高中数学竞赛讲座01奇数和偶数
高中数学奥赛辅导:第一讲奇数、偶数、质数、合数

高中数学奥赛辅导第一讲 奇数、偶数、质数、合数知识、方法、技能Ⅰ.整数的奇偶性将全体整数分为两类,凡是2的倍数的数称为偶数,否则称为奇数.因此,任一偶数可表为2m (m ∈Z ),任一奇数可表为2m+1或2m -1的形式.奇、偶数具有如下性质:(1)奇数±奇数=偶数;偶数±偶数=偶数;奇数±偶数=奇数;偶数×偶数=偶数;奇数×偶数=偶数;奇数×奇数=奇数;(2)奇数的平方都可表为8m +1形式,偶数的平方都可表为8m 或8m +4的形式(m ∈Z ).(3)任何一个正整数n ,都可以写成l n m2=的形式,其中m 为非负整数,l 为奇数.这些性质既简单又明显,然而它却能解决数学竞赛中一些难题.Ⅱ.质数与合数、算术基本定理大于1的整数按它具有因数的情况又可分为质数与合数两类.一个大于1的整数,如果除了1和它自身以外没有其他正因子,则称此数为质数或素数,否则,称为合数.显然,1既不是质数也不是合数;2是最小的且是惟一的偶质数.定理:(正整数的惟一分解定理,又叫算术基本定理)任何大于1的整数A 都可以分解成质数的乘积,若不计这些质数的次序,则这种质因子分解表示式是惟一的,进而A 可以写成标准分解式:n a n a a p p p A 2121⋅= (*). 其中i n p p p p ,21<<< 为质数,i α为非负整数,i =1,2,…,n .【略证】由于A 为一有限正整数,显然A 经过有限次分解可分解成若干个质数的乘积,把相同的质因子归类整理可得如(*)的形式(严格论证可由归纳法证明).余下只需证惟一性.设另有j m n q q q q q q q A m ,,212121<<<⋅= 其中βββ为质数,i β为非负整数,j=1,2,…,m .由于任何一i p 必为j q 中之一,而任一j q 也必居i p 中之一,故n=m .又因 ),,2,1(,,2121n i q p q q q p p p i i n n ==<<<<<则有,再者,若对某个i ,i i βα≠(不妨设i i βα>),用i i p β除等式n n n a n a a p p p p p p βββ 21122121⋅=两端得:.11111111n i i n i i n i i n i p p p p p p p ββββεβαα +-+--⋅=此式显然不成立(因左端是i p 的倍数,而右端不是).故i i βα=对一切i =1,2,…,n 均成立.惟一性得证.推论:(合数的因子个数计算公式)若n n p p p A ααα 2121=为标准分解式,则A 的所有因子(包括1和A 本身)的个数等于).1()1)(1(21+++n ααα (简记为∏=+n i i 1)1(α) 这是因为,乘积2222212111()1()1(21nn p p p p p p p p ++++++⋅++++ αα )nn p α++ 的每一项都是A 的一个因子,故共有∏=+ni i 1)1(α个. 定理:质数的个数是无穷的.【证明】假定质数的个数只有有限多个,,,21n p p p 考察整数.121+=n p p p a 由于1>a 且又不能被),,2,1(n i p i =除尽,于是由算术基本定理知,a 必能写成一些质数的乘积,而这些质数必异于),,2,1(n i p i =,这与假定矛盾.故质数有无穷多个.赛题精讲例1.设正整数d 不等于2,5,13.证明在集合{2,5,13,d }中可以找到两个元素a ,b ,使得a b -1不是完全平方数. (第27届IMO 试题)【解】由于2×5-1=32,2×13-1=52,5×13-1=82,因此,只需证明2d -1,5d -1,13d -1中至少有一个不是完全平方数.用反证法,假设它们都是完全平方数,令2d -1=x 2 ①5d -1=y 2 ②13d -1=z 2 ③x,y,z ∈N *由①知,x 是奇数,设x =2k -1,于是2d -1=(2k -1)2,即d =2k 2-2k+1,这说明d 也是奇数.因此,再由②,③知,y,z 均是偶数.设y=2m ,z =2n ,代入③、④,相减,除以4得,2d =n 2-m 2=(n+m)(n -m),从而n 2-m 2为偶数,n ,m 必同是偶数,于是m+n 与m -n 都是偶数,这样2d 就是4的倍数,即d 为偶数,这与上述d 为奇数矛盾.故命题得证.例2.设a 、b 、c 、d 为奇数,bc ad d c b a =<<<<并且,0,证明:如果a +d =2k ,b+c=2m ,k,m 为整数,那么a =1. (第25届IMO 试题)【证明】首先易证:.22m k >从而ad d a d a c b a d m k 4)()(,(22+-=+->->于是因为 22)(4)(c b bc c b +=+->.再由,222,2,22a b a b b c a d bc ad k m m k -=⋅-⋅-=-==可得 因而))(()2(2a b a b a b m k m -+=⋅-- ①显然,a b a b -+,为偶数,a b m k --2为奇数,并且a b a b -+和只能一个为4n 型偶数,一个为4n+2型偶数(否则它们的差应为4的倍数,然而它们的差等于2a 不是4 的倍数),因此,如果设f e a b m k ⋅=--2,其中e,f 为奇数,那么由①式及a b a b -+,的特性就有(Ⅰ)⎩⎨⎧=-=+-.2,21f a b e a b m 或(Ⅱ)⎩⎨⎧=-=+-.2,21e a b f a b m 由f a b a b a b ef m k 222≤-<-≤-=- 得e=1,从而.2a b f m k --=于是(Ⅰ)或(Ⅱ)分别变为⎪⎩⎪⎨⎧-=-=+--)2(2,21a b a b a b m k m 或⎪⎩⎪⎨⎧=--=+--12),2(2m m k a b a b a b 解之,得1122-+-=⋅m m k a .