2015年上海市闵行区九年级上学期数学期中试卷与解析

合集下载

2015年九年级数学上册期中检测试题(含答案和解释)

2015年九年级数学上册期中检测试题(含答案和解释)

2015年九年级数学上册期中检测试题(含答案和解释)期中检测题本检测题满分:120分,时间:120分钟一、选择题(每小题3分,共36分)1. (2015•广东中考)若关于x的方程 +x-a+ =0有两个不相等的实数根,则实数a的取值范围是( ) A.a≥2 B.a≤2 C.a>2 D.a<2 2.(2015•江苏苏州中考)若二次函数y= +bx的图象的对称轴是经过点(2,0)且平行于y轴的直线,则关于x的方程 +bx=5的解为() A. B. C. D. 3.在平面直角坐标系中,将抛物线y=x2 4先向右平移2个单位,再向上平移2个单位,得到的抛物线的表达式是() A.y=(x+2)2+2 B.y=(x 2)2 2 C.y=(x 2)2+2 D.y=(x+2)2 24.一次函数与二次函数在同一平面直角坐标系中的图象可能是()5.已知抛物线的顶点坐标是,则和的值分别是() A.2,4 B. C.2,D. ,0 6.若是关于的一元二次方程,则的值应为() A. B. C.D.无法确定 7.方程的解是() A. B. C. D. 8.若是关于的方程的根,则的值为() A. B. C. D. 9.定义:如果一元二次方程满足,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A. B. C. D.10. (2015•山西中考)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是( ) A. B. C. D. 11.已知点的坐标为,为坐标原点,连接,将线段绕点按逆时针方向旋转90°得线段,则点的坐标为() A. B. C. D. 12.当代数式的值为7时,代数式的值为()二、填空题(每小题3分,共24分) 13.对于二次函数,已知当由1增加到2时,函数值减少3,则常数的值是 .14.将抛物线向右平移2个单位后,再向下平移5个单位,所得抛物线的顶点坐标为_______. 15.某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y=60x 1.5x2,该型号飞机着陆后需滑行 m才能停下来. 16.如果,那么的关系是________. 17.如果关于的方程没有实数根,那么的取值范围为_____________. 18.方程的解是__________________. 19.如图所示,边长为2的正方形的对角线相交于点,过点的直线分别交于点,则阴影部分的面积是. 20.若(是关于的一元二次方程,则的值是________.三、解答题(共60分) 21.(8分)(2015•江西中考)如图,正方形ABCD与正方形关于某点中心对称.已知A,,D 三点的坐标分别是(0,4),(0,3),(0,2). (1)求对称中心的坐标;(2)写出顶点B,C,, . 第21题图第22题图 22.(8分)(2015•湖北襄阳中考)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12 m的住房墙,另外三边用25 m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1 m宽的门.所围矩形猪舍的长、宽分别为多少时,猪舍面积为80 m2?23.(8分)把抛物线向左平移2个单位,同时向下平移1个单位后,恰好与抛物线重合.请求出的值,并画出函数的示意图. 24.(8分)(2015•浙江宁波中考)已知抛物线-(x-m),其中m是常数. (1)求证:不论m为何值,该抛物线与x轴一定有两个公共点; (2)若该抛物线的对称轴为直线x= .①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点? 25.(8分)已知抛物线与轴有两个不同的交点. (1)求的取值范围; (2)抛物线与轴的两交点间的距离为2,求的值.26.(8分)若关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2. (1)求实数k的取值范围. (2)是否存在实数k 使得x1•x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由. 27.(12分)将两块大小相同的含30°角的直角三角板(∠BAC=∠B1A1C=30°)按图①的方式放置,固定三角板A1B1C,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A1C交于点E,AC与A1B1交于点F,AB与A1B1交于点O. (1)求证:△BCE≌△B1CF. (2)当旋转角等于30°时,AB与A1B1垂直吗?请说明理由.期中检测题参考答案 1. C 解析:由题意得一元二次方程根的判别式Δ>0,即12-4×1× >0,整理,得4a-8>0,解得a>2. 2. D 解析:∵ 二次函数y=x2+bx的图象的对称轴是经过点(2,0)且平行于y 轴的直线,∴ - =2,解得b=-4,∴ 关于x的方程x2+bx=5为x2-4x=5,其解为 . 3.B 解析:根据平移规律“左加右减”“上加下减”,将抛物线y=x2-4先向右平移2个单位得y= (x-2)2-4,再向上平移2个单位得y=(x-2)2-4+2=(x-2)2-2. 4.C 解析:当时,二次函数图象开口向下,一次函数图象经过第二、四象限,此时C,D符合. 又由二次函数图象的对称轴在轴左侧,所以,即,只有C 符合. 同理可讨论当时的情况. 5.B 解析: 抛物线的顶点坐标是(),,,解得 . 6.C 解析:由题意,得,解得 .故选C. 7.A 解析:∵ ,∴ ,∴ .故选A. 8.D 解析:将代入方程得,所以. ∵ ,∴ ,∴ .故选D. 9.A 解析:依题意,得联立得,∴ ,∴ .故选. 10. B 解析:在四个图形中,A,C,D三个图形既是中心对称图形又是轴对称图形,只有B是中心对称图形而不是轴对称图形. 11.C 解析:画图可得点的坐标为. 12.A 解析:当时,,所以代数式 .故选 . 13. 解析:因为当时,,当时,,所以 . 14.(5,-2) 15. 600 解析:y=60x 1.5x2= 1.5(x 20)2+600,当x=20时,y最大值=600,则该型号飞机着陆时需滑行600 m才能停下来. 16. 解析:原方程可化为,∴ . 17. 解析:∵ =,∴ . 18. 解析: .方程有两个不等的实数根,即 19.1 解析:△ 绕点旋转180°后与△ ,所以阴影部分的面积等于正方形面积的,即1. 20 解析:由得或. 21. 分析:(1)由D和D1是对称点,可知对称中心是线段DD1的中点,所以对称中心的坐标为(0,). (2)由点A(0,4),D(0,2)得正方形ABCD的边长AD=4-2=2,从而有OA=OD+AD=4,OA1=OD1-A1D1=3-2=1,进而可求出B,C,B1,C1的坐标. 解:(1) ∵ D和是对称点,∴ 对称中心是线段D 的中点. ∴ 对称中心的坐标是(0, ). (2)B(-2,4),C(-2,2), (2,1), (2,3) 22.分析:本题需要利用矩形的面积等于80 m2列方程求解,由于矩形的面积等于长乘宽,因此需要表示矩形的长与宽,设矩形猪舍垂直于住房墙的一边长为x m,利用矩形的长与两个宽的和是(25+1)m,得到矩形的长为(26-2x)m.根据矩形的面积公式列出方程求解.最后利用矩形的长不大于12 m确定矩形的长与宽. 解:设矩形猪舍垂直于住房墙的一边长为x m,则矩形猪舍的另一边长为(26-2x)m. 依题意,得x(26-2x)=80. 化简,得-13x+40=0. 解这个方程,得 =5,=8. 当x=5时,26-2x=16>12(舍去);当x=8时,26-2x=10<12. 答:所建矩形猪舍的长为10 m,宽为8 m. 23.解:将整理得 . 因为抛物线向左平移2个单位,再向下平移1个单位得,所以将向右平移2个单位,再向上平移1个单位即得,故,所以 .示意图如图所示. 24. (1)证明:∵ -(x-m)=(x-m)(x-m-1),∴ 由y=0得 =m, =m+1.∵ m≠m+1,∴ 抛物线与x轴一定有两个交点(m,0),(m+1,0). (2)解:①∵ -(2m+1)x+m(m+1),∴ 抛物线的对称轴为直线x=- = ,解得m=2,∴ 抛物线的函数解析式为-5x+6.②∵ -5x+6= ,∴ 该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点. 25. 解:(1)∵ 抛物线与轴有两个不同的交点,∴ >0,即解得c< . (2)设抛物线与轴的两交点的横坐标为,∵ 两交点间的距离为2,∴ . 由题意,得,解得,∴ ,. 26. 分析:(1)根据已知一元二次方程的根的情况,得到根的判别式Δ≥0,据此列出关于k的不等式[-(2k+1)]2-4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得x1•x2--≥0成立,利用根与系数的关系可以求得x1+x2=2k+1,x1•x2=k2+2k,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式3x1•x2-(x1+x2)2≥0,通过解不等式可以求得k的值. 解:(1)∵ 原方程有两个实数根,∴ [-(2k+1)]2-4(k2+2k)≥0,∴ 4k2+4k+1-4k2-8k≥0,∴ 1-4k≥0,∴ k≤ . ∴ 当k≤ 时,原方程有两个实数根. (2)假设存在实数k使得x1•x2--≥0成立.∵ x1,x2是原方程的两根,∴ x1+x2=2k+1,x1•x2=k2+2k. 由x1•x2--≥0,得3x1•x2-(x1+x2)2≥0. ∴ 3(k2+2k)-(2k+1)2≥0,整理得-(k-1)2≥0,∴ 只有当k=1时,上式才能成立.又由(1)知k≤ ,∴ 不存在实数k使得x1•x2--≥0成立. 27.(1)证明:在△ 和△ 中,∠ ,,∠ ,∴ △ ≌△ .(2)解:当∠ 时,.理由如下:∵ ∠ ,∴ ∠ .∴ ∠ ,∴ ∠ . ∵ ∠ ,∴ ∠ ,。

