流体流动类型的概念及判断
自化工原理_王志魁_第四版___复习大纲及复习题解析

第一章流体流动1流体静力学压强的基准;流体静力学方程及应用。
“等压面”2 管内流体流动的基本方程式流量与流速间的关系;连续性方程及应用;柏努利方程及应用要点。
3 管内流体流动现象黏度的单位及换算、影响因素(温度);流体流动类型及判据;两种基本流动类型的区别。
“质点运动方式、管内流速分布”“理解边界层的概念及对传质传热的影响”4管内流体流动的摩擦阻力损失流动阻力产生的原因和条件;摩擦系数的影响因素(P37图1-28);当量直径;直管及局部阻力计算。
5管路计算6流量的测定常见流量计的类型及应用。
➢流体流动问答题1流体流动有哪两种基本流动类型,如何判断?2 从质点运动方式和管内流速分布两方面说明层流和湍流的区别。
3一定量的液体在圆形直管内作滞流流动。
若管长及液体物性不变,而管径减至原有的一半,问因流动阻力产生的能量损失为原来的多少倍?若流动处于完全湍流区,则结果如何?简要写出推导过程。
4 期中问答题15P551-6➢流体流动的计算主要计算公式:流量与流速间关系式;连续性方程;柏努利方程;摩擦阻力损失计算式。
注意:截面选取、压强基准、储槽液面流速可略。
局部阻力系数与截面选取应一致辅助计算式:当量直径、雷诺数、功(效)率和计算➢流体流动的计算计算类型:(1)求输送设备的功率(效率);(2)求设备间的相对位置;(3)求输送的流量;(4)求某截面处压强;(5)求管径。
注意:单位的一致性。
1离心泵的工作原理气缚现象及产生的原因、如何防止。
2离心泵的主要部件及其作用3 离心泵的主要性能参数4离心泵的特性曲线一定转速下离心泵特性曲线的特点;输送流体的密度和黏度变化对离心泵的流量、扬程、轴功率及效率的影响。
5 离心泵的工作点和流量调节“工作点”、“额定点(设计点)”;离心泵常用的流量调节方法,流量调节时工作点的变化,画图示意。
6离心泵的汽蚀现象和安装高度汽蚀现象及产生的原因、如何防止,表示离心泵汽蚀性能的主要参数。
“通过计算判断是否发生汽蚀”7 离心泵的操作和选型启动和关闭时的要点及原因;选型主要依据。
【流变学】概念(考试整理版)

变形:施加适当的力系于物质上而使其形状和大小发生的变化。
流动:当变形的程度随时间而变化时就成为流动。
区别:变形是固属,流动是液属。
外力作用时间的长短及观察时间的不同。
稳定流动:流体在输送通道中流动时,任何部位的流动状况保持恒定,一切影响流体流动的因素都不随时间而改变。
不稳定流动:流体在输送通道中流动时,其流动状况随时间而改变。
次级流动:高分子液体在均匀压力梯度下通过非圆形管道流动,或通过截面有变化的流道时,在其主要的纯轴向流动上,附加出现局部区域的环形流动。
孔压误差:在凹槽附近流线发生弯曲,产生了背向凹槽的法向应力,使凹槽的传感器测得的液体内压值小于平直时的测值。
弯流压差:高分子液体流经弯道时,内侧壁受到的压力要高于外侧壁的压力。
Toms效应:在高速的管道湍流中,加入少许高分子物质,如聚氧化乙烯、聚丙烯酰胺等,则管道的阻力将大为减小的现象。
触变性:流体的粘度随流动时间的延长而下降。
(触变材料是假塑性体,反之不定)震凝性:流体的粘度随流动时间的延长而上升。
(震凝材料是胀流体,反之不定)剪切流动:不同平面间两质点发生的相对位移,质点速度仅沿与流动方向垂直的方向变化。
拉伸流动:同一平面中两质点间距离的延长,质点速度仅沿流动方向变化。
层流:流体沿管轴作有规则的平行线状流动,各质点互不碰撞,互不混合。
湍流:总体轴向流动+径向随机波动。
质点作不规则的杂乱运动,并相互碰撞,产生大大小小的漩涡。
区别:是否存在速度、压强的脉动性。
过渡流:不是独立流型(层+湍),流体处于不稳定状态(易发生流型转变)。
剪切应力:单位面积上所受的剪切力F/A为τ。
粘度:动力粘度、运动粘度和相对粘度的通称。
常把动力学粘度称为粘度。
运动粘度:动力粘度/流体密度。
相对粘度:流体的动力粘度与同温度下的水的动力粘度之比。
有时也指高分子溶液的动力粘度与同温度下的纯溶剂的动力粘度之比。
