大学生数学试题及答案
第十一届全国大学生数学竞赛决赛试题(三套全)及参考答案

第十一届全国大学生数学竞赛决赛试题参考答案及评分标准 (非数学类,2021年4月17日)一、填空题(本题满分30分,每小题6分)1、极限12(1)(1sin lim (1sin )n n x x π−+−=−______________.【解】122)(1sinlim n n x x ππ−+→−= 211(sin 1)11111sin 23!n x x x n n π+−+−==⋅=− 2、设函数()y f x =由方程32arctan(2)x y y x −=−所确定,则曲线()y f x =在点1,32P ππ⎛⎫++ ⎪⎝⎭处的切线方程为______________.【解】对方程32arctan(2)x y y x −=−两边求导,得22321(2)y y y x '−−'=+−.将点P 的坐标代入,得曲线()y f x =在P 点的切线斜率为5.2y '=因此,切线方程为5(3)122y x ππ⎛⎫−+=−− ⎪⎝⎭,即51224y x π=+−.3、设平面曲线L 的方程为220Ax By Cxy Dx Ey F +++++=,且通过五个点1(1,0)P −,2(0,1)P −,3(0,1)P ,4(2,1)P −和5(2,1)P,则L 上任意两点之间的直线距离最大值为______________.【解】将所给点的坐标代入方程得0042204220A D FB E F B E F A BCDEF A B C D E F −+=⎧⎪−+=⎪⎪++=⎨⎪+−+−+=⎪+++++=⎪⎩解得曲线L 的方程为223230x y x +−−=,其标准型为22(1)144/3x y −+=,因此曲线L 上两点间的最长直线距离为4.4、设()22()23arctan 3nx f x x x =+−,其中n 为正整数,则()(3)n f −=_________. 【解】记2()(1)arctan 3n x g x x =−,则()(3)()n f x x g x =+.利用莱布尼兹法则,可得1()()()0()!()(3)()n k n k nn k n k fx n g x C x g x −−=⎡⎤=++⎣⎦∑所以()22(3)!(3)(1)4!n n n f n g n π−−=−=−.5、设函数()f x 的导数()f x '在$[0,1]$上连续,(0)(1)0f f ==,且满足[]1124()?d 8()d 03f x x f x x '−+=⎰⎰ 则()f x =______________.【解】因为1110()d ()d ,()d 0f x x x f x x f x x =−''=⎰⎰⎰,且()1201441d 3x x x −+=⎰,所以()[]1112220124()d 8()d ()8()4()16164d 3()42d 0f x x f x x f x xf x f x x x x f x x x ''⎡⎤−+=+'−'+−+⎣⎦='+−=⎰⎰⎰⎰因此()24f x x '=−,2()22f x x x C =−+..由(0)0f =得0C =..因此2()22f x x x =−.二、(12分)求极限:11nn k =−.【解】记1nn k a ==−,则1111nnn n k k k a n===⎛==≤ ⎝. ....................... 3分因为1112((1)3n nk n kk k x x n ++==≤==+−∑⎰⎰,所以221133n a n ⎛<=+ ⎝ .................................................. 3分又01123nnkk k k x x −==≥==∑⎰⎰123nn k a =≥≥ 于是可得................221133n a n ⎛≤<+ ⎝3分三、(12分)设()()212313230,,cos ,sin d F x x x f x x x x πϕϕϕ=++⎰,其中(,)f u v 具有二阶连续偏导数.已知()213230cos ,sin d i iFf x x x x x x πϕϕϕ∂∂⎡⎤=++⎣⎦∂∂⎰, ()2221323220cos ,sin d i iFf x x x x x x πϕϕϕ∂∂⎡⎤=++⎣⎦∂∂⎰,1i =,2,3 试求22232221233F F F Fx x x x x ⎛⎫∂∂∂∂+−− ⎪∂∂∂∂⎝⎭并要求化简.【解】令1323cos ,sin u x x v x x ϕϕ=+=+,利用复合函数求偏导法则易知123,,cos sin f f f f f f f x u x v x u vϕϕ∂∂∂∂∂∂∂===+∂∂∂∂∂∂∂, 22222222222222222123,,cos sin 2sin f f f f f f f f x u x v x u u v vϕϕϕ∂∂∂∂∂∂∂∂===++∂∂∂∂∂∂∂∂∂ .................................... 4分所以2223222123F F F x x x x ⎛⎫∂∂∂+− ⎪∂∂∂⎝⎭222222222232222000 d d cos sin 2sin d f f f f f x u v u u v πππϕϕϕϕϕϕν⎡⎤⎛⎫∂∂∂∂∂=+−++⎢⎥ ⎪∂∂∂∂∂∂⎝⎭⎣⎦⎰⎰⎰ 222222322sin sin 2cos d f f f x u u u v πϕϕϕϕ⎛⎫∂∂∂=−+ ⎪∂∂∂∂⎝⎭⎰又由于203cos sin d F f f x u v πϕϕϕ∂∂∂⎛⎫=+ ⎪∂∂∂⎝⎭⎰,利用分部积分,可得 22222222003222222223322002222322sin d cos d 11sin sin 2d sin 2cos d 22sin sin 2Ff u f v f u f v x u u v u v v f f f f x x u u v u v v f f f x u u v ππππϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕν⎛⎫⎛⎫∂∂∂∂∂∂∂∂∂=−+++ ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎛⎫⎛⎫∂∂∂∂=−−− ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂=−+∂∂∂∂⎰⎰⎰⎰22cos d πϕϕ⎛⎫ ⎪⎝⎭⎰........................................ 4分所以222322212330F F F Fx x x x x ⎛⎫∂∂∂∂+−−= ⎪∂∂∂∂⎝⎭ ......................................................2分四、(10分)设函数()f x 在[0,1]上具有连续导数,且110053()d ,()d 22f x x x f x x ==⎰⎰.证明:存在(0,1)ξ∈,使得()3f ξ'=.【解】考虑积分[]10(1)3()d x x f x x −−'⎰ .................................................. 4分利用分部积分及题设条件,得[]111001111132000(1)3()d (1)[3()](12)[3()]d 3(21)d (12)()d 32()d 2()d 2x x f x x x x x f x x x f x xx x x x f x xx x f x x x f x x−−'=−−−−−=−+−⎛⎫=−+− ⎪⎝⎭⎰⎰⎰⎰⎰⎰3523022=−+−= ...................................... 4分根据积分中值定理,存在(0,1)ξ∈,使得[](1)3()0f ξξξ−−'=,即() 3.f ξ'=........................................ 2分五、(12分)设122021,,,B B B 为空间3R 中半径不为零的2021个球,()ij A a =为2021阶方阵,其(,)i j 元ij a 为球i B 与j B 相交部分的体积.证明:行列式||1E A +>,其中E 为单位矩阵。
