岩土本构综述

合集下载

岩土工程工作计划

岩土工程工作计划

岩土工程工作计划一、工作目标我们的岩土工程工作计划旨在提供一套全面、系统的工作方案,以确保我们的工程质量和客户满意度达到最高水平。

我们的主要目标是:1、优化设计:通过详细分析地质数据和工程要求,我们致力于设计出最合理、最经济的解决方案。

我们将不断改进我们的设计和实施方法,以满足不断变化的市场需求。

2、提升效率:我们将通过引入新的技术和工具,提高我们的工作效率。

例如,我们将利用BIM(建筑信息模型)技术,使我们的设计和施工过程更加直观和高效。

3、确保安全:我们将严格遵守所有的安全规定和标准,以防止任何可能的安全事故。

我们将在整个项目中实施安全培训和教育,提高全体员工的安全意识。

4、追求卓越:我们致力于提供超出客户期望的优质服务。

我们将通过持续改进我们的工作流程和服务质量,提供最高水平的工程服务。

二、工作计划1、项目启动阶段:在项目启动阶段,我们将进行全面的现场勘查,收集和分析所有相关的地质数据和工程要求。

我们将与所有相关的利益相关者进行沟通和协调,以确保所有人都对项目目标和期望有清晰的理解。

2、设计阶段:在设计阶段,我们将根据收集的数据和分析的结果,进行全面的设计和规划。

我们将确保所有的设计都符合所有的安全规定和标准,同时尽可能优化设计和施工方案,以降低成本和提高效率。

3、施工阶段:在施工阶段,我们将严格遵守所有的安全规定和标准,确保所有的工作都按照设计要求进行。

我们将定期进行质量检查和验收,以确保所有的工作都符合预期的质量标准。

4、结束阶段:在项目结束阶段,我们将进行全面的质量检查和验收,以确保所有的工作都按照设计要求完成。

我们将收集所有的项目文件和资料,并进行详细的整理和分析,以便进行项目评估和总结。

三、总结我们的岩土工程工作计划旨在提供一套全面、系统的工作方案,以确保我们的工程质量和客户满意度达到最高水平。

我们将通过优化设计、提升效率、确保安全和追求卓越,来提供超出客户期望的优质服务。

我们相信,只有通过持续改进我们的工作流程和服务质量,我们才能在这个竞争激烈的市场中保持领先地位。

岩土工程的计算机软件综述

岩土工程的计算机软件综述

计算机在 工程勘察领域的应用 较为广泛 .= 1程勘察的软件 也比较多 包括野外数据采集 、 土工 勘察 数据处理 、 勘察报告编
写、 土工 实 验 数 据 处 理 等 =我 国 和国 外 的 步 企业 生 产 出 各 类
岩土工程设计包括基础设计 、 桩基设计 、 沉降分析 、 渗流分 析 等。 关于基础设计软件 , 在找 国有基础 C D设 计软件 及国 A
ohert v l p t o t e fe ur c nt nt o W To . t ode e o hes fwar a tr o ou r e r t y y
据进行计算 . 划分场地类别 以及选择台适的设计参数等。有关
这 一环 节 的 软件 开发 开 始 的 较 早 , H J 、 H C D 、 I 如 Y S G S A 2 0 G. C D HN A O N O 9 等 。 GC D工 程 地 质 勘察 A 50、 C D F RWI D WS 8 IA
工程分析 中得 到应用 [] 与此 同时 , 1。 各种岩土工程专业软件也 随之开发出来 , 并得 到了广泛的应用 。
下 面按 照 勘 察 、 计 、 设 施工 、 f ) 监 ) 和T 程 管 理 这 5 检 验件 。
11岩土 工程 勘 察 .
可视 化 研 究 工作 。 12岩 土工 程 设 计 .
方法和概 率数值方法 , 家系统 、 uo A 专 A t D技术和计算机仿 真 C 技术在岩 土工程 中应用 . 及岩土工程反演分 析等方面。岩土 工程计算机数值分析方法除常 用的有限元法和有限差分法外 .
离 散单 元 法 ( E 、 格 朗 日元 法 (L C)不 连 续 变 形 分 析 方 D M)拉 FA 、 法(D 、 D A) 流形 元法 ( ') MEd 和半 解 析 元 法 IA M) 也 在 岩 土 SE 等

