土方边坡计算计算书

土方边坡计算计算书
土方边坡计算计算书

土方边坡计算书

本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社等相关文献进行编制。

本工程基坑壁需进行放坡,以保证边坡稳定和施工操作安全。基坑挖方安全边坡按以下方法计算。

一、参数信息:

坑壁土类型:淤泥质二

坑壁土的重度γ(kN/m3):17.25

坑壁土的内摩擦角φ(°):12.5

坑壁土粘聚力c(kN/m2):12.5

基坑开挖深度h (m):6.0

二、挖方安全边坡计算:

挖方安全边坡按以下公式计算:

h=2×c×sinθ×cosφ/(γ×sin2((θ-φ)/2))

其中θ- -土方边坡角度(°)

解得,sinθ= 0.929

则,θ= 68.326°> φ=12.50°,为陡坡

坡度:1 / tanθ =0.4

本工程的基坑壁最大土方坡度为1:0.4(垂直:水平)。

土坡稳定性计算书

本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。

计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。

本计算书采用毕肖普法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还同时考虑了土条两侧面的作用力。

一、参数信息:

条分方法:毕肖普法;

条分块数:4;

不考虑地下水位影响;

放坡参数:

序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数

1 6.00 3.00 6.00 0.00

荷载参数:

序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m)

1 局布10.00 1 4

土层参数:

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C

饱容重

(m) (kN/m3) (°) (kPa) (kN/m3)

1 淤泥质二 2.00 17.25 12.50 12.50

1.00

2 粘性土8.00 17.25 14.50 14.00

1.00

二、计算原理:

根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,该土条上存在着:

1、土条自重Wi,

2、作用于土条弧面上的法向反力Ni,

3、作用于土条圆弧

面上的切向阻力或抗剪力Tri,4、土条弧面上总的孔隙水应力Ui,其作用线通过滑动圆心,5、土条两侧面上的作用力Xi+1,Ei+1和Xi,Ei.如图所示:

当土条处于稳定状态时,即Fs>1,上述五个力应构成平衡体系。考虑安全储备的大小,按照《规范》要求,安全系数要满足≥1.3的要求。

三、计算公式:

F s=∑(1/mθi)(cb i+γb i h i+qb i tanφ)/∑(γb i h i+qb i)sinθi

mθi=cosθi+1/F s tanφsinθi

式子中:

F s --土坡稳定安全系数;

c --土层的粘聚力;

γ --土层的计算重度;

θi --第i条土到滑动圆弧圆心与竖直方向的夹角;

φ --土层的内摩擦角;

b i --第i条土的宽度;

h i --第i条土的平均高度;

h1i --第i条土水位以上的高度;

h2i --第i条土水位以下的高度;

q --第i条土条上的均布荷载

γ' --第i土层的浮重度

其中,根据几何关系,求得hi为:

h1i=h w-{(r-h i/cosθi)×cosθi-*rsin(β+α)-H]}

式子中:

r --土坡滑动圆弧的半径;

l0 --坡角距圆心垂线与坡角地坪线交点长度;α --土坡与水平面的夹角;

h1i的计算公式:

h1i=h w-{(r-h i/cosθi)×cosθi-*rsin(β+α)-H]}

当h1i≥h i时,取h1i = h i;

当h1i≤0时,取h1i = 0;

h2i的计算公式:

h2i = h i-h1i;

h w --土坡外地下水位深度;

θi=90-arccos[((i-0.5)×b i-l0)/r]

四、计算安全系数:

将数据各参数代入上面的公式,通过循环计算,求得最小的安全系数Fs:------------------------------------------------------------------------------------

计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)

第1步0.920 29.589 -0.469 8.883

8.896

示意图如下:

--------------------------------------------------------------------------------------

土钉墙支护计算书

品茗软件大厦工程;属于结构;地上0层;地下0层;建筑高度:0m;标准层层高:0m ;总建筑面积:0平方米;总工期:0天;施工单位:某某施工单位。

本工程由某某房开公司投资建设,某某设计院设计,某某勘察单位地质勘察,某某监理公司监理,某某施工单位组织施工;由章某某担任项目经理,李某某担任技术负责人。

本计算书参照《建筑基坑支护技术规程》JGJ120-99 中国建筑工业出版社出版《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。

土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。

一、参数信息:

1、基本参数:

侧壁安全级别:二级

基坑开挖深度h(m):6.000;

土钉墙计算宽度b'(m):15.00;

土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层内的内摩擦角;

条分块数:4;

考虑地下水位影响;

基坑外侧水位到坑顶的距离(m):5.000;

基坑内侧水位到坑顶的距离(m):7.000;

2、荷载参数:

序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m)

1 局布10.00 0.5 --

3、地质勘探数据如下::

序号土名称土厚度坑壁土的重度γ 坑壁土的内摩擦角φ 内聚力C

极限摩擦阻力饱和重度

(m) (kN/m3) (°) (kPa) (kPa) (kN/m3)

1 淤泥质二 2.00 17.25 12.50 12.50 112.00 20.00

2 粘性土8.00 17.25 14.50 14.00

112.00 20.00

4、土钉墙布置数据:

放坡参数:

序号放坡高度(m) 放坡宽度(m) 平台宽度(m)

1 6.00 3.00 6.00

土钉数据:

序号孔径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m)

1 120.00 6.00 20.00 1.00 1.50

2 120.00 5.00 20.00 1.50 1.50

3 120.00 2.50 20.00 2.00 1.50

二、土钉(含锚杆)抗拉承载力的计算:

单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99,R=1.25γ0T jk

1、其中土钉受拉承载力标准值T jk按以下公式计算:

T jk=ζe ajk s xj s zj/cosαj

其中ζ--荷载折减系数

e ajk --土钉的水平荷载

s xj、s zj--土钉之间的水平与垂直距离

αj--土钉与水平面的夹角

ζ按下式计算:

ζ=tan*(β-φk)/2+(1/(tan((β+φk)/2))-1/tanβ)/tan2(45°-φ/2)