因a 为奇数,故只能a =1.例3.设n a a a ,,,21 是一组数,它们中的每一个都取1或-1,而且a 1a 2a 3a 4+a 2a 3a 4a 5+…+a n a 1a 2a 3=0,证明:n 必须是4的倍数. (第26届IMO 预选题)【证明】由于每个i a 均为1和-1,从而题中所给的等式中每一项321+++i i i i a a a a 也只取1或-1,而这样的n 项之和等于0,则取1或-1的个数必相等,因而n 必须是偶数,设n=2m. 再进一步考察已知等式左端n 项之乘积=(n a a a 21)4=1,这说明,这n 项中取-1的项(共m 项)也一定是偶数,即m=2k ,从而n 是4的倍数.例4.如n 是不小于3的自然数,以)(n f 表示不是n 的因数的最小自然数[例如)(n f =5].如果)(n f ≥3,又可作))((n f f .类似地,如果))((n f f ≥3,又可作)))(((n f f f 等等.如果2)))(((= n f f f f ,就把k 叫做n 的“长度”.如果用n l 表示n 的长度,试对任意的自然数n (n ≥3),求n l ,并证明你的结论.(第3届全国中学生数学冬令营试题)【解】令m t n m ,2=为非负整数,t 为奇数. 当m=0时,2)()(==t f n f ,因而l n =1; 当0≠m 时,设u 是不能整除奇数t 的最小奇数,记).(t g u =(1)若.2,2))((,)(,2)(1===<+n m l n f f u n f t g 所以则(2)若.3,2)3()))(((,3)2())((,2)(,2)(111======>+++n m m m l f n f f f f n f f n f t g 所以则故⎪⎩⎪⎨⎧>>==+.,2);)((2)(,,0,2,3;,11其他情形如上且为奇数当为奇数时当t g t g t m t n n l m m n例5.设n 是正整数,k 是不小于2的整数.试证:k n 可表示成n 个相继奇数的和.【证明】对k 用数学归纳法.当k=2时,因),12(312-+++=n n 命题在立.假设k=m 时成立,即,)12()3()1(2n na n a a a nm +=-++++++= (a 为某非负数) 则,)()(2221n n n na n n n na n n n m m +-+=+=⋅=+若记n n na b -+=2(显然b 为非负偶数),于是1),12()3()1(21+=-++++++=+=+m k n b b b n nb n m 即 时,命题成立,故命题得证.例6.在平面上任画一条所有顶点都是格点的闭折线,并且各节的长相等.能使这闭折线的节数为奇数?证明你的结论. (莫斯科数学竞赛试题)【解】令符合题设条件的闭折线为A 1A 2…A n A 1,则所有顶点i A 的坐标(i i y x ,)符合).,,2,1(,n i Z y x i i =∈并且C n i C Y X i i ,,2,1(22 ==+为一固定的正整数),其中),,,,,2,1(,111111y y x x n i y y Y x x X n n i i i i i i ===-=-=++++ 则由已知有∑==n i i X1,0 ① ∑==n i i Y1,0 ②2222222121n n Y X Y X Y X +==+=+ ③不妨设i i Y X 和中至少有一个为奇数(因为设m t X i m i ,2=是指数最小的,t i 为奇数,用2m 除所有的数后,其商仍满足①、②、③式),于是它们的平方和C 只能为4k+1或4k+2.当C=4k+2时,由③知,所有数对i i Y X 与都必须是奇数,因此,根据①、②式知,n 必为偶数.当C=4k+1时,由③知,所有数对i i Y X 与都必一奇一偶,而由①知,X i 中为奇数的有偶数个(设为2u ),余下的n -2u 个为偶数(与之对应的Y i 必为奇数),再由②知,这种奇数的Yi 也应有偶数个(设为u n 22-=ν),故)(2ν+=u n =偶数. 综上所述,不能作出满足题设条件而有奇数个节的闭折线.例7.求出最小正整数n ,使其恰有144个不同的正因数,且其中有10个连续整数.(第26届IMO 预选题)【解】根据题目要求,n 是10个连续整数积的倍数,因而必然能被2,3,…,10整数.由于8=23,9=32,10=2×5,故其标准分解式中,至少含有23·32·5·7的因式,因此,若设 ,11753254321 ααααα⋅⋅⋅⋅=n 则.1,1,2,34321≥≥≥≥αααα由,144)1)(1)(1)(1(4321=++++ αααα而,482234)1)(1)(1)(1(4321=⋅⋅⋅≥++++αααα故最多还有一个,2),5(0≤≥>j j j αα且为使n 最小,自然宜取.025≥≥α由)0(144)1)(1)(1)(1()0(144)1)(1)(1)(1)(1(54321554321时或时==++++≠=+++++ααααααααααα考虑144的可能分解,并比较相应n 的大小,可知合乎要求的(最小),2,521==αα,1543===ααα故所求的.11088011753225=⋅⋅⋅⋅=n下面讲一个在指定集合内的“合数”的问题.这种合数与通常的合数有区别,题中的“素元素”是指在该集合内的素数,也与通常的素数有区别.例8.设n>2为给定的正整数,{}.,1*N k kn V n ∈+=试证:存在一数,n V r ∈这个数可用不只一种方式表示成数集V n 中素元素的乘积. (第19届IMO 试题)【证明】由于V n 中的数都不小于),2(1>+n n 因而n V n n n n ∈-⋅---)12()1(,)12(,)1(22. 