《土体本构模型》课件

《土体本构模型》课件

06
土体本构模型的未来发展
考虑土体的非线性特性
非线性弹性模型
随着应力的增加,土体的弹性模量逐 渐减小,表现出非线性特性。未来本 构模型应考虑这种非线性行为,以更 准确地描述土体的力学性能。
非线性塑性模型
塑性变形是土体的一个重要特性,未 来本构模型应考虑塑性变形的非线性 行为,包括剪胀性、剪缩性和各向异 性等。
湿度影响
湿度变化会影响土体的力学性能,如湿胀干缩。未来本构模型应考虑湿度对土体 变形和强度的影响。
THANKS
感谢观看
02 砂土
由中、小颗粒的砂粒组成,具有较好的透水性和 稳定性。
03 粘性土
由细小的粘粒和粉粒组成,具有较高的粘聚力和 可塑性。
土的工程性质
压缩性
土在压力作用下体积缩小 的性质,与土的含水率和 孔隙比有关。
抗剪强度
土抵抗剪切破坏的能力, 与土的内摩擦角和粘聚力 有关。
渗透性
土中水分通过孔隙流动的 性质,与土的颗粒大小和 排列有关。
02
土体的基本性质
土的组成
01 矿物质颗粒
土由固体矿物质颗粒组成,其大小、形状和矿物 成分对土的性质有重要影响。
02 水
土中含有的水分对土的力学性质和工程稳定性具 有重要影响。
03 气体
土中存在的气体对土的压缩性和渗透性有一定影 响。
土的分类
01 砾石土
由大颗粒的砾石、卵石等组成,具有较高的承载 力和稳定性。
根据土的工程性质选择合适的本构模型
弹性模型
适用于土的应力-应变关系近似呈线性关系的情况 。
塑性模型
适用于土的应力-应变关系呈非线性关系的情况。
根据实际应用情况选择合适的本构模型

jc本构方程

jc本构方程

jc本构方程摘要:1.介绍JC 本构方程的背景和定义2.阐述JC 本构方程的基本原理3.详述JC 本构方程的适用范围和实际应用4.分析JC 本构方程的优缺点5.总结JC 本构方程的重要性和未来发展方向正文:1.介绍JC 本构方程的背景和定义JC 本构方程,全称为Jelinek-C 侪本构方程,是由加拿大学者Jelinek 和C 侪于1966 年提出的一种描述土壤本构特性的方程。

它是一种基于土体应力应变关系的数学模型,广泛应用于土壤力学、岩土工程等领域。

2.阐述JC 本构方程的基本原理JC 本构方程建立在土体颗粒的弹性和塑性变形基础上,其基本原理可以概括为以下几点:(1)土体颗粒在受到应力作用时,会发生弹性变形和塑性变形。

其中,弹性变形是指颗粒在卸载后能够完全恢复的原始状态,而塑性变形则是指颗粒在卸载后不能完全恢复的永久性变形。

(2)JC 本构方程假设土体颗粒的应力应变关系遵循胡克定律,即应力和应变呈线性关系。

在此基础上,方程引入了塑性应变分量,以描述土体的塑性变形特性。

(3)JC 本构方程通过引入一个屈服强度参数,即土体开始发生塑性变形的临界应力,来描述土体的屈服特性。

3.详述JC 本构方程的适用范围和实际应用JC 本构方程适用于描述粘性土、砂质土等多种土壤类型的应力应变关系,尤其在描述土体的屈服特性和塑性变形方面具有较高的准确性。