相对流动度指数:在给定的剪切速率下,测定熔体相差10℃或40℃的两个温度下剪切粘度的比值。
第六章流体力学10.8

第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。
在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。
流体的粘滞性:流体流动时产生内摩擦力的性质。
二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。
理想流体:忽略了粘滞性的流体。
三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。
()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。
()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。
(2)流线流场:流体流动的空间。
流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。
流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。
假定某一瞬间有两条流线相交于M点或转折。
M处就该有两个速度矢量,这是不符合流线的定义。
3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。
(2)微小流束及总流流束:在流管中运动的流体。
微小流束:断面无穷小的流束称为微小流束。
微小流束断面上各点的运动要素相等。
流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。
伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。
流体力学(上)实验——11级食科2班105宿舍出版资料

一、流体流动形态的观察与测定(雷诺实验)实验任务:流型及其判断方法;层流、湍流、层流时流速分布曲线1、雷诺准数Re=duρ/μ2、流动类型及判断Re<2100为层流,Re>4000为湍流, 2100<Re<4000为过渡流。
3、转子流量计原理及安装原理:在不同的流量下,要保持转子上下端之间具有相同的静压差,转子与玻璃管环隙间的截面积必须发生改变。
在不同的流量下,转子会停留在玻璃管内不同的高度处,因此转子在不同高度处的刻度就可只是流体的流量。
安装:(1)垂直安装(2)进出口应有5倍管道直径以上的直管段(3)安装在没有振动、便于观察和维修的场所(4)小口径的仪表,应在仪表上游装一个过滤器(5)在转子流量计的进出口装有截止阀和配置旁通阀4、思考题(1)影响流体流动型态的因素有哪些?答:影响流体流动形态的因素有4点:管径d、流速u、流体密度ρ、流体黏度μ。
(2)如果管子不是透明的,不能直接观察来判断管中的流体流动型态,你认为可以用什么办法来判断?答:①若不借助外用工具,如果管子是软的可以摸摸就能感觉,也可以用听来判断;如果只硬的管子,就只能用听来判断。
②用雷诺数判断:Re<2100为层流,Re>4000为湍流, 2100<Re<4000为过渡流。
(3)有人说可以只用流速来判断管中流体流动型态,流速低于某一具体数值时是层流,否则是湍流,你认为这种看法对否?在什么条件下可以由流速的数值来判断流动型态?答:不对。
流体流动型态不仅包括层流、湍流,还有过渡流。
条件:水槽液位高度保持不变,液面绝对平静,墨水粗细合理,水中无杂质,温度、气压和管径保持不变。
(4)在实验中,连续注入水以爆出水槽液面高度不变的目的是什么?答:①由于是通过转子流量计来测量水管中水流的流速,如果水槽中液面高度不能恒定在画线处的话,转子流量计的指示值就不准确,雷诺数的计算值就有较大误差。
②有P=ρgh可知,保持水槽液面高度h不变,就是保持水槽出水口出的压强P不变。
流体流动、传热边界层

流体主要特征