显然)12()1(,)1(2-⋅--n n n 是V n 中的素元素.又若(2n -1)2不是V n 中素元素,则有 ,)12()1()1(,12-=+⋅+≥≥n bn an b a 使由此有,44b a abn n ++=-于是,31≤≤ab 从而b=1,a =1;b=1,a =2,b=1,a =3,对此就有,8,28,2=n 故n=8.这说明 ,当2)12(,8-≠n n 时就是V n 中素元素.当)]12)(1[()12()1(,.)12()1(,82222--=--=∈--=≠n n n n r V r n n r n n 且显然令时 )].12)(1[(--n n当n=8时,有1089=136×8+1=9×121=33×33,而9,121,33∈V 8.综上知,命题得证.例9.已知n ≥2,求证:如果n k k ++2对于整数k (30n k ≤≤)是质数,则n k k ++2对于所有整数)20(-≤≤n k k 都是质数.(第28届(1987)国际数学奥林匹克试题6)【证】设m 是使n k k ++2为合数的最小正整数.若n m m p n m n ++-≤<2,23是令的最小质因子,则n m m p ++≤2.(1)若m ≥p ,则p|(m -p)2+(m -p)+n. 又(m -p)2+(m -p)+n ≥n >p ,这与m 是使n k k ++2为合数的最小正整数矛盾.(2)若m ≤p -1,则n m p m p n m p m p +---=+--+--))(1()1()1(2被p 整除,且.)1()1(2p n n m p m p >≥+--+--因为n m p m p +--+--)1()1(2为合数,所以.12,1+≥≥--m p m m p 由 ,122n m m p m ++≤≤+ 即 ,01332≤-++n m m 由此得363123n n m <-+-≤ 与已知矛盾.所以,对所有的n k k n k n ++-≤<2,23为质数.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
1(高中竞赛讲座)数学方法选讲(1)

高中数学竞赛讲座11数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。
看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。
例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。
从简单情况考虑,就是一种以退为进的一种解题策略。
1. 两人坐在一张长方形桌子旁,相继轮流在桌子上放入同样大小的硬币。
条件是硬币一定要平放在桌子上,后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。
谁放入了最后一枚硬币谁获胜。
问:先放的人有没有必定取胜的策略?2.线段AB上有1998个点(包括A,B两点),将点A染成红色,点B染成蓝色,其余各点染成红色或蓝色。
这时,图中共有1997条互不重叠的线段。
问:两个端点颜色相异的小线段的条数是奇数还是偶数?为什么?3.1000个学生坐成一圈,依次编号为1,2,3,…,1000。
现在进行1,2报数:1号学生报1后立即离开,2号学生报2并留下,3号学生报1后立即离开,4号学生报2并留下……学生们依次交替报1或2,凡报1的学生立即离开,报2的学生留下,如此进行下去,直到最后还剩下一个人。
问:这个学生的编号是几号?4.在6×6的正方形网格中,把部分小方格涂成红色。
然后任意划掉3行和3列,使得剩下的小方格中至少有1个是红色的。
那么,总共至少要涂红多少小方格?二、从极端情况考虑从问题的极端情况考虑,对于数值问题来说,就是指取它的最大或最小值;对于一个动点来说,指的是线段的端点,三角形的顶点等等。
极端化的假设实际上也为题目增加了一个条件,求解也就会变得容易得多。
5.新上任的宿舍管理员拿着20把钥匙去开20个房间的门,他知道每把钥匙只能打开其中的一个门,但不知道哪一把钥匙开哪一个门,现在要打开所有关闭的20个门,他最多要开多少次?6.有n名(n≥3)选手参加的一次乒乓球循环赛中,没有一个全胜的。
高一数学奇偶性知识点

高一数学奇偶性知识点高中数学中,奇偶性是一个重要的概念。
了解数的奇偶性可以在解题过程中提供便利,因此理解和掌握数的奇偶性知识点对于高一数学学习者来说至关重要。
本文将介绍高一数学中常见的奇偶性知识点,帮助学生更好地理解和应用这些知识。
一、奇数和偶数的基本概念在开始探讨更深入的奇偶性知识之前,我们先来回顾一下奇数和偶数的基本概念。
奇数是指不能被2整除的整数,偶数则恰好相反,是可以被2整除的整数。
我们可以用一个简单的公式来表示奇数和偶数:奇数:2n + 1 (n为整数)偶数:2n (n为整数)其中,n为任意整数,通过这个公式,我们可以得到所有的奇数和偶数。
二、整数性质与奇偶性的关系整数有一些特殊的性质与奇偶性密切相关。
下面介绍几个常见的性质:1. 两个奇数的和是偶数,两个偶数的和也是偶数;2. 一个奇数和一个偶数的和是奇数;3. 两个奇数的乘积是奇数,两个偶数的乘积是偶数;4. 一个奇数和一个偶数的乘积是偶数。
这些性质在解题过程中经常会被用到,同学们需要熟练掌握。
三、口诀“差奇和偶,乘偶和偶”在解题中的应用为了更好地应用奇偶性知识进行解题,我们可以借助一个简单的口诀:“差奇和偶,乘偶和偶”。
该口诀的含义是,两个数相减,若一个奇数一个偶数,则差为奇数;两个数相乘,若其中有一个数为偶数,则乘积为偶数。