在实际工程应用中,JC 本构方程被广泛应用于土体稳定性分析、地基承载力计算、土体变形预测等领域。

4.分析JC 本构方程的优缺点JC 本构方程的优点主要表现在以下几个方面:(1)JC 本构方程考虑了土体的弹性和塑性变形特性,能够较为准确地反映土体的实际应力应变关系。

(2)JC 本构方程引入了屈服强度参数,可以较好地描述土体的屈服特性。

然而,JC 本构方程也存在一定的局限性:(1)JC 本构方程基于线性应力应变关系,对于描述土体的非线性特性可能存在一定的误差。

(2)JC 本构方程的适用范围主要局限于粘性土和砂质土,对于其他类型的土壤可能存在适用性问题。

岩土工程介绍及发展研究方向

岩土工程介绍及发展研究方向

岩土工程介绍及发展研究方向展望岩土工程的发展,笔者认为需要综合考虑岩土工程学科特点、工程建设对岩土工程发展的要求,以及相关学科发展对岩土工程的影响。

岩土工程研究的对象是岩体和土体。

岩体在其形成和存在的整个地质历史过程中,经受了各种复杂的地质作用,因而有着复杂的结构和地应力场环境.而不同地区的不同类型的岩体,由于经历的地质作用过程不同,其工程性质往往具有很大的差别。

岩石出露地表后,经过风化作用而形成土,它们或留存在原地,或经过风、水及冰川的剥蚀和搬运作用在异地沉积形成土层。

在各地质时期各地区的风化环境、搬运和沉积的动力学条件均存在差异性,因此土体不仅工程性质复杂而且其性质的区域性和个性很强。

岩石和土的强度特性、变形特性和渗透特性都是通过试验测定。

在室内试验中,原状试样的代表性、取样过程中不可避免的扰动以及初始应力的释放,试验边界条件与地基中实际情况不同等客观原因所带来的误差,使室内试验结果与地基中岩土实际性状发生差异。

在原位试验中,现场测点的代表性、埋设测试元件时对岩土体的扰动,以及测试方法的可靠性等所带来的误差也难以估计。

岩土材料及其试验的上述特性决定了岩土工程学科的特殊性。

岩土工程是一门应用科学,在岩土工程分析时不仅需要运用综合理论知识、室内外测成果、还需要应用工程师的经验,才能获得满意的结果.在展望岩土工程发展时不能不重视岩土工程学科的特殊性以及岩土工程问题分析方法的特点。

土木工程建设中出现的岩土工程问题促进了岩土工程学科的发展。

例如在土木工程建设中最早遇到的是土体稳定问题。

土力学理论上的最早贡献是1773年库伦建立了库伦定律。

随后发展了Rankine(1857)理论和Fellenius(1926)圆弧滑动分析理论.为了分析软粘土地基在荷载作用下沉降随时间发展的过程,Terzaghi(1925)发展了一维固结理论。

回顾我国近50年以来岩土工程的发展,它是紧紧围绕我国土木工程建设中出现的岩土工程问题而发展的。

常用土体本构模型及其特点小结

常用土体本构模型及其特点小结

常用土体本构模型及其特点小结山中一草线弹性模型线弹性模型遵从虎克定律,只有2个参数,即弹性模量E和泊松比V,它是最简单的应力-应变关系,但无法描述土的很多特征,主要应用于早期的有限元分析及解析方法中,可用来近似模拟较硬的材料如岩土。

Duncan-Chang( DC 模型DC模型是一种非线性弹性模型,它用双曲线来模拟土的三轴排水试验的应力-应变关系(图1)。

它侧重于刻画土体应力-应变曲线非线性的简单特征,通过弹性参数的调整来近似地考虑土体的塑性变形。

但所用的理论仍然是弹性理论而没有涉及到任何塑性理论,故仍不能反映如应力路径对变形的影响、土体的剪胀特性和球应力对剪应变的影响等土体的很多重要性质。

由于DC模型是在二为常数的常规三轴试验基础上提出的,比较适用于围压不变或变化不大、轴压增大的情况,如模拟土石坝和路堤的填筑。

图】IK模型关于三轴试验的应力-应变关系Fig.l Duncan-Chang approxiniathm of the siress-strainrd nt kinship Ln ft standard drained triAxt*! te&lMohr-Coulomb (MC)模型MC模型是一种弹-理想塑性模型,它综合了胡克定律和Coulomb破坏准则。