沪科版九年级上册数学期中考试试题带答案解析

沪科版九年级上册数学期中考试试题带答案解析

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案) 1.下列函数是二次函数的是( ) A .1y x =- B .1y x =C .22y x x =-+D .21y x= 2.下列各组线段(单位:cm )中,成比例线段的是( ) A .1、2、2、3 B .1、2、3、4 C .1、2、2、4D .3、5、9、133.抛物线y =(x -1)2+5的对称轴是( ) A .直线x =1 B .直线x =5C .直线x =-1D .直线x =-54.反比例函数y =﹣1x的图象在( ) A .第一、三象限 B .第一、二象限C .第二、四象限D .第三、四象限5.已知34x y =,则x y y +=( )A .47 B .74C .37D .736.下表是一组二次函数235y x x =+-的自变量x 与函数值y 的对应值:那么方程2350x x +-=的一个近似根是( ) A .1B .1.1C .1.2D .1.37.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .58.如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m9.如图,在下列条件中,不能判定ACD ABC △∽△的是( )A .1ACB ∠∠= B .AB ACBC CD= C .2B ∠∠= D .2AC AD AB =⋅10.如图,11OA B ∆,122A A B ∆、233A A B ∆,…是分别以1A 、2A 、3A ,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点()111,C x y ,()222,C x y ,()333,C x y ,…均在反比例函数4y x=(0x >)的图象上.则1210y y y ++⋅⋅⋅的值为( )A .B .6C .D .二、填空题11.已知y =2x m ﹣1是y 关于x 的反比例函数,则m =_____.12.已知线段AB=20,点C 为线段AB 的黄金分割点(AC >BC ),则AC=___________.13.已知二次函数2y ax bx c =++与一次函数y x =的图像如图所示,则不等式2(1)0ax b x c +-+<的解集为_______________.14.如图,在△ABC 中,AB =9,AC =6,BC =12,点M 在AB 边上,且AM =3,过点M 作直线MN 与AC 边交于点N ,使截得的三角形与原三角形相似,则MN =______.三、解答题15.已知234x y z==,求x y zx y z+++-的值.16.已知y 是x 的反比例函数,并且当2x =时,6y =. ⑴求y 关于x 的函数解析式; ⑵当4x =时,求y 的值.17.如图,已知二次函数2y ax bx c =++的图象与x 轴交于点A 、B ,y 轴交于点C ,已知点()1,0A -、()4,0B 、()0,3C -.(1)求二次函数的解析式;(2)当0y >时,请直接写出自变量x 的取值范围.18.如图,在△ABC 中,DE ∥AC ,DF ∥AE ,BD :DA =3:2,BF =6,DF =8,(1)求EF 的长; (2)求EA 的长.19.如图,一次函数y 1=kx +b (k ≠0)和反比例函数()20my m x=≠的图象相交于点A (﹣4,2),B (n ,﹣4)(1)求一次函数和反比例函数的表达式; (2)观察图象,直接写出不等式y 1<y 2的解集.20.如图,△ABC中,BD⊥AC于D,CE⊥AB于E,设BD与CE相交于F点.(1)求证:△ BEF∽△CDF;(2)求证:DE·BF=EF·BC.21.实验数据显示:一般成人喝半斤低度白酒后,1.5小时内(包括1.5小时)其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x表示;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=kx(k>0)表示(如图所示).(1)喝酒后多长时间血液中的酒精含量达到最大值?最大值为多少?(2)求k的值.(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.22.某农场要建一个饲养场(长方形)ABCD,饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长60米,设饲养场(长方形)ABCD的宽为x米.(1)求饲养场的长BC(用含x的代数式表示).(2)若饲养场的面积为2270m ,求x 的值.(3)当x 为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少2m ?23.如图1,在Rt ABC 中,90ACB ∠=︒,2AC BC =,点D 在边AC 上,连接BD ,过A 作BD 的垂线交BD 的延长线于点E .(1)若M ,N 分别为线段AB ,EC 的中点,如图1,求证:MN EC ⊥; (2)如图2,过点C 作CF EC ⊥交BD 于点F ,求证:2AE BF =;(3)如图3,以AE 为一边作一个角等于BAC ∠,这个角的另一边与BE 的延长线交于P 点,O 为BP 的中点,连接OC ,求证:()12OC BE PE =-.参考答案与解析1.C 【解析】整理成一般形式后,根据二次函数的定义判定即可. 【详解】解:A 、1y x =-是一次函数,不符合题意; B 、1y x=是反比例函数,不符合题意; C 、22y x x =-+是二次函数,符合题意; D 、21y x =中自变量x 的指数为-2,不是二次函数,不符合题意. 故选C. 【点睛】本题考查了二次函数的定义.熟记二次函数的一般形式是解题的关键. 2.C 【详解】试题解析:A 、1×3≠2×2,故选项错误; B 、1×4≠2×3,故选项错误; C 、1×4=2×2,故选项正确; D 、3×13≠5×9,故选项错误. 故选C . 3.A 【分析】根据题目中的函数解析式可以直接写出该抛物线的对称轴,本题得以解决. 【详解】解:∵抛物线()215y x =-+, ∴该抛物线的对称轴是直线1x =, 故选:A . 【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.C【分析】根据反比例函数中k<0,图像必过二、四象限即可解题. 【详解】解:∵-1<0,根据反比例函数性质可知,反比例函数y=﹣1x的图象在第二、四象限,故选C.【点睛】本题考查了反比例函数的图像和性质,属于简单题,熟悉反比例函数的性质是解题关键. 5.B【分析】由34xy=得到x=34y,再代入计算即可.【详解】∵34 xy=,∴x=34 y,∴x yy+=3744y yy+=.故选B. 【点睛】考查了求代数式的值,解题关键是根据34xy=得到x=34y,再代入计算即可.6.C【详解】解:观察表格得:方程x2+3x﹣5=0的一个近似根为1.2,故选C考点:图象法求一元二次方程的近似根.7.B【分析】根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD:AF=3:5,∴AD:DF=3:2,∵AB∥CD∥EF,∴AD BCDF CE=,即362CE=,解得,CE=4,故选B.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.8.C【分析】直接利用h=15以及结合配方法求出二次函数最值分别分析得出答案.【详解】A、当h=15时,15=20t﹣5t2,解得:t1=1,t2=3,故小球的飞行高度能达到15m,故此选项错误;B、h=20t﹣5t2=﹣5(t﹣2)2+20,故t=2时,小球的飞行高度最大为:20m,故此选项错误;C、∵h=0时,0=20t﹣5t2,解得:t1=0,t2=4,∴小球从飞出到落地要用时4s,故此选项正确;D、当t=1时,h=15,故小球飞出1s时的飞行高度为15m,故此选项错误;故选C.【点睛】此题主要考查了二次函数的应用,灵活运用所学知识是解题关键. 9.B 【分析】根据相似三角形的判定逐一判断可得. 【详解】A 、由∠ADC =∠ACB ,∠A =∠A 可得△ACD ∽△ABC ,此选项不符合题意; B 、由AB ACBC CD=不能判定△ACD ∽△ABC ,此选项符合题意; C 、由∠ACD =∠B ,∠A =∠A 可得△ACD ∽△ABC ,此选项不符合题意; D 、由2AC AD AB =⋅,即AC ABAD AC=,且∠A =∠A 可得△ACD ∽△ABC ,此选项不符合题意; 故选:B . 【点睛】本题主要考查相似三角形的判定,解题的关键是熟练掌握相似三角形的判定定理. 10.A 【分析】过点123C C C ⋯,,分别作x 轴的垂线,垂足分别为123D D D ⋯,,,得出△11OA B 为等腰直角三角形,进而求出1y ,再逐一求出2y ,3y …的值,即可得出答案. 【详解】如图,过点123C C C ⋯,,分别作x 轴的垂线,垂足分别为123D D D ⋯,, ∵△11OA B 为等腰直角三角形,斜边1OB 的中点1C 在反比例函数4y x=的图像上 ∴1C (2,2),即12y = ∴1112OD D A == 设21D A a =,则22D C a = 此时2C (4+a,a) 将2C (4+a,a)代入4y x=得a(4+a)=4解得2a =或2-(负值舍去)即22y =同理3y =4y =…,∴121022y y y ++⋯+=++=故答案选择A.【点睛】本题考查的是反比例函数的图像与性质以及反比例函数上点的特征,难度系数较大,解题关键是根据点在函数图像上求出y 的值.11.0【分析】根据反比例函数的定义可得m ﹣1=﹣1即可求解m.【详解】∵y =2x m ﹣1是y 关于x 的反比例函数,∴m ﹣1=﹣1.解得m =0,故答案为0.【点睛】本题考查了反比例函数的定义,反比例函数的解析式满足自变量的次数为-1,根据此知识点即可解题.12.【解析】根据黄金分割点的定义,知AC 为较长线段;则,代入数据即可得出AC 的值. 【详解】解:∵C 为线段AB=20的黄金分割点,且AC >BC ,∴10.故答案为10.【点睛】本题黄金分割点的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的是解题的关键.13.1<x <3【分析】根据二次函数2y ax bx c =++与一次函数y x =的图像的交点的横坐标以及两个函数图象的上下位置关系,可得2ax bx c x ++<的解集,进而得到答案.【详解】∵二次函数2y ax bx c =++与一次函数y x =的图像的交点的横坐标是:x=1,x=3, ∴结合图象,可知:2ax bx c x ++<的解集是:1<x <3∴2(1)0ax b x c +-+<的解集是:1<x <3,故答案是:1<x <3.【点睛】本题主要考查函数图象和不等式的解集的关系,掌握数形结合的思想方法,是解题的关键. 14.4或6【分析】分别利用,当MN ∥BC 时,以及当∠ANM =∠B 时,分别得出相似三角形,再利用相似三角形的性质得出答案.如图1,当MN ∥BC 时,则△AMN ∽△ABC , 故AMANMNAB AC BC ==, 则3912MN=,解得:MN =4,如图2所示:当∠ANM =∠B 时,又∵∠A =∠A ,∴△ANM ∽△ABC , ∴AMMNAC BC =, 即3612MN=,解得:MN =6,故答案为:4或6.【点睛】此题主要考查了相似三角形判定,正确利用分类讨论得出是解题关键.15.9【分析】 根据234xyzk ===,用k 表示x 、y 、z ,将它们代入原式,即可得到答案.【详解】解:设234x y z k ===,则x =2k ,y =3k ,z =4k ∴x y z x y z +++-=2349234k k k k k k+++=-. 【点睛】本题考查了比例的性质,将三个未知数用一个未知数表示出来是解题的关键.16.(1)12y x =;(2)3y =. 【分析】(1)直接利用待定系数法求出反比例函数解析式即可;(2)直接利用x=4代入求出答案.【详解】解:(1)y 是x 的反例函数, 所以,设(0)k y k x=≠, 当x=2时,y=6.所以,k=xy=12, 所以,12y x=; (2)当x=4时,124y ==3. 【点睛】此题主要考查了待定系数法求反比例函数解析式,正确假设出解析式是解题关键. 17.(1)239344y x x =--;(2)1x <-或4x > 【分析】(1)根据点A ,B ,C 的坐标,利用待定系数法即可求出二次函数的解析式;(2)观察函数图象结合二次函数的性质,即可找出:当y >0时,自变量x 的取值范围.【详解】解:(1)()1,0A -、()4,0B 、()0,3C -代入2y ax bx c =++,得016403a b c a b c c -+=⎧⎪++=⎨⎪=-⎩, 解得:34943a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩, ∴二次函数的解析式为239344y x x =--; (2)当1x <-或4x >时,二次函数图象在x 轴上方,∴当0y >时,x 的取值范围为1x <-或4x >.【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质以及待定系数法求二次函数解析式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)由点A ,B 的坐标利用数形结合找出结论.18.(1)EF =4;(2)EA =403. 【分析】(1)根据平行线分线段成比例定理列出比例式,计算即可;(2)根据平行线分线段成比例定理列出比例式,计算即可.【详解】解:(1)∵DF ∥AE , ∴BF FE =BD DA ,即6FE =32, 解得,EF =4;(2)∵DF ∥AE , ∴DF EA =BD BA ,即8EA =332+, 解得,EA =403. 【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.19.(1) y=﹣x﹣2,;(2) x>2或﹣4<x<0 【分析】将点A(﹣4,2)代入2myx=,求反比例函数解析式,再求得B的坐标,将A与B两点坐标代入y1=kx+b,即可求解;(2)y1<y2,在图象中找反比例函数图象在一次函数图象上方的部分即可.【详解】(1)将点A(﹣4,2)代入2myx=,∴m=﹣8,∴y=8x-,将B(n,﹣4)代入y=8x-,∴n=2,∴B(2,﹣4),将A(﹣4,2),B(2,﹣4)代入y1=kx+b,得到2442k bk b=-+⎧⎨-=+⎩,∴12 kb=-⎧⎨=-⎩,∴y=﹣x﹣2,(2)由图象直接可得:x>2或﹣4<x<0;【点睛】本题考查一次函数和反比例函数图象和性质;熟练待定系数法求函数解析式是解题的关键.20.(1)证明见解析;(2)证明见解析.【分析】(1)由∠BEF=∠CDF=90°,∠BFE=∠CFD,得△BEF∽△CDF;(2)由△BEF∽△CDF,得EF DFBF CF=,又∠DFE=∠CFB,再证△DEF∽△CBF,得DE EFBC BF=.化简可得.【详解】证明:(1)∵∠BEF=∠CDF=90°,∠BFE=∠CFD,∴△BEF ∽△CDF(2)∵△BEF ∽△CDF , ∴EF BF DF CF=, ∴EF DF BF CF =. 又∠DFE=∠CFB ,∴△DEF ∽△CBF ∴DE EF BC BF=, ∴DE·BF=EF·BC .【点睛】本题考核知识点:相似三角形的判定和性质.解题关键点:灵活运用相似三角形的判定和性质.21.(1)x =1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;(2)k=225;(3)不能驾车上班.【解析】试题分析:(1)①利用y=-200x 2+400x=-200(x-1)2+200确定最大值;②直接利用待定系数法求反比例函数解析式即可;(2)求出x=11时,y 的值,进而得出能否驾车去上班.试题解析:(1)①y=-200x 2+400x=-200(x-1)2+200,∴x=1时血液中的酒精含量达到最大值,最大值为200(毫克/百毫升);②∵当x=5时,y=45,y=k x (k >0), ∴k=xy=45×5=225;(2)不能驾车上班;理由:∵晚上20:00到第二天早上7:00,一共有11小时,∴将x=11代入y=225x ,则y=22511>20, ∴第二天早上7:00不能驾车去上班.考点:1.二次函数的应用;2.反比例函数的应用.22.(1)(633)x -米;(2)15;(3)当x 为12时,饲养场的面积最大,最大面积为2324m .【分析】(1)根据题意和图形,可以用含x 的代数式表示出BC 的长;(2)根据长方形的面积计算公式可以得到相应的方程,从而可以得到x 的值,注意墙最大可用长度为27米;(3)根据题意可以得到S 与x 的函数关系式,然后根据二次函数的性质和x 的取值范围,解答即可.【详解】解:(1)由图可得,BC 的长是60312(633)x x -++=-(米),即BC 的长是(633)x -米;(2)令(633)270x x -=,解得,16x =,215x =,63327x -,得12x ,15x ∴=,即x 的值是15;(3)设饲养场的面积是2Sm ,则2211323(633)3()24S x x x =-=--+, 63327x -,得12x ,∴当12x =时,S 取得最大值,此时324S =,答:当x 为12时,饲养场的面积最大,此时饲养场达到的最大面积为2324m .【点睛】本题考查了二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,灵活利用二次函数的性质和方程的知识解答.23.(1)详见解析;(2)详见解析;(3)详见解析【分析】(1)连接EM 、CM ,直角三角形斜边上的中线等于斜边的一半得EM=CM ;再由等腰三角形三线合一的性质得出结论;(2)证明△AEC ∽△BFC ,得AC AE BC BF=,由AC=2BC 得AE=2BF ; (3)证明△ACB ∽△AEP ,得AC BC AE EP=,从而知道AE=2PE ,由AE=2BF 得PE=BF ;根据直角三角形斜边中线等于斜边一半得OC=12EF ,代入得结论. 【详解】解:证明:(1)如图1,连接EM 、CM ,AE BE ⊥,M 是AB 的中点,12EM AB ∴=,12CM AB =,EM CM ∴=, N 是EC 的中点,MN EC ∴⊥;(2)如图2,90ECF ∠=︒,90ACB ∠=︒,90ECA ACF ∴∠+∠=︒,90ACF FCB ∠+∠=︒,ECA FCB ∴∠=∠,90CFB ECF CEF CEF ∠=∠+∠=︒+∠,90AEC AEB CEF CEF ∠=∠+∠=︒+∠,CFB AEC ∴∠=∠,AEC BFC ∴∽△△,AC AEBC BF ∴=,2AC BC =,2AE BF ∴=;(3)如图,过点C 作CF EC ⊥交BD 于点F ,90AEP ACB ∠=∠=︒,BAC PAE ∠=∠,ACB AEP ∴∽△△,ACBCAE EP ∴=,2AC BC =,2AE PE ∴=,2AE BF =,PE BF ∴=, O 为BP 的中点,PO BO ∴=,EO FO ∴=,()()111222CO EF BE BF BE PE ∴==-=-.【点睛】本题是三角形的综合题,考查了相似三角形的性质和判定,利用相似三角形的对应边相等得出两边的倍数关系;同时,在直角三角形中,如果有斜边上的中线,可以运用斜边上的中线性质得出两边之间的倍数关系;对于证明垂直的关系除了利用角的大小来证明外,也可以利用等腰三角形的三线合一来证明.。