1. 流动性; 2. 无固定形状,随容器形状而变化; 3. 受外力作用时内部产生相对运动。
流体种类
1. 不可压缩性流体:流体的体积不随压强而变化,受热时 不可压缩性流体: 体积膨胀不显著。 2. 可压缩性流体 :流体的体积随压强和温度发生显著变化。 可压缩性流体: 一般液体的体积随压强和温度变化很小,可视为不可压 缩性流体;而对于气体,当压强和温度变化时,体积会有较 大的变化,常视为可压缩性流体,但如果压强和温度的变化 率不大时,该气体也可近似地按不可压缩性流体处理。
22
∆p du = − ⋅ r ⋅ dr 2µl
∆p r2 µ =− +c 2µl 2
∆p 2 ⋅R 当r = R, = 0时 c = u 4µl ∆p 2 R−r ∴u = 4µl
(
)
r = 0时,u = umax
∆p 2 ⋅R 代入上式得: umax = 4µl
r2 u = umax1− 2 R
Re = duρ
µ
流体在圆管内的速度分布
层流时的速度分布
图1-19 层流时的速度分布
层流时,流体层间的剪应力服从牛顿粘性定律,平 均速度与管中心最大速度之比u/umax等于0.5。
14
湍流时的速度分布
湍流时的速度分布
基本特征是出现了径向脉动速度,使得动量 传递较之层流大得多。此时剪应力不服从牛顿粘 性定律表示,但可写成相仿的形式: . du τ e = ( µ + e)
流 体 流 动、传热边界层
1
基础知识
连续介质假定
流体质点: 流体质点:由大量分子构成的微团,其尺寸远小于设备尺寸, 质点 但却远大于分子自由程。 连续介质:质点在流体内部紧紧相连,彼此间没有间隙,即 连续介质: 流体充满所占空间。 在研究流体流动时,常摆脱复杂的分子运动和分子 间相互作用,从宏观角度出发,将流体视为由无数流体 质点(或微团)组成的连续介质。
化工——第二章_2(流动基本概念)

Re 9 10 5 2000 1 整理得: u 1.14( m s ) d 0.158
燃料油在管中作层流时的临界速度为1.14m· s-1。
2-7 流速分布
层流
如上图所示,流体在圆形直管内作定态层流流动。在圆管内, 以管轴为中心,取半径为r、长度为l的流体柱作为研究对象。
粘性是流体流动时产生的阻碍流体流动的内摩擦力。 粘度是衡量流体粘性大小的物理量。
u F A y
u F A y
剪应力:单位面积上的内摩擦力,以τ表示。
F u A y
适用于u与y成直线关系
du dy
式中:
——牛顿粘性定律
du 速度梯度 : dy
比例系数,它的值随流体的不同而不同,流 :
P (泊)
cm
SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 1000 cP 10 P
5)运动粘度
v
单位: SI制:m2/s; 物理单位制:cm2/s,用St表示。
1 St 100 cSt 10 4 m 2 / s
思考:
(1)气体在一定直径的圆管中流动,如果qm不变,
第二章 流体流动与输送
闽南师范大学 化学与环境科学系 主讲:张婷
第二节
流体流动
一、流量与流速
二、定态流动与非定态流动 三、流动形态 四、牛顿黏性定律 五、边界层及边界层分离 六、流体在管内的速度分布
§2 流体流动
2-1 流体的流量和流速 • 流量
单位时间内通过导管任一截面的流体量称为流量(或流率)。
d u 流体的流动类型用雷诺数Re判断: Re
Re的量纲:
L M ( L) 3 du T L [Re] [ ] L0 M 0T 0 1 M ( L )(T )
流体的流动形态和阻力损失
1、流体流动的类型 2、如何判定流体流动的类型 3、层流内层的概念 4、流体阻力的表现和来源 5、减低流体阻力的途经
三明市高级技工学校化工原理电子课件
作业:
P75 20、21、25
(1)流体流动的形态
问题1:一杯水滴入一滴黑墨水,结果怎样? 结论:黑色水会慢慢散开,整杯水变黑 问题2:流动的水中加入有色水会怎样呢?
做实验!
英国物理学家雷诺就做了这样的实验
任务:回去上网查一下雷诺是一个怎样的人呢?