高等数学期末考试试题及答案(大一考试)

(2010至2011学年第一学期)课程名称: 高等数学(上)(A 卷)考试(考查): 考试 2008年 1 月 10日 共 6 页 注意事项:1、 满分100分。
要求卷面整洁、字迹工整、无错别字。
2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
3、 考生必须在签到单上签到,若出现遗漏,后果自负。
4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同交回,否则不给分。
试 题一、单选题(请将正确的答案填在对应括号内,每题3分,共15分)1. =--→1)1sin(lim21x x x ( ) (A) 1; (B) 0; (C) 2; (D)212.若)(x f 的一个原函数为)(x F ,则dx e f e xx )(⎰--为( )(A) c e F x +)(; (B) c eF x+--)(;(C) c e F x+-)(; (D )c xe F x +-)( 3.下列广义积分中 ( )是收敛的. (A)⎰+∞∞-xdx sin ; (B)dx x⎰-111; (C) dx x x ⎰+∞∞-+21; (D)⎰∞-0dx e x。
4. )(x f 为定义在[]b a ,上的函数,则下列结论错误的是( )(A) )(x f 可导,则)(x f 一定连续; (B) )(x f 可微,则)(x f 不一定可导;(C) )(x f 可积(常义),则)(x f 一定有界; (D) 函数)(x f 连续,则⎰xadt t f )(在[]b a ,上一定可导。
5. 设函数=)(x f nn x x211lim++∞→ ,则下列结论正确的为( )(A) 不存在间断点; (B) 存在间断点1=x ; (C) 存在间断点0=x ; (D) 存在间断点1-=x二、填空题(请将正确的结果填在横线上.每题3分,共18分)1. 极限=-+→xx x 11lim 20 _____.2. 曲线⎩⎨⎧=+=321ty t x 在2=t 处的切线方程为______. 3. 已知方程xxe y y y 265=+'-''的一个特解为x e x x 22)2(21+-,则该方程的通解为 .4. 设)(x f 在2=x 处连续,且22)(lim2=-→x x f x ,则_____)2(='f5.由实验知道,弹簧在拉伸过程中需要的力F (牛顿)与伸长量s 成正比,即ks F =(k 为比例系数),当把弹簧由原长拉伸6cm 时,所作的功为_________焦耳。
大一高等数学练习题及答案解析

大一高等数学练习题及答案解析 11.2.limx?0xx?.1?1x?1?x2005??ex?e?x?dx?x?y2.3.设函数y?y由方程?1xe?tdt?xdy确定,则dxx?0tfdt?ff?1fx14. 设可导,且,,则f?x??5.微分方程y4y??4y?0的通解为 .二.选择题1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为.y?Acos2x; y?Axcos2x;f?lnx?x?ke在内零点的个数为.y?Axcos2x?Bxsin2x;y?Asin2x..下列结论不一定成立的是.*f?x?dx??f?x?dxc,d?a,bca若,则必有;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有 xba?Taf?x?dx??f?x?dxT;tf?t?dtfx0若可积函数为奇函数,则也为奇函数. f?x??4. 设1?e1x1x2?3e, 则x?0是f的.连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题 1 .计算定积分x3e?xdx2.2.计算不定积分xsinxcos5x.xxa,t2处的切线的方程. .求摆线?y?a,在4. 设F??cosdt,求F?.5.设四.应用题 1.求由曲线y?xn?nlimxnn,求n??.x?2与该曲线过坐标原点的切线及x轴所围图形的面积.222.设平面图形D由x?y?2x与y?x所确定,试求D绕直线x?旋转一周所生成的旋转体的体积.ta?1,f?a?at在内的驻点为 t. 问a为何值时t最小?并求3. 设最小值.五.证明题设函数f在[0,1]上连续,在内可导且1ff=?1试证明至少存在一点??, 使得f?=1. 一.填空题: 11..limx?x?0e.4e.dy确定,则dxx?0121?1x?1?x2005??ex?e?x?dx?x?y3.设函数y?y由方程?1e?tdt?x?e?1.12x24. 设f?x?可导,且x1tfdt?f,f?1,则f?x??e2x.5.微分方程y4y??4y?0的通解为y?e二.选择题: .1.设常数k?0,则函数个; 个; 1个; 0个.2.微分方程y4y?3cos2x 的特解形式为y?Acos2xy; ?Axcos2x; ?y?Axcos2x?Bxsin2x; y?Asin2x.下列结论不一定成立的是f?lnx?x?k内零点的个数为. e 在若?c,da,b?,则必有dcf?x?dx??f?x?dxabb;f?x?dx?0a,bf?0a若在上可积,则;若f?x?是周期为T的连续函数,则对任意常数a都有a?Taf?x?dx??f?x?dxT;xtf?t?dtfx0 若可积函数为奇函数,则也为奇函数. f?x??1?e1x1x2?3e, 则x?0是f的.. 设连续点; 可去间断点;跳跃间断点; 无穷间断点. 三.计算题: 1.计算定积分?0 解:2x3e?xdx202.2设x2?t,则?x3e?xdx??1?t12tedttde?t0220-------221??t22?t?te??edt?002?? -------22131e?2?e?te?2022--------22.计算不定积分解:xsinx5cosx.xsinx111?xdx?dx?xd??4?cos5x?cos4x?4?cos4x4??cosx?--------3 x1dtanx44cosx4x113tanx?tanx?C4cos4x1-----------?xa,t2处的切线的方程..求摆线?y?a,在,a)2解:切点为 -------2k?dyasint?s)t??dxt??a即y?x?a.-------24. 设.设F??cosdt22F2xcosxcos. ,则xn?nn?1)?limxnn,求n??.1nilnxn??ln1ni?1n ---------解:n1i1limlnxn?lim?ln??lndx0n??n??nni?1--------------12ln2101?x =------------22ln2?1e?limxne 故 n??=xln10??x1四.应用题 1.求由曲线y?x?2与该曲线过坐标原点的切线及x轴所围图形的面积.解:大一高等数学期末考试试卷一、选择题2ex,x0,1. 若f??为连续函数,则a的值为.ax,x01 3-12. 已知f??2,则limh?0f?f的值为.h13-113. 定积分?2?