2024-2025学年上海外国语大学闵行外国语初级中学上学期九年级数学期中试卷

2024-2025学年上海外国语大学闵行外国语初级中学上学期九年级数学期中试卷

2024学年第一学期九年级数学期中考试试卷(时间:90分钟 满分:150分)考生注意:1.答题时,请考生务必按答题要求在答题纸规定的位置上作答,在草稿纸,本试卷上答题一律无效.2.除第一,二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤. 一,选择题:(本大题共6题,每题4分,共24分)1.下列函数中,属于二次函数的是( )A .2y ax bx c =++B .22(1)y x x =--C .25y x =D .22y x =2.在Rt ABC △中,90,4,3C BC AC ∠=︒==,那么A ∠的三角比值为35的是( )A .sin AB .tan AC .cot AD .cos A3.如图,a b c ∥∥,32ADDF =,则下面结论错误的是( )A .35ADAF = B .23AB EF = C .35BC BE = D .32BC CE =4.已知非零向量 a b c 、、,下列条件中,能判定向量a 与向量b 方向相同的是( )A .,a c b c ∥∥B .||2||a b =C .0a b +=D .3,2a c b c ==5.如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是()A .2sin αB .2cos αC .1sin α D .12cos α6.抛物线2y ax bx c =++的顶点为(1,)A m ,且经过点(3,0)B ,其部分图象如图所示.对于此抛物线有如下四个结论:①0abc <,@0a b c -+>,③13a c =-,④方程20ax bx c ++=的两根为121,3x x =-=.其中所有正确结论个数是( )A .4个B .3个C .2个D .1个二,填空题(本大题共12题,每题4分,共48分)7.已知43x y =,则x y x y-=+__________. 8.计算:12()(3)3a b a b ---=___________.9.如果在比例尺为1:2000000的地图上,A ,B 两地的图上距离是3厘米,那么A ,B 两地的实际距离是_________千米.10.计算:cos 60sin 60cot 30tan 45︒-︒=︒-︒__________ 11.已知P 是线段AB 的黄金分割点,且AP BP >,那么AP BP BP -的值为________. 12.二次函数2y ax bx c =++的图象如图所示,对称轴为直线2x =,若此抛物线与x 轴的一个交点为(6,0),则抛物线与x 轴的另一个交点坐标是________13.小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A 点测得古树顶的仰角为α,向前走了100米到B 点.测得古树顶的仰角为β,则古树的高度为______米.14.如果一个正多边形的中心角为45︒,那么这个正多边形的边数是____.15.已知Rt ABC △的两直角边之比为3:4,若DEF △与ABC △相似,且DEF △最长的边长为20,则DEF △的周长为______.16.若抛物线2y ax c =+与x 轴交于点()(),0,,0A m B n ,与y 轴交于点()0,C c ,则称ABC △为“抛物三角形”,特别地,当0mnc <时,称ABC △为“正抛物三角形”,当0mnc >时,称ABC △为倒抛物三角形,那么,当ABC △为倒抛物三角形时,a ,c 应分别满足条件______.17.如图,在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在44⨯的网格中,ABC △是一个格点三角形,如果DEF △也是该网格中的一个格点三角形,它与ABC △相似且面积最大,那么DEF△与ABC △相似比的值是______.18.如图,在Rt ABC △中,90ABC ∠=︒,CD 平分ACB ∠交AB 于点D ,过D 作DE BC ∥交AC 于点E ,将DEC △沿DE 折叠得到DEF △,DF 交AC 于点G .若73AG GE =,则tan A =________.三,简答题(本大题共7题,满分78分):19.(本题满分10分)计算:tan 45sin 45cot 30sin 60︒︒︒⋅︒.20.(本题满分10分)如图,在梯形ABCD 中,AD BC ∥,且3BC AD =,过点A 作AE DC ∥,分别交 BC BD 、于点E ,F ,若,AB a BC b ==.(1)用a b 、表示BD 和AF .(2)求作BF 在a b 、方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分向量)21.(本题满分10分)已知:如图在ABC △中,AD 是边BC 上的高,E 为边AC 的中点,14,12BC AD ==,4sin 5B =.求:(1)线段DC 的长.(2)tan EDC ∠的值.22.(本题满分10分)图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筐EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.图1 图2(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin320.53,cos320.85,tan320.62︒≈︒≈︒≈)23.(本题满分12分,每小题各6分)如图,已知ADE △的顶点E 在ABC △的边BC 上,DE 与AB 相交于点F ,FEA B ∠=∠,DAF CAE ∠=∠.(1)求证:2·AE AF AB =.(2)求证:DF CE DE CB=. 24.(本题满分12分,第(1)题3分,第(2)4分,第(3)小题5分) 如图,抛物线2y ax bx c =++交x 轴于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,点A ,C 的坐标分别为()()6,00,6、,对称轴2x =-交x 轴于E ,点D 为抛物线顶点.备用图(1)求抛物线的解析式.(②)点P 是直线AC 下方的抛物线上一点,且2PAC DAC S S =△△.求P 的坐标.(3)M 为抛物线对称轴上一点,是否存在以B ,C ,M 为顶点的三角形是等腰三角形,若存在,请求出点M 的坐标,若不存在,请说明理由.25.(本题满分14分,第(1)题4分,(2)(3)小题各5分)如图,已知ABC △中,AD 是BAC ∠的平分线.图1 图2(1)求证:AB BD AC CD=. (2)如图,过点C 作射线,与AD 交于点M ,与边AB 交于点E ,又知9,6BD CD == ①如果23AM AD =,求CE 的长. ②设,AM AE x y AD AB ==,求y 关于x 的函数关系式.。