三明市高级技工学校化工原理电子课件
雷诺实验:
实验装置
三明市高级技工学校化工原理电子课件
小知识
三明市高级技工学校化工原理电子课件
三明市高级技工学校化工原理电子课件
小知识 湍流大家并行攻关难题的足迹
科学和艺术向来只有一线之隔,文艺复兴时期的达 · 芬奇无疑是湍流研究 的先驱,甚至可以说是开创者。而湍流的科学概念,最早由英国著名物理学 家雷诺于1883年提出,自此以后的130年以来,一大批世界顶级物理学家、 应用数学家、流体力学家和工程师为探索湍流付出了巨大努力,产生了大量 思想,但湍流至今尚未取得实质性突破。这些科学巨匠包括但不限于:泰勒 ( 20 世纪物理学泰斗)、普朗特(现代流体力学之父,钱学森师爷)、冯. 卡门(航空航天时代的科学奇才,钱学森导师),韦纳· 海森堡和李政道(诺 贝尔奖得主),Komolgorolov(前苏联最著名的数学家,湍流唯象理论的 奠基人),Kraichnan(爱因斯坦博士后,现代湍流分析理论开创者),周培 源(爱因斯坦博士后,著名理论物理学家,北京大学前校长,湍流模式理论 泰斗)、 U.Frish(当代湍流界泰斗、法国科学院院士、恩师的导师)。梳 理已有理论成果,我们发现绝大多数、包括被认为是很重要的成果都是针对 理想湍流的。但真实世界并不存在理想湍流,对理想湍流的研究解决不了真 实湍流问题。这既源于针对理想湍流所采用的假设在真实湍流场根本不能满 足,但源于均匀各项同性湍流这一理想模型没有保留真实湍流的本质。鉴于 此,近年周恒院士、张涵信院士、佘振苏教授等呼吁加强对真实湍流的研究。
第三章流体流动的基本概念和方程
第三章流体流动的基本概念和方程引言:流体流动的特点1、流体的变形运动2、描述流体运动的主要物理量流体运动学研究流体的运动规律,如速度、加速度等运动参数的变化规律,而流体动力学则研究流体在外力作用下的运动规律,即流体的运动参数与所受力之间的关系l 3.1研究流体运动的两种方法连续介质模型:我们可以把流体看作为由无数个流体质点所组成的连续介质,并且无间隙地充满它所占据的空间。
描述流体运动的各物理量(如速度、加速度等)均应是空间点的坐标和时间的连续函数流场(flow field ):流体质点运动的全部空间。
流体力学中研究流体的运动有两种不同的方法,一种是拉格朗日(Lagrange )方法,另一种是欧拉(Euler )方法。
一、拉格朗日方法1、分析方法:又称随体法,是从分析流场中个别流体质点着手来研究整个流体运动的。
2、位置表示:这种研究方法,最基本的参数是流体质点的位移,在某一时刻t ,任一流体质点的位置可表为:(velocity )和加速度(acceleration )为:4、密度表示:流体的密度(density )、压强(pressure )和温度(temperature ) 写成a 、b 、t 的函数,即ρ= ρ( a , b , c , t ) , p = p ( a , b , c , t ) , t = t ( a , b , c , t)二、欧拉法1、分析方法:又称局部法,是从分析流场中每一个空间点上的流体质点的运动着手,来研究整个流体的运动的,即研究流体质点在通过某一空间点时流动参数随时间的变化规律。
2、表示:流体质点的流动是空间点坐标(x , y , z )和时间t 的函数,流体质点的三个速度分量表示为:流体质点密度表示:(3——6)式( 3 一 6 )是流体质点的运动轨迹方程,将上式对时间t 求导就可得流体质点沿运动轨的三个速度分量根据矢量分析的点积公式间的变化而产生的,即式( 3 一 8 )中等式右端的第一项tw t v t u ∂∂∂∂∂∂、、 ○2第二部分,迁移加速度( acceleration of transport ):是某一瞬时由于流体质点速度随空间点的变化而引起的,即式( 3 一 8 )中等式右端的后三项z u w y u v x u u ∂∂∂∂∂∂、、等 当地加速度和迁移加速度之和称为总加速度( total acceleration )5、流体质点的加速度的物理意义如图 3 一 1 所示,不可压缩流体流过一个中间有收缩形的变截面管道,截面 2 比截面 1 小,则截面 2 的速度就要比截面 1 的速度大。
