中考数学 锐角三角函数综合试题及详细答案

中考数学 锐角三角函数综合试题及详细答案
中考数学 锐角三角函数综合试题及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

23

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠3

∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=1

2

EK=2,

∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,

在Rt△PHF中,PH=1

2

PF=1,3OH=23

∴()2

2

12362

+-=

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=

33OE=233

, 综上所述:OP 的长为62 或

23

3

. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

2.如图(1),在平面直角坐标系中,点A (0,﹣6),点B (6,0).Rt △CDE 中,∠CDE=90°,CD=4,DE=4

,直角边CD 在y 轴上,且点C 与点A 重合.Rt △CDE 沿y 轴

正方向平行移动,当点C 运动到点O 时停止运动.解答下列问题:

(1)如图(2),当Rt △CDE 运动到点D 与点O 重合时,设CE 交AB 于点M ,求∠BME 的度数.

(2)如图(3),在Rt △CDE 的运动过程中,当CE 经过点B 时,求BC 的长.

(3)在Rt △CDE 的运动过程中,设AC=h ,△OAB 与△CDE 的重叠部分的面积为S ,请写出S 与h 之间的函数关系式,并求出面积S 的最大值.

【答案】(1)∠BME=15°; (2BC=4

(3)h≤2时,S=﹣h 2+4h+8,

当h≥2时,S=18﹣3h . 【解析】

试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA ,要求∠BME 的度数,需先求出∠CMA 的度数.根据三角形外角的定理进行解答即可;

(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;

(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.

试题解析:解:(1)如图2,

∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).

∴OA=OB,

∴∠OAB=45°,

∵∠CDE=90°,CD=4,DE=4,

∴∠OCE=60°,

∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,

∴∠BME=∠CMA=15°;

如图3,

∵∠CDE=90°,CD=4,DE=4,

∴∠OBC=∠DEC=30°,

∵OB=6,

∴BC=4;

(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,

∵CD=4,DE=4,AC=h,AN=NM,

∴CN=4﹣FM ,AN=MN=4+h ﹣FM , ∵△CMN ∽△CED , ∴,

解得FM=4﹣, ∴S=S △EDC ﹣S △EFM =

×4×4

(4

4﹣h )×(4﹣

)=﹣

h 2+4h+8,

②如图3,当h≥2时, S=S △OBC =

OC×OB=

(6﹣h )×6=18﹣3h .

考点:1、三角形的外角定理;2、相似;3、解直角三角形

3.如图,直线y =

12x +2与x 轴交于点A ,与y 轴交于点B ,抛物线y =﹣1

2

x 2+bx +c 经过A 、B 两点,与x 轴的另一个交点为 C . (1)求抛物线的解析式;

(2)根据图象,直接写出满足

12x +2≥﹣1

2

x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.

【答案】(1)213

222

y x x =--+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3). 【解析】 【分析】 (1)由直线y =1

2

x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式;

(2)观察图象,找出直线在抛物线上方的x 的取值范围;

(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =

∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,DE CO

AE BO

=,最后分类讨论确定点D 的坐标. 【详解】 解:(1)由y =

1

2

x +2可得: 当x =0时,y =2;当y =0时,x =﹣4, ∴A (﹣4,0),B (0,2),

把A 、B 的坐标代入y =﹣12x 2+bx +c 得: 322

b c ?=-?

??=?,,

∴抛物线的解析式为:213

222y x x =-

-+ (2)当x ≥0或x ≤﹣4时,12x +2≥﹣1

2

x 2+bx +c

(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,

由213

222

y x x =

-+令y =0, 解得:x 1=1,x 2=﹣4, ∴CO =1,AO =4,

设点D 的坐标为(m ,213

222

m m --+),

∵∠DAC =∠CBO ,

∴tan ∠DAC =tan ∠CBO ,

∴在Rt △ADE 和Rt △BOC 中有DE CO

AE BO

=, 当D 在x 轴上方时,213

2

12242

--+=

+m m m 解得:m 1=0,m 2=﹣4(不合题意,舍去), ∴点D 的坐标为(0,2).

