神经网络控制ppt课件
合集下载
BP神经网络模型PPT课件

学习规则: 权值调整规则,即在学习过程中网络中各神经 元的连接权变化所依据的一定的调整规则。
BP网络的标准学习算法-算法思想
学习的类型:有导师学习 核心思想:
将输出误差以某种形式通过隐层向输入层逐层反传
将误差分摊给各层的所有 单元---各层单元的误 差信号
学习的过程: 信号的正向传播
(
yio (k) who
h
whohoh (k) bo )
who
hoh (k)
e
yio
(1 2
q
(do(k)
o1
yio
yoo (k)))2
(do (k )
yoo (k)) yoo
(k)
(do(k) yoo (k))f ( yio(k)) o(k)
小于零时,权值调整量
为正,实际输出少于期
望输出,权值向增大方向
调整,使得实际输出与期
望输出的差减少。
who
e who
<0,
此时Δwho>0
BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本 功能
函数名
功能
newff()
生成一个前馈BP网络
tansig()
双曲正切S型(Tan-Sigmoid)传输函数
神经元网络工作的全部秘密就在于它的权重值,
神经网络概述
选择不同的权重值,神经元网络就会有不同的 输入-输出关系。 神经元网络的具体工作原理:我们将样本数据 的输入值输进神经元网络,就得到一组输出值。 这组输出值当然不是我们的理想输出值。于是, 我们就根据实际输出与理想输出的差来修正权 值,以缩小这种差别。这样反复训练多次,最 后,使实际输出与理想输出趋于一致。这样, 神经元网络就可以用来代替我们所需要的模型 了。
BP网络的标准学习算法-算法思想
学习的类型:有导师学习 核心思想:
将输出误差以某种形式通过隐层向输入层逐层反传
将误差分摊给各层的所有 单元---各层单元的误 差信号
学习的过程: 信号的正向传播
(
yio (k) who
h
whohoh (k) bo )
who
hoh (k)
e
yio
(1 2
q
(do(k)
o1
yio
yoo (k)))2
(do (k )
yoo (k)) yoo
(k)
(do(k) yoo (k))f ( yio(k)) o(k)
小于零时,权值调整量
为正,实际输出少于期
望输出,权值向增大方向
调整,使得实际输出与期
望输出的差减少。
who
e who
<0,
此时Δwho>0
BP神经网络学习算法的MATLAB实现
MATLAB中BP神经网络的重要函数和基本 功能
函数名
功能
newff()
生成一个前馈BP网络
tansig()
双曲正切S型(Tan-Sigmoid)传输函数
神经元网络工作的全部秘密就在于它的权重值,
神经网络概述
选择不同的权重值,神经元网络就会有不同的 输入-输出关系。 神经元网络的具体工作原理:我们将样本数据 的输入值输进神经元网络,就得到一组输出值。 这组输出值当然不是我们的理想输出值。于是, 我们就根据实际输出与理想输出的差来修正权 值,以缩小这种差别。这样反复训练多次,最 后,使实际输出与理想输出趋于一致。这样, 神经元网络就可以用来代替我们所需要的模型 了。
深度学习-神经网络PPT学习课件

神经网络的学习过程就是学习控制着空间变换方式(物质组成方式)的权重矩阵 W , 那如何学习每一层的权重矩阵 W 呢? 2.3.1、激活函数
激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络 仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价 的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性 映射学习能力。
线性可分视角:神经网络的学习就是学习如何利用矩阵的线性变换加激活函数的非 线性变换,将原始输入空间投向线性可分/稀疏的空间去分类/回归。
增加节点数:增加维度,即增加线性转换能力。 增加层数:增加激活函数的次数,即增加非线性转换次数。
2/29/2020
13
2.2.2、物理视角:“物质组成”
回想上文由碳氧原子通过不同组合形成若干分子的例子。从分子层面继续迭代这种 组合思想,可以形成DNA,细胞,组织,器官,最终可以形成一个完整的人。不同层级之 间都是以类似的几种规则再不断形成新物质。
2/29/2020
16
➢Sigmoid
sigmoid 是使用范围最广的一类激活函数,具 有指数函数形状,它在物理意义上最为接近生物神 经元。此外,(0, 1) 的输出还可以被表示作概率, 或用于输入的归一化,代表性的如Sigmoid交叉熵 损失函数。