其中β--土钉墙坡面与水平面的夹角。

φ--土的内摩擦角

e ajk按根据土力学按照下式计算:

e ajk=∑,*(γi×s zj)+q0]×K ai-2c(K ai)1/2}

2、土钉抗拉承载力设计值T uj按照下式计算

T uj=(1/γs)πd nj∑q sik l i

其中d nj--土钉的直径。

γs--土钉的抗拉力分项系数,取1.3

q sik --土与土钉的摩擦阻力。根据JGJ120-99 表6.1.4和表4.4.3选取。

l i--土钉在直线破裂面外穿越稳定土体内的长度。

层号有效长度(m) 抗拉承载力(kN) 受拉荷载标准值(kN) 初算长度(m) 安全性

1 3.16 102.78 0.00 2.75

满足

2 3.06 99.46 7.36 2.16

满足

3 1.67 54.22 58.45 2.50

不满足

第1号土钉钢筋的直径ds至少应取:0.000 mm;

第2号土钉钢筋的直径ds至少应取:5.589 mm;

第3号土钉钢筋的直径ds至少应取:15.750 mm;

三、土钉墙整体稳定性的计算:

根据《建筑基坑支护技术规程》JGJ 120-99要求,土钉墙应根据施工期间不同开挖深度及基坑底面以下可能滑动面采用圆弧滑动简单条分法如下图,按照下式进行整体稳定性验算:

公式中:

γk --滑动体分项系数,取1.3;

γ0 --基坑侧壁重要系数;

ωi --第i条土重;

b i --第i分条宽度;

c ik --第i条滑土裂面处土体固结不排水(快)剪粘聚力标准值;

φik--第i条滑土裂面处土体固结不排水(快)剪内摩擦角标准值;

θi --第i条土滑裂面处中点切线与平面夹角;

αj --土钉与水平面之间的夹角;

L i--第i条土滑裂面的弧长;

s --计算滑动体单元厚度;

T nj--第j根土钉在圆弧滑裂面外锚固与土体的极限抗拉力,按下式计算。

T nj=πd nj∑q sik l nj

l nj --第j根土钉在圆弧滑裂面外穿越第i层稳定土体内的长度

把各参数代入上面的公式,进行计算

可得到如下结果:

---------------------------------------------------------------------------------

计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)

第1步10.682 29.589 -0.078 1.481

1.483

示意图如下:

计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)

第2步 4.106 29.589 -0.196 3.701

3.706

示意图如下:

计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)

第3步 3.368 29.589 -0.352 6.662

6.672

示意图如下:

计算步数安全系数滑裂角(度) 圆心X(m) 圆心Y(m) 半径R(m)

第4步 2.808 29.589 -0.469 8.883

8.896

示意图如下:

--------------------------------------------------------------------------------------

计算结论如下:

第 1 步开挖内部整体稳定性安全系数Fs= 10.682>1.30 满足要求! [标高-1.000 m]

第 2 步开挖内部整体稳定性安全系数Fs= 4.106>1.30 满足要求! [标高-2.500 m]

第 3 步开挖内部整体稳定性安全系数Fs= 3.368>1.30 满足要求! [标高-4.500 m]

第 4 步开挖内部整体稳定性安全系数Fs= 2.808>1.30 满足要求! [标高-6.000 m]

四、抗滑动及抗倾覆稳定性验算

(1)抗滑动稳定性验算

抗滑动安全系数按下式计算:

K H=f'/E ah≥1.3

式中,E ah为主动土压力的水平分量(kN);

f'为墙底的抗滑阻力(kN),由下式计算求得:

f'=μ(W+qB a S v)

μ为土体的滑动摩擦系数;

W为所计算土体自重(kN)

q为坡顶面荷载(kN/m2);

B a为荷载长度;

S v为计算墙体的厚度,取土钉的一个水平间距进行计算

1级坡:K H=1.2978508232267E291>1.3,满足要求!

(2)抗倾覆稳定性验算

抗倾覆安全系数按以下公式计算:

K Q=M G/M Q

式中,M G--由墙体自重和地面荷载产生的抗倾覆力矩,由下式确定M G=W×B C×qB a×(B'-B+b×B a/2)

其中,W为所计算土体自重(kN)

其中,q为坡顶面荷载(kN/m2)

B c为土体重心至o点的水平距离;

B a为荷载在B范围内长度;

b为荷载距基坑边线长度;

B'为土钉墙计算宽度;

M E--由主动土压力产生的倾覆力矩,由下式确定

M k=E ah×l h

其中,E ah为主动土压力的水平分量(kN);

l h为主动土压力水平分量的合力点至通过墙趾O水平面的垂直距离。1级坡:K Q=97.59>1.5,满足要求!

边坡稳定性计算书

路基边坡稳定性分析 本设计任务路段中所出现的最大填方路段,在桩号K8+480 处。该路堤边坡高31.64m,路基宽26m,需要进行边坡稳定性验算。 1.确定计算参数 对本段路堤边坡的土为粘性土,根据《公路路基设计规》(JTG D30—2004),取土的容重γ=18kN/m3,粘聚力C=20kpa。摩擦角=23o由上可知:填土的摩擦系数?=tan23o=0.4361。 2.荷载当量高度计算 行车荷载换算高度为: h0—行车荷载换算高度; L—前后轮最大轴距,按《公路工程技术标准》(JTG B01-2003)规定对于标准车辆荷载为12.8m; Q—一辆车的重力(标准车辆荷载为550kN); N—并列车辆数,双车道N=2,单车道N=1; γ—路基填料的重度(kN/m3); B—荷载横向分布宽度,表示如下: 式中:b—后轮轮距,取1.8m; m—相邻两辆车后轮的中心间距,取1.3m;d—轮胎着地宽度,取0.6m。 3. BISHOP法求稳定系数Fs 基本思路:首先用软件找出稳定系数Fs 逐渐变化的情况,找到一个圆心,经过这个滑动面的稳定系数Fs 是所选滑动面中最小的,而它左右两边所取圆心滑动面的Fs 值都是增加,根据Fs 值大小可以绘制Fs 值曲线。从而确定最小Fs 值。而用ecxel 表格计算稳定系数Fs 时,选择的3个圆心分别是软件计算Fs 值中最小的那个圆心和它左右两边逐渐增大的圆心。 3.1 最危险圆弧圆心位置的确定 (1)按4.5H 法确定滑动圆心辅助线。由表查得β1=26°,β2 =35°及荷载换算为土柱高度h0,得G点。 a .由坡脚A 向下引竖线,在竖线上截取高度H=h+h0(h 为边坡高度,h0 为换算土层高) b.自G 点向右引水平线,在水平线上截取4.5H,得E 点。根据两角分别自坡角和左点作直线相交于F 点,EF 的延长线即为滑动圆心辅助线。 c.连接边坡坡脚A 和顶点B,求得AB 的斜度i=1/m,据此查《路基路面工程》表4-1得β1,β2。 (2)绘出三条不同的位置的滑动曲线 (3)将圆弧围土体分成8-12段。