当D 在x 轴下方时,213

(2)

12242

---+=

+m m m 解得:m 1=2,m 2=﹣4(不合题意,舍去), ∴点D 的坐标为(2,﹣3),

故满足条件的D 点坐标为(0,2)或(2,﹣3).

【点睛】

本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.

4.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.

(1)试求抛物线的解析式;

(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;

(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233

384

y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为3

34

y x =

+或3

34

y x =--.

【解析】 【分析】

(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=4

5

PC ,所以5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=

18

5

,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即

∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】

解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣

38

∴抛物线解析式为y =﹣

38(x+2)(x ﹣4)=﹣38x 2+34

x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴

PC PD

BC OB

= ∵B (4,0),C (0,3)

∴OB =4,OC =3,BC ∴PD =

45

PC ∴5PA+4PC =5(PA+

4

5

PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB?OC =1

2

BC?AE ∴AE =

6318

55

AB OC BC ?== ∴5AE =18

∴5PA+4PC 的最小值为18.

(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,

∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q

∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°

∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =

3

5

FQ TF = ∵Rt △FGQ 中,cos ∠QFT =3

5

FG FQ =

∴FG =

35FQ =95

∴x Q =1﹣9455=-,QG =2

222912FQ 355FG ??-=-= ???

①若点Q 在x 轴上方,则Q (412

55

-,) 设直线l 解析式为:y =kx+b

∴404125

5k b k b -+=???-+=?? 解得:343k b ?

=??

?=? ∴直线l :3

34

y x =

+ ②若点Q 在x 轴下方,则Q (41255

--,

) ∴直线l :3

34

y x =-

- 综上所述,直线l 的解析式为3

34

y x =

+或3

34

y x =--

【点睛】

本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论

5.如图,在平面直角坐标系中,菱形ABCD 的边AB 在x 轴上,点B 坐标(﹣6,0),点C 在y 轴正半轴上,且cos B =

3

5

,动点P 从点C 出发,以每秒一个单位长度的速度向D 点移动(P 点到达D 点时停止运动),移动时间为t 秒,过点P 作平行于y 轴的直线l 与菱形的其它边交于点Q . (1)求点D 坐标;

(2)求△OPQ 的面积S 关于t 的函数关系式,并求出S 的最大值; (3)在直线l 移动过程中,是否存在t 值,使S =320ABCD

S 菱形?若存在,求出t 的值;若不存在,请说明理由.

【答案】(1)点D 的坐标为(10,8).(2)S 关于t 的函数关系式为S =

24(04)

220

(410)3

3t t t t t ??

?-+

(1)在Rt △BOC 中,求BC,OC,根据菱形性质再求D 的坐标;(2)分两种情况分析:①当0≤t ≤4时和②当4<t ≤10时,根据面积公式列出解析式,再求函数的最值;(3)分两

种情况分析:当0≤t ≤4时,4t =12,;当4<t ≤10时,2220

1233

t t -+= 【详解】

解:(1)在Rt △BOC 中,∠BOC =90°,OB =6,cos B =

35

, 10cos OB

BC B

∴=

=

8OC ∴==∵四边形ABCD 为菱形,CD ∥x 轴,

∴点D 的坐标为(10,8).

(2)∵AB =BC =10,点B 的坐标为(﹣6,0), ∴点A 的坐标为(4,0). 分两种情况考虑,如图1所示. ①当0≤t ≤4时,PQ =OC =8,OQ =t ,

∴S =

1

2PQ ?OQ =4t , ∵4>0,

∴当t =4时,S 取得最大值,最大值为16;

②当4<t ≤10时,设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0),D (10,8)代入y =kx +b ,得:

4k b 010k b 8+=??

+=?,解得:4k 3

16b 3?=????=-??

, ∴直线AD 的解析式为416

33

y x =-. 当x =t 时,416

33

y t =

-, 4164

8(10)3

33PQ t t ??∴=--=- ???

21220

233

S PQ OP t t ∴=

?=-+ 22202502

(5),033333S t t t =-+=--+-<∴当t =5时,S 取得最大值,最大值为

503

. 综上所述:S 关于t 的函数关系式为S =24(04)

220(410)3

3t t t t t ??

?-+

(3)S 菱形ABCD =AB ?OC =80.