的值为. ?20-2124. 若f在x?x0处不连续,则f在该点处.必不可导一定可导可能可导必无极限二、填空题1.平面上过点,且在任意一点处的切线斜率为3x2的曲线方程为 .2. ?dx? . ?113. limx2sinx?01= . x4. y?2x3?3x2的极大值为三、计算题1. 求limx?0xln. sin3x22. 设y?求y?.. 求不定积分?xlndx.4. 求?30?x,x?1,? fdx,其中f??1?cosx?ex?1,x?1.?5. 设函数y?f由方程?edt??costdt?0所确定,求dy. 00ytx6. 设?fdx?sinx2?C,求?fdx.3??7. 求极限lim?1??. n2n?四、解答题1. 设f??1?x,且f?1,求f. n2. 求由曲线y?cosxx??与x轴所围成图形绕着x轴旋转一周2??2所得旋转体的体积.3. 求曲线y?x3?3x2?24x?19在拐点处的切线方程.4. 求函数y?x[?5,1]上的最小值和最大值.五、证明题设f??在区间[a,b]上连续,证明bafdx?b?a1b[f?f]??f??dx.2a标准答案一、 1 B; C; D; A.二、 1 y?x?1;2; 0;0.三、 1 解原式?limx?5x5分 x?03x21分2分 x??lxn2d分 ?212x?[lndx2分21?x1?[ln?x2]?C1分解令x?1?t,则分03fdx1fdt 1分122t1??1dt 1分 1?cost1分 ?0?[et?t]1e2e1 1分两边求导得ey?y??cosx?0,分ycosx 1分 ye?cosx 1分 sinx?1cosx?dy?dx分 sinx?1解 ?fdx?12?fd2?C4分3??lim1?解原式=??n2n?322n3?32分 =e2分四、1 解令lnx?t,则x?et,f??1?et, 分 f??dt=t?et?C.2分 ?f?1,?C?0, 分fxex. 1分解 Vx2??2??cosxdx分 ?2202cos2xdx2分 ?解 ?22. 分 6x?1分 y??3x2?6x?24,y令y0,得x?1. 1分当x?1时,y0; 当1?x时,y0,分 ?为拐点, 1分该点处的切线为y?3?21. 分解y??1??2分令y??0,得x3?. 1分435y52.55,y,y1,分 ?4?435y5y最大值为. 分 ?最小值为?4?4五、证明bafdf?分 ab[f]aaf[2xdx分a[2x?df分 bbb[2x?]f?a?2?afdx分[f?f]?2?afdx,分移项即得所证分 bbb大一高数试题及答案一、填空题________ 11.函数y=arcsin√1-x+────── 的定义域为_________ √1-x2_______________。
第九届全国大学生数学竞赛决赛试题参考答案及评分标准

第九届全国大学生数学竞赛决赛试题参考答案及评分标准(非数学类, 2018 年 3 月)一、 填空题(满分 30 分,每小题 6 分):(1) 极限lim tan x - sin x =1.x →0 x ln(1+ s in 2 x )2(2) 设一平面过原点和点(6, -3, 2) ,且与平面4x - y + 2z = 8 垂直,则此平面方 程为 2x + 2 y - 3z = 0 .(3) 设函数 f (x , y ) 具有一阶连续偏导数,满足d f (x , y ) = ye y d x + x (1+ y )e y d y , 及 f (0, 0) = 0 ,则 f (x , y ) =xye y .d u (t ) 1 2e t - e +1 (4) 满足 d t = u (t ) + ⎰0 u (t )d t 及u (0) = 1的可微函数u (t ) =3 - e.(5) 设a , b , c , d 是互不相同的正实数,x , y , z , w 是实数,满足a x = bcd ,b y = cda , c z = dab , d w = abc ,则行列式= 0.二、(本题满分 11 分) 设函数 f (x ) 在区间(0,1) 内连续,且存在两两互异的点 x 1, x 2 , x 3, x 4 ∈(0,1) ,使得α =f (x 1) - f (x 2 ) < x 1 - x 2 f (x 3 ) - f (x 4 ) =β ,x 3 - x 4证明:对任意λ ∈(α , β ) ,存在互异的点 x , x ∈(0,1) ,使得λ = f (x 5 ) - f (x 6 ) . 5 6 x - x56【证】 不妨设 x 1 < x 2 , x 3 < x 4 ,考虑辅助函数F (t ) =f ((1- t )x 2 + tx 4 ) - f ((1- t )x 1 + tx 3 ),……… 4 分(1- t )(x 2 - x 1) + t (x 4 - x 3 )则 F (t ) 在闭区间[0, 1] 上连续,且 F (0) = α < λ < β = F (1) . 根据连续函数介值定理,存在t 0 ∈(0,1) ,使得 F (t 0 ) = λ .………………… 3 分-x 11 1 1 - y11 1 1 -z11 11 -wn n !1⎣ ⎦- ∑π令 x 5 = (1- t 0 )x 1 + t 0 x 3 , x 6 = (1- t 0 )x 2 + t 0 x 4 ,则 x 5, x 6 ∈(0,1) , x 5 < x 6 ,且λ = F (t ) = f (x 5 ) - f (x 6 ).………………… 4 分x - x5 6三、(本题满分 11 分)设函数 f (x ) 在区间[0,1] 上连续且⎰1f (x )d x ≠ 0 ,证明: 在区间[0,1] 上存在三个不同的点x 1,x 2,x 3 ,使得π1f (x )d x =⎡ 1x 1f (t ) d t + f (x ) arctan⎤8 ⎰⎢1 + x 2 ⎰01x 1 ⎥ x 3⎣ 1 = ⎡ 1x 2 f (t ) d t + f (x ) a rctan x ⎦ ⎤ (1 - x ). ⎢1 + x 2 ⎰0 2 2 ⎥ 3 ⎣ 2 ⎦【证】 令 F (x ) = 4 arctan x ⎰0 ,则F (0) = 0, F (1) = 1且函数F (x )在闭⎰f (t )d t区间[0,1] 上可导. 根据介值定理,存在点x 3 ∈(0,1) ,使F (x 3 ) = 1. 2………………… 5 分再分别在区间[0, x 3 ] 与[x 3,1]上利用拉格朗日中值定理,存在x 1 ∈(0,x 3) , 使得F (x 3) - F (0) = F '(x 1)(x 3 - 0) ,即π1⎡ 1 x 1⎤8 ⎰0 f (x )d x = ⎢1 + x 2 ⎰0 f (x ) d x + f (x 1) arctan x 1 ⎥ x 3 ; ……… 3 分⎣ 1 ⎦且存在x 2 ∈(x 3 ,1) ,使F (1) - F (x 3) = F '(x 2 )(1 - x 3) ,即π1f (x )d x =⎡ 1x 2f (x ) d x + f (x) arctan x ⎤(1 - x ) .8 ⎰⎢1 + x 2 ⎰022⎥ 3⎣2⎦………………… 3 分四、(本题满分 12 分) 求极限: lim ⎡n +1 (n +1)! - n n !⎤ .n →∞【解】 注意到n +1(n +1)! - n⎡ n +1 (n +1)! n !