边坡的稳定性计算方法

边坡稳定性计算方法 目前的边坡的侧压力理论,得出的计算结果,显然与实际情形不符。边坡稳定性计算,有直线法和圆弧法,当然也有抛物线计算方法,这些不同的计算方法,都做了不同的假设条件。 当然这些先辈拿出这些计算方法之前,也曾经困惑,不做假设简化,基本无法计算。而根据各种假设条件,是会得出理论上的结果,但与实际情况又不符。倒是有些后人不管这些假设条件,直接应用其计算结果,把这些和实际不符的公式应用到现有的规范和理论中。 瑞典条分法,其中的一个假设条件破裂面为圆弧,另一个条件为假设的条间土之间,没有相互作用力,这样的话,对每一个土条在滑裂面上进行力学分解,然后求和叠加,最后选取系数最小的滑裂面。从而得出判断结果。其实,那两个假设条件对吗?都不对! 第一、土体的实际滑动破裂面,不是圆弧。第二、假设的条状土之间,会存在粘聚力与摩擦力。边坡的问题看似比较简单,只有少数的几个参数,但是,这几个参数之间,并不是线性相关。对于实际的边坡来讲,虽然用内摩擦角①和粘聚力C来表示,但对于不同的破裂面,破裂面上的作用力,摩擦力和粘聚力,都是破裂面的函数,并不能用线性的方法分别求解叠加,如果是那样,计算就简单多了。 边坡的破裂面不能用简单函数表达,但是,如果不对破裂面作假设,那又无从计算,直线和圆弧,是最简单的曲线,所以基于这两种曲线的假设,是计算的第一步,但由于这种假设与实际不符,结果肯定与实际相差甚远。

条分法的计算,是来源于微积分的数值计算方法,如果条间土之间,存在相互作用力,那对条状土的力学分解,又无法进行下去。 所以才有了圆弧破裂面的假设与忽略条间土的相互作用的假设。 其实先辈拿出这样与实际不符的理论,内心是充满着矛盾的。 实际看到的边坡的滑裂,大多是上部几乎是直线,下部是曲线形状,不能用简单函数表示,所以说,要放弃求解函数表达式的想法。计算还是可以用条分法,但要考虑到条间土的相互作用。 用微分迭代的方法求解,能够得出近似破裂面,如果每次迭代,都趋于收敛,那收敛的曲线,就是最终的破裂面。 参照图3,下面将介绍这种方法的求解步骤。

边坡预应力锚索张拉计算书

K28+600-K28+970段右侧边坡 预应力锚索张拉计算书 一、预应力锚索的主要设计参数和要求 1.预应力锚索采用6¢s15.2高强度低松弛钢绞线,强度级别为1860Mpa,公称直径15.2mm,公称面积140mm2,弹性模量为195000N/mm2。 2.张拉预应力为600KN。 3. 预应力钢绞线的锚固段长均为8m,自由段为长度分别为4m、8m、10m、12m、14m、22m、34m。千斤顶工作长度为0.6m。 4.张拉设备校准方程P=0.227X+0.4286 P—压力指示器示值(MPa) X—标准张拉力值(KN) 二、预应力钢绞线的张拉程序 张拉预应力钢绞线的主要机具有油泵、千斤顶和油表,千斤顶和油表必须经过配套标定之后才允许使用,标定单位必须通过国家有关单位认可。一般标定的有效期限为6个月或使用200次或发现有不正常情况也须重新标定。 张拉采用液压千斤顶27t进行单根、交叉张拉,张拉前先对钢绞线预调。单根预调的目的是使一孔内的钢绞线达到顺直、受力均匀并具有一定的拉应力状态,消除钢绞线的非弹性变形,以便更好地控制张拉。 钢绞线张拉的简明工艺: 预应力筋的张拉顺序:0→25%*бcon(初张拉)→50%*бcon→ 75%*бcon→100%*бcon→110%*бcon(锚固)

三、钢绞线张理论拉伸长值及压力表读数计算 1.计算公式 △L=PL/AE 式中: P 预应力钢绞线的平均张拉力(N) L 预应力钢绞线自由段及工作长度之和(mm) A 预应力钢绞线的公称面积,取140mm2 E 预应力钢绞线的弹性模量,取195000N/mm2 2.理论伸长值及油表读数值计算:(当自由段长度为4m,千斤顶工作长度为0.6m时,计算式如下:) (1)当б=бcon*25%(初张拉)时 张拉力:F=600/6*0.25KN=25KN=25000N 理论伸长:△L=25000*(4000+600)/(6*140*195000)=0.7mm 压力表读数:P=0.227X+0.4286=6.1 MPa (2)当б=бcon*50%时 张拉力:F=600/6*0.5=50KN=50000N 理论伸长:△L=50000*(4000+600)/(6*140*195000)=1.4mm 压力表读数:P=0.227X+0.4286=11.8MPa (3)当б=бcon*75%时 张拉力:F=600/9*0.75=75KN=75000N 理论伸长:△L=75000*(4000+600)/(6*140*195000)=2.1mm 压力表读数:P=0.227X+0.4286=17.5MPa (4)当б=бcon*100%时