当0≤t ≤4时,4t =12, 解得:t =3; 当4<t ≤10时,2220

33

t t -

+=12, 解得:t 1=5﹣7(舍去),t 2=5+ 7. 综上所述:在直线l 移动过程中,存在t 值,使S =

3

20

ABCD S 菱形,t 的值为3或5+7.

【点睛】

考核知识点:一次函数和二次函数的最值问题.数形结合,分类讨论是关键.

6.如图,在平面直角坐标系xOy 中,抛物线y =﹣

14x 2+bx +c 与直线y =1

2

x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .

(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;

(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.

【答案】(1)21y 234x x =-+-,D (4,1);(2)1

3

;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =

1

2

x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣

14

x 2

+bx+c ,即可求解;

(2)求出则点E(3,0),EH=EB?sin∠OBC=

5,CE=32,则CH=

5

,即可求

解;

(3)分点F在y轴负半轴和在y轴正半轴两种情况,分别求解即可.【详解】

(1)y=1

2

x﹣3,令y=0,则x=6,令x=0,则y=﹣3,

则点B、C的坐标分别为(6,0)、(0,﹣3),则c=﹣3,

将点B坐标代入抛物线y=﹣1

4

x2+bx﹣3得:0=﹣

1

4

×36+6b﹣3,解得:b=2,

故抛物线的表达式为:y=﹣1

4

x2+2x﹣3,令y=0,则x=6或2,

即点A(2,0),则点D(4,1);

(2)过点E作EH⊥BC交于点H,

C、D的坐标分别为:(0,﹣3)、(4,1),

直线CD的表达式为:y=x﹣3,则点E(3,0),

tan∠OBC=

31

62

OC

OB

==,则sin∠OBC

5

则EH=EB?sin∠OBC

5

CE=2CH

5

则tan∠DCB=

1

3 EH

CH

=;

(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),

则BC=5

∵OE=OC,∴∠AEC=45°,

tan∠DBE=

1

64

-

1

2

故:∠DBE=∠OBC,

则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,

过点F作FG⊥BG交BC的延长线与点G,

则∠GFC=∠OBC=α,

设:GF=2m,则CG=GFtanα=m,

∵∠CBF=45°,∴BG=GF,

即:5=2m,解得:m=5

CF22

GF CG

+5=15,

故点F(0,﹣18);

②当点F在y轴正半轴时,

同理可得:点F(0,1);

故:点F坐标为(0,1)或(0,﹣18).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.

7.如图,半圆O的直径AB=20,弦CD∥AB,动点M在半径OD上,射线BM与弦CD相交于点E(点E与点C、D不重合),设OM=m.

(1)求DE的长(用含m的代数式表示);

(2)令弦CD所对的圆心角为α,且sin

4 =

25α

①若△DEM的面积为S,求S关于m的函数关系式,并求出m的取值范围;

②若动点N在CD上,且CN=OM,射线BM与射线ON相交于点F,当∠OMF=90°时,求DE的长.