然而,sigmoid也有其自身的缺陷,最明显的 就是饱和性。 软饱和激活函数:
2/29/2020
17
➢Tanh
➢ReLU
可以看到,当x<0时,ReLU硬饱和,
tanh也是一种非常常见的激活函数。 与sigmoid相比,它的输出均值是0, 使得其收敛速度要比sigmoid快,减少 迭代次数。然而,从途中可以看出, tanh一样具有软饱和性,从而造成梯 度消失。
激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络 仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价 的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性 映射学习能力。
线性可分视角:神经网络的学习就是学习如何利用矩阵的线性变换加激活函数的非 线性变换,将原始输入空间投向线性可分/稀疏的空间去分类/回归。
增加节点数:增加维度,即增加线性转换能力。 增加层数:增加激活函数的次数,即增加非线性转换次数。
2/29/2020
13
2.2.2、物理视角:“物质组成”
回想上文由碳氧原子通过不同组合形成若干分子的例子。从分子层面继续迭代这种 组合思想,可以形成DNA,细胞,组织,器官,最终可以形成一个完整的人。不同层级之 间都是以类似的几种规则再不断形成新物质。
2/29/2020
16
➢Sigmoid
sigmoid 是使用范围最广的一类激活函数,具 有指数函数形状,它在物理意义上最为接近生物神 经元。此外,(0, 1) 的输出还可以被表示作概率, 或用于输入的归一化,代表性的如Sigmoid交叉熵 损失函数。
然而,sigmoid也有其自身的缺陷,最明显的 就是饱和性。 软饱和激活函数:
2/29/2020
17
➢Tanh
➢ReLU
可以看到,当x<0时,ReLU硬饱和,
tanh也是一种非常常见的激活函数。 与sigmoid相比,它的输出均值是0, 使得其收敛速度要比sigmoid快,减少 迭代次数。然而,从途中可以看出, tanh一样具有软饱和性,从而造成梯 度消失。
神经网络及其应用教学课件ppt.ppt

一、反馈网络
1.1 反馈网络简介 1.2 网络稳定性
2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1.1 反馈网络简介
反馈网络(Recurrent Network),又称自 联想记忆网络
– 其目的是为了设计一个网络,储存一组平衡 点,使得当给网络一组初始值时,网络通过 自行运行而最终收敛到这个设计的平衡点上。
反馈神经网络由于其输出端有反馈到其 输入端;所以,Hopfield网络在输入的 激励下,会产生不断的状态变化。
当有输入之后,可以求出Hopfield的输 出,这个输出反馈到输入从而产生新的 输出,这个反馈过程一直进行下去。如 果Hopfield网络是一个能收敛的稳定网 络,则这个反馈与迭代的计算过程所产 生的变化越来越小,一旦到达了稳定平 衡状态;那么Hopfield网络就会输出一 个稳定的恒值。
21
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
2.1 网络模型
分类 – 离散Hopfield网络(DHNN) – 连续Hopfield网络(CHNN)
22
DHNN中的激活函数
CHNN中的激活函数
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
状态空间中,从初始状态A(t0) ,最后到达A*。若A*
17
为稳定点,则可以看作是A*把A(t0)吸引了过去,在 A(t0)时能量比较大,而吸引到A*时能量已为极小了
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1.1 反馈网络简介 1.2 网络稳定性
2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
1.1 反馈网络简介
反馈网络(Recurrent Network),又称自 联想记忆网络
– 其目的是为了设计一个网络,储存一组平衡 点,使得当给网络一组初始值时,网络通过 自行运行而最终收敛到这个设计的平衡点上。
反馈神经网络由于其输出端有反馈到其 输入端;所以,Hopfield网络在输入的 激励下,会产生不断的状态变化。
当有输入之后,可以求出Hopfield的输 出,这个输出反馈到输入从而产生新的 输出,这个反馈过程一直进行下去。如 果Hopfield网络是一个能收敛的稳定网 络,则这个反馈与迭代的计算过程所产 生的变化越来越小,一旦到达了稳定平 衡状态;那么Hopfield网络就会输出一 个稳定的恒值。