边坡设计计算说明

西南交通大学研究生课程设计 某公路高大边坡设计 年级: 2014级 学号:2014200015 姓名:黄锐 专业:岩土工程 指导老师:马建林 二零一五年六月三十日

摘要:边坡工程是公路工程,铁路工程及水利工程的重要组成部分,其具有工程量大,施工周期长等特点,常常作为项目的控制性工程,随着我国道路、铁路等基础设施的建设,对边坡支护技术提出了越来越高的要求。 本设计为一个公路工程高大边坡设计,对支护结构的设置位置及工后的变形提出了较高的要求,设计对边坡C及D两个节段的K1+810及K1+860控制横断面进行设计。目前,边坡的支挡结构主要有重力式挡土墙、锚杆框架梁、排桩等形式,考虑到上述限制因素及边坡本身高度条件,经过方案比选,对边坡采用锚杆桩板墙结构进行加固,其中,K1+810断面采用锚杆桩板墙及桩顶放坡的支护形式,对桩板墙的稳定性进行验算后,还对桩顶土坡的稳定性进行验算。K1+860横断面设计采用双排桩支护结构,将前后排桩分开计算,桩顶位移累加,此计算方法是偏于安全的。设计采用理正岩土5.6进行计算。 Abstract:the slope engineering is always an important part in highway engineering, railway engineering, and water conservancy project, its quantity is big, long construction period, etc, often as controlling engineering of the project, along with our country the construction of infrastructure such as road, railway, puts forward higher and higher requirements on the slope supporting technology. This tall slope design for a highway engineering design, the location of the supporting structure and the deformation after put forward higher requirements, the design of slope C and D are two segments of K1 + 810 and K1 + 860 control cross-sectional design. At present, the slope of the retaining structure mainly include gravity retaining wall pile, anchor frame beam, such as form, considering the above constraints and slope itself highly conditions, through scheme comparison, to reinforce the slope with anchor ZhuangBanQiang structure, among them, the anchored ZhuangBanQiang K1 + 810 section and pile top slope support form, the stability of ZhuangBanQiang after checking, also the stability of pile top slope calculation.K1 + 860 cross-sectional design of retaining structure with double-row piles were adopted, the front row piles is calculated separately, the displacement of pile top accumulation, this calculation method is more safe. Design USES reason is geotechnical 5.6 to calculate.

围堰边坡稳定计算

围堰稳定性计算(示意) 本计算书采用瑞典条分法进行分析计算,因为围堰顶标高****m , 故假定迎水面水位标高达到**m的最不利情况,还假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法;基坑外侧水位标高:10.50m基坑内侧水位标高:5.50m 荷载参数:由于围堰上无恒载,故不考虑外部荷载 土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条, 不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重 2、作用于土条弧面上的法向反力 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系 数,考虑安全储备的大小,按照《规范》要求,安全系数要满足》1.3 的要求。

二、计算公式: Fs= E{c i l i +[( Yh1 i + y'h2 i )b i +qb i ]cos 0i tan 由}/ H ( yh1 i + 丫 'h2i )b i +qb i ]sin 0i 式子中: Fs-- 土坡稳定安全系数; C i -- 土层的粘聚力; l i --第i 条土条的圆弧长度; Y - 土层的计算重度; B i --第i 条土中线处法线与铅直线的夹角; 咖--土层的内摩擦角; b i --第i 条土的宽度; h i --第i 条土的平均高度; hl i --第i 条土水位以上的高度; h2 i --第i 条土水位以下的高度; Y --第i 条土的平均重度的浮重度; q--第i 条土条土上的均布荷载 ;

边坡稳定性计算说明

边坡稳定性计算 一、编制依据 为保证挖方施工安全,施工现场做到“安全、文明”,满足施工进度要求,以下列法律、法规、标准、规范、规程、相关文件为强制性前提,进行边坡稳定性计算。 1、现有施工图设计; 2、《公路桥涵施工技术规范》(JTJ041-2000); 3、《路桥施工计算手册》(人民交通出版社); 4、《土力学与地基基础》; 二、工程概况及地质情况 岢岚至临县高速公路是《山西省高速公路网规划》“3纵11横11环”中西纵高速公路的重要组成部分,也是山西省西部把第四横(保德-五台长城岭)和第五横(平定杨树庄—佳县)高速公路窜连起来的重要路段。 项目区路线走廊带地形起伏极大,总体地势为东北高西南低,地貌主体为隆起的基岩中山与黄土梁峁,部分区域为海拔较低的河流沟谷及冲沟,。受构造活动和水流侵蚀作用的影响,本区地形切割剧烈,河谷发育,沟壑纵横,依据地貌成因类型及其显示特征,将本区划分为黄土丘陵区、侵蚀堆积河川宽谷区、山岭区、黄土覆盖中低山区四个地貌单元,岩性主要为第四系冲、坡积及风积粉土及粉质粘土等。 三、计算 本项目地形复杂,涵洞、桩基及路基施工作业面比较多。根据挖方路段在全线的分布情,选择有代表性路段进行分析计算。由于项目地质挖方为风积粉土及粉质粘土,是典型的黄土地貌。根据施工图纸给出的计算参数,对于黄土挖方路段,拟定边坡参数γ=19g/cm3,C=40 Kpa,φ=29°,采用瑞典条分法进行计算,稳定安全系数达到1.2以上。 3.1 瑞典条分法原理 如图所示边坡,瑞典条分法假定可能滑动面是一圆弧AD,不考虑条块两侧的作用力,即假设Ei和Xi的合力等于Ei+1和Xi+1的合力,同时它们的作用线

深基坑边坡稳定性计算书

土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业出版社、《实用土木工程手册》第三版杨文渊编著人民教同出版社、《地基与基础》第三版中国建筑工业出版社、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m): 1.56 ; 基坑内侧水位到坑顶的距离(m): 14.000 ; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m)条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数:

土层参数: 二、计算原理 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第 i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足 >=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规范》要求,安全系数要满足>=1.3的要求。