=n ⎢ ⎤ 1⎥ , 而 ………… 3 分 ⎢ nn ! ⎦⎥ nlim1 nk lnln x d x1lim= en →∞ n k =1n = e ⎰0= ,…………… 3 分nn !xf (t )d t1n n en n ! nn ! ∑∑ 【证】 (1) 二次型 H (x ) = ∑ x -⎝ ⎭n -1 ⎭n n +1- 1 ⋅1 ∑n +1lnk=(n +1)n[(n +1)!] (n !)n +1 = (n +1)n (n +1)= e(n +1)!n n +1k =1 n +1, …… 3 分利用等价无穷小替换e x -1 x (x → 0) ,得lim ⎡ n +1 (n +1)! ⎤ n - 1 n +1 k 1n →∞ nn ! 1⎥ = - lim n +1∑ln n +1 = -⎰0 ln x d x = 1 , ⎢⎣因此,所求极限为⎦⎥ n →∞⎤k =1⎡ n +1 (n +1)! ⎤ 1lim - = limlim n ⎢ -1⎥ = . …… 3 分n →∞⎦ n →∞ n n →∞ ⎢⎣n n ! ⎦⎥ enn -1五、(本题满分 12 分) 设 x = (x , x , , x )T ∈ R n ,定义 H (x ) =x 2 -xx,n ≥ 2 .1 2 ni =1ii i +1i =1(1)证明:对任一非零 x ∈ R n , H (x ) > 0 ;(2)求 H (x ) 满足条件 x n = 1的最小值.nn -1 2ii i 1的矩阵为i =1⎛i =11 ⎫2 ⎪ ⎪ - 1 1 - 1 ⎪ 2 2 ⎪ 1 ⎪A = -2 ⎪ , ……………3 分⎪ 1 ⎪ 1 - ⎪2 ⎪ - 11⎪⎪ ⎝ 2 ⎭因为 A 实对称,其任意k 阶顺序主子式∆k > 0 ,所以 A 正定,故结论成立. ………………… 3 分 (2) 对 A 作分块如下 A = ⎛ A n -1 α ⎫ ,其中α = (0, , 0, - 1)T ∈ R n -1 ,取可逆矩⎛ I - A -1 α ⎫α T 1 ⎪ ⎛ A n -1 2 0 ⎫ ⎛ A n -1 0 ⎫ 阵 P = n -1 n -1 ⎪ ,则 P T AP = ⎪ = ⎪ ,其中⎝ 01 ⎭ ⎝ 0 1- α T A -1α ⎝ 0 a ⎭ n +1(n +1)!nn !⎡n +1 (n +1)! ⎣⎢ 1 -n -1 ⎛ f ⎫ ∂x ∂y a = 1- α T A -1α .………………… 3 分记 x = P (x ,1)T ,其中 x = (x , x , , x )T ∈ R n -1 ,因为12n -1H (x ) = x T Ax = (x T ,1)P T (P T )-1 ⎛ An -10 ⎫ P -1P ⎛ x 0 ⎫ = x TA x + a ,0 0a ⎪ 1 ⎪ 0 n -1 0⎝⎭ ⎝ ⎭且 A 正定,所以 H (x ) = x T A x + a ≥ a ,当 x = P (x ,1)T = P (0,1)T 时, H (x ) = a .n -10 n -1 0因此, H (x ) 满足条件 x n = 1的最小值为a .………………… 3 分六、(本题满分 12 分) 设函数 f (x , y ) 在区域 D = {(x , y ) x 2 + y 2 ≤ a 2}上具有一阶连续偏导数,且满足 f (x , y )⎡ ∂ 2 = a 2,以及 max ⎢⎛ ∂f ⎫2⎤ +⎥ = a 2 ,其x 2 + y 2 =a 2中a > 0 . 证明: ⎰⎰ f (x , y )d x d y ≤ 4π a 4 .( x , y )∈D⎪ ⎢⎣⎝ ⎭ ⎪ ⎝ ⎭ ⎥⎦D3 【解】 在格林公式P (x , y )d x + Q (x , y )d y = ⎛ ∂Q - ∂P ⎫d x d y ⎰ ⎰⎰ ∂x ∂y ⎪C D ⎝⎭中,依次取 P = yf (x , y ) , Q = 0 和取 P = 0 , Q = xf (x , y ) ,分别可得⎰⎰ f (x , y )d x d y = - ⎰ yf (x , y )d x - ⎰⎰ y ∂fd x d y , D C D ∂y⎰⎰ f (x , y )d x d y = ⎰ xf (x , y )d y - ⎰⎰ x ∂fd x d y .两式相加,得D C D ∂x= a 2 -+- 1⎛ ∂f +∂f ⎫= + ⎰⎰ f (x , y )d x d y2⎰ y d x x d y 2 ⎰⎰ x∂x y ∂y ⎪d x d y I 1 I 2DCD ⎝ ⎭ ………………… 4 分a224对 I 1 再次利用格林公式,得 I 1 =2⎰ - y d x + x d y = a ⎰⎰ d x d y = π a , …… 2 分CD对 I 2 的被积函数利用柯西不等式,得I 2 ≤ 1⎰⎰ x∂f+ yd x d y ≤1 ⎰⎰d x d y∂f ∂y2 D ∂x2 Dn n =1≤ax d y = 1π a 4 ,………………… 4 分2 D3因此,有⎰⎰f (x , y )d x d y ≤ π a 4 + 1 π a 4= 4 π a 4 . …………… 2 分D七、(本题满分 12 分) 设0 < a 3 3ln 1< 1 ,n = 1, 2, ,且lim a n= q (有限或+ ∞ ).nn →∞ln n∞∞(1)证明:当q > 1 时级数∑ a n 收敛,当q < 1 时级数∑ a n 发散;n =1n =1(2)讨论q = 1 时级数∑ a n 的收敛性并阐述理由.n =1证: (1)若 q > 1 ,则∃ p ∈ R ,s.t. q > p > 1 .根据极限性质, ∃N ∈ Z + ,s.t.ln 1a n1 ∞1∞∀n > N ,有ln n> p ,即a n <n p,而 p > 1时∑n p 收敛,所以∑ a n 收敛.n =1n =1若q < 1 ,则 ………………… 3 分∃ p ∈ R ,s.t. q < p < 1. 根据极限性质,∃N ∈ Z + ,s.t. ∀n > N ,ln 1a n1∞1∞有 ln n < p ,即a n > n p ,而 p < 1时∑ n p 发散,所以∑ a n 发散. n =1 n =1………………… 3 分(2) 当q = 1 时,级数∑ an可能收敛,也可能发散.n =11∞例如: a n = 满足条件,但级数∑ a n 发散; ………………… 3 分n =11 ∞又如: a n =n ln 2 n满足条件,但级数∑ a n 收敛. ………………… 3 分∞∞。
高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。
大学生数学竞赛(非数)试题及答案

大学生数学竞赛(非数学类)试卷及标准答案考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分.一、填空(每小题5分,共20分).计算)cos 1(cos 1lim 0x x x x --+→= .(2)设()f x 在2x =连续,且2()3lim2x f x x →--存在,则(2)f = . (3)若tx x xt t f 2)11(lim )(+=∞→,则=')(t f .(4)已知()f x 的一个原函数为2ln x ,则()xf x dx '⎰= .(1)21. (2) 3 . (3)te t 2)12(+ . (4)C x x +-2ln ln 2. 二、(5分)计算dxdy xy D⎰⎰-2,其中1010≤≤≤≤y x D ,:.解:dxdy x y D⎰⎰-2=dxdy y x x y D )(21:2-⎰⎰<+⎰⎰≥-22:2)(x y D dxdy x y -------- 2分 =dy y x dx x )(2210-⎰⎰+dy x y dx x)(12102⎰⎰- -------------4分姓名:身份证号所在院校:年级专业线封密注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关标记.