通过使用这个口诀,我们可以在解答一些题目时迅速判断结果的奇偶性,从而节省时间和提高效率。
四、数列中的奇偶性在数列中,奇偶性也是一个重要的概念。
我们来看看一些常见的数列奇偶性规律:1. 交替数列:每一项与前一项的奇偶性相反。
比如:1,-2,3,-4,5,-6...2. 连续奇数数列:首项为奇数,公差为2。
3. 连续偶数数列:首项为偶数,公差为2。
通过了解数列中的奇偶性规律,我们可以更好地理解和分析数列,从而在解答与数列相关的问题时更加得心应手。
五、概率问题中的奇偶性在概率问题中,奇偶性也扮演着重要的角色。
考虑以下两个例子:1. 抛掷硬币:抛一枚公正的硬币,正面和反面的概率都是1/2。
奇数和偶数专业知识讲座

奇数与偶数
计算 1+3=4
7+9=16
奇数+奇数=偶数
2+4=6
8+12=20
偶数+偶数=偶数
7+12 =19 17+24=41
奇数+偶数=奇数
整数旳奇偶性是整数旳主要基本属性之一, 其实质是对整数做了一种分类, 一类是奇数类,一类是偶数类。
作业情况: 80~89分加1颗星(★) 90~99分加2颗星(★ ★) 100分加3颗星(★ ★ ★)
注: 累积3颗★可换一颗 , 累积3个 可换一颗 累积3个 可换一种“摘星大王”旳称号及一张100元新币。
新天际数学新思维愿伴随同学们 快乐成长!
任课教师:于苏
次旳人和通话次数旳为奇屡次旳人。 那些人通话旳次数之和也必为偶数,因为偶数个奇 数通旳话和旳为次偶数数是,奇所数以旳通那话些旳人次旳数总是数奇是数奇旳数那还些人旳
是总偶数数是呢偶?数。
【例5】7只杯子全部杯口朝上放在桌子上, 每次翻转其中旳2只杯子。能否经过若干次
翻转,使7只杯子全部口朝下?
分解析::每1.个要口使一朝种上口旳朝杯上子旳必杯须子经变为过口奇朝屡下, 次这地个翻杯转子被才翻干动口旳朝次下数,是7奇个数杯还子是需偶经数? 过2. 77个个奇这么屡旳次数地旳翻和转是,奇总数次还是数偶为数奇?数, 但每次翻动其中旳2个,不论怎么翻 3总.每次次数总翻均杯动为子子2个偶数全,是数部不奇。口论数故朝翻还不多下是可少。偶能次数,使?翻7个动杯旳
1□2□3□4□5□6□7□8□9=36
分析:你能不能经过计算旳措施,判断出等式左 边旳和或差是奇数还是偶数吗?
提问:等式左边共有几种奇数参加运算?成果 是什么数?
解:因等式左边共有5个奇数参加运算, 其成果必为奇数,
高一年级竞赛数学数论专题讲义:7.奇数偶数

高一竞赛数论专题7.奇数偶数1.求所有的正整数2n ≥使得对于任意的两个整数,(0,)i j i j n ≤≤均有i j +与i j n n C C +同奇偶.2.在一个国家里,国王要建n 座城市,并且在它们之间建1n -条道路,使得从每座城市可通往任何一座城市(每条道路连接两座城市,道路不相交,也不经过其他城市).国王要求:沿着道路网,两座城市之间的最短距离分别为1公里,2公里,3公里,,(1)2n n -公里. (1)若6n =;国王的要求能实现?(2)若2017n =;国王的要求能实现?3.设111212122212(4)n n n n nn a a a a a a A n a a a ⎛⎫ ⎪ ⎪=≥ ⎪ ⎪⎝⎭中的1(1,)ij a i j n =±≤≤,现将矩阵A 中n 个两两既不同行也不同列的的数的乘积称为一个基本项,例如1122nn a a a 就是一个基本项.证明:矩阵A 的全部基本项的和总能被4整除.4.求所有使得212122x x y +++=的整数对(,).x y高一竞赛数论专题7.奇数偶数解答1.求所有的正整数2n ≥使得对于任意的两个整数,(0,)i j i j n ≤≤均有i j +与i jn n C C +同奇偶. 解:i j +与i j n n C C +同奇偶就是说()i j n n C C i j +-+是偶数,也就是,i j n n C i C j --同奇偶.注意到当0i =时,对任意的正整数2n ≥都有1i n C i -=,所以i n C i -的只能都是奇数.再注意到当i n =时,对任意的正整数2n ≥都有1n n C n n -=-,所以n 一定是偶数.所以当i 为奇数时,i n C 为偶数,当i 为偶数时,i n C 为奇数,且n 是偶数.于是111i i i n n n C C C +++=+必为奇数.若111i i i n n n C C C +++=+为奇数,注意到01n C =时奇数,所以i 为奇数时,i n C 为偶数,当i 为偶数时,i n C 为奇数.从而我们证明了i j +与i j n n C C +同奇偶的充要条件是11i n C ++为奇数.若11i n C ++为奇数,则2(1,2,,1)k n C k n +=+都是偶数,因为1212.k k n n n C C k -+++= 由任意性可取11212s s k n +≤=≤+<,因为2n ≥,所以1s ≥,则221212.2ss n n s n C C -+++=于是2| 2.s n + 所以1222s s n +<+≤,于是122.s n ++=于是12222(2)s k n k +=-=-≥.另一方面若22(2)kn k =-≥,我们证明21(2)k q C k -≥都是奇数. 21(21)(22)(2)12k k k k qq C q----=⋅,2k t -与t 所含的2的方幂相同,这是因为2||,u t 则u k <,2|2,u k t - 但因为12u t +Œ,12|2,u k +所以122.u k t +-Œ即2||2.u k t -所以21(2)k q C k -≥都是奇数. 法2:i j +与i j n n C C +同奇偶就是说()i j n n C C i j +-+是偶数,也就是,i j n n C i C j --同奇偶.