21
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
2.1 网络模型
分类 – 离散Hopfield网络(DHNN) – 连续Hopfield网络(CHNN)
22
DHNN中的激活函数
CHNN中的激活函数
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
状态空间中,从初始状态A(t0) ,最后到达A*。若A*
17
为稳定点,则可以看作是A*把A(t0)吸引了过去,在 A(t0)时能量比较大,而吸引到A*时能量已为极小了
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
MLP神经网络PPT课件

contents
• structure • universal theorem • MLP for classification • mechanism of MLP for classification
– nonlinear mapping – binary coding of the areas
i, j
Ep i jk
O k1 i
• Situation for k M
E p i jM
E p O j M
O j M i jM
( y j OjM ) f '(ijM )
• Situation for k M
Ep
i jk
l
E p il k1
il k1 O j k
O j k i jk
l
• We ended by looking at some practical issues that didn’t arise for the single layer networks
Structure of an MLP
• it is composed of several layers • neurons within each layer are not connected • ith layer is only fully connected to the (i+1)jth layer • Signal is transmitted only in a feedforward manner
ij (xi )
• It is impractical
– the functions Ej(.) and ij (.) are not the simple weighted sums passed through
• structure • universal theorem • MLP for classification • mechanism of MLP for classification
– nonlinear mapping – binary coding of the areas
i, j
Ep i jk
O k1 i
• Situation for k M
E p i jM
E p O j M
O j M i jM
( y j OjM ) f '(ijM )
• Situation for k M
Ep
i jk
l
E p il k1
il k1 O j k
O j k i jk
l
• We ended by looking at some practical issues that didn’t arise for the single layer networks
Structure of an MLP
• it is composed of several layers • neurons within each layer are not connected • ith layer is only fully connected to the (i+1)jth layer • Signal is transmitted only in a feedforward manner
ij (xi )
• It is impractical
– the functions Ej(.) and ij (.) are not the simple weighted sums passed through
深神经网络ppt课件

感谢观看
自动驾驶
通过深度神经网络实现自动驾驶功能 ,包括车辆控制、障碍物检测、路径 规划等。
06
深度神经网络的挑战与未来展 望
数据过拟合与欠拟合问题
数据过拟合
深度神经网络在训练过程中容易过度拟合训练数据,导致在测试数据上表现不 佳。
欠拟合
当模型过于简单时,无法充分学习训练数据的复杂特征,导致在训练和测试数 据上表现均不佳。