流体的运动知识点总结
流体的运动知识点总结1. 流体的性质流体是一种具有流动性的物质,它可以是液体或气体。
流体的主要性质包括压力、密度、粘性和表面张力等。
压力是流体分子作用在容器壁或其他物体上的力,通常用压强来表示。
在流体中,压力是均匀分布的,且大小和方向都与位置有关。
密度是指单位体积内流体的质量,通常用ρ来表示。
密度越大,流体分子之间的作用力越大,流体的流动速度越小。
粘性是流体内部分子之间的摩擦力,粘性越大,流体的粘性越高,流动速度越小。
表面张力是液体表面上分子所受的合力,使得液体表面呈现出薄膜状。
表面张力越大,液体表面越光滑,对浮力的影响也越大。
2. 流体的流动特性流体的流动包括定常流动和非定常流动两种,其中定常流动是指在某一位置和随时间不变的流动状态,非定常流动则是指流体在位置和时间上都是变化的流动状态。
在流体的流动中,流速、流量、雷诺数等是可以用来描述流体流动特性的重要参数。
流速是流体的单位时间内通过某一截面的速度,通常用v来表示。
流量是单位时间内通过某一截面的流体数量,通常用Q来表示。
雷诺数是描述流体流动状态的无量纲参数,一般表示为Re。
当雷诺数小于一定值时,流动属于层流;当雷诺数大于一定值时,流动属于湍流;而介于两者之间时,流动会发生转捩。
3. 流体的流动方程流体的流动可以通过流体力学方程组来描述,包括质量守恒方程、动量守恒方程和能量守恒方程。
质量守恒方程是根据质量守恒定律推导出来的,描述了流体在空间和时间上的质量变化情况。
动量守恒方程是由牛顿第二定律和动量守恒定律推导出来的,描述了流体在流动过程中受到的外力和流体内部压力、粘性力、引力等力的作用。
能量守恒方程是描述流体在流动过程中能量变化的方程,包括内能、动能和压力能等能量的变化。
4. 流体的流动类型流体的流动可以分为层流和湍流两种类型。
层流是指流体在管道内的流动状态呈现为顺序排列的层流结构,流速是均匀的,流动状态稳定。
湍流是指流体在管道内的流动状态混乱、不规则,流速会发生大范围的波动,流场结构复杂。
均匀流动和非均匀流动的概念与区别
均匀流动和非均匀流动的概念与区别流体力学是研究流体运动行为的学科,其中均匀流动和非均匀流动是两个基本概念。
本文将介绍均匀流动和非均匀流动的概念,并分析它们的区别。
一、均匀流动的概念均匀流动是指流体在任意两个处于同一截面的点上,流体速度的矢量相等的流动状态。
也就是说,在均匀流动中,流体粒子的速度是相同的,流速不随时间和空间变化。
均匀流动被认为是流体运动的简化模型,便于理论分析和实验研究。
二、非均匀流动的概念非均匀流动是指流体在同一截面上,流体速度的矢量不相等的流动状态。
在非均匀流动中,不同位置的流体粒子具有不同的速度,流速会随时间和空间发生变化。
非均匀流动常见于流体通过管道、河道、风扇叶片等复杂流动场景中。
三、均匀流动和非均匀流动的区别1.速度分布:均匀流动中,流体速度在截面上均匀分布,流速不随时间和空间变化;而非均匀流动中,流体速度在截面上不均匀分布,流速会发生时间和空间的变化。
2.流速大小:均匀流动中,流体粒子的速度相同,流速处处相等;而非均匀流动中,不同位置的流体粒子具有不同的速度,流速大小各不相同。
3.流线形状:均匀流动中,流线平行且间距相等,流体粒子沿直线运动;而非均匀流动中,流线弯曲且间距不等,流体粒子具有复杂的运动轨迹。