注意到当0i =时,对任意的正整数2n ≥都有1i n C i -=,所以in C i -的只能都是奇数.再注意到当i n =时,对任意的正整数2n ≥都有1n n C n n -=-,所以n 一定是偶数.101022,22k k k k n a a a i b b b =+++=+++,,0,1.i i a b =因为n 一定是偶数,00.a =①若i 是奇数,则01,b =由Lucas 定理知道011101100(mod2).k k k k b b b b b i n a a a a a C C C C C C C ≡=≡ 所以in C i -是奇数.满足条件.②若i 是偶数,则00,b =若存在i i b a >,则0i i b a C =, 于是由Lucas 定理知道01100(mod2).ki k i b b b b i n a a a a C C C C C ≡≡所以i n C i -是偶数矛盾. 所以对任意的0,1,,i n =都有.i i a b ≥取最大的12120k i =⋅++⋅+, 则此时的n 只能是11212022(1)22(2).k k m n k m +=⋅++⋅+=-≥=-≥ 此时由Lucas 定理知道01101101101(mod2).kk b b b in a a a C C C C C C C ≡=≡ 所以i n C i -是奇数.满足条件. 若22(2),m n m =-≥则12120.k n =⋅++⋅+由Lucas 定理i nC i -是奇数. 所以22(2).m n m =-≥2.在一个国家里,国王要建n 座城市,并且在它们之间建1n -条道路,使得从每座城市可通往任何一座城市(每条道路连接两座城市,道路不相交,也不经过其他城市).国王要求:沿着道路网,两座城市之间的最短距离分别为1公里,2公里,3公里,,(1)2n n -公里. (1)若6n =;国王的要求能实现?(2)若2017n =;国王的要求能实现?解:首先由要建n 座城市,并且在它们之间建1n -条道路知道从任何一座城市到另外一座城市只有唯一的线路,若不然,一定存在某几座城市可以形成环线,不妨设00(2)n n ≥座城市形成环线,这个环线至少需要0n 条道路,每增加一座城市,至少需要建1条道路,所以增加0n n -座城市至少需要建0n n -条道路,从而总共至少要建n 条道路.矛盾.。
奇偶数认识奇数和偶数的特性

奇偶数认识奇数和偶数的特性奇偶数是我们在数学中经常遇到的概念,它们具有不同的特性和性质。
在本篇文章中,我们将深入探讨奇偶数的定义、性质以及它们在数学和实际生活中的应用。
一、奇偶数的定义奇数是指不能被2整除的整数,它们的末位数字通常是1、3、5、7或9。
例如,1、3、5、7、9等都是奇数。
偶数则是能够被2整除的整数,它们的末位数字通常是0、2、4、6或8。
例如,2、4、6、8、10等都是偶数。
二、奇数的特性1. 奇数加奇数等于偶数:两个奇数相加,结果一定是偶数。
例如,3 + 5 = 8。
2. 奇数乘奇数等于奇数:两个奇数相乘,结果仍然是奇数。
例如,3 × 5 = 15。
3. 奇数与偶数之间的运算结果为奇数:奇数与偶数之间相加、相乘或相除的结果都将是奇数。
例如,3 + 4 = 7,3 × 4 = 12,3 ÷ 4 = 0.75。
三、偶数的特性1. 偶数加偶数等于偶数:两个偶数相加,结果仍然是偶数。
例如,2 + 4 = 6。
2. 偶数乘偶数等于偶数:两个偶数相乘,结果也是偶数。
例如,2 ×4 = 8。
3. 偶数与奇数之间的运算结果为偶数:偶数与奇数之间相加、相乘或相除的结果都将是偶数。
例如,2 + 3 = 5,2 × 3 = 6,2 ÷ 3 = 0.67。
四、奇偶数的应用1. 奇偶分析:在计算机科学中,奇偶数经常用于数据校验,以检测传输中的误码。
通过判断数据位中1的个数,可以确定是否出现了错误。
2. 数字游戏:奇偶数的特性也常被应用于数字游戏中。
例如,猜数字游戏中的提示可以利用奇偶数的性质,帮助猜测答案。
3. 数学证明:奇偶数的一些性质在数学证明中经常被使用。
通过利用奇偶数的特性,可以简化问题的求解过程。
4. 数列和排列组合:在数学中,奇数和偶数经常出现在数列和排列组合问题中。
它们的性质可以帮助我们快速计算或分析数学模型。
综上所述,奇数和偶数是数学中常见的概念,它们具有不同的特性。
数的奇偶性奇数和偶数
数的奇偶性奇数和偶数“数的奇偶性”是数学里一个常见的概念。
数学中的数可以分为奇数和偶数两类。
在本文中,我们将详细介绍奇数和偶数以及它们的性质和特点。
一、奇数的定义和性质奇数是指不能被2整除的整数。
具体来说,奇数可以表示为2n+1的形式,其中n是整数。
例如,1、3、5、7、9等都是奇数。
奇数具有以下几个性质:1. 奇数加奇数等于偶数。
例如,3+3=6,5+5=10,7+7=14等。
2. 奇数与偶数的乘积等于偶数。
例如,3×2=6,5×4=20,7×6=42等。
3. 奇数与奇数的乘积等于奇数。
例如,3×3=9,5×5=25,7×7=49等。
二、偶数的定义和性质偶数是指能够被2整除的整数。
具体来说,偶数可以表示为2n的形式,其中n是整数。
例如,2、4、6、8、10等都是偶数。
偶数具有以下几个性质:1. 偶数加偶数等于偶数。
例如,2+2=4,4+4=8,6+6=12等。
2. 偶数与偶数的乘积等于偶数。
例如,2×2=4,4×4=16,6×6=36等。
3. 偶数与奇数的乘积等于偶数。
例如,2×3=6,4×5=20,6×7=42等。
三、数的奇偶性在数学中的应用数的奇偶性在数学中有着广泛的应用。
以下是数的奇偶性的一些典型应用:1. 确定整数的奇偶性:通过判断一个整数是否能被2整除,可以迅速确定其奇偶性。