=3011-------------5分.三、(10分)设)](sin[2x f y =,其中f 具有二阶 导数,求22dxyd .解:)],(cos[)(222x f x f x dxdy'=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(222222222222x f x f x x f x f x x f x f dxy d '-''+'=-----7分=)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.四、(15分)已知3123ln 0=-⋅⎰dx e e a x x ,求a 的值. 解:)23(232123ln 0ln 0xa x ax x e d e dx e e ---=-⋅⎰⎰---------3分 令t e x =-23,所以dt t dx e e aax x ⎰⎰--=-⋅231ln 02123---------6分 =a t 231233221-⋅-------------7分=]1)23([313--⋅-a ,-----------9分 由3123ln 0=-⋅⎰dx e e a x x ,故]1)23([313--⋅-a =31,-----------12分即3)23(a -=0-----------13分 亦即023=-a -------------14分所以23=a -------------15分.五、(10分)求微分方程0=-+'x e y y x 满足条件e yx ==1的特解.解:原方程可化为xe y x y x=+'1-----------2分这是一阶线性非齐次方程,代入公式得⎥⎦⎤⎢⎣⎡+⎰⋅⎰=⎰-C dx e x e e y dxx xdx x 11----------4分=⎥⎦⎤⎢⎣⎡+⋅⎰-C dx e x e ex x xln ln ----------5分 =[]⎰+C dx e x x 1-----------6分 =)(1C e xx+.---------------7分 所以原方程的通解是)(1C e xy x +=.----------8分再由条件e yx ==1,有C e e +=,即0=C ,-----------9分因此,所求的特解是xe y x=.----------10分.六(10分)、若函数()f x 在(,)a b 内具有二阶导数,且123()()()f x f x f x ==,其中123a x x x b <<<<,证明:在13(,)x x 内至少有一点ξ,使()0f ξ'=。
全国大学生数学竞赛赛试题(1-9届)
全国大学生数学竞赛赛试题(1-9届)第一届全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算 $\iint_D \frac{y}{x+y-1} \mathrm{d}x\mathrm{d}y$,其中区域$D$ 由直线$x+y=1$ 与两坐标轴所围成三角形区域。
2.设 $f(x)$ 是连续函数,且满足 $f(x)=3x^2-\intf(x)\mathrm{d}x-2$,则 $f(x)=\underline{\hspace{2em}}$。
3.曲面 $z=\frac{x^2+y^2-2}{2}$ 平行于平面 $2x+2y-z=$ 的切平面方程是 $\underline{\hspace{2em}}$。
4.设函数 $y=y(x)$ 由方程 $xe^{f(y)}=\ln 29$ 确定,其中$f$ 具有二阶导数,且 $f'\neq 1$,则$y''=\underline{\hspace{2em}}$。
二、(5分)求极限 $\lim\limits_{x\to n}\frac{e^{ex+e^{2x}+\cdots+e^{nx}}}{x}$。
三、(15分)设函数 $f(x)$ 连续,$g(x)=\intf(xt)\mathrm{d}t$,且 $\lim\limits_{x\to 1} f(x)=A$,$A$ 为常数,求 $g'(x)$ 并讨论 $g'(x)$ 在 $x=1$ 处的连续性。
四、(15分)已知平面区域 $D=\{(x,y)|0\leq x\leq\pi,0\leq y\leq\pi\}$,$L$ 为 $D$ 的正向边界,试证:1)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x=\int_L xe^{-\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x$;2)$\int_L xe^{\sin y}\mathrm{d}y-ye^{-\sinx}\mathrm{d}x\geq \frac{\pi^2}{2}$。
高等数学试题及及答案
高等数学试题及及答案高等数学试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2-2x+1的最小值是()。
A. 0B. 1C. -1D. 22. 极限lim(x→0) (sin(x)/x)的值是()。
A. 0B. 1C. -1D. 23. 函数y=e^x的导数是()。
A. e^xB. -e^xC. 1/e^xD. 04. 曲线y=x^3-3x+2在x=1处的切线斜率是()。
A. 0B. 1C. -1D. 25. 积分∫(0 to 1) (x^2 dx)的值是()。
A. 1/3B. 1/2C. 1D. 2二、填空题(每题4分,共20分)6. 函数f(x)=3x^2-6x+5的顶点坐标是()。
7. 函数y=ln(x)的定义域是()。
8. 函数y=x^3的二阶导数是()。
9. 曲线y=e^x与直线y=x相切的切点坐标是()。
10. 积分∫(0 to 1) (x dx)的值是()。
三、解答题(每题15分,共60分)11. 求函数f(x)=x^3-3x+2在区间[-1, 2]上的定积分,并画出积分图。
12. 求极限lim(x→∞) ((x^2+1)/(x^3+x))。
13. 求函数y=x^2-4x+3的极值点,并说明极值点的性质。
14. 求曲线y=x^2+2x-3在点(1, -2)处的切线方程。
四、附加题(10分)15. 证明:对于任意正整数n,有1/n^2 < 1/(n^2-1) + 1/(n^2+1)。
答案:一、选择题1. B2. B3. A4. C5. A二、填空题6. (1, 2)7. (0, +∞)8. 6x9. (1, e)10. 1/2三、解答题11. ∫(-1 to 2) (x^3-3x+2 dx) = (1/4x^4 - 3/2x^2 + 2x) | (-1 to 2) = 17/4积分图略。
12. 原式=lim(x→∞) (x^2+1)/(x^3+x) = lim(x→∞) (1/x + 1/x^3) = 013. y'=2x-4,令y'=0,得x=2,此时y=3,为极小值点。
第十二届全国大学生数学竞赛决赛试题(非数学类)参考答案及评分标准
F= (b) 0 . 对 F (x) 在[a,b] 上利
a
∫ 用洛尔定理,存在 x0 ∈ (a,b) ,使得 F′(x0 ) = 0 ,即 f (x0 ) =
x0 f (t)dt .
a
---------------- 3 分
3
2021 年 05 月决赛试题
x
∫ 再令 G= (x)
f (x) − f (t)dt ,则 G= (a) a
−
2 x32
= 0 . 由此解得 u
113
在定义域内的唯一驻点 P0 (24 , 22 , 24 ) ,且 u 在该点取得最小值 u(P0 ) = 4 4 2 ,这是
113
函数唯一的极值. 因此 u 的唯一极值点为 (24 , 22 , 24 ) .