4.能量损失:均匀流动中,能量损失较小,流体粒子间的摩擦力较小;而非均匀流动中,能量损失较大,流体粒子间的摩擦力较大,导致能量损耗增加。
5.实际应用:均匀流动常用于理论研究和工程计算中,如通过圆管道的液体流动;而非均匀流动则广泛存在于实际工程和自然环境中,如江河水流、风力发电机的风扇叶片等。
综上所述,均匀流动和非均匀流动在流体力学中具有不同的概念与区别。
了解均匀流动和非均匀流动的特点对于研究流体运动行为和工程应用具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体流动类型的概念及判断
流体流动类型是指流体在流动过程中所表现出的不同特点和规律。
流体流动类型的判断是通过观察流体流动的特征和运动规律来进行的。
下面将从流体流动的基本概念、流动类型的分类以及判断流动类型的方法等方面进行详细阐述。
一、流体流动的基本概念
流体是指可以自由流动的物质,包括液体和气体。
流体流动是指流体在力的作用下发生的位置和形状的变化。
流体流动具有连续性、不可压缩性和黏性等基本特征。
连续性是指流体在流动过程中不会出现断裂或中断,而是呈现出连续的状态;不可压缩性是指在常温常压下,流体的体积几乎不受外力的作用而发生变化;黏性是指流体在流动过程中会产生内部的滑动阻力。
二、流动类型的分类
1. 按流动速度分类:
(1) 亚音速流动:流体的流动速度小于声速,流体在流动过程中的速度变化非常缓慢,并且速度场和压力场变化的幅度也很小,通常认为是稳定的。
(2) 超音速流动:流体的流动速度大于声速,流体在流动过程中会形成激波区,速度场和压力场变化突然,流动状态不稳定。
(3) 高超音速流动:流体的流动速度远大于声速,流体在流动过程中形成的压力、温度和密度等参数变化很大,流动状态非常复杂。
2. 按流动的性质分类:
(1) 层流:流体在管道或其他限定空间内流动时,流体颗粒的流动轨迹呈现出平行的特点,速度场和压力场的分布均匀,流动稳定。
(2) 湍流:流体在管道或其他限定空间内流动时,流体颗粒的流动轨迹呈现出混乱和随机的特点,速度场和压力场的分布均不均匀,流动不稳定。
3. 按流动的状态分类:
(1) 定常流动:流体在流动过程中的速度场、压力场和温度场等物理量都不随时间的变化而变化,流动状态保持稳定。
(2) 非定常流动:流体在流动过程中的速度场、压力场和温度场等物理量随时间的变化而变化,流动状态不稳定。
三、判断流动类型的方法
1. 观察速度场和压力场的分布情况:通过实验或数值模拟等方法,观察流体在流动过程中的速度场和压力场的分布情况。
若速度场和压力场呈现出均匀分布和稳定状态,则为层流;若分布不均匀且有明显的不稳定性,则为湍流。
2. 流体受力分析:根据流体受力的特点来判断流动类型。
例如,当流体受到的惯性力和黏性力之比较大时,流动易产生湍流;当流体受到的惯性力和黏性力之比较小时,流动易产生层流。
3. 测量雷诺数:雷诺数是流体流动过程中流体惯性力和黏性力之比的一个量纲。
当雷诺数小于临界值时,流动为层流;当雷诺数大于临界值时,流动为湍流。
四、流动类型的转变
在实际流体流动中,流动类型可能会根据流体的工况参数变化而发生改变。
例如,当流体流速增加时,亚音速流动可能会转变为超音速流动;当管道内流体的流速增大到一定程度时,层流可能会转变为湍流。
总结起来,流体流动类型的判断是通过观察流体流动的特征和运动规律来进行的。
流动类型的分类主要根据流动速度、流动性质和流动状态等方面进行划分。
判断流动类型的方法可以通过观察速度场和压力场的分布、流体受力分析以及测量雷诺数等方法来进行。
最后,流动类型的转变是根据流体的工况参数变化而发生的,不同的流动类型相互之间可能会相互转变。