2. 判断数字的位值:在二进制和十进制计算中,通过判断最后一位数字是0还是1,可以判断一个数字的奇偶性。
3. 判断数列中的规律:在数列中,奇数和偶数往往会出现规律性的交替分布,通过观察奇偶性可以推测数列的一般规律。
四、奇偶性的实际应用举例奇偶性的概念不仅仅在数学中有用,它也在现实生活中有着实际的应用。
以下是一些奇偶性的实际应用举例:1. 交通规划:在城市交通规划中,奇数和偶数车牌的车辆可能被要求在特定日期或时间段禁止上路行驶,以减少交通拥堵。
高中数学复习专题讲座(第7讲)奇偶性与单调性(1)
题目高中数学复习专题讲座处理具有单调性、奇偶性函数问题的方法(2) 高考要求函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样 特别是两性质的应用更加突出 本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象 帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识 重难点归纳(1)判断函数的奇偶性与单调性若为具体函数,严格按照定义判断,注意变换中的等价性 若为抽象函数,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性同时,注意判断与证明、讨论三者的区别,针对所列的训练认真体会,用好数与形的统一复合函数的奇偶性、单调性 问题的解决关键在于 既把握复合过程,又掌握基本函数(2)加强逆向思维、数形统一 正反结合解决基本应用题目(3)运用奇偶性和单调性去解决有关函数的综合性题目 此类题目要求考生必须具有驾驭知识的能力,并具有综合分析问题和解决问题的能力(4)应用问题 在利用函数的奇偶性和单调性解决实际问题的过程中,往往还要用到等价转化和数形结合的思想方法,把问题中较复杂、抽象的式子转化为基本的简单的式子去解决 特别是 往往利用函数的单调性求实际应用题中的最值问题 典型题例示范讲解例1已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xyyx ++1),试证明(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减命题意图 本题主要考查函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力知识依托 奇偶性及单调性定义及判定、赋值法及转化思想错解分析 本题对思维能力要求较高,如果“赋值”不够准确,运算技能不过关,结果很难获得技巧与方法 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是焦点证明 (1)由f (x )+f (y )=f (xyyx ++1), 令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0 ∴f (x )=-f (-x ) ∴f (x )为奇函数 (2)先证f (x )在(0,1)上单调递减令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴12121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0 ∴x 2-x 1<1-x 2x 1, ∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1)∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0 ∴f (x )在(-1,1)上为减函数例2设函数f (x )是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f (2a 2+a +1)<f (3a 2-2a +1) 求a 的取值范围,并在该范围内求函数y =(21)132+-a a 的单调递减区间 命题意图 本题主要考查函数奇偶性、单调性的基本应用以及对复合函数单调性的判定方法知识依托 逆向认识奇偶性、单调性、指数函数的单调性及函数的值域问题错解分析 逆向思维受阻、条件认识不清晰、复合函数判定程序紊乱 技巧与方法 本题属于知识组合题类,关键在于读题过程中对条件的思考与认识,通过本题会解组合题类,掌握审题的一般技巧与方法解 设0<x 1<x 2,则-x 2<-x 1<0,∵f (x )在区间(-∞,0)内单调递增, ∴f (-x 2)<f (-x 1),∵f (x )为偶函数,∴f (-x 2)=f (x 2),f (-x 1)=f (x 1), ∴f (x 2)<f (x 1) ∴f (x )在(0,+∞)内单调递减.032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f (2a 2+a +1)<f (3a 2-2a +1)得 2a 2+a +1>3a 2-2a +1 解之,得0<a <3又a 2-3a +1=(a -23)245 ∴函数y =(21)132+-a a 的单调减区间是[23,+∞] 结合0<a <3,得函数y =(12)132+-a a 的单调递减区间为[23,3)例3设a >0,f (x )=xx e a a e +是R 上的偶函数,(1)求a 的值;(2)证明 f (x )在(0,+∞)上是增函数(1)解 依题意,对一切x ∈R ,有f (x )=f (-x ),即x x x ae e a a e 1=++ae x 整理,得(a -a1)(e x -x e 1)=0 因此,有a -a1=0,即a 2=1,又a >0,∴a =1 (2)证法一(定义法) 设0<x 1<x 2,则f (x 1)-f (x 2)=)11)((1121122121--=-+-+x x xx x x x x e e e e e e e21211211)1(x x x x x x x e e ee ++---=由x 1>0,x 2>0,x 2>x 1,∴112--x x e >0,1-e 21x x +<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2) ∴f (x )在(0,+∞)上是增函数证法二(导数法) 由f (x )=e x +e -x ,得f ′(x )=e x -e -x =e -x ·(e 2x -1) 当x ∈(0,+∞)时,e -x >0,e 2x -1>0此时f ′(x )>0,所以f (x )在[0,+∞)上是增函数 学生巩固练习1 下列函数中的奇函数是( )A f (x )=(x -1)xx -+11B f (x )=2|2|)1lg(22---x xC f (x )=⎪⎩⎪⎨⎧>+-<+)0()0(22x x x x x xD f (x )=xx xx sin cos 1cos sin 1++-+2 函数f (x )=111122+++-++x x x x 的图象( )A 关于x 轴对称B 关于y 轴对称C 关于原点对称D 关于直线x =1对称 3 函数f (x )在R 上为增函数,则y =f (|x +1|)的一个单调递减区间是____ 4 若函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2), 且在[x 2,+∞)上单调递增,则b 的取值范围是_________5 已知函数f (x )=a x +12+-x x (a >1) (1)证明 函数f (x )在(-1,+∞)上为增函数 (2)用反证法证明方程f (x )=0没有负数根6 求证函数f (x )=223)1(-x x 在区间(1,+∞)上是减函数7 设函数f (x )的定义域关于原点对称且满足(i)f (x 1-x 2)=)()(1)()(1221x f x f x f x f -+⋅;(ii)存在正常数a 使f (a )=1 求证 (1)f (x )是奇函数(2)f (x )是周期函数,且有一个周期是4a8 已知函数f (x )的定义域为R ,且对m 、n ∈R ,恒有f (m +n )=f (m )+f (n )-1,且f (-21)=0,当x >-21时,f (x )>0 (1)求证 f (x )是单调递增函数;(2)试举出具有这种性质的一个函数,并加以验证 参考答案:1 解析 f (-x )=2222(0)() (0)(0)() (0)x x x x x x x x x x x x ⎧⎧->-+<⎪⎪=⎨⎨--<--+>⎪⎪⎩⎩ =-f (x ), 故f (x )为奇函数 答案 C2 解析 f (-x )=-f (x ),f (x )是奇函数,图象关于原点对称 答案 C3 解析 令t =|x +1|,则t 在(-∞,-1]上递减,又y =f (x )在R 上单调递增,∴y =f (|x +1|)在(-∞,-1]上递减答案 (-∞,-1]4 解析 ∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0 f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x , ∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0又知0<x 1<x ,得x 1+x 2>0, ∴b =-a (x 1+x 2)<0 答案 (-∞,0)5 证明 (1)设-1<x 1<x 2<+∞,则x 2-x 1>0, 12x x a ->1且1x a >0,∴)1(12112-=--x x x x x a a a a >0,又x 1+1>0,x 2+1>0 ∴)1)(1()(3)1)(1()1)(2()1)(2(121221122121121122++-=+++--+-=+--+-x x x x x x x x x x x x x x >0, 于是f (x 2)-f (x 1)=12x x a a -+12121122+--+-x x x x >0 ∴f (x )在(-1,+∞)上为递增函数(2)证法一 设存在x 0<0(x 0≠-1)满足f (x 0)=0,则12000+--=x x a x 且由0<0x a <1得0<-1200+-x x <1, 即21<x 0<2与x 0<0矛盾,故f (x )=0没有负数根 证法二 设存在x 0<0(x 0≠-1)使f (x 0)=0,若-1<x 0<0,则1200+-x x <-2,0x a <1,∴f (x 0)<-1与f (x 0)=0矛盾, 若x 0<-1,则1200+-x x >0, 0x a >0, ∴f (x 0)>0与f (x 0)=0矛盾,故方程f (x )=0没有负数根6 证明 ∵x ≠0,∴f (x )=22422322)11(1)1(1)1(1x x x x x x x -=-=-, 设1<x 1<x 2<+∞,则01111,11121222122>->-<<x x x x2211222222112222)11(1)11(1.0)11()11(x x x x x x x x -<-∴>->-∴∴f (x 1)>f (x 2), 故函数f (x )在(1,+∞)上是减函数(本题也可用求导方法解决) 7 证明 (1)不妨令x =x 1-x 2,则f (-x )=f (x 2-x 1)=)()(1)()()()(1)()(12212112x f x f x f x f x f x f x f x f -+-=-+=-f (x 1-x 2)=-f (x )∴f (x )是奇函数(2)要证f (x +4a )=f (x ),可先计算f (x +a ),f (x +2a )∵f (x +a )=f [x -(-a )]=1)((1)(1)()()(1)()()()(1)()(=+-=--+-=---+-a f x f x f x f a f x f a f x f a f x f a f).