有5个参数,即控制弹性行为的2个参数:弹性模量E和泊松比v及控制塑性行为的3个参数:有效黏聚力c、有效内摩擦角和剪胀角。

MC模型采用了弹塑性理论,能较好地描述土体的破坏行为但却认为土体在达到抗剪强度之前的应力-应变关系符合胡克定律,因而并不能较好地描述土体在破坏之前的变形行为,且不能考虑应力历史的影响及区分加荷和卸荷。

故MC模型能较好地模拟土体的强度问题,MC模型的六凌锥形屈服面(图2)与土样真三轴试验的应力组合形成的屈服面吻合得较好,因此MC模型适合于低坝、边坡等稳定性问题的分析。

Drucker -Prager( DP)模型DP模型对MC模型的屈服面函数作了适当的修改,采用圆锥形屈服面(图3)来代替MC模型的六凌锥屈服面,易于程序的编制和进行数值计算。

浅谈岩土工程技术及其发展现状(精选五篇)

浅谈岩土工程技术及其发展现状(精选五篇)

浅谈岩土工程技术及其发展现状(精选五篇)第一篇:浅谈岩土工程技术及其发展现状浅谈岩土工程技术及其发展前景本次讲座内容围绕岩土工程技术展开。

通过学习,让我们对岩土工程专业,岩土工程技术及其发展前景有了一个感性认识。

岩土工程,是指在工程建设中有关岩石或土的利用、整治或改造的科学技术,以求解岩体与土体工程问题,包括地基与基础、边坡和地下工程等问题,作为自己的研究对象。

岩土工程专业是土木工程的分支,是以岩体、土体为对象,一工程地质学、岩土力学、基础工程学基本理论和方法的综合为指导,研究岩土体的工程利用,整治和改造的一门综合性的技术学科。

按照工程建设阶段划分,岩土工程工作内容可以分为:岩土工程勘察、岩土工程设计、岩土工程施工、岩土工程监测、岩土工程管理。

岩土工程勘测要服务于评价、论证和检验场地的稳定性、建筑的适宜性和环境的演化性,以及设计施工基本资料的可靠性与原则建议的合理性。

岩土工程设计应注意它对自然条件的依赖性,岩土工程性质的变异性,建筑经验、试验测试与建筑法规的重要性,地基、基础结构的整体性以及工程的适用性、安全性、耐久性与经济性。

岩土工程施工要根据它施工条件差,工期长、费用高、风险大、变化多、更改难的特点,十分注意吃透设计意图,组织人力、物力、财力和智力,抓质量、抓效率、抓安全、抓环境,把完成设计要求与及时发现新情况,解决新问题结合起来。

岩土工程检测要把检测勘察成果、评价建议和施工质量与监测岩土反应、结构性状和环境演变相结合,强调计划性、及时性、准确性、系统性和经济性,既立足于工程对象,又放眼于经验总结与理论发展。

岩土工程管理体制要努力使指挥服务系统与技术决策系统间建立灵活、有序、有效、协调的运行机制和激励机制,以调动一切积极因素,推动工程整体质量的全面优化。

岩土工程按工程类型为线索,又可分为岩土地基工程,岩土边坡工程,岩土洞室工程,岩土支护工程和岩土环境工程。

岩土地基工程应将地基、基础和上部结构视为一个共同作用的体系,根据变形稳定、强度稳定和渗透稳定的总要求,针对地基的土质类型(如软土、黄土、膨胀土、冻土、盐渍土、填土、海洋土等),地基的所在地区(地震区,采空区,岩溶区,泥石流区等)和地基的工程对象(市政工程、水利工程、电力工程、交通工程、核电工程等)得实际特殊性,从地基体系诸方面可能的增稳措施中选择出安全、经济、先进的最优组合方案。