沪科版九年级上册数学期中考试试题含答案

沪科版九年级上册数学期中考试试题含答案

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.在下列关于x 的函数中,一定是二次函数的是( )A .y=x 2B .y=ax 2+bx+cC .y=8xD .y=x 2(1+x ) 2.某工厂2015年产品的产量为100吨,该产品产量的年平均增长率为x (x >0),设2015,2016,2017这三年该产品的总产量为y 吨,则y 关于x 的函数关系式为( ) A .y =100(1﹣x )2 B .y =100(1+x )C .y =2100(1)x + D .y =100+100(1+x )+100(1+x )2 3.在平面直角坐标系中,抛物线y=-12(x+1)2-12的顶点是( ) A .(-1,-12) B .(-1,12) C .(1,-12) D .(1,12) 4.函数22(21)my m x -=-是反比例函数,在第一象限内y 随x 的增大而减小,则m =()A .1B .﹣1C .±1D .5.二次函数222=++y x x 与坐标轴的交点个数是( )A .0个B .1个C .2个D .3个 6.如图,若一次函数y ax b =+的图象经过二、三、四象限,则二次函数2y ax bx =+的图象可能是( )A .B .C .D .7.已知:0.5a =, 3.2b =,16c =, 2.5d =,下列各式中,正确的是( )A.ab=cdB.ac=dbC.ab=dcD.dc=ba8.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABCC.AP ABAB AC=D.AB ACBP CB=9.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:①abc>0;②9a+3b+c<0;③c >﹣1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为1;其中正确的结论个数有()A.1个B.2个C.3个D.4个10.如图,已知点A是反比例函数yx=在第一象限图像上的一个动点,连接OA,以为长,OA为宽作矩形AOCB,且点C在第四象限,随着点A的运动,点C也随之运动,但点C始终在反比例函数kyx=的图像上,则k的值为()A.-B.C.D.二、填空题11.若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是________.12.若53x x y =-,则y x=________. 13.如图,直线A l A ∥BB 1∥CC 1,若AB=8,BC=4,A 1B 1=6,则线段A 1C 1的长是________.14.如图,在钝角△ABC 中,AB =3cm ,AC =6cm ,动点D 从点A 出发到点B 止.动点E 从点C 出发到点A 止.点D 运动的速度为1cm /s ,点E 运动的速度为2cm /s .如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时.运动的时间是_____.三、解答题15.已知二次函数y =212x ﹣2x +6.用配方法求函数图象的顶点坐标和对称轴.16.将抛物线y =﹣x 2向左平移3个单位,再向上平移4个单位.(1)写出平移后的抛物线的函数关系式.(2)若平移后的抛物线的顶点为A ,与x 轴的两个交点分别是B 、C ,求△ABC 的面积.17.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax 2+bx +c =0的两个根;(2)写出不等式ax 2+bx +c >0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.18.如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= °,BC= ;(2)判断△ABC与△DEF是否相似,并证明你的结论.19.如题图,已知A(-4,2),B(n,-4)是一次函数y=kx+b的图象和反比例函数m yx的图象的两个交点.(1)求m,n的值;(2)求一次函数的关系式;、(3)结合图象直接写出一次函数小于反比例函数的x的取值范围.20.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC、DE,两杆相距30米,测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H、B、F、D、G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度?21.某电子厂商投产一种新型电子产品,每件制造成本为16元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?22.如图三角形ABC,BC=12,AD是BC边上的高AD=10.P,N分别是AB,AC边上的点,Q,M是BC上的点,连接PQ,MN,PN交AD于E.求(1)若四边形PQMN是矩形,且PQ:PN=1:2.求PQ、PN的长;(2)若四边形PQMN是矩形,求当矩形PQMN面积最大时,求最大面积和PQ、PN的长.23.如图1,点M放在正方形ABCD的对角线AC(不与点A重合)上滑动,连结DM,做MN⊥DM,交直线AB于N.(1)求证:DM=MN;(2)若将(1)中的正方形变为矩形,其余条件不变如图,且DC=2AD,求MD:MN的值;(3)在(2)中,若CD=nAD,当M滑动到CA的延长线上时(如图3),请你直接写出MD:MN 的比值.参考答案1.A【分析】根据二次函数的定义:y=ax2+bx+c(a≠0.a是常数),可得答案.【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A.【点睛】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数.2.D【分析】直接表示出2016年,2017年的产量进而得出y关于x的函数关系式.【详解】解:设2015,2016,2017这三年该产品的总产量为y吨,则y关于x的函数关系式为:y=100+100(1+x)+100(1+x)2.故选:D.【点睛】此题主要考查了根据实际问题列二次函数解析式,正确表示出2017年的产量是解题关键.3.A【分析】结合抛物线的解析式和二次函数的性质即可得出该抛物线顶点坐标.【详解】∵抛物线的解析式为y=12(x+1)2﹣12,∴该抛物线的顶点坐标为(﹣1,﹣12).故选A【点睛】本题考查二次函数的性质.4.A【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【详解】解:根据题意得:2m21 2m10⎧-=-⎨->⎩,解得:m=1.故选:A.【点睛】本题考查了反比例函数的性质.对于反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.5.B【分析】先计算根的判别式的值,然后根据b 2−4ac 决定抛物线与x 轴的交点个数进行判断.【详解】∵△=22−4×1×2=−4<0,∴二次函数y =x 2+2x +2与x 轴没有交点,与y 轴有一个交点.∴二次函数y =x 2+2x +2与坐标轴的交点个数是1个,故选:B .【点睛】本题考查了抛物线与x 轴的交点:求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标,令y =0,即ax 2+bx +c =0,解关于x 的一元二次方程即可求得交点横坐标.二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)的交点与一元二次方程ax 2+bx +c =0根之间的关系:△=b 2−4ac 决定抛物线与x 轴的交点个数;△=b 2−4ac >0时,抛物线与x 轴有2个交点;△=b 2−4ac =0时,抛物线与x 轴有1个交点;△=b 2−4ac <0时,抛物线与x 轴没有交点.6.C【分析】根据一次函数的性质判断出a 、b 的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【详解】解:y ax b =+的图象经过二、三、四象限,0a ∴<,0b <,∴抛物线开口方向向下, 抛物线对称轴为直线02b x a=-<, ∴对称轴在y 轴的左边,纵观各选项,只有C 选项符合.故选C .【点睛】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a 、b 的正负情况是解题的关键.7.C【分析】如果其中两个数的乘积等于另外两个数的乘积,则四个数成比例.【详解】因为16×0.5=8,3.2×2.5=8, 所以ac=bd , 可得:a dbc =, 故选C点睛:此题考查比例线段问题,理解成比例的概念,注意在数两两相乘的时候,要让最小的和最大的相乘,另外两个数相乘,看它们的积是否相等进行判断.8.D【详解】试题分析:A .当∠ABP=∠C 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误; B .当∠APB=∠ABC 时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误; C .当AP AB AB AC=时,又∵∠A=∠A ,∴△ABP ∽△ACB ,故此选项错误; D .无法得到△ABP ∽△ACB ,故此选项正确.故选D .考点:相似三角形的判定.9.B【分析】根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0, 由抛物线的对称轴可知:﹣2b a>0, ∴b >0,∴abc >0,故①正确;令x =3,y >0,∴9a +3b +c >0,故②错误;∵OA =OC <1,∴c >﹣1,故③正确;观察图象可知关于x 的方程ax 2+bx +c (a ≠0)=0的两根:一个根在0与1之间,一个根在3与4之间,故④错误;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型. 10.A【解析】分析: 设A (a ,b ),则A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,根据相似三角形的判定证得△AOE ∽△COF ,由相似三角形的性质得到,,则k=-OF•CF .详解:设A (a ,b ),∴OE=a ,AE=b ,∵在反比例函数y=x∴分别过A ,C 作AE ⊥x 轴于E ,CF ⊥x 轴于F ,∵四边形AOCB 是矩形,∴∠AOE+∠COF=90°,∴∠OAE=∠COF=90°-∠AOE ,∴△AOE ∽△OCF ,∵,∴OC OF CF OA AE OE==∴,,∵C 在反比例函数y=k x的图象上,且点C 在第四象限, ∴k=-OF•CF=,故选:A .点睛:本题主要考查了矩形的性质,相似三角形的判定和性质,反比例函数的几何意义和求法,正确作出辅助线证得△AOE ∽△COF 是解题的关键,同时注意k 的符号.11.(﹣2,﹣3)【解析】∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(2,3)关于原点对称,∴该点的坐标为(−2,−3).故答案为(−2,−3).12.25【解析】解:∵53x x y =-,∴3x =5(x ﹣y ),∴2x =5y ,∴25y x =.故答案为25. 13.9【解析】根据平行线分线段成比例定理,列出比例式,利用比例的基本性质即可得解.解:∵A l A ∥BB 1∥CC 1,∴1111B C A B =BC AB, ∵AB=8,BC=4,A 1B 1=6,∴B1C 1=3.∴A1C 1= A 1B 1+ B1C 1=6+3=9.“点睛”考查了平行线分线段成比例定理,明确线段之间的对应关系.14.32秒或125秒【分析】如果以点A 、D 、E 为顶点的三角形与△ABC 相似,由于A 与A 对应,那么分两种情况:①D 与B 对应;②D 与C 对应.根据相似三角形的性质分别作答.【详解】解:如果两点同时运动,设运动t 秒时,以点A 、D 、E 为顶点的三角形与△ABC 相似, 则AD =t ,CE =2t ,AE =AC ﹣CE =6﹣2t .①当D 与B 对应时,有△ADE ∽△ABC .∴AD :AB =AE :AC ,∴t :3=(6﹣2t ):6,∴t =32; ②当D 与C 对应时,有△ADE ∽△ACB .∴AD :AC =AE :AB ,∴t :6=(6﹣2t ):3,∴t =125. ∴当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是32秒或125秒. 故答案为:32秒或125秒. 【点睛】 本题考查的是相似三角形的判定定理,相似三角形的对应边成比例的性质.本题分析出以点A 、D 、E 为顶点的三角形与△ABC 相似,有两种情况是解决问题的关键.15.顶点坐标为(2,4)对称轴为x =2【分析】根据配方法的步骤把一般式转化为顶点式,根据顶点式的坐标特点,写出顶点坐标.【详解】解:y =212x ﹣2x +6=12(x 2﹣4x +4+8)=12(x ﹣2)2+4, 所以顶点坐标为(2,4)对称轴为x =2.【点睛】本题考查了二次函数的性质,配方法,二次函数的顶点式y =a (x−h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .16.(1)y=﹣(x+3)2+4;(2)8【分析】(1)分别根据“上加下减,左加右减”的原则进行解答即可;(2)在解析式中令y=0,求得x的值,即可求得B和C的横坐标,则BC的长即可求得,然后根据三角形的面积公式即可求得.【详解】解:(1)由“左加右减”的原则可知,将抛物线y=﹣x2向左平移3个单位所得直线的解析式为:y=﹣(x+3)2;由“上加下减”的原则可知,将抛物线y=﹣(x+3)2向上平移4个单位所得抛物线的解析式为:y=﹣(x+3)2+4.故平移后的抛物线的函数关系式是:y=﹣(x+3)2+4.(2)顶点坐标A(﹣3,4)令y=﹣(x+3)2+4=0,解得x1=﹣1,x2=﹣5.∴B(﹣1,0),C(﹣5,0),BC=4.则三角形ABC底边BC边上的高h=4,∴S△ABC=12BC×h=12×4×4 =8.【点睛】本题考查了抛物线的平移以及二次函数与x轴的交点坐标的求法,正确理解平移法则是关键.17.(1)x1=1,x2=3;(2)1<x<3;(3)k<2.【分析】(1)根据函数图象,二次函数图象与x轴的交点的横坐标即为方程的根;(2)根据函数图象写出x轴上方部分的x的取值范围即可;(3)能与函数图象有两个交点的所有k值即为所求的范围.【详解】解:(1)∵函数图象与x轴的两个交点坐标为(1,0)(3,0),∴方程的两个根为x1=1,x2=3;(2)由图可知,不等式ax2+bx+c>0的解集为1<x<3;(3)∵二次函数的顶点坐标为(2,2),∴若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为k <2.【点睛】本题考查了二次函数与不等式,抛物线与x 轴的交点问题,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.18.(1) (2)△ABC ∽△DEF .【分析】(1)根据已知条件,结合网格可以求出∠ABC 的度数,根据,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,利用勾股定理即可求出线段BC 的长;(2)根据相似三角形的判定定理,夹角相等,对应边成比例即可证明△ABC 与△DEF 相似.【详解】(1)9045135ABC ∠=+=,BC =故答案为(2)△ABC ∽△DEF .证明:∵在4×4的正方形方格中, 135,9045135ABC DEF ∠=∠=+=,∴∠ABC =∠DEF .∵2,2,AB BC FE DE ====∴AB BC DE FE ==== ∴△ABC ∽△DEF .【点睛】考查勾股定理以及相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键. 19.(1)m=-8,n=2;(2)y=-x-2;(3)-4<x<0,或x>2.【解析】分析:(1)先把A 的坐标代入反比例函数y=m x中求出m 的值,写出反比例函数的解析式,再将点B的坐标代入求n的值;(2)利用待定系数法求一次函数的关系式;(3)结合图象写结论即可.本题解析:(1)把A(−4,2)代入y=mx,即:m=−8,∴y=8x-,把B(n,−4)代入y=8x-得:解得n=2,∴B(2,−4);(2)把A(−4,2),B(2,−4)代入y=kx+b中,得24{42k bk b=-+-=+,解得k=−1,b=−2,∴y=−x−2;(3)由图象得:一次函数小于反比例函数的x的取值范围是:−4<x<0或x>2. 20.24m【解析】试题分析:首先设AH=x,BH=y,根据△AHF∽△CBF,△AHG∽△EDG,得出BFHF =GBHG,DG HG =DEAH,然后将各数字代入求出x的值.试题解析:由题意知,设AH=x,BH=y,△AHF∽△CBF,△AHG∽△EDG,∴BFHF =GBHG,DGHG=DEAH,∴3x=1.5×(y+3),5x=1.5×(y+30+5)解得x=24m.答:旗杆AH的高度为24m.21.(1)z=﹣2x2+132x﹣1600;(2)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【分析】(1)根据每月的利润z=(x−16)×y,再把y=−2x+100代入即可求出z与x之间的函数解析式,(2)先根据制造成本不超过480万元知生产量不超过30万件,结合一次函数解析式得出x 的取值范围,把函数关系式变形为顶点式运用二次函数的性质求出最值.【详解】解:(1)根据题意知,z=(x﹣16)(﹣2x+100)=﹣2x2+132x﹣1600;(2)厂商每月的制造成本不超过480万元,每件制造成本为16元,∴每月的生产量为:小于等于48016=30万件,则y=﹣2x+100≤30,解得:x≥35,∵z=﹣2x2+132x﹣1600=﹣2(x﹣33)2+578,∴图象开口向下,对称轴右侧z随x的增大而减小,∴x=35时,z最大为570万元.当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.【点睛】本题考查的是二次函数在实际生活中的应用,关键是根据题意求出二次函数的解析式以及利用增减性求出最值.22.(1)PQ=154,PN=152;(2)PQ=5,PN=6.【分析】(1)设PQ=y,则PN=2y,根据相似三角形的对应边上的高的比=相似比,构建方程即可解决问题;(2)设AE=x.利用相似三角形的性质,用x表示PN,PQ,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:(1)设PQ=y,则PN=2y,∵四边形PQMN是矩形,∴PN∥BC,∴△APN∽△ABC,∵AD ⊥BC ,∴AD ⊥PN , ∴PN BC =AE AD ,即212y =1010y -, 解得y =154, ∴PQ =154,PN =152. (2)设AE =x .∵四边形PQMN 是矩形,∴PN ∥BC ,∴△APN ∽△ABC ,∵AD ⊥BC ,∴AD ⊥PN , ∴PN BC =AE AD, ∴PN =65x ,PQ =DE =10﹣x , ∴S 矩形PQMN =65x (10﹣x )=﹣65(x ﹣5)2+30, ∴当x =5时,S 的最大值为30,∴当AE =5时,矩形PQMN 的面积最大,最大面积是30,此时PQ =5,PN =6.【点睛】本题考查相似三角形的应用、二次函数的应用、矩形的性质等知识,解题的关键是学会利用相似三角形的性质构建二次函数或方程解决问题,属于中考常考题型.23.(1)见解析;(2)MD :2MN =;(3)MD :MN n =.【分析】(1)过M 作MQ ⊥AB 于Q ,MP ⊥AD 于P ,则∠PMQ=90°,∠MQN=∠MPD=90°,根据ASA 即可判定△MDP ≌△MNQ ,进而根据全等三角形的性质得出DM=MN ;(2)过M 作MS ⊥AB 于S ,MW ⊥AD 于W ,则∠WMS=90°,根据∠DMW=∠NMS ,∠MSN=∠MWD=90°,判定△MDW ∽MNS ,得出MD :MN=MW :MS=MW :WA ,再根据△AWM ∽△ADC ,DC=2AD ,即可得出MD :MN=MW :W A=CD :DA=2;(3)过M 作MX ⊥AB 于X ,MR ⊥AD 于R ,则易得△NMX ∽△DMR ,得出MD :MN=MR :MX=AX :MX ,再由AD ∥MX ,CD ∥AX ,易得△AMX ∽△CAD ,得出AX :MX=CD :AD ,最后根据CD=nAD ,即可得出MD :MN=CD :AD=n .【详解】()1证明:过M 作MQ AB ⊥于Q MP AD ⊥,于P ,则9090PMQ MQN MPD ∠=∠=∠=,,90DMN ∠=,DMP NMQ ∴∠=∠, ABCD 是正方形,AC ∴平分DAB ∠,PM MQ ∴=,在MDP 和MNQ △中,MQN MPDPM MQ DMP NMQ∠=∠⎧⎪=⎨⎪∠=∠⎩,MDP ∴≌()MNQ ASA ,DM MN ∴=;()2过M 作MS AB ⊥于S MW AD ⊥,于W ,则90WMS ∠=,MN DM ⊥,DMW NMS ∴∠=∠,又90MSN MWD ∠=∠=, MDW ∴∽MNS ,MD ∴:MN MW =:MS MW =:WA ,//MW CD ,AMW ACD AWM ADC ∴∠=∠∠=∠,,AWM ∴∽ADC ,又2DC AD =,MD ∴:MN MW =:WA CD =:2DA =;()3MD :MN n =,理由:过M 作MX AB ⊥于X MR AD ,⊥于R ,则易得NMX ∽DMR ,MD ∴:MN MR =:MX AX =:MX ,由////AD MX CD AX ,,易得AMX ∽CAD ,AX ∴:MX CD =:AD ,又CD nAD =,MD ∴:MN CD =:AD n =.【点睛】相似形综合题,主要考查了相似三角形的判定与性质,全等三角形的判定与性质以及正方形、矩形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形或相似三角形,运用相似三角形和全等三角形的性质进行推导即可.。

2014-2015学年上海市闵行区九校联考八年级(下)期中数学试卷

2014-2015学年上海市闵行区九校联考八年级(下)期中数学试卷

2014-2015学年上海市闵行区九校联考八年级(下)期中数学试卷显示答案一、选择题(每题3分,满分18分)1.下列函数中,是一次函数的是( )A .y =1x+1 B .y=-2x C .y=x 2+2 D .y=kx+b(k 、b 是常数)2.下列关于x 的方程中,有实数根的是( )A .x 2+2x+3=0B .x 3+2=0C .x x-1=1x-1D .x-2+3=03.下列方程组中,属于二元二次方程组的为( )A . ⎩⎨⎧x +y =0x -y =2B . ⎩⎨⎧1x + 2y ==-4C . ⎩⎨⎧x + y =1x +y =1D . ⎩⎨⎧3x =2xy =4 4.一次函数y=kx+b 的图象如图所示,当y >4时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >25.某农场开挖一条长480米的渠道,开工后每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么下列方程中正确的是( )A .480x-20- 480x =4B .480x - 480x+4=20C .480x - 480x+20=4D .480x-4- 480x=20 6.李庄与张庄两地之间的距离是100千米,若汽车以平均每小时80千米的速度从李庄开往张庄,则汽车距张庄的路程y (千米)与行驶时间x (小时)之间的函数关系式是( )A .y=80x-100B .y=-80x-100C .y=80x+100D .y=-80x+100二、填空题(每题2分,满分24分)7.一次函数y=x-5在y 轴上的截距是________.8.直线y=12x-1与x 轴的交点坐标是________ .9.如图,将直线OA 向下平移2个单位,得到一个一次函数的图象,那么这个一次函数的解析式是________.10.如果y=-x+m 不经过第一象限,那么实数m 的取值范围是________.11.若点A ()7,y 1、点B ()5,y 2是直线y =- 12x+b(b 为常数)上的点,则y 1,y 2大小关系是________.12.二项方程12x 5-16=0的实数根是________.13.关于x 的方程m(x+2)=3(m≠0)的解为________.14.在解方程3x x-1+ 2x-2x +3=0时,如果设x x-1=y ,则原方程可化为关于y 的一元二次方程的一般形式是________.15.把二元二次方程x 2-5xy+6y 2=0化成两个一次方程,那么这两个一次方程是________.16.如果一个多边形的每一个外角都等于72°,则该多边形的内角和等于________ 度.17.如果x=3是方程x x-3=2- k 3-x的增根,那么k 的值为________ .18.已知直线y=kx+b 与坐标轴围成的三角形面积是6,且经过(3,0),则这条直线的解析式为________.三、计算题(每题6分,满分24分)19.解方程:2x+1-1=11-x. 20.解方程:6-2 x-3=x .21.解方程组: ⎩⎨⎧x 2-9y 2=15x +3y =5. 22.解方程组: ⎩⎨⎧4x +y + 6x -y==1.四、解答题:(满分24分,其中23题7分;24题8分;25题9分)23.已知一次函数图象经过点M(4,3)且平行于直线y=- 34x+3(1)求这个函数的解析式;(2)所求得的一次函数的图象与坐标轴围成的三角形面积.24.甲、乙两家便利店到批发站采购一批饮料,共25箱,由于两店所处的地理位置不同,因此甲店的销售价格比乙店的销售价格每箱多10元.当两店将所进的饮料全部售完后,甲店的营业额为1000元,比乙店少350元,求甲乙两店各进货多少箱饮料?25.一个水槽有进水管和出水管各一个,进水管每分钟进水m升,出水管每分钟出水n升,水槽在开始5分钟内只进水不出水,随后15分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示:(1)求m、n的值;(2)如果在20分钟之后只出水不进水,单位时间进、出水量不变,求这段时间内y 关于x的函数解析式及定义域,并画出图象.五、解答题(共1小题,满分10分)26.如图①所示,直线L:y=mx+5m与x轴负半轴、y轴正半轴分别交于A、B两点.(1)当OA=OB时,请确定直线L的解析式.(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,作直线OQ,过点A、B两点分别作AM⊥OQ于点M,BN⊥OQ于点N,若AM=4,BN=3,求MN的长.(3)如图③,当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边,点B为直角顶点,在第一、二象限内作等腰直角三角形OBF和等腰直角三角形ABE,联结EF交y轴于点P,.问:当点B在y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请说明理由.纠错/评论点击显示评论解析质量:好中差提交。