正则化方法及其应用
总结词
正则化是一种防止模型过拟合的技术,通过在损失函数 中增加惩罚项来约束模型的复杂度。正则化在深度学习 中广泛应用,有助于提高模型的泛化能力。
பைடு நூலகம்
详细描述
常见的正则化方法包括L1正则化、L2正则化、dropout 和early stopping等。L1正则化和L2正则化通过在损失 函数中增加权重向量的范数来约束模型复杂度; dropout随机丢弃神经网络中的一部分节点,以防止过 拟合;early stopping是在训练过程中提前终止训练, 以避免过拟合。这些正则化方法可以单独使用或结合使 用,以获得更好的模型性能。
04
深度神经网络的常见模型
卷积神经网络(CNN)
卷积神经网络是深度学习中常用的模型之一,主要用于图像处理和计算机视觉任务 。
CNN通过局部连接、权重共享和下采样等技术,能够有效地提取图像中的特征,广 泛应用于图像分类、目标检测、语义分割等任务。
CNN由输入层、卷积层、池化层、全连接层等组成,通过多层的卷积和池化操作, 逐步提取图像中的特征,最终实现分类或识别任务。
1986年,Rumelhart和Hinton等人提出了反 向传播算法,为神经网络的训练提供了有效的 方法。
2006年,Hinton等人提出了深度学习的概念, 将神经网络的层数增加到更深层次,提高了模型 的表示能力。
自动驾驶
通过深度神经网络实现自动驾驶功能 ,包括车辆控制、障碍物检测、路径 规划等。
06
深度神经网络的挑战与未来展 望
数据过拟合与欠拟合问题
数据过拟合
深度神经网络在训练过程中容易过度拟合训练数据,导致在测试数据上表现不 佳。
欠拟合
当模型过于简单时,无法充分学习训练数据的复杂特征,导致在训练和测试数 据上表现均不佳。
正则化方法及其应用
总结词
正则化是一种防止模型过拟合的技术,通过在损失函数 中增加惩罚项来约束模型的复杂度。正则化在深度学习 中广泛应用,有助于提高模型的泛化能力。
பைடு நூலகம்
详细描述
常见的正则化方法包括L1正则化、L2正则化、dropout 和early stopping等。L1正则化和L2正则化通过在损失 函数中增加权重向量的范数来约束模型复杂度; dropout随机丢弃神经网络中的一部分节点,以防止过 拟合;early stopping是在训练过程中提前终止训练, 以避免过拟合。这些正则化方法可以单独使用或结合使 用,以获得更好的模型性能。
04
深度神经网络的常见模型
卷积神经网络(CNN)
卷积神经网络是深度学习中常用的模型之一,主要用于图像处理和计算机视觉任务 。
CNN通过局部连接、权重共享和下采样等技术,能够有效地提取图像中的特征,广 泛应用于图像分类、目标检测、语义分割等任务。
CNN由输入层、卷积层、池化层、全连接层等组成,通过多层的卷积和池化操作, 逐步提取图像中的特征,最终实现分类或识别任务。
1986年,Rumelhart和Hinton等人提出了反 向传播算法,为神经网络的训练提供了有效的 方法。
2006年,Hinton等人提出了深度学习的概念, 将神经网络的层数增加到更深层次,提高了模型 的表示能力。
神经网络原理与应用课件.ppt

f(x) 1
或
1ex p(x)
f(x)1(1th( x))
2
x0
f(x) +1
0
x
-1
这类曲线可连续取值,反映了神经元 的饱和特性。
2024/11/24
神经网络与模式识别研究室
21
• 3.神经网络的连接方式
神经网络是由大量的神经元以不同的 方式连接而成的大规模复杂系统,不同的 网络模型可能具有不同的连接方式,常用 的连接方式有:
2024/11/24
神经网络与模式识别研究室
2
•从第一台数字计算机问世(1946年),
计算机系统几经更新换代,经历了由电 子管、晶体管、LSI、VLSI,到后来的 奔腾4、双核技术等发展阶段。
•近年来,软件方面也在不断升级更新, 计算机性能越来越优越,应用也越来越 广泛。
•尽管如此,但计算机系统并非万能,它 存在着自身的局限性和物理极限(小型 化),其特点是串行运算,输入输出存 在线性的和确定性的关系。
2024/11/24
神经网络与模式识别研究室
28
• 而另一阶段则是工作期,此时神经网络 已经训练好,连接权值保持不变,即通 过信息的不断传递,使各神经元状态发 生变化,从而使网络最终达到一个稳定 平衡态,这就像人脑寻找记忆的过程, 这一过程相对较快,各神经元的状态也 称之为短期记忆。
2024/11/24
2024/11/24
神经网络与模式识别研究室
13
• NN的问世标志着认知科学、计算机科学 及人工智能的发展又处于一个新的转折 点,它的应用和发展,不但会推动神经 动力学本身,而且将影响新一代计算机 的设计原理,可能为新一代计算机和人 工智能开辟一条崭新的途径,并为信息 科学带来革命性的变化。