【注】 也可用通常的充分性条件(海赛矩阵正定)判断驻点 P0 为极小值点.
1,2, ,s)
.
因为 p(D) = D 2021 ,所以
1
= p( A) p= (QDQT ) Q= p(D)QT Q= D 2021QT B .
--------------- 3 分
(3) 设另存在 n 阶实对称矩阵 C 使得 C2021=A ,则=B p= ( A) p(C2021) ,所以
1 2
(xn
+
yn
)
,
---------------- 4 分
这只需证明:对任意 n
≥
0
,都有
x+ 2
y
n
≤
An (x, x) n +1
≤
1 2
(xn
+
yn ) ,其中 0
<
x,
大学生高等数学竞赛试题汇总及答案
前三届高数竞赛预赛试题非数学类参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;2009-2010年 第一届全国大学生数学竞赛预赛试卷一、填空题每小题5分1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(16/15,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,⎰-=102d 1u uu 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,2.设)(x f 是连续函数,且满足⎰--=222d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=2d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A ;因此3103)(2-=x x f ; 3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由xz x =,yz y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x ;4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故y y y f x '=''+)(1,即))(1(1y f x y '-=',因此二、5分求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数. 解 :因 故 因此三、15分设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.解 : 由A x x f x =→)(lim和函数)(x f 连续知,0)(lim lim )(lim )0(000===→→→xx f x x f f x x x因⎰=10d )()(t xt f x g ,故0)0(d )0()0(10===⎰f t f g , 因此,当0≠x 时,⎰=xu u f xx g 0d )(1)(,故 当0≠x 时,xx f u u f x x g x )(d )(1)(02+-='⎰, 这表明)(x g '在0=x 处连续.四、15分已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:1⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;22sin sin 25d d π⎰≥--Ly y x ye y xe .证 :因被积函数的偏导数连续在D 上连续,故由格林公式知 1y x ye y xe x x ye y xe Dx y Lx y d d )()(d d sin sin sin sin ⎰⎰⎰⎥⎦⎤⎢⎣⎡-∂∂-∂∂=---而D 关于x 和y 是对称的,即知 因此 2因 故 由知即 2sin sin 25d d π⎰≥--Ly y x ye y xe五、10分已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解 设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程 的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111x f y y y =-'-''和 x x x e xe e y 212++=',x x x e xe e y 2142++='' 知,1112)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为六、10分设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.解 因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即而此图形绕x 轴旋转一周而成的旋转体的体积 即 令0)1(278)21(3152)(=---+='a a a a V πππ, 得 即 因此45-=a ,23=b ,1=c .七、15分已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n n x u 之和.解x n n ne x x u x u 1)()(-+=', 即由一阶线性非齐次微分方程公式知 即 因此由)1()1(nC e u n e n +==知,0=C , 于是下面求级数的和:令 则 即由一阶线性非齐次微分方程公式知令0=x ,得C S ==)0(0,因此级数∑∞=1)(n n x u 的和八、10分求-→1x 时, 与∑∞=02n n x 等价的无穷大量.解 令2)(t x t f =,则因当10<<x ,(0,)t ∈+∞时,2()2ln 0t f t tx x '=<,故xt t ex t f 1ln22)(-==在(0,)+∞上严格单调减;因此即()d ()1()d n f t t f n f t t ∞+∞+∞=≤≤+∑⎰⎰,又2()n n n f n x ∞∞===∑∑,21ln 1d 1ln1d d d )(01ln222πxt e xt et x t t f t xt t====⎰⎰⎰⎰∞+-∞+-∞+∞+,所以,当-→1x 时, 与∑∞=02n n x 等价的无穷大量是x-121π;2010-2012年 第二届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题; 一、25分,每小题5分1设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞2求21lim 1x x x e x-→∞⎛⎫+ ⎪⎝⎭;3设0s >,求0(1,2,)sx n I e x dx n ∞-==⎰;4设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g g x y ∂∂+∂∂;5求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离; 解:122(1)(1)(1)n n x a a a =+++=22(1)(1)(1)(1)/(1)nn x a a a a a =-+++- =222(1)(1)(1)/(1)na a a a -++-==12(1)/(1)n a a +--2 22211ln (1)ln(1)1lim 1lim lim x x x e x x xx xx x x e e e x -++--→∞→∞→∞⎛⎫+== ⎪⎝⎭令x=1/t,则原式=21(ln(1))1/(1)112(1)22lim lim lim t t t t ttt t t eeee +-+---+→→→===30000112021011()()[|](1)!!sx n n sx n sx sx n n sx n n n n n I e x dx x de x e e dx s s n n n n n n e x dx I I I s s s s s ∞∞∞---∞-∞----+==-=--=-=====⎰⎰⎰⎰二、15分设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞→-∞''''>=>=<且存在一点0x ,使得0()0f x <;证明:方程()0f x =在(,)-∞+∞恰有两个实根;解: 二阶导数为正,则一阶导数单增,fx 先减后增,因为fx 有小于0的值,所以只需在两边找两大于0的值;将fx 二阶泰勒展开: 因为二阶倒数大于0,所以lim ()x f x →+∞=+∞,lim ()x f x →-∞=-∞证明完成;三、15分设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ; 解:这儿少了一个条件22d ydx=由()y t ψ=与22132t u y e du e-=+⎰在1t =出相切得 3(1)2e ψ=,'2(1)eψ= 22d y dx ='3''()(2(/)(/)//(22)2)2()d dy dx d dy dx dt dx dx d t t t t t ψψ==++-=;;; 上式可以得到一个微分方程,求解即可; 四、15分设10,,nn n k k a S a =>=∑证明:1当1α>时,级数1nn na S α+∞=∑收敛; 2当1α≤且()n s n →∞→∞时,级数1nn na S α+∞=∑发散; 解:1n a >0, n s 单调递增 当1n n a ∞=∑收敛时,1n n n a a s s αα<,而1n a s α收敛,所以nna s α收敛; 当1n n a ∞=∑发散时,lim n n s →∞=∞所以,11111211n n n s s n s s n n na a a dx dx s s x s x ααααα-∞∞==<+=+∑∑⎰⎰而1111111111lim 11ns n s n s s a a s dx k x s s αααααααα---→∞-=+=+=--⎰,收敛于k; 