2015-2016学年上海市闵行区九校联考七年级(上)期中数学试卷

2015-2016学年上海市闵行区九校联考七年级(上)期中数学试卷

2015-2016学年上海市闵行区九校联考七年级(上)期中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共4小题,共12.0分)1.下列运算正确的是()A.a4+a5=a9B.a3•a3•a3=3a3C.2a4×3a5=6a9D.(-a3)4=a7【答案】C【解析】解:A、a4+a5=a4+a5,不是同类项不能相加;B、a3•a3•a3=a9,底数不变,指数相加;C、正确;D、(-a3)4=a12.底数取正值,指数相乘.故选C.①同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加;②幂的乘方法则,幂的乘方底数不变指数相乘;③合并同类项法则,把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变.注意把各种幂运算区别开,从而熟练掌握各种题型的运算.2.下列说法错误的是()A.2x2-3xy-1是二次三项式B.-x+1是多项式C.-a的系数是-1,次数是1D.是单项式【答案】D【解析】解:A、2x2-3xy-1是二次三项式,正确,故本选项错误;B、-x+1是多项式,正确,故本选项错误;C、-a的系数是-1,次数是1,正确,故本选项错误;D、字母在分母上,不是单项式,故本选项正确.故选D.根据多项式的相关概念和单项式的相关概念对各选项分析判断即可得解.本题考查了多项式,单项式,单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.3.若x2+4y2=(x+2y)2+A=(x-2y)2+B,则A,B各等于()A.4xy,4xyB.4xy,-4xyC.-4xy,4xyD.-4xy,-4xy【答案】C解:∵x2+4y2=x2+4xy+4y2+A=x2-4xy+4y2+B,∴A=-4xy,B=4xy.故选C将已知等式中间第一项利用完全平方公式化简,右边第一项也利用完全平方公式展开,计算即可求出A与B的值.此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.观察如图图形及图形所对的算式,根据你发现的规律计算1+8+16+24+…+8n(n为正整数)的结果()A.n2B.(2n-1)2C.(n+2)2 D.(2n+1)2【答案】D【解析】解:图(1):1+8=9=(2×1+1)2;图(2):1+8+16=25=(2×2+1)2;图(3):1+8+16+24=49=(3×2+1)2;…;那么图(n):1+8+16+24+…+8n=(2n+1)2.故选D.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.本题主要考查了学生通过特例分析从而归纳总结出一般结论的能力.注意此题的规律为:(2n+1)2.二、填空题(本大题共14小题,共28.0分)5.计算:2x2•5x3= ______ .【答案】10x5【解析】解:2x2•5x3=10x2+3=10x5.故答案为:10x5.单项式乘以单项式,就是把系数与系数相乘,同底数幂相乘.本题考查了单项式乘单项式的法则.熟悉运算法则是解题的关键.6.12a m-1b3与是同类项,则m+n= ______ .【答案】7【解析】解:∵12a m-1b3与是同类项,∴m-1=3,n=3,∴m=4,n=3.故答案为:7.根据同类项:所含字母相同,并且相同字母的指数也相同,可得m、n的值,继而可得m+n的值.本题考查了同类项的知识,解答本题的关键是掌握同类项的定义.7.单项式3x2y n-1z是关于x、y、z的五次单项式,则n= ______ .【答案】3【解析】解:由单项式的定义可知,2+n-1+1=5,解得n=3.根据次数的定义来求解,所有字母的指数和叫做这个单项式的次数.确定单项式的次数时,根据单项式次数的定义来计算.8.多项式最高次项的系数是______ .【答案】-6【解析】解:多项式最高次项的系数是-6.故答案为:-6.找到这个多项式的最高次项,看其系数即可.本题考查多项式的次数,属于基础题型.9.一个多项式加上x-4-2x2得到x2-1,那么这个多项式为______ .【答案】3x2-x+3【解析】解:根据题意得:(x2-1)-(x-4-2x2)=x2-1-x+4+2x2=3x2-x+3.故答案为:3x2-x+3.根据题意列出关系式,去括号合并即可得到结果.此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.10.三个连续偶数中,n是最小的一个,这三个数的和为______ .【答案】3n+6【解析】解:n+n+2+n+4=3n+6.故答案为:3n+6.本题考查与数字有关的代数式,在分析中要注意三个连续偶数之间的关系,n为最小的整数,则其余两个连续偶数分别为n+2、n+4,所以三个连续偶数之和为:n+n+2+n+4=3n+6.本题立意是考查与数字有关的代数式,在分析时要把握好连续偶数之间的关系,每相邻含有n的式子表示出来.11.若x-3y=-2,那么3+2x-6y的值是______ .【答案】-1【解析】解:∵x-3y=-2,∴2x-6y=-4.∴原式=3+(-4)=-1.故答案为:-1.等式x-3y=-2两边同时乘以2得到2x-6y=-4,然后代入计算即可.本题主要考查的是求代数式的值,利用等式的性质求得2x-6y=-4是解题的关键.12.(-0.25)11×(-4)12= ______ .【答案】-4【解析】解:原式=[(-)×(-4)]11×(-4)=1×(-4)=-4.故答案为:-4.利用a x×b x=(ab)x进行计算即可.本题考查了幂的乘方及积的乘方的知识,属于基础题,关键是掌握运算法则.13.已知(x+1)(x-2)=x2+mx+n,则m+n= ______ .【答案】-3【解析】解:已知等式变形得:x2-x-2=x2+mx+n,可得m=-1,n=-2,则m+n=-1-2=-3.故答案为:-3已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m与n的值,即可求出m+n的值.此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.14.若x2-2mx+9是一个完全平方式,则m的值为______ .【答案】3或-3【解析】解:∵x2-2mx+9是一个完全平方式,∴-2m=±6,解得:m=3或-3.故答案为:3或-3.先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.15.不等式(2a-3)2>(2a+1)(2a-1)-2的解集是______ .【答案】a<1【解析】解:4a2-12a+9>4a2-1-2,整理得:-12a>-12,解得:a<1.故答案为:a<1.先依据完全平方公式和平方差公式进行变形,然后解不等式即可.本题主要考查的是完全平方公式和平方差公式的应用,熟练掌握公式是解题的关键.16.一个长方体的高为xcm,长是高的3倍少4cm,宽是高的2倍,则这个长方体的体积是______ cm3.【答案】(6x3-8x2)【解析】解:∵长方体的高为xcm,长为高的3倍少4cm,宽为高的2倍,∴长为3x-4(cm),宽为2xcm,∴这个长方体的体积=x×(3x-4)×2x=2x2(3x-4)=(6x3-8x2)cm3,故答案为:(6x3-8x2)用长方体的高表示出长方体的长与宽,等量关系为:长方体的体积=长×宽×高,把相关数值代入即可求解.本题考查列代数式以及相应的计算,得到长方体的体积的等量关系是解决问题的关键.17.已知a2+b2=7,a+b=3,则代数式(a-2)(b-2)的值为______ .【答案】-1【解析】解:∵a2+b2=7,a+b=3,∴(a+b)2-2ab=7,∴2ab=2,∴ab=1,∴(a-2)(b-2)=ab-2a-2b+4=ab-2(a+b)+4=1-2×3+4=-1,故答案为:-1.先根据完全平方公式求出ab的值,再算乘法,最后代入求出即可.本题考查了整式的混合运算的应用,主要考查学生的计算能力和化简能力,用了整体代入思想.18.根据如图所示的程序计算,若输入x的值为1,则输出y的值为______ .【答案】4【解析】解:依据题中的计算程序列出算式:12×2-4.由于12×2-4=-2,-2<0,∴应该按照计算程序继续计算,(-2)2×2-4=4,∴y=4.故答案为:4.观察图形我们可以得出x和y的关系式为:y=2x2-4,因此将x的值代入就可以计算出y 的值.如果计算的结果<0则需要把结果再次代入关系式求值,直到算出的值>0为止,即可得出y的值.解答本题的关键就是弄清楚题图给出的计算程序.由于代入1计算出y的值是-2,但-2<0不是要输出y的值,这是本题易出错的地方,还应将x=-2代入y=2x2-4继续计算.三、解答题(本大题共7小题,共45.0分)19.计算:2x5•(-x)2-(-2x2)3•(-x)【答案】解:原式==2x7-4x7=-2x7.【解析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.单独一个数字也是单项式.本题考查了单项式的乘法,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.注意单项式的系数包括前面的符号.20.计算:3(x+2)(x-2)-(x-1)(3x+4)【答案】解:原式=3(x2-4)-(3x2+x-4)=3x2-12-3x2-x+4=-x-8.【解析】先根据平方差公式和多项式乘多项式的法则计算,再合并同类项即可求解.此题考查了平方差公式和多项式乘多项式,关键是熟练掌握计算法则正确进行计算.21.计算:(2x-3y)2-(y+3x)(3x-y)【答案】解:原式=(4x2-12xy+9y2)-(9x2-y2)=-5x2-12xy+10y2【解析】根据多项式乘法法则即可求出答案.本题考查整式的乘法,涉及完全平方公式以及平方差公式.22.(x+2y)2(x-2y)2.【答案】解:原式=[(x+2y)(x-2y)]2=(x2-4y2)2=x4-8x2y2+16y4.【解析】先根据平方差公式进行计算,再根据完全平方公式展开即可.本题考查了整式乘法中平方差公式和完全平方公式的应用,题目有一定的代表性,是一道比较好的题目.23.化简求值:其中,.【答案】解:原式=-x3y-2x2y2-5x3y+5x2y2,=-6x3y+3x2y2,当,时,原式=或者.【解析】先去括号再合并同类项,把x,y的值代入即可.本题考查了整式的加减-化简求值,掌握单项式乘以多项式的运算法则是解题的关键.24.解方程:(3x-2)(2x-1)-(6x+1)(x-2)=2(2-x)【答案】解:去括号,得6x2-7x+2-6x2+11x+2=4-2x,移项,得6x2-7x-6x2+11x+2x=4-2-2,合并同类项,得6x=0系数化为1,得x=0∴原方程的解是x=0.【解析】先去括号,再移项、合并同类项,最后系数化为1即可.本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.25.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察以下图形,(1)第5个图形共有______ 个小圆;(2)第n个图形共有______ 个小圆(用含n的代数式表示);(3)第100个图形共有______ 个小圆.【答案】34;n2+n+4;10104【解析】解:(1)第1个图形共有小圆6=4+1×2,第3个图形共有小圆16=4+3×4;…∴第5个图形共有小圆4+5×6=34个,故答案为:34;(2)由(1)知,第n个图形共有小圆4+n(n+1)=n2+n+4个,故答案为:n2+n+4;(3)当n=100时,4+n(n+1)=4+100×101=10104,故答案为:10104.(1)由题意得出小圆的数量为序数与序数加1的乘积加上4,据此可得;(2)根据(1)中的规律可得;(3)将n=100代入(2)中代数式即可.本题主要考查图形的变化规律,根据题意得出小圆的数量为序数与序数加1的乘积加上4是解题的关键.四、计算题(本大题共1小题,共7.0分)26.某服装厂生产一种西装和领带,西装每套定价300元,领带每条定价50元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条(x>20).(1)若该客户按方案①购买,需付款______ 元(用含x的代数式表示);若该客户按方案②购买,需付款______ 元(用含x的代数式表示).(2)若x=30,通过计算说明此时按哪种方案购买较为合算?【答案】(5000+50x);(45x+5400)【解析】解:(1)①根据题意得:300×20+50(x-20)=(5000+50x);②根据题意得:90%×(300×20+50x)=(45x+5400);故答案为:①(5000+50x);②(45x+5400);(3)当x=30时,5000+50x=6500元,45x+5400=6750元,按方案①购买较为合算.(1)根据两种方案表示出需付款即可;(2)将x=30代入两种方案中计算,比较即可.此题考查了代数式求值,以及列代数式,弄清题意是解本题的关键.五、解答题(本大题共1小题,共8.0分)27.如图,在正方形ABCD和正方形CEFG中,点B、C、E在同一条直线上,点M是边AD的中点,已知AB=a,CE=b(a<b).(1)用a、b的代数式表示△GME的面积;【答案】解:(1)延长MD交EG于N,∵四边形ABCD为正方形,∴DC=AB=AD=a,AD∥BC,同理得:GC=CE=b,∵M是AD的中点,∴MD=AB=a,∵DN∥CE,∴△GDN∽△GCE,∴,∴,∴DN=b-a,∴S△GME=S△GMN+S△MNE=MN•DG+MN•CD=MN•CG=(a+b-a)×b=-ab;(2)当a=3cm,b=5cm时,S△GME=×52-×3×5=,答:△GME的面积为.【解析】(1)作辅助线,将△MGE分成了两个三角形,分别求DM和DN的长即可;(2)代入求值即可.本题考查了正方形的性质、三角形的面积、相似三角形的性质和判定以及代入求值问题,本题三角形面积的求法有很多种:比如割补法、连接CM等.。