(111)(1)(11)(1)(1)(1)(])[()2(x f x f x f x f x f a x f a x f a a x f a x f -=++--+-=++-+=++=+∴ ∴f (x +4a )=f [(x +2a )+2a ]=)2(1a x f +-=f (x ),故f (x )是以4a 为周期的周期函数8 (1)证明 设x 1<x 2,则x 2-x 1-21>-21,由题意f (x 2-x 1-21)>0,∵f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1=f (x 2-x 1)+f (-21)-1=f [(x 2-x 1)-21]>0,∴f (x )是单调递增函数(2)解 f (x )=2x +1 验证过程略 课前后备注。
系列2奇数与偶数
整理ppt
3
二.例题分析:
例1. 在1,2,3, …,2006每一个数前任意添 加一个正号或负号,他们的代数和是奇数还 是偶数?
拓展:你能在1,2,3…,2006前添加正号和负 号,使其代数和等于1吗?等于0吗?还能等于 其他的值吗?试一试?
(1)如果这41名运动员任意站成一排,是否 存在任意相邻的两位运动员的号码数之和 都是质数?
(2)能否让这41名运动员站成一个圆圈, 使得任意相邻的两位运动员的号码数之 和也都是质数?
整理ppt
9
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
整理ppt
4
2.设a,b,c中有两个奇 数,一个偶数,试说明 (a+1)(b+2)(c+3)一定 为偶数.
整理ppt
5
3.在黑板上写上1,2,…,2006,
只要黑板上还有两个或两个
以上的数就擦去其中的任意
两个数a,b,并写上|a-b|,问
最后黑板上剩下的数是奇数
还是偶数?
整理ppt
6
4.某校七年级5个班
奇数与偶数
数学竞赛系列1
整2.奇数和偶数有哪些性质: (1).加乘法则:
+\- 奇 偶 奇 偶奇 偶 奇偶
× 奇偶 奇 奇偶 偶 偶偶
整理ppt
2
2.奇数和偶数有哪些性质:
(2)奇数≠偶数 奇数+偶数≠0 (3)两个整数的和与差的奇偶性有何关系? (4)整数a与|a|奇偶性有什么关系?
的足球队参加比赛,
能否安排出,使每个
奥数奇数和偶数
奇数和偶数--顾老师阅读思考:凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数)。
因为任何奇数除以2其余数都是1,所以通常用式子21k+来表示奇数(这里k是整数)。
奇数和偶数有许多性质,常用的有:性质1两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2奇数与奇数的积是奇数。
例如:91199⨯=等偶数与整数的积是偶数。
例如:25102816,等。
⨯=⨯=性质3任何一个奇数一定不等于任何一个偶数。
奇数和偶数的性质:(一)两个整数和的奇偶性。
奇数+奇数=(),奇数+偶数=(),偶数+偶数=()。
一般的,奇数个奇数的和是(),偶数个奇数的和是(),任意个偶数的和为()。
(二)两个整数差的奇偶性。
奇数-奇数=(),奇数-偶数=(),偶数-偶数=(),偶数-奇数=()。
(三)两个整数积的奇偶性。
奇数×奇数=(),奇数×偶数=(),偶数×偶数=()一般的,在整数连乘当中,只要有一个因数是偶数,那么其积必为();如果所有因数都是奇数,那么其积必为()。
(四)两个整数商的奇偶性。
在能整除的情况下,偶数除以奇数得(),偶数除以偶数可能得(),也可能得(),奇数不能被偶数整除。
(五)如果两个整数的和或差是偶数,那么这两个整数或者都是(),或者都是()。
(六)两个整数之和与两个整数之差有相同的奇偶性,即A+B、A-B奇偶性相同(A、B为整数)。
(七)相邻两个整数之和为(),相邻两个整数之积为()。
(八)()的平方被4除余1,偶数的平方是4的倍数例1.有5张扑克牌,画面向上。
小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竞赛讲座01
-奇数和偶数
整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数.
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;
(4)若a、b为整数,则a+b与a-b有相同的奇数偶;
(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.
以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.
1.代数式中的奇偶问题
例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶
数,那么这12个整数中,至少有几个偶数?
□+□=□,□-□=□,
□×□=□□÷□=□.
解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶
数,故这12个整数中至少有六个偶数.
例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组
是整数,那么。