边坡稳定计算

附件四:边坡稳定性计算书 1、汽机房区域边坡稳定性计算书(适用于基坑基底标高为-7.00m~-9.00m)H=8.5m 天然放坡支护 ---------------------------------------------------------------------- [ 基本信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 放坡信息 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 超载信息 ] ----------------------------------------------------------------------

---------------------------------------------------------------------- [ 土层信息 ] ---------------------------------------------------------------------- [ 土层参数 ] ---------------------------------------------------------------------- ---------------------------------------------------------------------- [ 整体稳定验算 ] ---------------------------------------------------------------------- 天然放坡计算条件: 计算方法:瑞典条分法 应力状态:总应力法 基坑底面以下的截止计算深度: 0.00m 基坑底面以下滑裂面搜索步长: 5.00m 条分法中的土条宽度: 1.00m 天然放坡计算结果:

边坡稳定性计算方法11111

一、边坡稳定性计算方法 在边坡稳定计算方法中,通常采用整体的极限平衡方法来进行分析。根据边坡不同破裂面形状而有不同的分析模式。边坡失稳的破裂面形状按土质和成因不同而不同,粗粒土或砂性土的破裂面多呈直线形;细粒土或粘性土的破裂面多为圆弧形;滑坡的滑动面为不规则的折线或圆弧状。这里将主要介绍边坡稳定性分析的基本原理以及在某些边界条件下边坡稳定的计算理论和方法。 (一)直线破裂面法 所谓直线破裂面是指边坡破坏时其破裂面近似平面,在断面近似直线。为了简 化计算这类边坡稳定性分析采用直线破裂面法。能形成直线破裂面的土类包括:均质砂 性土坡;透水的砂、砾、碎石土;主要由内摩擦角控制强度的填土。 图 9 - 1 为一砂性边坡示意图,坡高 H ,坡角β,土的容重为γ,抗 剪度指标为c、φ。如果倾角α的平面AC面为土坡破坏时的滑动面,则可分析 该滑动体的稳定性。 沿边坡长度方向截取一个单位长度作为平面问题分析。 图9-1 砂性边坡受力示意图已知滑体ABC重 W,滑面的倾角为α,显然,滑面 AC上由滑体的重量W= γ(Δ ABC)产生的下滑力T和由土的抗剪强度产生的抗滑力Tˊ分别为: T=W · sina 和 则此时边坡的稳定程度或安全系数可用抗滑力与下滑力来表示,即 为了保证土坡的稳定性,安全系数F s 值一般不小于 1.25 ,特殊情况下可允许减小到 1.15 。对于C=0 的砂性土坡或是指边坡,其安全系数表达式则变为 从上式可以看出,当α =β时,F s 值最小,说明边坡表面一层土最容易滑动,这时

当 F s =1时,β=φ,表明边坡处于极限平衡状态。此时β角称为休止角,也称安息角。 此外,山区顺层滑坡或坡积层沿着基岩面滑动现象一般也属于平面滑动类型。这类滑坡滑动面的深度与长度之比往往很小。当深长比小 于 0.1时,可以把它当作一个无限边坡进行分析。 图 9-2表示一无限边坡示意图,滑动面位置在坡面下H深度处。取一单位长度的滑动土条 进行分析,作用在滑动面上的剪应力为,在极限平衡状态时,破坏面上的 剪应力等于土的抗剪强度,即 得 式中N s =c/ γ H 称为稳定系数。通过稳定因数可以确定α和φ关系。当c=0 时,即无粘性 土。α =φ,与前述分析相同。 二圆弧条法 根据大量的观测表明,粘性土自然山坡、人工填筑或开挖的边坡在破坏时,破裂面的形状多呈近似的圆弧状。粘性土的抗剪强度包括摩擦强度和粘聚强度两个组成部分。由于粘聚力的存在,粘性土边坡不会像无粘性土坡一样沿坡面表面滑动。根据土体极限平衡理论,可以导出均质粘这坡的滑动面为对数螺线曲面,形状近似于圆柱面。因此,在工程设计中常假定滑动面为圆弧面。建立在这一假定上稳定分析方法称为圆弧滑动法和圆弧条分法。 1. 圆弧滑动法 1915 年瑞典彼得森( K.E.Petterson )用圆弧滑动法分析边坡的稳定性,以后该法在各国得到广泛应用,称为瑞典圆弧法。 图 9 - 3 表示一均质的粘性土坡。AC 为可能的滑动面,O为圆心,R 为半径。假定 边坡破坏时,滑体ABC在自重W 作用下,沿AC绕O 点整体转动。滑动面 AC 上的力 系有:促使边坡滑动的滑动力矩 M s =W · d ;抵抗边坡滑动的抗滑力矩,它应该包括由 粘聚力产生的抗滑力矩M r =c ·AC · R ,此外还应有由摩擦力所产生的抗滑力矩,这里 假定φ= 0 。边坡沿AC的安全系数F s 用作用在 AC面上的抗滑力矩和下滑力矩之比表 示,因此有 这就是整体圆弧滑动计算边坡稳定的公式,它只适用于φ= 0 的情况。 图9-3 边坡整体滑动 2. 瑞典条分法 前述圆弧滑动法中没有考虑滑面上摩擦力的作用,这是由于摩擦力在滑面的不同位置其方向和大小都在改变。为了将圆弧滑动法应用于φ> 0 的粘性土,在圆弧法分析粘性土坡稳定性的基础上,瑞典学者 Fellenius 提出了圆弧条分析法,也称瑞典条分法。条会法就是将滑动土体竖向分成若干土条,把土条当成刚塑体,分别求作用于各土条上的力对圆心的滑动力矩和抗滑力矩,然后按式( 9-5 )求土坡的稳定安全系数。 采用分条法计算边坡的安全系数F ,如图 9 - 4 所示,将滑动土体分成若干土条。土条的宽度越小,计算精度越高,为了避免计算过于繁

路基路面课程设计计算书

. 土木建筑工程学院 土木工程专业(道路桥梁方向)《路基路面工程》课程设计计算书 姓名: 年级: 班级: 学号:

[题目]:重力式挡土墙设计 [设计资料]: 1、工程概况 拟建机场高速公路(城市道路段)K2+770右侧有一清朝房子,由于该路段填土较高,若按1:1.5的边坡坡率放坡,则路基坡脚侵入房子围。现为了保留房子,要求在该路段的恰当位置设挡土墙。为使房子周围保持车辆交通,要求墙脚边距离房子的距离大约为4m。提示:路肩350cm不布置车辆,慢车道650cm 开始布置车辆荷载(550kN)。 2、路中线与房子的平面位置关系、路线纵断面、路基标准横断面如下图: 房子 道路中线 图1 道路和房子平面示意图 路基标准横断面(单位:cm) 图2 路基标准横断面图(半幅,单位:cm)

K 2+400 112.85K 2+900 117.851.0% -0.75% R=13500T=?E=? 道路纵面图 图3 道路纵断面图 106.50 3.7m 7.8m 粘土Q 承载力标准值f=187kPa 圆砾 承载力标准值f=456kPa 中风化泥岩 地质剖面图 1:0.3 1:5 墙身剖面图(单位:cm ) 图4 地质剖面图 3、房子附近地质情况见地质剖面图,房子附近地面较大围(包括路基围)为平地。 4、挡土墙墙身、基础材料:M7.5浆砌片石,M10砂浆抹墙顶面(2cm ),M10砂浆勾外墙凸缝。砌体重度γ1=22kN/m 3。墙后填土为天然三合土重度γ 2 =20kN/m 3,换算摩擦角φ=35°。M10浆砌块石与天然三合土的摩擦角为

20°。砌体极限抗压强度为700kPa ,弯曲抗拉极限强度为70kPa ,砌体截面的抗剪极限强度为150kPa 。 计算过程 1、 道路设计标高计算 由1i =1.0%,2i =-0.75%,R=13500 得21135000.75%1%=236.25L R i i =?-=?--,2 L E ==118.125 所以竖曲线起点桩号为K2+781.875。 K2+766的设计标高为112.853661%=116.51+?。 K2+782的坡线标高为112.853821%=116.67+?, 高程改正 ()2 782781.875=0213500 -?, 所以K2+782的设计标高为116.67。 而地面高程为106.05,所以房子正对着的道路标高与地面高程最大之差为10.62m 。 2、挡土墙设计方案 ①挡土墙墙脚与房子的平面位置关系如下:

深基坑边坡稳定性计算书

... . . 土坡稳定性计算书 本计算书参照《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。 计算土坡稳定性采用圆弧条分法进行分析计算,由于该计算过程是大量的重复计算,故本计算书只列出相应的计算公式和计算结果,省略了重复计算过程。 本计算书采用瑞典条分法进行分析计算,假定滑动面为圆柱面及滑动土体为不变形刚体,还假定不考虑土条两侧上的作用力。 一、参数信息: 条分方法:瑞典条分法; 考虑地下水位影响; 基坑外侧水位到坑顶的距离(m):1.56; 基坑侧水位到坑顶的距离(m):14.000; 放坡参数: 序号放坡高度(m) 放坡宽度(m) 平台宽度(m) 条分块数 0 3.50 3.50 2.00 0.00 1 4.50 4.50 3.00 0.00 2 6.20 6.20 3.00 0.00 荷载参数: 土层参数:

序号土名称 土厚 度 (m) 坑壁土的重 度γ(kN/m3) 坑壁土的摩 擦角φ(°) 粘聚力 (kPa) 饱容重 (kN/m3) 1 粉质粘土15 20.5 10 10 20.5 二、计算原理: 根据土坡极限平衡稳定进行计算。自然界匀质土坡失去稳定,滑动面呈曲面,通常滑动面接近圆弧,可将滑裂面近似成圆弧计算。将土坡的土体沿竖直方向分成若干个土条,从土条中任意取出第i条,不考虑其侧面上的作用力时,该土条上存在着: 1、土条自重, 2、作用于土条弧面上的法向反力, 3、作用于土条圆弧面上的切向阻力。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 将抗剪强度引起的极限抗滑力矩和滑动力矩的比值作为安全系数,考虑安全储备的大小,按照《规》要求,安全系数要满足>=1.3的要求。 三、计算公式:

平面滑动法边坡稳定性设计计算书

平面滑动法边坡稳定性设计计算书 依据《建筑边坡工程技术规范》(GB 50330-2002) 一. 参数信息 松散性的砂类土路基边坡,渗水性强,粘性差,边坡稳定主要靠其内摩擦力。失稳土体的滑动面近似直线形态,整个路堤成直线形态下滑。(如图) 边坡土体类型为 :填土; 边坡工程安全等级:三级边坡(1.25); 边坡土体重度为 :19.00kN/m3; 边坡土体内聚力为:20.00kPa; 边坡土体内摩擦角:37.00°; 边坡高度为:20.00m; 边坡斜面倾角为:50.00°; 边坡顶部均布荷载:12.00kN/m2。 二. 平面滑动法计算边坡稳定性 由示意图按静力平衡可得此时边坡稳定性安全系数公式为: 式中:ω——滑动面的倾角; f ——等于 tgφ,摩擦系数; φ——边坡土体内摩擦角;

L ——滑动面的长度; N ——滑动面的法向分力; T ——滑动面的切向分力; c ——滑动面上的粘结力(或土的内聚力); Q ——滑动体的重力(包括坡顶均布荷载)。 ,滑动面位置不同,K 值亦随之而变,边坡稳定与否的判断依据,应是稳定系数的最小值 K min 相应的最危险滑动面的倾角为ω (如图所示)。 由于滑动体的重力(包括均布荷载)可以由下式求得: 式中:γ——边坡土体的容重(kN/m3); B ——滑动土体块顶部宽度(m); H ——边坡计算高度(m); q ——边坡顶部均布荷载(kN/m2); α——边坡斜面倾角(°)。 所以,边坡稳定性安全系数计算公式为: 欲求 K 值,根据 dK/dω=0,可求得最危险滑动面的倾角ω的值为: min 式中:

将参数代入可得: a = 2×20.00 / (19.00×20.00 +2×12.00) = 0.10; ctgω = 0.84 + (0.10/(0.75+0.10))1/2×1.31 = 1.28. 则边坡稳定性最不利滑动面倾角为:ω = 37.91°. 由此时的滑动面倾角可得到边坡稳定的稳定系数公式, K = (2×0.10+0.75)×0.84 +2×(0.10×(0.75+0.10))1/2×1.31 = 1.557. min ≥ 1.25,满足边坡稳定性要求! 此边坡稳定系数 K min

平面、折线滑动法边坡稳定性计算书

平面、折线滑动法边坡稳定性计算书计算依据: 1、《建筑基坑支护技术规程》JGJ120-2012 2、《建筑边坡工程技术规范》GB50330-2002 3、《建筑施工计算手册》江正荣编著 一、基本参数 边坡稳定计算方式折线滑动法边坡工程安全等级三级边坡边坡土体类型填土土的重度γ(KN/m3) 20 土的内摩擦角φ(°)15 土的粘聚力c(kPa) 12 边坡高度H(m) 11.862 边坡斜面倾角α(°)40 坡顶均布荷载q(kPa) 0.2 二、边坡稳定性计算 计算简图 滑动面参数 滑动面序号滑动面倾角θi(°)滑动面对应竖向土条宽度bi(m) 1 35 5.67 2 35 5.6 3 35 5.67 土条面积计算:

R1=(G1+qb1)cosθ1×tanφ+c×l1=(156.213+0.2×2.803)×cos(35°)×tg(15°)+12×6.922=117.474 kN/m T1=(G1+ qb1)sinθ1 =(156.213+0.2×2.803)×sin(35°)=89.922 kN/m R2=(G2+qb2)cosθ2×tanφ+c×l2=(131.759+0.2×0)×cos(35°)×tg(15°)+12×6.836=110.952 kN/m T2=(G2+ qb2)sinθ2 =(131.759+0.2×0)×sin(35°)=75.574 kN/m R3=(G3+qb3)cosθ3×tanφ+c×l3=(44.652+0.2×0)×cos(35°)×tg(15°)+12×6.922=92.865 kN/m T3=(G3+ qb3)sinθ3 =(44.652+0.2×0)×sin(35°)=25.611 kN/m K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n),(i=1,2,3,...,n-1) 第i块计算条块剩余下滑推力向第i+1计算条块的传递系数为: ψi=cos(θi-θi+1)-sin(θi-θi+1)×tanφi K s=(∑R iψiψi+1...ψn-1+R n)/(∑T iψiψi+1...ψn-1+T n)=(117.474×1×1+110.952×1+92.865)/(89.922×1×1+75.574×1+25.611)=1.681≥1.25 满足要求!

边坡设计计算书word版

三花香山雅苑 边坡设计计算书 User 2009-12-22 [在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。摘要通常是对文档内容的简短总结。]

一、设计依据 (3) 二、工程概况 (3) 三、场地条件 (4) 1. 地质构造及地层分布 (4) 2. 边坡稳定性评估 (6) (a) 局部边坡稳定性 (6) (b) 整体斜坡稳定性 (6) 3. 特征边坡选择 (6) 四、边坡稳定分析 (7) 1. 边坡土体设计参数 (7) 2. 边坡设计工况 (7) 3. 边坡分析方法 (8) (a) Bishop法 (8) (b) Janbu法 (8) (c) Morgenstern-Price法(简称M-P法) (10) 五、设计参数选择 (11) 1. 边坡设计参数选取 (11) 2. 锚杆设计参数选择 (12) 六、设计荷载工况 (12) 七、设计计算 (12) 1. 锚杆锚钉设计验算方法 (12) 八、计算结果 (14) 附边坡分析结果: (15) 18-18剖面分析结果: (15) 19-19剖面计算结果: (20)

一、设计依据 (1)浙江省华夏工程勘察院提供的《三花?香山雅苑岩土工程勘察报告》《三花南岩美塾玫瑰园岩土工程勘察报告》; (2)浙江有色提供的《浙江三花置业有限公司三花?香山雅苑地质灾害危险性评估报告》; (3)《混凝土结构设计规范》(GB50010-2002); (4)《混凝土结构工程施工质量验收规范》(GB50204-2002); (5)《建筑地基工程施工质量验收规范》(GB50202-2002); (6)《建筑边坡工程技术规范》(GB50330-2002); (7)《锚杆喷射混凝土支护设计规范》(GB 50086-2001) (8)《岩土锚(索)技术规程》(CECS 22:2005) (9)《建筑地基基础设计规范》(GB50007-2002); (10)《砌体结构设计规范》(GB50003-2001); (11)浙江三花置业有限公司提供的设计资料和工程总平面图等; (12)其它有关技术规范和规程。 二、工程概况 三花·香山雅苑位于城关镇下礼泉村104国道的北侧,场地南侧紧邻浙江三花股份公司四分厂。 原有自然斜坡和附近已建建筑物稳定,历史上没有发生地质灾害的记载,现场调查也未发现地质灾害,因此,现状评估认为该地区现状地质灾害不发育,现状地质灾害危险性小。但该地区,雨量充沛,日照充足,温暖湿润,5~10月多热带风暴及台风,年均4.7次,7~9月最盛,常伴有暴雨,易引发地质灾害。拟建11幢5~6层住宅楼和1幢2层物管用房。建筑结构均为砖混结构,条基基础,建筑物重要性等级为二级。拟建场地位于丘陵坡脚与河谷冲击盆地的交接处,地势南低北高,地面高程46.67~75.15米,边坡现状稳定性较好,坡度11