神经网络控制

习调整网络的权值,使反馈控制输入趋近于零,
从而使神经网络控制器逐渐在控制作用中占据主
导地位,最终取消反馈控制器的作用;
✓
一旦系统出现干扰,反馈控制器重新起作用。
✓
可确保控制系统的稳定性和鲁棒性,有效提高系
统的精度和自适应能力。
神经网络
控制器
期望输出
()
−1
()
+
-
()
传统控
网络实现;可进行离线辨识,也可进行在线辨识。
+
-
逆向建模
一般而言,建立逆模型对神经网络控制意义重大。
直接逆建模简化结构图:
可用于离线辨识,也可
用于在线辨识。
对 象
+
神经网络
逆模型
缺点:不是目标导向的,系统输入也不可能预先定义。
实际常采用正-逆建模结构。
正-逆建模
神经网络
逆模型
对 象
第3章 神经网络控制
第2部分 控制基础
3.5 神经网络控制基础
3.5.1 神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过
程或系统。
神经网络采用并行分布式信息处理,具有很强的容
错性。
神经网络是本质非线性系统,可实现任意非线性映
射。
神经网络具有很强的信息综合能力,能同时处理大
期望输出
()
稳定的参
考模型
参考模
型输入
()
+
()
()
+
-
神经网络
控制器
()
对象
()
从而使神经网络控制器逐渐在控制作用中占据主
导地位,最终取消反馈控制器的作用;
✓
一旦系统出现干扰,反馈控制器重新起作用。
✓
可确保控制系统的稳定性和鲁棒性,有效提高系
统的精度和自适应能力。
神经网络
控制器
期望输出
()
−1
()
+
-
()
传统控
网络实现;可进行离线辨识,也可进行在线辨识。
+
-
逆向建模
一般而言,建立逆模型对神经网络控制意义重大。
直接逆建模简化结构图:
可用于离线辨识,也可
用于在线辨识。
对 象
+
神经网络
逆模型
缺点:不是目标导向的,系统输入也不可能预先定义。
实际常采用正-逆建模结构。
正-逆建模
神经网络
逆模型
对 象
第3章 神经网络控制
第2部分 控制基础
3.5 神经网络控制基础
3.5.1 神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过
程或系统。
神经网络采用并行分布式信息处理,具有很强的容
错性。
神经网络是本质非线性系统,可实现任意非线性映
射。
神经网络具有很强的信息综合能力,能同时处理大
期望输出
()
稳定的参
考模型
参考模
型输入
()
+
()
()
+
-
神经网络
控制器
()
对象
()
神经网络学习PPT课件

不断迭代,权重逐渐调整到最优解附近。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。
牛顿法
总结词
牛顿法是一种基于二阶泰勒级数的优化算法,通过迭 代更新参数,以找到损失函数的极小值点。在神经网 络训练中,牛顿法可以用于寻找最优解。
详细描述
牛顿法的基本思想是,利用二阶泰勒级数近似损失函数 ,并找到该函数的极小值点。在神经网络训练中,牛顿 法可以用于寻找最优解。具体来说,根据二阶导数矩阵 (海森矩阵)和当前点的梯度向量,计算出参数更新的 方向和步长,然后更新参数。通过不断迭代,参数逐渐 调整到最优解附近。与梯度下降法相比,牛顿法在迭代 过程中不仅考虑了梯度信息,还考虑了二阶导数信息, 因此具有更快的收敛速度和更好的全局搜索能力。
07
未来展望与挑战
深度学习的发展趋势
模型可解释性
随着深度学习在各领域的广泛应用,模型的可解释性成为研究热 点,旨在提高模型决策的透明度和可信度。
持续学习与终身学习
随着数据不断增长和模型持续更新,如何实现模型的持续学习和终 身学习成为未来的重要研究方向。
多模态学习
随着多媒体数据的普及,如何实现图像、语音、文本等多模态数据 的融合与交互,成为深度学习的另一发展趋势。
深度学习
通过构建深层的神经网络结构, 提高了对复杂数据的处理能力。
循环神经网络
适用于序列数据,如自然语言 处理和语音识别等领域。
02
神经网络的基本结构
感知机模型
感知机模型是神经网络的基本单 元,由一个输入层和一个输出层 组成,通过一个或多个权重和偏
置项来计算输出。
感知机模型只能实现线性分类, 对于非线性问题无法处理。
详细描述
反向传播算法的基本思想是,首先计算神经网络的输出层与实际值之间的误差,然后将误差逐层反向传播,并根 据梯度下降法更新每一层的权重。通过不断迭代,权重逐渐调整,使得神经网络的输出逐渐接近实际值,从而降 低误差。反向传播算法的核心是计算每一层的梯度,即权重的导数,以便更新权重。