沪科版九年级上册数学期中考试试题及答案

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1. 将抛物线y=x 2-2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是 A .y=x 2-2x-1B .y=x 2+2x-1C .y=x 2-2D .y=x 2+2 2.若x y =23,则下列各式不成立的是( ) A .x y y +=53 B .y x y -=13 C .2x y =13 D .11x y ++=343.如图,已知一次函数y =ax+b 与反比例函数y =k x 图象交于M 、N 两点,则不等式ax+b >k x解集为( )A .x >2或﹣1<x <0B .﹣1<x <0C .﹣1<x <0或0<x <2D .x >24.如图,已知D 、E 分别是ABC 的AB 、AC 边上的点,DE BC ∥,且:ADE S S △四边形DBCE =1:8,那么:AE AC 等于( )A .1:9B .1:3C .1:D .1:85.如图,A 为反比例函数k y x=图象上一点,AB 垂直于x 轴于点B ,若3AOB S =△,则k 的值为( )A .6-B .3-C .32-D .不能确定6.已知()1A 1,y ,()2B y ,()3C 2,y -在函数21y 2(x 1)2=+-的图象上,则1y ,2y ,3y 的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 1>y 2D .y 2>y 1>y 3 7.在三角形纸片ABC 中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是( )A .B .C .D . 8.一次函数y =ax +b 和反比例函数y a b x-=在同一直角坐标系中的大致图象是( ) A . B .C .D .9.已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为1x =;③当1x <时,函数值y 随x的增大而增大;④方程20ax bx c ++=有一个根大于4;⑤若221122ax bx ax bx +=+,且12x x ≠,则123x x +=.其中正确的结论有( )A .①②③B .①②③④⑤C .①③⑤D .①③④⑤ 10.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .B .C .D .二、填空题11.已知函数()2113m y m x x +=-+,当m =__________时,它是二次函数.12.如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_________米.13.如图,一名男生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++.则他将铅球推出的距离是__________m .14.如图,在Rt ABC 中,90ACB ∠=︒,5AB =,4AC =,E ,F 分别为AB 、BC 上的点,沿直线EF 将B 折叠,使点B 恰好落在AC 上的D 处,当ADE 恰好为直角三角形时,BE 的长为__________.三、解答题15.已知二次函数y =﹣2x 2﹣4x+6.(1)用配方法求出函数的顶点坐标;(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x 轴的另一个交点的坐标.16.“今有井径五尺,不知其深,立五尺于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,求井深BD.17.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)一辆宽为2米,高为3米的货船能否从桥下通过?18.如图,一次函数y1=﹣x+5与反比例函数y2=kx的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.19.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE 上一点,且∠AFE =∠B ,(1)求证:△ADF ∽△DEC(2)若AB =4,AD ==3,求AF 的长.20.我们定义两个不相交的函数图象在竖直方向上的最短距离为这两个函数的“和谐值”.(1)求抛物线y =x 2﹣2x+2与x 轴的“和谐值”;(2)求抛物线y =x 2﹣2x+2与直线y =x ﹣1的“和谐值”.21.如图在锐角ABC 中,6BC =,高4=AD ,两动点M 、N 分别在AB 、AC 上滑动(不包含端点),且MN BC ,以MN 为边长向下作正方形MPQN ,设MN x =,正方形MPQN 与ABC 公共部分的面积为y .(1)如图(1),当正方形MPQN 的边P 恰好落在BC 边上时,求x 的值.(2)如图(2),当PQ 落ABC 外部时,求出y 与x 的函数关系式(写出x 的取值范围)并求出x 为何值时y 最大,最大是多少?22.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x件时,该网店从中获利y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)顾客一次性购买多少件时,该网店从中获利最多?BC=,点M在BC上,连接AM点N在直线AD 23.如图,矩形ABCD中,3AB=,2∠=∠,MN交CD于点E.上,且AMN AMB(1)求证:AMN是等腰三角形;(2)求证:22=⋅;AM BM AN(3)当M为BC中点时,求ME的长.参考答案1.C【分析】抛物线y=x2-2x+1化为顶点坐标式再按照“左加右减,上加下减”的规律平移则可.【详解】解:根据题意y=x2-2x+1=(x-1)2向下平移2个单位,再向左平移1个单位,得y=(x-1+1)2-2,y=x2-2.故选:C.【点睛】此题不仅考查了对平移的理解,同时考查了学生将一般式转化顶点式的能力.2.D【分析】根据比例设x=2k,y=3k,然后代入比例式对各选项分析判断利用排除法求解.【详解】:∵23xy=,∴设x=2k,y=3k,A.23533x y k ky k++==,正确,故本选项错误;B.32133y x k ky k--==,正确,故本选项错误;C.212233x ky k==⋅,正确,故本选项错误;D.12131314x ky k++=≠++,故本选项正确.故选D.【点睛】本题考查了比例的性质,利用“设k法”表示出x、y求解更加简便.3.A【分析】根据函数图象写出一次函数图象在反比例函数图象上方部分的x的取值范围即可.【详解】解:由图可知,x >2或﹣1<x <0时,ax+b >xk . 故选A .【点睛】 本题考查了反比例函数与一次函数的交点,利用数形结合,准确识图是解题的关键. 4.B【分析】根据DE ∥BC ,可以得到△ADE ∽△ABC ,通过S △ADE :S 四边形DBCE =1:8,可以得到△ADE 与△ABC 的面积的比,根据相似三角形面积的比等于相似比的平方,即可求解.【详解】解:∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,∴△ADE ∽△ABC ,又∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,∴AE :AC=1:3.故选B.【点睛】本题考查相似三角形的判定和性质,相似三角形面积的比等于相似比的平方.根据已知条件求出两个三角形的相似比是解决问题的关键.5.A【分析】先设出A 点的坐标,由△AOB 的面积可求出xy 的值,即xy=-6,即可写出反比例函数的解析式.【详解】解:设A 点坐标为A (x ,y ),由图可知A 点在第二象限,∴x <0,y >0,又∵AB ⊥x 轴,∴|AB|=y ,|OB|=|x|,∴S△AOB=12×|AB|×|OB|=12×y×|x|=3,∴-xy=6,∴k=-6故选A.【点睛】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.6.B【分析】利用函数的对称性将A、B、C三个点放在对称轴同侧,利用函数增减性进行比较.【详解】解:由题可知抛物线对称轴为x=-1,则A点关于对称轴的对称点为(-3,1y),由于抛物线开口向上,则当x<-1时,函数值y随x的增大而减小,故y1>y3>y2.故选择B.【点睛】本题考察了运用二次函数对称性比较函数值大小.7.D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=6.A.44182AB==,对应边631842ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.22142BC==,对应边411822BCAB===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.8.A【分析】先由一次函数的图象确定a、b的正负,再根据a-b判断双曲线所在的象限.能统一的是正确的,矛盾的是错误的.【详解】图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=-ba,即直线y=ax+b与x轴的交点为(-ba,0)由图A、B的直线和x轴的交点知:-ba>-1,即b<a,所以b-a<0,∴a-b>0,此时双曲线在第一、三象限,故选项B不成立,选项A正确;图C、D直线y=ax+b经过第二、一、四象限,∴a<0,b>0,此时a-b<0,双曲线位于第二、四象限,故选项C、D均不成立;故选A.【点睛】本题考查了一次函数、反比例函数的性质.解决本题用排除法比较方便.9.C【分析】根据二次函数的图象具有对称性和表格中的数据,可以得到对称轴为x=32,再由图象中的数据可以得到当x=32取得最大值,从而可以得到函数的开口向下以及得到函数当x<32时,y随x的增大而增大,当x>32时,y随x的增大而减小,然后根据x=0时,y=1,x=-1时,y=-3,可以得到方程ax2+bx+c=0的两个根所在的大体位置,若ax12+bx1=ax22+bx2,且x1≠x2,得到123=22x x +,从而可以解答本题. 【详解】解:由表格可知,由表格可知,x=0和x=3时,函数值y 都是1,∴抛物线的对称轴为直线x=033=22+, 当x=32时,二次函数y=ax 2+bx+c 取得最大值, ∴抛物线的开口向下,故①正确,②错误; 当x <32时,y 随x 的增大而增大,故③正确, 方程ax 2+bx+c=0的一个根大于-1,小于0,则方程的另一个根大于3,小于4,故④错误, 若ax 12+bx 1=ax 22+bx 2,且x 1≠x 2,则123=22x x +, ∴x 1+x 2=3,故⑤正确,故选:C .【点睛】本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用表格中数据和二次函数的性质判断题目中各个结论是否正确.10.D【详解】试题解析:设BP =x ,CQ =y ,则AP 2=42+x 2,PQ 2=(6-x )2+y 2,AQ 2=(4-y )2+62; ∵△APQ 为直角三角形,∴AP 2+PQ 2=AQ 2,即42+x 2+(6-x )2+y 2=(4-y )2+62,化简得:y =−14x 2+32x 整理得:y=−14(x −3)2+94 根据函数关系式可看出D 中的函数图象与之对应.故选D .【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.11.1-【分析】根据二次函数的定义列出关于m 的方程,求出m 的值即可.【详解】解:∵y=(m-1)x m2+1是二次函数,∴m 2+1=2,∴m=-1或m=1(舍去).故答案为:-1.【点睛】本题考查了二次函数的定义,关键是根据定义列出方程,在解题时要注意m-1≠0. 12.6【分析】根据题意,画出示意图,易得:Rt △EDC ∽Rt △FDC ,进而可得ED DC DC FD=;即DC 2=ED?FD ,代入数据可得答案.【详解】根据题意,作△EFC ,树高为CD ,且∠ECF=90°,ED=3,FD=12,易得:Rt △EDC ∽Rt △DCF , 有ED DC DC FD=,即DC 2=ED×FD , 代入数据可得DC 2=36,DC=6,故答案为6.13.10【分析】令y =0解方程,保留正值,即为该男生将铅球推出的距离.【详解】解:当y =0时,212501233x x -++= 解得,x 1=10,x 2=-2(负值舍去),∴该男生把铅球推出的水平距离是10m .【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数与一元二次方程的关系是解题的关键.14.158或157 【分析】先在Rt △ABC 中利用勾股定理求出AC=6cm ,再根据折叠的性质得到BE=DE ,直线EF 将∠B 折叠,使点B 恰好落在BC 上的D 处,△ADE 恰好为直角三角形,有两种可能:①∠ADE=90°,②∠AED=90°,设BE=x ,运用三角形相似列比例式解方程即可得解.【详解】解:在Rt △ABC 中,∵∠C=90°,AB=5,AC=4,∴BC=3.直线EF 将∠B 折叠,使点B 恰好落在BC 上的D 处,当△ADE 恰好为直角三角形时, 根据折叠的性质:BE=DE设BE=x ,则DE=x ,AE=10-x①当∠ADE=90°时,则DE ∥BC , ∴=DE AE CB AB, ∴5=35x x -, 解得:15=8x , ②当∠AED=90°时,则△AED ∽△ACB , ∴=DE AE BC AC, ∴5=34x x -, 解得:x=157, 故所求BE 的长度为:158或157.故答案为:158或157.【点睛】本题考查了折叠的性质,勾股定理以及相似三角形的判定与性质,能够全面的思考问题进行分类讨论是本题的关键.15.(1)(﹣1,8);(2)将抛物线y =﹣2x 2﹣4x+6向右平移3个单位,可使平移后所得图象经过坐标原点,平移后所得图象与x 轴的另一个交点的坐标为(4,0).【分析】(1)利用配方法将二次函数一般式化为顶点式,从而求出顶点坐标;(2)根据二次函数的与x 轴的交点坐标确定如何平移后经过原点;【详解】解:(1)∵y =﹣2x 2﹣4x+6∴222(211)62(1)8y x x x =-++-+=-++∴抛物线的顶点坐标为(﹣1,8);(2)当y =0时,﹣2(x+1)2+8=0,解得x 1=1,x 2=﹣3,抛物线y =﹣2x 2﹣4x+6与x 轴的交点坐标为(1,0),(﹣3,0),所以将抛物线y =﹣2x 2﹣4x+6向右平移3个单位,可使平移后所得图象经过坐标原点, 平移后所得图象与x 轴的另一个交点的坐标为(4,0).【点睛】 本题考查二次函数一般式化为顶点式及二次函数的平移,掌握配方法的方法2222224()()()2224b b b b ac b y ax bx c a x x c a x a a a a a -⎡⎤=++=++-+=++⎢⎥⎣⎦ 是解题关键. 16.BD =57.5尺.【分析】根据相似三角形的性质求得AD 的长度,进而求解.【详解】解:依题意可得:CB∥ED ∴△ABF∽△ADE,∴AB BF AD DE=,即50.45 AD=,解得:AD=62.5,BD=AD﹣AB=62.5﹣5=57.5尺.【点睛】掌握相似三角形对应边成比例是本题的解题关键.17.(1)抛物线解析式为y=﹣425x2+85x;(2)货船能从桥下通过.【分析】(1)根据题意确定抛物线顶点坐标,利用待定系数法求函数解析式;(2)由抛物线对称轴直线x=5分析,船宽2米时,计算x=6是函数值是否大于3即可求解.【详解】(1)根据题意,得抛物线的顶点坐标为(5,4),经过(0,0),∴设:抛物线解析式为y=a(x﹣5)2+4,把(0,0)代入,得25a+4=0,解得a=4 25 -,所以抛物线解析式为:y=425-(x﹣5)2+4=425-x2+85x.(2)货船能从桥下通过.理由如下:由(1)可知,抛物线对称轴为直线x=5,又∵货船宽为2米,高为3米,∴当x=6时,y=425(6﹣5)2+4=3.84,∵3.84>3,∴货船能从桥下通过.答:货船能从桥下通过.【点睛】此题考查待定系数法求函数解析式,及二次函数的实际应用,根据二次函数对称轴及船宽,求当x=6时的函数值是解题关键.18.(1)A点坐标为(1,4),B点坐标为(4,1),反比例函数解析式为y2=4x;(2)7.5.【分析】(1)将A,B两点坐标代入一次函数解析式求解,然后用待定系数法求得反比例函数的解析式;(2)设一次函数图象与x轴交于点C,利用S△AOB=S△AOC﹣S△BOC求解.【详解】(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=kx,得k=1×4=4,所以反比例函数解析式为y2=4x;(2)如图,设一次函数图象与x轴交于点C,当y=0时,﹣x+5=0,解得x=5,则C点坐标为(5,0),所以S△AOB=S△AOC﹣S△BOC=12×5×4﹣12×5×1=7.5.【点睛】掌握待定系数法求函数解析式及三角形面积公式,数形结合的思想解题是本题的解题关键.19.(1)见解析(2)【详解】(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC AB ∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180︒,∠AFE=∠B∴∠AFD=∠C∴△ADF ∽△DEC(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC CD=AB=4又∵AE ⊥BC ∴ AE ⊥AD在Rt △ADE 中,6== ∵△ADF ∽△DEC∴AD AF DE CD =∴64AF =∴AF=20.(1)抛物线y =x 2﹣2x+2与x 轴的“和谐值”为1;(2)抛物线y =x 2﹣2x+3与直线y =x ﹣1的“和谐值”为34. 【分析】(1)根据题意将抛物线化成顶点式,找到函数最值即可求解;(2)取P 点为抛物线y =x 2﹣2x+2任意一点,作PQ ∥y 轴交直线y =x ﹣1于Q ,分析PQ 的长度,得到二次函数解析式,求其顶点坐标即可.【详解】(1)∵y =(x ﹣1)2+1,∴抛物线上的点到x 轴的最短距离为1,∴抛物线y =x 2﹣2x+2与x 轴的“和谐值”为1;(2)如图,P 点为抛物线y =x 2﹣2x+2任意一点,作PQ ∥y 轴交直线y =x ﹣1于Q , 设P(t ,t 2﹣2t+2),则Q(t ,t ﹣1),∴PQ =t 2﹣2t+2﹣(t ﹣1)=t 2﹣3t+3=(t ﹣32)2+34, 当t =32时,PQ 有最小值,最小值为34, ∴抛物线y =x 2﹣2x+3与直线y =x ﹣1的“和谐值”为34.【点睛】充分理解题意“和谐值”的含义即函数最值的绝对值是本题的解题关键.21.(1)当125x =时正方形MPQN 的边P 恰好落在BC 边上;(2)()224 2.463y x x x =-+<<,当3x =时,y 最大6= 【分析】(1)因为正方形的位置在变化,但是△AMN ∽△ABC 没有改变,利用相似三角形对应边上高的比等于相似比,得出等量关系,代入解析式即可.(2)用含x 的式子表示矩形MEFN 边长,从而求出面积的表达式.【详解】解:(1)设AD 与MN 相交于点H ,∵MN BC ,∴AMN ABC △∽△, ∴AHMN AD BC =,即446xx-=, 解得,125x =, 当125x =时正方形MPQN 的边P 恰好落在BC 边上;(2)设MP 、NQ 分别与BC 相交于点E 、F , 设D a =,则4A a =-,由∴AH MN AD BC =,即46a xx -=, 解得,243a x =-+,∵矩形MEFN 的面积MN HD =⨯, ∴()22244 2.4633y x x x x x =-+=⎛⎫ ⎪⎭+<⎝-<()22363y x =--+∴当3x =时,y 最大6=.本题结合相似三角形的性质及矩形面积计算方法,考查二次函数的综合应用,解题时,要始终抓住相似三角形对应边上高的比等于相似比,表示相关边的长度.22.(1)、y=2100(010x ){3130(1030,x )x x x x ≤≤-+≤,且为整数且为整数;(2)、22件.【详解】试题分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案; (2)根据销量乘以每台利润进而得出总利润,即可求出即可. 试题解析:(1)2300200100(010,){[3003(10)200]3130(1030,)x x x x x y x x x x x -=≤≤=---=-+≤且为整数<且为整数, (2)在0≤x≤10时,y=100x ,当x=10时,y 有最大值1000;在10<x≤30时,y=-3x 2+130x ,当x=2123时,y 取得最大值, ∵x 为整数,根据抛物线的对称性得x=22时,y 有最大值1408.∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.考点:二次函数的应用.23.(1)详见解析;(2)详见解析;(3)54ME =【分析】(1)由矩形的性质得出AD ∥BC ,由平行线的性质得出∠NAM=∠BMA ,由已知∠AMN=∠AMB ,得出∠AMN=∠NAM ,即可得出结论;(2)由矩形的性质得出AD ∥BC ,AD=BC=2,AB=CD=3,由平行线的性质得出∠NAM=∠BMA ,作NH ⊥AM 于H ,由等腰三角形的性质得出AH=12AM ,证明△NAH ∽△AMB ,得出=AN AH AM BM ,即可得出结论; (3)求出BM=CM=12BC=12×2=1,由(2)得AM 2=2BM•AN ,得出AM 2=2AN ,由勾股定理得出AM 2=AB 2+BM 2=10,求出AN=5,得出DN=AN-AD=3,设DE=x ,则CE=3-x ,证明△DNE ∽△CME ,得出=DN DE CM CE ,求出DE=94,得出CE=DC-DE=34,再由勾股定理即可得出答案.解:(1)证明:∵四边形ABCD 是矩形,∴AD BC ∥,∴NAM BMA ∠=∠,又AMN AMB ∠=∠,∴AMN NAM ∠=∠,∴AN MN =,即AMN 是等腰三角形;(2)解:作NH AM ⊥于H ,∵AN MN =,NH AM ⊥, ∴12AH AM =,∵90NHA ABM ∠=∠=︒,AMN AMB ∠=∠,∴NAH AMB △∽△, ∴ANAHAM BM =, ∴212AN BM AH AM AM ⋅=⋅=∴22AM BM AN =⋅(3)解:∵M 为BC 中点, ∴112BM CM BC ===,由(2)得,22AM BM AN =⋅,∵2223110AM =+=,∴5AN =,∴523DN =-=,设DE x =,则3CE x =-,∵AN BC , ∴DNDECM CE =,即313xx =-, 解得,94x =,即94DE =, ∴34CE =,∴54ME =.【点睛】本题是相似形综合题目,考查的是相似三角形的判定和性质、勾股定理的应用、等腰三角形的性质和矩形的性质等知识;熟练掌握矩形的性质和等腰三角形的判定,证明三角形相似是解题的关键.。