【答案】(1)DE =10010m m -;(2)①S =2360300

m m m

-+,(5013<m <10),

②DE =

5

2

. 【解析】 【分析】

(1)由CD ∥AB 知△DEM ∽△OBM ,可得

DE DM

OB OM

=,据此可得; (2)①连接OC 、作OP ⊥CD 、MQ ⊥CD ,由OC =OD 、OP ⊥CD 知∠DOP =1

2

∠COD ,据此可得sin ∠DOP =sin ∠DMQ =45、sin ∠ODP =3

5

,继而由OM =m 、OD =10得QM =DM sin ∠ODP =

3

5

(10﹣m ),根据三角形的面积公式即可得;如图2,先求得PD =8、CD =16,证△CDM ∽△BOM 得

CD DM BO OM =,求得OM =50

13

,据此可得m 的取值范围; ②如图3,由BM =OB sin ∠BOM =10×3

5

=6,可得OM =8,根据(1)所求结果可得答案. 【详解】 (1)∵CD ∥AB , ∴△DEM ∽△OBM , ∴

DE DM OB OM =,即1010DE m

m

-=, ∴DE =

10010m

m

-; (2)①如图1,连接OC 、作OP ⊥CD 于点P ,作MQ ⊥CD 于点Q ,

∵OC =OD 、OP ⊥CD ,

∴∠DOP =1

2

∠COD , ∵sin

2

α

45

, ∴sin ∠DOP =sin ∠DMQ =45,sin ∠ODP =35

, ∵OM =m 、OD =10, ∴DM =10﹣m , ∴QM =DM sin ∠ODP =

3

5

(10﹣m ), 则S △DEM =12DE ?MQ =12×10010m m -×35(10﹣m )=2360300

m m m

-+,

如图2,

∵PD =OD sin ∠DOP =10×4

5

=8, ∴CD =16, ∵CD ∥AB , ∴△CDM ∽△BOM , ∴

CD DM BO OM =,即1610=10OM

OM

-, 解得:OM =50

13

, ∴

50

13

<m <10, ∴S =2360300

m m m

-+,(5013<m <10).

②当∠OMF =90°时,如图3,

则∠BMO=90°,

在Rt△BOM中,BM=OB sin∠BOM=10×3

5

=6,

则OM=8,

由(1)得DE=1001085

82

-?

=.

【点睛】

本题主要考查圆的综合题,解题的关键是熟练掌握圆的有关性质、相似三角形的判定与性质及解直角三角形的能力.

8.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,

∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:

(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;

(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.

【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣

【解析】

【分析】

(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,

NC=NM=BM进而得出结论;

(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,

②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;

(3) 在Rt△ABM和Rt△ANM中,,

可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.

【详解】

(1)证明:∵△ABC是等腰直角三角形,

∴∠BAC=∠C=45°,

∵AM是∠BAC的平分线,MN⊥AC,

∴BM=MN,

在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,

∵∠ENF=135°,,

∴∠BME=∠NMF,

∴△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵CN=CF+NF,

∴BE+CF=BM;

(2)针对图2,同(1)的方法得,△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵NC=NF﹣CF,

∴BE﹣CF=BM;

针对图3,同(1)的方法得,△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵NC=CF﹣NF,

∴CF﹣BE=BM;

(3)在Rt△ABM和Rt△ANM中,,

∴Rt△ABM≌Rt△ANM(HL),

∴AB=AN=+1,

在Rt△ABC中,AC=AB=+1,

∴AC=AB=2+,

∴CN=AC﹣AN=2+﹣(+1)=1,

在Rt△CMN中,CM=CN=,

∴BM=BC﹣CM=+1﹣=1,

在Rt△BME中,tan∠BEM===,

∴BE=,

∴①由(1)知,如图1,BE+CF=BM,

∴CF=BM﹣BE=1﹣

②由(2)知,如图2,由tan∠BEM=,

∴此种情况不成立;

③由(2)知,如图3,CF﹣BE=BM,

∴CF=BM+BE=1+,

故答案为1,1+或1﹣.

【点睛】

本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.

9.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.

(1)求的面积;

(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)

(参考数据:,,,,,,

)

【答案】(1)560000(2)565.6

【解析】

试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;

(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.

试题解析:(1)过点作交的延长线于点,

在中,,

所以米.

所以(平方米).

(2)连接,过点作,垂足为点,则.

因为是中点,

所以米,且为中点,

米,

所以米.

所以米,由勾股定理得,

米.

答:、间的距离为米.

考点:解直角三角形

10.如图,公路AB为东西走向,在点A北偏东36.5?方向上,距离5千米处是村庄M,在点A北偏东53.5?方向上,距离10千米处是村庄N;要在公路AB旁修建一个土特产收购站P(取点P在AB上),使得M,N两村庄到P站的距离之和最短,请在图中作出P的位置(不写作法)并计算:

(1)M,N两村庄之间的距离;

(2)P到M、N距离之和的最小值.(参考数据:sin36.5°=0.6,cos36.5°=0.8,tan36.5°=0.75计算结果保留根号.)

【答案】(1) M,N29千米;(2) 村庄M、N到P站的最短距离和是5

【解析】

【分析】

(1)作N关于AB的对称点N'与AB交于E,连结MN’与AB交于P,则P为土特产收购站

相关主题
相关文档
最新文档