高边坡脚手架计算书说课讲解

高边坡脚手架计算书

高边坡脚手架计算书 一、参考规范 《建筑施工扣件式钢管脚手架安全技术规范》JGJ 130-2011 《建筑结构荷载规范》GB 50009-2001 《建筑边坡工程技术规范》GB 50330-2002 《碳素结构钢》GB/T 700-2006 《直缝电焊钢管》GB/T 12793-1992 《钢管脚手架扣件》GB 15831-2006 二、设计参数: 1、按照设计坡比1:0.5进行脚手架设计。 2、脚手板采用竹串片脚手板,其自重标准值为0.35KN/m2(见JGJ130规范表4.2.1-1)。 3、钢管尺寸均为φ48×3.5mm,其质量符合现行国家标准《碳素结构钢》(GB/T 700中)Q235-A级钢的规定(Q235钢抗拉、抗压、抗弯强度设计值f=205N/mm2,弹性模量E=2.06× 105N/mm2)。 计算参数 ⑴、脚手架参数:双排脚手架搭设高度为24.3 m,立杆采用单立杆;采用的钢管类型为Φ48×3.5为增加安全系数,计算时重量按Φ48×3.5取值,力学参数按Φ48×3.0计算。因局部位置为三排立杆,在计算立杆强度及稳定性时按最大荷载发生位置取中间立杆计算。②、搭设几何尺寸:立杆的横距为0.9m,立杆的纵距按建筑物

尺寸有1.5m和1.6米,取大值1.6米计算。大小横杆的步距为1.8 m;每步距中部外侧设一根大横杆作为防护栏杆;内排架距离墙0.45m;小横杆上不搭大横杆;小横杆每边伸出立杆尺寸按0.15米计算。③、横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数为1.00;④、与结构的连接点,因为是改造工程,为尽量保护原有建筑主体,采用两步三跨,连接点采用钢管形成抱箍连接在原有框架柱上,竖向间距3.6 m,水平间距4.8 m,采用扣件连接,对没有柱子的部位采用楼板和铜管打孔连接。 2.活荷载参数 施工均布活荷载标准值:2.000 kN/m2;脚手架用途装修脚手架; 同时施工层数按2层计算; 3.风荷载参数 本工程地处牡丹江分局,按《建筑结构荷载规范》取值,基本风压0.27 kN/m2;风压高度变化系数μz,按C类地区(有密集建筑群市区),计算连墙件强度时取0.92,计算立杆稳定性时取0.74;风荷载体型系数μs 按密目安全网封闭,背靠开洞墙面,计算取值为1.236;(按Us=1.3φ,其中φ=1.2An/Aw,其中An为密目安全网挡风面积,Aw为迎风面积,密目网按2000目计算) 4.静荷载参数 每米立杆承受的结构自重标准值,按《技术规范》插值法计算:0.1278(kN/m),因技术规范中计算简图中无步距中间栏杆,实际

边坡锚杆设计计算书

------------------------------------------------------------------------ 计算项目:2#工况整体稳定 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数4 坡面线号水平投影(m) 竖直投影(m) 超载数 1 1.200 8.300 0 2 1.500 0.000 0 3 7.300 9.200 0 4 20.000 0.000 1 超载1 距离8.000(m) 宽12.000(m) 荷载(20.00--20.00kPa) 270.00(度) [土层信息] 上部土层数2 层号定位高重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层底线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 7.543 18.000 --- 47.400 23.300 --- --- --- --- --- --- -7.000 --- 2 17.500 18.000 --- 10.000 17.500 --- --- --- --- --- --- 0.000 --- 下部土层数2 层号定位深重度饱和重度粘聚力内摩擦角水下粘聚水下内摩十字板强度增十字板羲强度增长系层顶线倾全孔压 度(m) (kN/m3) (kN/m3) (kPa) (度) 力(kPa) 擦角(度) (kPa) 长系数下值(kPa) 数水下值角(度) 系数 1 1.069 18.000 --- 47.400 23.300 --- --- --- --- --- --- -11.000 --- 2 8.636 18.200 --- 35.200 24.600 --- --- --- --- --- --- 0.000 --- 不考虑水的作用 [计算条件] 圆弧稳定分析方法: 瑞典条分法 土条重切向分力与滑动方向反向时: 当下滑力对待 稳定计算目标: 自动搜索最危险滑裂面 条分法的土条宽度: 1.000(m) 搜索时的圆心步长: 1.000(m) 搜索时的半径步长: 0.500(m) ------------------------------------------------------------------------ 计算结果: ------------------------------------------------------------------------ 最不利滑动面: 滑动圆心= (1.320,20.340)(m) 滑动半径= 12.038(m) 滑动安全系数= 0.807 起始x 终止x li Ci 謎条实重浮力地震力渗透力附加力X 附加力Y 下滑力抗滑力 (m) (m) (度) (m) (kPa) (度) (kN) (kN) (kN) (kN) (kN) (kN) (kN) (kN) -------------------------------------------------------------------------------------------------------------------- 2.771 3.675 9.104 0.92 10.00 17.50 8.08 0.00 0.00 0.00 0.00 0.00 1.28 11.67 3.675 4.579 13.494 0.93 10.00 17.50 23.66 0.00 0.00 0.00 0.00 0.00 5.52 1 6.55 4.579 5.482 17.967 0.95 10.00 17.50 38.04 0.00 0.00 0.00 0.00 0.00 11.73 20.91 5.482 6.386 22.557 0.98 10.00 1 7.50 51.12 0.00 0.00 0.00 0.00 0.00 19.61 24.67 6.386 7.289 27.307 1.02 10.00 17.50 62.80 0.00 0.00 0.00 0.00 0.00 2 8.81 27.77 7.289 8.193 32.272 1.07 10.00 17.50 72.89 0.00 0.00 0.00 0.00 0.00 38.92 30.12 8.193 9.096 37.528 1.14 10.00 17.50 81.12 0.00 0.00 0.00 0.00 0.00 49.42 31.68 9.096 10.000 43.192 1.24 10.00 17.50 87.10 0.00 0.00 0.00 0.00 0.00 59.62 32.42 10.000 10.754 48.873 1.15 10.00 17.50 68.84 0.00 0.00 0.00 0.00 0.00 51.85 25.75

相关文档
最新文档