上海外国语大学闵行外国语初级中学2024-2025学年上学期九年级数学期中试卷(无答案)

2024学年第一学期九年级数学期中考试试卷(时间:90分钟 满分:150分)考生注意:1.答题时,请考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一、选择题:(本大题共6题,每题4分,共24分)1.下列函数中,属于二次函数的是( )A .B .C .D .2.在中,,那么的三角比值为的是( )A . B . C . D .3.如图,,,则下面结论错误的是( )A . B . C . D .4.已知非零向量,下列条件中,能判定向量与向量方向相同的是( )A . B . C . D .5.如图,把两条宽度都是1的纸条,其中一条对折后再两条交错地叠在一起,相交成角α,则重叠部分的面积是( )A .B .C .D .6.抛物线的顶点为,且经过点,其部分图象如图所示.对2y ax bx c =++22(1)y x x =--25y x =22y x =Rt ABC △90,4,3C BC AC ∠=︒==A ∠35sin A tan A cot A cos A a b c ∥∥32AD DF =35AD AF =23AB EF =35BC BE =32BC CE =a b c r r r 、、a r b r ,a c b c r r r r ∥∥||2||a b =r r 0a b +=r r r 3,2a c b c==r r r r 2sin α2cos α1sin α12cos α2y ax bx c =++(1,)A m (3,0)B于此抛物线有如下四个结论:①;@;③;④方程的两根为.其中所有正确结论个数是( )A .4个B .3个C .2个D .1个二、填空题(本大题共12题,每题4分,共48分)7.已知,则__________.8.计算:___________.9.如果在比例尺为的地图上,A 、B 两地的图上距离是3厘米,那么A 、B 两地的实际距离是_________千米.10.计算:__________11.已知P 是线段的黄金分割点,且,那么的值为________.12.二次函数的图象如图所示,对称轴为直线,若此抛物线与x 轴的一个交点为,则抛物线与x 轴的另一个交点坐标是________13.小明要测量公园里一棵古树的高,被一条小溪挡住去路,采用计算方法,在A 点测得古树顶的仰角为α,向前走了100米到B 点.测得古树顶的仰角为β,则古树的高度为______米.0abc <0a b c -+>13a c =-20ax bx c ++=121,3x x =-=43x y =x y x y-=+12()(3)3a b a b ---=r r r r 1:2000000cos 60sin 60cot 30tan 45︒-︒=︒-︒AB AP BP >AP BP BP -2y ax bx c =++2x =(6,0)14.如果一个正多边形的中心角为,那么这个正多边形的边数是____.15.已知的两直角边之比为,若与相似,且最长的边长为20,则的周长为______.16.若抛物线与x 轴交于点,与y 轴交于点,则称为“抛物三角形”,特别地,当时,称为“正抛物三角形”;当时,称为倒抛物三角形,那么,当为倒抛物三角形时,a ,c 应分别满足条件______.17.如图,在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在的网格中,是一个格点三角形,如果也是该网格中的一个格点三角形,它与相似且面积最大,那么与相似比的值是______.18.如图,在中,,平分交于点D ,过D 作交于点E ,将沿折叠得到,交于点G.若,则________.三、简答题(本大题共7题,满分78分):19.(本题满分10分)计算:.20.(本题满分10分)如图,在梯形中,,且,过点A 作,分别交于点E 、F ,若.(1)用表示和;(2)求作在方向上的分向量.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的分45︒Rt ABC △3:4DEF △ABC △DEF △DEF △2y ax c =+()(),0,,0A m B n ()0,C c ABC △0mnc <ABC △0mnc >ABC △ABC △44⨯ABC △DEF △ABC △DEF △ABC △Rt ABC △90ABC ∠=︒CD ACB ∠AB DE BC ∥AC DEC △DE DEF △DF AC 73AG GE =tan A =tan 45sin 45cot 30sin 60︒++︒︒⋅︒ABCD AD BC ∥3BC AD =AE DC ∥BC BD 、,AB a BC b ==u u u r u u u r r r a b r r 、BD u u u r AF u u u r BF u u u r a b r r 、向量)21.(本题满分10分)已知:如图在中,是边上的高,E 为边的中点,,.求:(1)线段的长;(2)的值.22.(本题满分10分)图1是某款篮球架,图2是其示意图,立柱垂直地面,支架与交于点A ,支架交于点G ,支架平行地面,篮筐与支架在同一直线上,米,米,.图1 图2(1)求的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在凳子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:)23.(本题满分12分,每小题各6分)如图,已知的顶点E 在的边上,与相交于点F ,,.(1)求证:;ABC △AD BC AC 14,12BC AD ==4sin 5B =DC tan EDC ∠OA OB CD OA CG CD ⊥OA DE OB EF DE 2.5OA =0.8AD =32AGC ∠=︒GAC ∠sin320.53,cos320.85,tan320.62︒≈︒≈︒≈ADE △ABC △BC DE AB FEA B ∠=∠DAF CAE ∠=∠2·AE AF AB =(2)求证:.24.(本题满分12分,第(1)题3分,第(2)4分,第(3)小题5分)如图,抛物线交x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C ,点A 、C 的坐标分别为,对称轴交x 轴于E ,点D 为抛物线顶点.备用图(1)求抛物线的解析式;(②)点P 是直线下方的抛物线上一点,且.求P 的坐标;(3)M 为抛物线对称轴上一点,是否存在以B 、C 、M 为顶点的三角形是等腰三角形,若存在,请求出点M 的坐标,若不存在,请说明理由.25.(本题满分14分,第(1)题4分,(2)(3)小题各5分)如图,已知中,是的平分线.图1 图2(1)求证:;(2)如图,过点C 作射线,与交于点M ,与边交于点E ,又知①如果,求的长;②设,求y 关于x 的函数关系式. DF CE DE CB=2y ax bx c =++()()6,00,6、2x =-AC 2PAC DAC S S =△△ABC △AD BAC ∠AB BD AC CD=AD AB 9,6BD CD ==23AM AD =CE ,AM AE x y AD AB ==。