所以,1nn na s α∞=∑收敛; 2lim n n s →∞=∞所以1n n a ∞=∑发散,所以存在1k ,使得112k n n a a =≥∑于是,111122212k k k n n n n nk a a a s s s α≥≥≥∑∑∑依此类推,可得存在121...k k <<<使得112i i k n k n a s α+≥∑成立,所以112Nk n na N s α≥⋅∑ 当n →∞时,N →∞,所以1nn na s α∞=∑发散 五、15分设l 是过原点、方向为(,,)αβγ,其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤,其中0,c b a <<<密度为1绕l 旋转; 1求其转动惯量;2求其转动惯量关于方向(,,)αβγ的最大值和最小值; 解:1椭球上一点Px,y,z 到直线的距离 由轮换对称性, 2a b c >>∴当1γ=时,22max 4()15I abc a b π=+ 当1α=时,22min 4()15I abc b c π=+六、15分设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422()cxydx x dyx yϕ++⎰的值为常数; 1设L 为正向闭曲线22(2)1,x y -+=证明422()0;cxydx x dyx y ϕ+=+⎰2求函数()x ϕ;3设C 是围绕原点的光滑简单正向闭曲线,求422()cxydx x dyx y ϕ++⎰;解:(1) L 不绕原点,在L 上取两点A,B,将L 分为两段1L ,2L ,再从A,B 作一曲线3L ,使之包围原点; 则有 (2) 令42422(),xy x P Q x y x yϕ==++ 由1知0Q P x y∂∂-=∂∂,代入可得 上式将两边看做y 的多项式,整理得 由此可得 解得:2()x x ϕ=-(3) 取'L 为424x y ξ+=,方向为顺时针2011-2012年 第三届全国大学生数学竞赛预赛试卷参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题;一. 计算下列各题本题共3小题,每小题各5分,共15分1.求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;解:用两个重要极限:2.求111lim ...12n n n n n →∞⎛⎫+++⎪+++⎝⎭; 解:用欧拉公式令111...12n x n n n n=++++++ 其中,()1o 表示n →∞时的无穷小量,3已知()2ln 1arctan tt x e y t e ⎧=+⎪⎨=-⎪⎩,求22d y dx ; 解:222222221211,121121tt t t t t t t t tte dx e dy e dy e e e e dt e dt e dx e e --++==-∴==+++ 二.本题10分求方程()()2410x y dx x y dy +-++-=的通解;解:设24,1P x y Q x y =+-=+-,则0Pdx Qdy +=1,P Q y x ∂∂==∴∂∂0Pdx Qdy +=是一个全微分方程,设dz Pdx Qdy =+ ,P Q y x∂∂=∴∂∂该曲线积分与路径无关 三.本题15分设函数fx 在x=0的某邻域内具有二阶连续导数,且()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()1232230lim0h k f h k f h k f h f h→++-=;证明:由极限的存在性:()()()()1230lim 2300h k fh k f h k f h f →++-=⎡⎤⎣⎦即[]()123100k k k f ++-=,又()00f ≠,1231k k k ∴++=①由洛比达法则得由极限的存在性得()()()'''1230lim 22330h k fh k f h k f h →⎡⎤++=⎣⎦即()()'1232300k k k f ++=,又()'00f ≠,123230k k k ∴++=②再次使用洛比达法则得123490k k k ∴++=③由①②③得123,,k k k 是齐次线性方程组1231231231230490k k k k k k k k k ++=⎧⎪++=⎨⎪++=⎩的解设1231111123,,01490k A x k b k ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则Ax b =, 增广矩阵*111110031230010314900011A ⎛⎫⎛⎫⎪ ⎪=- ⎪⎪⎪ ⎪⎝⎭⎝⎭,则()(),3R A b R A ==所以,方程Ax b =有唯一解,即存在唯一一组实数123,,k k k 满足题意, 且1233,3,1k k k ==-=;四.本题17分设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值;解:设Γ上任一点(),,M x y z ,令()222222,,1x y z F x y z a b c=++-,则'''222222,,,x y z x y z F F F a b c ===∴椭球面1∑在Γ上点M 处的法向量为:222,,,x y z t a b c ⎛⎫=∴ ⎪⎝⎭1∑在点M 处的切平面为∏:原点到平面∏的距离为d =,令()222444,,,x y z G x y z a b c =++则1d =现在求()222444,,,x y z G x y z a b c =++在条件2222221x y z a b c++=,222z x y =+下的条件极值,令()()22222222212444222,,1x y z x y z H x y z x y z a b c a b c λλ⎛⎫=+++++-++- ⎪⎝⎭则由拉格朗日乘数法得:'1242'1242'1242222222222222022202220100x y z xx H x a a y y H y b b z z H z c c x y z ab c x y z λλλλλλ⎧=++=⎪⎪⎪=++=⎪⎪⎪=+-=⎨⎪⎪++-=⎪⎪⎪+-=⎪⎩, 解得2222220x b c y z b c =⎧⎪⎨==⎪+⎩或2222220a c x z a c y ⎧==⎪+⎨⎪=⎩, 对应此时的()()442222,,b c G x y z b c b c +=+或()()442222,,a c G x y z a c a c +=+此时的1d =2d =又因为0ab c >>>,则12d d <所以,椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值分别为:2d =1d =五.本题16分已知S 是空间曲线2231x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分0z≥取上侧,∏是S 在(),,P x y z 点处的切平面,(),,x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦;计算:1(),,SzdS x y z ρ⎰⎰;2()3S z x y z dS λμν++⎰⎰解:1由题意得:椭球面S 的方程为()222310x y z z ++=≥令22231,Fx y z =++-则'''2,6,2x y z F x F y F z ===,切平面∏的法向量为(),3,n x y z =,∏的方程为()()()30x X x y Y y z Z z -+-+-=,原点到切平面∏的距离()222,,x y z ρ==将一型曲面积分转化为二重积分得:记22:1,0,0xz D x z x z +≤≥≥2方法一:λμν===六.本题12分设fx 是在(),-∞+∞内的可微函数,且()()f x mf x <、,其中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:()11n n n a a ∞-=-∑绝对收敛; 证明:()()112ln ln nn n n a a f a f a ----=-由拉格朗日中值定理得:ξ∃介于12,n n a a --之间,使得()()()'112n n n n f a a a a f ξξ---∴-=-,又()()f mf ξξ<、得()()'f m f ξξ<∴级数1101n n m a a ∞-=-∑收敛,∴级数11nn n aa ∞-=-∑收敛,即()11n n n a a ∞-=-∑绝对收敛;七.本题15分是否存在区间[]0,2上的连续可微函数fx,满足()()021f f ==,()()201,1fx f x dx ≤≤⎰、请说明理由;解:假设存在,当[]0,1x ∈时,由拉格朗日中值定理得: 1ξ∃介于0,x 之间,使得()()()'10,f x f f x ξ=+, 同理,当[]1,2x ∈时,由拉格朗日中值定理得:2ξ∃介于x,2之间,使得()()()()'222f x f f x ξ=+-即()()[]()()()[]''121,0,1;12,1,2f x f x x f x f x x ξξ=+∈=+-∈ ()11f x -≤≤、,显然,()()200,0f x f x dx ≥≥⎰()()()()()1221211111133x dx x dx f x dx x dx x dx ≤-+-≤≤++-=⎰⎰⎰⎰⎰()21f x dx ∴≥⎰,又由题意得()()221,1f x dx f x dx ≤∴=⎰⎰即()21f x dx =⎰,()[][]1,0,11,1,2x x f x x x ⎧-∈⎪∴=⎨-∈⎪⎩ ()'1f ∴不存在,又因为fx 是在区间[]0,2上的连续可微函数,即()'1f 存在,矛盾,故,原假设不成立,所以,不存在满足题意的函数fx;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
;..