岩土工程 课件-PPT课件

岩土工程  课件-PPT课件
要在方案选取、工程措施、细部设计等方面根据工程经验予以弥补。 2)理论分析往往在定性上是合理的,但在定量上与实际观测结果有一
定的差距,这就要对分析结果做必要的修正。工程实践经验是修正 分析结果的主要依据。 3)总结工程实践经验是认识土体变形及破坏机制和影响因素等的重要 途径,工程实践经验是改进、完善现行分析方法的重要依据。
1.资料的收集与调查 2.地质勘探 3.现场试验 4.室内试验 5.理论分析 6.工程实践经验的总结
1.5 岩土工程的设计依据及原则
1.岩土工程的设计依据
1)业主要求 2)基础资料 3)理论分析的结果 4)试验研究的结果 5)工程实践经验 6)专业规范 7)施工技术和设备水平
2.岩土工程的设计原则
作为建筑材料 例如:堤、坝是由土填筑成的土工结构
a、土层的分布
具体研究内容:


b、土的成因及分类 c、土的物理性质 d、土的力学性质
e、土体的变形及稳定性 f、土体加固技术及其应用 g、土中水及其运动规律 h、土体与结构相互作用
2.岩土工程的重要性
表现如下: 1)为工程设计提供不可缺少的基础资料; 2)岩土体是保持自身和其上或与其相邻结构稳定性的主体; 3)经验表明, 工程事故的原因往往与岩土工程有关; 4)岩土工程的费用在总建筑投资中所占比例很高; 5)岩土工程的工期在总建筑工期中所占比例很高; 6)岩土工程由于其隐蔽性,一旦发生事故后果严重、处理困难、工期长、
1) 试验设备:探头:外径51 mm,内径35 mm,长700 mm;
2)
落锤:锤重63.5 kg,落距76 cm
2) 试验方法:在钻孔中先将探头打入土中15 cm,然后记录继续将探头
3)
打入30 cm所需的锤击数N。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 卷第 期 (小5号宋体) 岩 土 力 学 Vol. No. 2008年 月 Rock and Soil Mechanics . 2008

文章编号(黑体加粗):1000-7598-(2003) 02―0304―03(编号用Times New Roman)

饱和土本构模型研究进展

摘 要:自20世纪50年代以来,随着计算机技术的发展,许多能够描述饱和土体复杂力学行为的本构模型相继被提出来,但由于模型数量较多,很多模型较为复杂,因此不被工程师们所接受。综述近60年来饱和土体静力本构和动力本构的发展情况,对每种模型进行简单的介绍,以求尽可能多的囊括近年来较为成熟的各类模型,便于工程师与科研工作者对这些模型有所了解,并能在工程中进一步完善和应用。 关 键 词: 中图分类号:TU 443(Times New Roman) 文献标识码:A

Advance in research on constitutive model of saturated soil

Abstract: since 1950’s, with the development of computer science, many constitutive models were proposed to describe the complicated nature of saturated soil. However, the number of the new model is too large and many of them are not accepted by engineers. We review the development of saturated soil constitutive and soil dynamics constitutive in nearly 60 years, and introduce as many relevant maturity models briefly as possibly in order to make engineers and scientists know about these models and utilize them in real projects. Key words:

1. 引言 土作为一个自然形成的天然材料,具有复杂的物理力学性质,普遍认为用统一的土的本构模型完全模拟土的物理力学性质是十分困难的[1],现有的模型普遍都具有局限性。土体依据颗粒大小,矿物组成等物理性质分为有粘性土与无粘性土,而两类土在力学性质上有很大的不同,尤其是其作为多孔介质材料时,与水发生相互作用,其表现出来的力学性质更是相差甚远。对于同种土不同的含水量也会影响土的力学性质。因此多年来,为了能够较细致的描述土的力学性质,人们一直在针对不同的土给出不同的力学模型,而研究对象也逐渐从饱和土到非饱和土过度。为了适应与更广泛的工程应用,统一的力学模型也是必不可少的。人们运用连续体力学,多孔介质材料力学与混合物理论,给出了土体运动和变形所要满足的各类平衡条件,为了进一步对土体的具体的力学特性进行描述,还需要建立土体的本构方程。 对于材料的本构关系的论述最早可追溯到胡克定律,而摩擦型材料需要在线性广义胡克定律的条件下,给出描述摩擦型材料力学特性的莫尔库仑准

则。人们最初将土视作为摩擦型材料,因此莫尔库仑模型在很长一段时间被应用到各类岩土工程问题中,直到现在,人们仍然视莫尔库仑准则为土体的破坏准则。在计算机尚不发达的年代,莫尔库仑型理想弹塑性本构模型作为能够模拟摩擦型材料剪切特性的模型起着主导的作用。随着试验技术的发展和越来越多的高精度试验设备的开发,土体越来越多的特性被人们所了解,比如剪胀性,各向异性,结构相关性以及非饱和土的特性在近几十年受到广泛的关注。计算机的发展使得人们可以使用更为复杂的非线性本构关系来描述原本使用莫尔库仑理想弹塑性模型无法描述的土体力学特性[2]。但是许多很好的模型并没有在工程中得以应用,在进行有限元分析时存在诸多问题。本文将对过去几十年来较为成熟的饱和土体静动力本构模型的研究状况进行简单介绍,以便于更多的工程师对这些模型有所了解,并将这些模型应用于实际工程中去。

2. 土体静力本构模型研究进展

土体静力本构模型建立了土体在受到静态荷载作用下应力与应变的关系,对于不同的土体,因其密度,受力状态,排水条件等的不同其表现出的应力应变关系有很大的不同[3]。因此,往往人们在建第 卷第 期 (小5号宋体) 岩 土 力 学 Vol. No. 2008年 月 Rock and Soil Mechanics . 2008

