】本题考查平面向量的坐标表示,考查平面向量的数量积,考查余弦定理,考查三角函数的图象与性质,属于中档题.23.(1)3x+4y+3=0或3x+4y-7=0 (2) 3x-y+9=0或3x-y-3=0【详解】试题分析:(1)将平行线的距离转化为点到线的距离,用点到直线的距离公式求解;(2)由相互垂直设出所求直线方程,然后由点到直线的距离求解.试题解:(1)设所求直线上任意一点P (x ,y ),由题意可得点P 到直线的距离等于1,即34215x y d +-==,∴3x+4y-2=±5,即3x+4y+3=0或3x+4y-7=0.(2)所求直线方程为30x y c -+=,由题意可得点P 到直线的距离等于3105,即331010cd -+==∴9c =或3c =-,即3x-y+9=0或3x-y-3=0. 考点:1.两条平行直线间的距离公式;2.两直线的平行与垂直关系 24.(1)232)6π.【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ 【详解】解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ 则2()3cos ||||42383a ab aa ab θ+====+⨯0θπ ∴6πθ=.【点睛】 本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题 25.π-【分析】利用向量模的坐标表示求出2PQ ,由余弦函数的单调性知当θπ=时2PQ 取最大值18即PQ 取最大值OP 、OQ 的坐标,由cos ,OP OQ OP OQ OP OQ⋅<>=⋅即可求得两向量的夹角.【详解】222(2sin cos )(2cos sin )PQ θθθθ=+-+--22228sin cos 4sin 4cos 2sin cos sin cos 4cos 4sin 2sin cos θθθθθθθθθθθθ=+++--++--+108cos θ=- 又[)0,2θπ∈,所以当θπ=时,cos θ取得最小值1-,2PQ 取最大值18,即当θπ=时,PQ 取最大值此时(1,0)OP =-,(23)OQ =,,cos ,1OP OQOP OQ OP OQ ⋅<>===⨯⋅,所以PQ 取得最大值时OP 与OQ 夹角为π- 【点睛】 本题考查向量数量积的坐标表示、向量模的坐标表示、向量夹角的计算,属于中档题. 26.(1)19; (2)13-. 【分析】(1)由题意,求得(3,22),3(10,4)ka b k k a b +=-+-=-,根据因为ka b +与3a b -垂直,列出方程,即可求解;(2)根据ka b +与3a b -平行,列出方程,即可求解.【详解】(1)由题意,向量(1,2),(3,2)a b ==-,则(3,22),3(10,4)ka b k k a b +=-+-=-,因为ka b +与3a b -垂直,所以()(3)10(3)4(22)0ka b a b k k +⋅-=--+=,即2380k -=,解得19k =.(2)若ka b +与3a b -平行,则满足4(3)10(22)0k k ---+=,即2480k -+=,解得13k =-.【点睛】本题主要考查了向量的坐标运算,以向量垂直和平行的判定及应用,其中解答中熟练应用向量的坐标运算公式,根据向量垂直和平行,列出方程求解是解答的关键,着重考查了推理与运算能力.。