大学生数学试题及答案
考试形式: 闭卷 考试时间: 150分钟 满分:100 分
一、(本题满分10 分) 求极限
))1(21(1lim222222nnnn
n
n
。
【解】
))1(21(1222222nnnnnS
n
))1(1)2(1)1(1(1222nnnnn
))1(1)2(1)1(1)0(1(12222nnnnnn
1021.)(1ninni
nnSlim]1.)(1[lim102ninnni
因21x在]1,0[上连续,故dxx102-1存在,且
dxx102-1
=1021.)(1limninnni,
所以,nnSlimndxxn1lim-11024-1102dxx。
二、(本题满分10 分) 请问cba,,为何值时下式成立.1sin1lim220ctdttaxxxbx
【解】注意到左边得极限中,无论a为何值总有分母趋于零,因此要想极限存在,分子必
.
;..
须为无穷小量,于是可知必有0b,当0b时使用洛必达法则得到
22002201)(coslim1sin1limxaxxtdttaxxxxx,
由上式可知:当0x时,若1a,则此极限存在,且其值为0;若1a,则
21)1(coslim1sin1lim220220
xxxt
dtt
axx
xxbx
,
综上所述,得到如下结论:;0,0,1cba或2,0,1cba。
三、(本题满分10 分) 计算定积分202010tan1xdxI。
【解】 作变换tx2,则
022010cot1tdtIIdtdttttdt202020201020102010)tan111(tan1tan
I2220dt,
所以,4I。
四、(本题满分10 分) 求数列}{1nn中的最小项。
【解】 因为所给数列是函数xxy1当x分别取,,,3,2,1n时的数列。
又)1(ln21xxyx且令exy0,
容易看出:当ex0时,0y;当ex时,0y。
.
;..
所以,xxy1有唯一极小值eeey1)(。
而3312132e,因此数列}{1nn的最小项331。
五、(本题满分10 分) 求01nnne。
【解】 考虑幂级数01nnnx,其收敛半径为 1,收敛区间为)1,1(,
当1x时,0011)1(1nnnnnnx收敛;
当1x时,00111nnnnnx发散,因此其收敛域为
)1,1[
。
设其和函数为)(xs,则
)1,1(x
,dtntdttsxnnx0001)(001nxndtnt01nnxxx1。
于是, .)1(1)1()(2xxxxs
故,21210)()(1eeesnenn。
六、(本题满分10 分) 设xdttftxxxf0)()(sin)(,其中f为连续函数,求
)(xf
。
【解】 原方程可写为
xxdtttfdttfxxxf00)()(sin)(
,
上式两端对x求导得
xxdttfxxxfxxfdttfxxf00)(cos)()()(cos)( (*)
两端再对x求导得
)(sin)(xfxxf
即 xxfxfsin)()(
这是一个二阶线性常系数非齐次方程,由原方程知0)0(f,由(*)式知1)0(f。
特征方程为
.
;..
012,i
齐次通解为 xCxCycossin21
设非齐次方程特解为 )cossin(*xbxaxy,代入xxfxfsin)()(得
21,0ba。
则非齐次方程通解为 xxxCxCycos2cossin21
由初始条件 0)0(y和1)0(y可知,
0,2121CC。
七、(本题满分10 分) 在过点O(0,0)和,0) A(的曲线族0) (ax asin y中,求一条曲线
L ,使沿该曲线从O 到A
的积分Ldyyxdxy)2()1(3的值最小。
【解】 )(aILdyyxdxy)2()1(3
dxxaxaxxa033]cos)sin2(sin1[
3
3
4
4aa
。
令044)(2aaI,得1a)1(舍去a;又08)1(I,则)(aI在
1a
处取极小值,且a =1是I (a)在(0,+∞)内的唯一极值点,故a =1时I (a)取最小值,则
所求曲线为) (0x sin yx。
八、(本题满分10 分) 设f (x)在[−1,1]上有二阶导数,且1 (1) (1)ff,21)('' xf。
证明:
1.21)(' xf,
x∈[−1,1]。
2. f (x) = x在[−1,1]上有且只有一个实根。
【证明】
1. 由泰勒公式 2)1(2)()1)(()()1(xfxxfxff,),1(x
.
;..
)1,(,)1(2)()1)(()()1(2xxfxxfxff
两式相减并整理得
)(2)1()(2)1()(222fxfxxf
于是,
8)1()1()(4)1()(4
)1()(2222xxfxfxxf
由于218)1()1(max2211xxx,
因此
,]1,1[ 1 | )(' |xxf,。
2. 令]1,1[, - )( )(xxxfxF。则231)1()1(fF,21-1)1()1(fF。
但 )(xF在[−1,1]上连续,由介值定理知, )(xF在[−1,1]上至少有一个零点。
又由1可知0 1- )(' )('xfxF,故)(xF在[−1,1]上严格单调,从而至多有一个零点。
这样 )(xF在[−1,1]上有且只有一个零点,即f (x) = x 在[−1,1] 上有且只有一个实根。
九、(本题满分10 分) 设)(xf在)(-,为连续函数,则
20023)(21)(aadxxxfdxxfx
。
【解】令xdttftx023,)()(则),()(23xfxx
20)(21)(xdtttfx,则),(2)(21)(2322xfxxxfxx
所以 )()(xx
即
cxx)()(
c为常数。
而 0)0()0(,)()(xx
特别地
)()(aa
即 20023)(21)(aadxxxfdxxfx。
.
;..
十、(本题满分10 分) 设)(xf是[0,1]上的连续函数,证明
110)(10)(dyedxe
yfxf
。
【证法一】 设}10,10yx {(x, y) |D 。由于)()(1)()(yfxfeyfxf,
所以
dxdyedyedxeDyfxfyfxf
)()(10)(10)(
dyyfxfdx1010))()(1(
101010101010)()(dyyfdxdydxxfdydx
1
。
【证法二】
dxdyedyedxeDyfxfyfxf
)()(10)(10)(
dxdyeDxfyf
)()(
dxdyeeDxfyfyfxf)(
2
1
)()()()(
dxdyeeeexfyfyfxfD)(21)()()()(
.1221Ddxdy