立土体的本构关系时,会分析其适用条件。土体静力本构模型因其描述的力学特性与模型采用的假设不同,大致可以分为弹性本构模型,弹塑性本构模型,粘弹塑性本构模型,脆性模型和损伤模型等,不同的模型对土体的性质描述的侧重点不同,在采用具体的模型类型时,需要根据实际工程问题来选取。本文主要介绍相对简单并且发展较为成熟的前两类模型。 2.1 非线性弹性本构模型 非线性弹性模型的共同特点是材料的弹性模型参数与应力应变水平之间有关,对线弹性的广义胡克定律进行了推广,建立增量型、全量型或者积分型的本构关系。依据基本假设的不同,又可以分为:Cauchy弹性模型、超弹性模型和亚弹性模型,相对于Cauchy弹性和超弹性模型,亚弹性模型表达式更具一般性,能够模拟材料更复杂的行为。不同类型的模型定义的应力应变关系函数也不相同。对于Cauchy弹性本构,需要定义了一个二阶张量函数,亚弹性应力应变关系为四阶张量,而超弹性需要定义一个标量势函数,因此从满足能量守恒原则的角度来说,超弹性本构符合热力学原理[4]。但是不论是Cauchy弹性,超弹性还是亚弹性,待定的材料参数都很多,而且很多参数目前还不能直接由试验给出或者需要进行大量的试验才能得出,大多数的此类模型都只停留在理论层面或者只能通过数值试验来进行参数反演,而这一过程十分复杂,并不被工程界所推崇,因此人们在处理弹性问题时会假设材料为各项同性体或者横观各向异性体来减少本构参数,产生了许多较为实用且参数容易获得的本构模型。 典型的非线性弹性本构主要有双曲线型的E-B和E-μ模型,K-G模型以及小应变刚度模型等。K-G模型是双线性弹性模型的拓展,模型中考虑了应力水平对模型参数的影响,假设模型参数K,G为应力水平的函数,建立增量应力应变关系。典型的K-G模型有:Domaschuk-Valliappan模型,Naylor.模型和沈珠江模型,模型的不同之处主要是对K,G的应力水平函数的假设上。相对于K-G模型,双曲线型模型建立的是全量型应力应变关系,为了能够适应有限元分析,将其化为增量的形式。该模型最初由Kondner(1963)[5]提出,后来有Duncan进一步发展,得到著名的邓肯张模型(1970)[6],并在工程界得到广泛的应用。由于测量手段的局限性,对于微小变形问题其处理方式在很长一段时间都是采用的线弹性假设,随着电子测量技术的提高,人们可以对微小变形进行精准的测量,并发展出一套非线性弹性本构来模拟,Jardine[7]最早提出了模量随应变水平变化的模型,其后Puzrin[8]等人对理论进行了完善,提出了微小应变区域(SSR)的概念。以上这些模型大多都是假设材料为各项同性材料,对于像土这种具有横观各向异性的材料,需要对本构关系进行调整,独立的材料参数将会增加,另外,由于上述模型都假设了主应力主应变方向一致,所以对于土体的一些特性如剪胀性不能够很好的模拟,而对于剪胀性等土体特性的模拟,将在后面弹塑性模型中加以介绍。 2.2 弹塑性静力本构模型 如上面所述非线性弹性本构模型不能很好地模拟应力应变方向不一致或者状态演化等这些土体相对于金属材料更加复杂的特性,而弹塑性模型可以很好的模拟这些特性,因此近年来受到研究人员的广泛关注。传统弹塑性理论将应变分为可恢复的弹性应变与不可恢复的塑性应变,通过加卸载试验可以确定这些物理量之间的关系,随着增量塑性理论的发展,复杂的土体特性如结构性、剪胀性、各向异性、状态相关性等等都能够通过对增量塑性模型框架进行修改以得到很好的描述,许多成熟的模型涌现出来。其后内变量理论的发展促使人们逐渐弃用了弹塑性应变假设,而提出了诸多直接控制状态变化的内变量来描述更多的力学特性。 塑性本构框架需要满足一个假设,即坐标轴方向一致假设,以及三个准则,即屈服准则,流动法则,硬化准则。它们分别给出了塑性应变增量产生的条件、方向和大小。诸多的弹塑性模型之间的区别主要是采用了不同具体形式的准则,而这些准则是用来描述不同的具体问题而给出的[9]。例如,使用总应力分析法时分析土的快剪特性往往使用的屈服准则为Tresca准则,而考虑固结影响时因为要考虑固结围压对剪切强度的影响,使用Mohr-Coulomb准则更为合适。但是许多屈服准则在应力空间中的表达式是分段表达式。这给数值分析带来了很多不便,为了处理使用分段函数带来的数值困难,Drucker与Prager于1952年提出了D-P准则[10]。其准则在应力空间中是一个与Mohr-Coulomb准则相关的圆锥,虽然这样做可以解决屈服面不光滑所带来的数值麻烦,但却不能给出不同方向强度不同的性质,所以为了更好的模拟土体的强度特性, Matsuoka和Nakai(1974)[11]以及Lade等(1977)[12]相继提出了基于Mohr-Coulomb准则又能很好的满足光滑性原则的SMP破坏准则。 关于流动法则,金属由于其塑性应变的增量方向与应力方向一致,因此往往采用关联流动法则,由于土体塑性应变发展方向并不一定与应力方向一致,采用关联流动法则并不合适。土体剪切屈服面是一个倾斜的曲面,使用关联流动法则会产生过大的剪胀,因此需要采用非关联流动法则来给出土体

相关文档
最新文档