沪科版九年级上册数学期中考试试题及答案解析

沪科版九年级上册数学期中考试试卷一、选择题。

(每小题只有一个正确答案)1.将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( ) A .y=x 2﹣1 B .y=x 2+1 C .y=(x ﹣1)2 D .y=(x+1)2 2.如果反比例函数y =kx 的图象经过点(﹣12,3),则k 的值是( ) A .﹣16B .﹣6C .32D .32-3.已知3x=5y (y≠0),则下列比例式成立的是( ) A .3x =5yB .5x =3y C .x y =35D .3x =5y 4.若ABC A B C '∆'∆'∽,相似比为1:2,则ABC ∆与A B C ∆'''的面积的比为( ) A .1:2B .2:1C .1:4D .4:15.二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( ) A .(-1,-1)B .(1, 1)C .(1,-1)D .(-1,1)6.如图,△ABC 中,AD 是中线,BC =16,∠B =∠DAC ,则线段AC 的长是( )A .8B .C .12D .7.如图,平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y=3x(x >0)、y=kx(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 值为( )A.﹣1 B.1 C.12-D.128.已知二次函数y=a(x﹣m)2﹣n的图象如图所示,则一次函数y=mx+a与反比例函数y=﹣mnx在同一坐标系内的图象可能是()A.B.C.D.9.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S210.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(14,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是()A.14-≤b≤1B.54-≤b≤1C.94-≤b≤12D.94-≤b≤1二、填空题11.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(AP>PB ),如果AB 的长度为10cm ,那么PB 的长度为__________cm .12.已知点A (0,y 1)、B (1,y 2)、C (3,y 3)在抛物线y =ax 2﹣2ax +1(a <0)上,则y 1、y 2、y 3的大小关系是_____(用“<”联结).13.《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五步,股十二步,问勾中容方几何?”其意思为:“今有直角三角形,勾(短直角边)长为5步,股(长直角边)长为12步,问该直角三角形能容纳的正方形边长最大是多少步?”该问题的答案是______步.14.二次函数y =x 2﹣x +a (0<a <14),若当x =t 时,y <0,则当x =t ﹣1时,函数值y 的取值范围为_____. 三、解答题15.已知抛物线254y ax x a =-+过点C (5,4). (1)求a 的值;(2)求该抛物线顶点的坐标.16.如图,已知在△ABC 中,DE ∥BC ,EF ∥AB ,AE =2CE ,AB =6,BC =9.求:四边形BDEF 的周长.17.如图,已知O是坐标原点,B,C两点的坐标分别为(3,﹣1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍,画出图形;(2)分别写出B,C两点的对应点B′,C′的坐标;(3)求△OB′C′的面积.18.某施工地在道路拓宽施工时,遇到这样一个问题,马路旁边原有一个面积为100平方米,周长为90米的三角形绿化地,由于马路拓宽绿地被占去了一部分△ADE,变成了四边形BCED且DE∥BC,原绿化地一边AB的长由原来的30米缩短成BD为18米.求被占去的部分面积有多大?它的周长是多少?19.如图,一次函数y=kx+b(k≠0)和反比例函数y=mx(m≠0)交于点A(4,1)与点B(﹣1,n).(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.20.有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象中x>x2部分的图象向下翻折与原图象未翻折的部分组成图象“G”,试结合图象分析:平行于x轴的直线y=m与图象“G”的交点的个数情况.⊥于点E,点D在边AC上,联结BD交CE 21.如图,已知,在锐角ABC中,CE AB⋅=⋅.于点F,且EF FC FB DF()1求证:BD AC⊥;()2联结AF,求证:AF BE BC EF⋅=⋅.22.我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:41820912x x xyx x x+≤≤⎧=⎨-+≤≤⎩(,为整数)(,为整数),每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?23.我们知道,三角形三个内角平分线的交点叫做三角形的内心,已知点I为△ABC的内心.(1)如图1,连接AI并延长交BC于点D,若AB=AC=3,BC=2,求ID的长;(2)如图2,过点I作直线交AB于点M,交AC于点N.①若MN⊥AI,求证:MI2=BM•CN;②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求11AM AN+的值.参考答案与解析1.A 【解析】二次函数图象与平移变换.据平移变化的规律,左右平移只改变横坐标,左减右加.上下平移只改变纵坐标,下减上加.因此,将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x 2﹣1.故选A . 2.D 【分析】直接利用反比例函数图像上点的坐标特点得出答案. 【详解】解:∵反比例函数y =kx 的图像经过点(﹣12,3), ∴k =xy =﹣32. 故选:D . 【点睛】此题主要考查了反比例函数图像上点的坐标特征,正确代入已知点是解题关键. 3.B 【分析】直接利用比例的性质得出x ,y 之间关系进而得出答案. 【详解】 A. 由53x y=得15xy =,故本选项错误; B. 由53x y=得35x y =,故本选项正确; C. 由35x y =得53x y =,故本选项错误; D. 由35x y =得53x y =,故本选项错误. 故选B. 【点睛】根据两内项之积等于两外项之积对各选项分析判断即可得解.4.C 【详解】试题分析:直接根据相似三角形面积比等于相似比平方的性质.得出结论: ∵ABC A B C '∆'∆'∽,相似比为1:2, ∴ABC ∆与A B C ∆'''的面积的比为1:4. 故选C.考点:相似三角形的性质. 5.B 【解析】试题解析:当1x =时,110 1.y a b =++=+= 故它的图象过点()1,1. 故选B. 6.B 【分析】通过证明△DAC ∽△ABC ,可得AC DCBC AC=,即可求AC 的长. 【详解】解:∵AD 是中线,BC =16, ∴BD =DC =8,∵∠B =∠DAC ,∠C =∠C , ∴△DAC ∽△ABC ∴AC DCBC AC= ∴AC 2=16×8,∴AC = 故选:B . 【点睛】本题考查了相似三角形的判定和性质,证明△DAC ∽△ABC 是本题的关键. 7.A【详解】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.8.B【分析】根据二次函数图象判断出a>0,m<0,n<0,然后求出mn>0,再根据一次函数与反比例函数图象的性质判断即可.【详解】解:∵抛物线开口向上,∴a>0,由图可知,m <0,n <0, ∴mn >0,∴一次函数y =mx+a 的图像过第一、二、四象限,反比例函数y =﹣mnx分布在第二、四象限. 故选:B . 【点睛】本题考查了二次函数图像,一次函数图像,反比例函数图像,观察二次函数图像判断出m 、n 、a 的取值是解题的关键. 9.D 【解析】 【分析】根据题意判定△ADE ∽△ABC ,由相似三角形的面积之比等于相似比的平方解答. 【详解】∵如图,在△ABC 中,DE ∥BC ,∴△ADE ∽△ABC , ∴2112BDES AD S S SAB=++(), ∴若2AD >AB ,即12AD AB >时,11214BDES S S S ++>, 此时3S 1>S 2+S △BDE ,而S 2+S △BDE <2S 2.但是不能确定3S 1与2S 2的大小, 故选项A 不符合题意,选项B 不符合题意. 若2AD <AB ,即12AD AB <时,11214BDES S S S ++<, 此时3S 1<S 2+S △BDE <2S 2,故选项C 不符合题意,选项D 符合题意.故选D .【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.10.B【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC =,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y 的最大与最小值,进而求出b 的取值范围. 【详解】 解:如图,延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .在△PAB 与△NCA 中,9090APB CNA PAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩==== , ∴△PAB ∽△NCA , ∴PB PA NA NC=, 设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y , ∴31y x x =-, ∴y =3x ﹣x 2=﹣(x ﹣32)2+94, ∵﹣1<0,14≤x≤3, ∴x =32时,y 有最大值94,此时b =1﹣94=﹣54, x =3时,y 有最小值0,此时b =1,∴b 的取值范围是﹣54≤b≤1. 故选:B .【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.11.(15﹣【分析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.【详解】∵P为A B的黄金分割点(AP>PB),∴AP AB×5,∴PB=AB﹣P A=10﹣(5)=(15﹣cm.故答案为(15﹣.【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AB.12.y3<y1<y2.【分析】求出抛物线的对称轴为直线x=1,然后根据二次函数的增减性解答.【详解】解:抛物线的对称轴为直线x=﹣22aa-=1,∵a<0,∴抛物线开口方向向下,∵A(0,y1)、B(1,y2)、C(3,y3),∴y3<y1<y2.故答案为:y3<y1<y2.【点睛】本题考查了二次函数图像上点的坐标特征,主要利用了二次函数的增减性,求出抛物线的对称轴是解题的关键.13.60 17.【分析】如图,根据正方形的性质得:DE∥BC,则△ADE∽△ACB,列比例式可得结论. 【详解】如图,∵四边形CDEF是正方形,∴CD=ED,DE∥CF,设ED=x,则CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴DEBC=ADAC,∴x5=12-x12,∴x=60 17,故答案为60 17.【点睛】本题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.14.0<y <94. 【分析】 先由a 的范围,得△>0,进而得抛物线的对称轴及当x =0或1时,y 的范围,从而得当y <0时,t 的范围及t ﹣1的范围,再由t ﹣1的范围两端的临界值,得对应的函数值,从而得答案.【详解】解:∵0<a <14, ∴△=1﹣4a >0,∵抛物线的对称轴为x =12,x =0或1时,y =a >0, ∴当y <0时,0<t <1,∴﹣1<t ﹣1<0,∴当x =﹣1时,y =1+1+a =a+2,当x =0时,y =0﹣0+a =a ,∴当x =t ﹣1时,函数值y 的取值范围为a <y <a+2,∵0<a <14, ∴0<y <94, 故答案为:0<y <94. 【点睛】本题考查了抛物线与x 轴的交点的性质、抛物线的交点个数与对应的一元二次方程的判别式的关系、二次函数的函数值在对称轴同侧的变化情况等知识点,具有一定的综合性. 15.(1)1;(2)(52,94-). 【解析】试题分析:(1)根据二次函数图象上点的坐标特征,把C 点坐标代入254y ax x a =-+中得到关于a 的方程,然后解此方程即可;(2)利用配方法把抛物线解析式配成顶点式即可得到顶点坐标.试题解析:(1)把C (5,4)代入254y ax x a =-+得252544a a -+=,解得1a =;(2)∵1a =,∴抛物线解析式为225954()24y x x x =-+=--,所以抛物线的顶点坐标为(52,94-). 考点:1.二次函数图象上点的坐标特征;2.二次函数的性质.16.16【分析】由题中条件可得四边形DBFE 是平行四边形,再由平行线分线段成比例的性质求得线段BD 、DE 的长,进而可求其周长.【详解】解:∵DE ∥BC ,EF ∥AB ,∴四边形DBFE 是平行四边形,∴EF =BD ,DE =BF ,∵DE ∥BC , ∴AE AD DE AC AB BC== , ∵AE =2CE , ∴AE AC =2369AD DE ==, ∴DE =6,AD =4,即BD =2,∴四边形BDEF 的周长=2(BD+DE )=2×(6+2)=16.【点睛】本题主要考查了平行四边形的判定和性质以及平行线分线段成比例定理,应能够熟练掌握.17.(1)详见解析;(2)B ′(﹣6,2),C ′(﹣4,﹣2);(3)10.【分析】(1)分别延长BO ,CO ,使B′O =2BO ,C′O =2CO ,然后连接B′C′即可;(2)根据图形写出坐标即可;(3)利用网格把三角形放到矩形里面,然后利用矩形的面积减去四周三个小直角三角形的面积,求解即可.【详解】解:(1)如图;(2)由图可得:B′(﹣6,2),C′(﹣4,﹣2);(3)S △OB′C′=S 矩形AB′DE ﹣S △AB′O ﹣S △B′DC′﹣S △C′EO ,=6×4﹣12×2×6﹣12×4×2﹣12×4×2, =24﹣14,=10,即△OB′C′的面积为10.【点睛】本题主要考查了利用位似变换作图以及“割补法”求面积,割补法是求图形面积的常用方法,有一定难度.18.C △ADE =36m , S △ADE =16(m 2).【分析】首先证明△ADE ∽△ABC ,求出相似比,然后根据相似三角形的性质列出比例式求△ADE 的周长和面积即可.【详解】解:∵DE ∥BC ,∴△ADE ∽△ABC , ∴ADE ABCC AD DE AE AB BC AC C ===△△, ∵AB 的长由原来的30米缩短成BD 为18米,∴AD =12m ,∴123090ADE ADEABCC CC==△△△,解得:C△ADE=36(m),∵21241003025 ADE ADEABCS SS⎛⎫===⎪⎝⎭△△△,∴S△ADE=16(m2).【点睛】此题主要考查了相似三角形的应用,根题意得出△ADE∽△ABC求出相似比是解题关键.19.(1)y=4x,y=x﹣3;(2)152;(3)﹣1<x<0或x>4.【分析】(1)把点A(4,1)代入反比例函数y=mx得到m=4,即反比例函数的解析式为y=4x,然后求出B(﹣1,﹣4),再把点A(4,1)与点B(﹣1,﹣4)代入一次函数y=kx+b求出k和b即可;(2)求出点C坐标,然后根据三角形的面积公式即可得到结论;(3)观察函数图象,找出一次函数图象在反比例函数图象上方时对应的x的取值范围即可.【详解】解:(1)∵点A(4,1)在反比例函数y=mx(m≠0)的图像上,∴m=4,即反比例函数的解析式为y=4x,当x=﹣1时,n=﹣4,即B(﹣1,﹣4),∵点A(4,1)与点B(﹣1,﹣4)在一次函数y=kx+b(k≠0)的图象上,∴144k bk b=+⎧⎨-=-+⎩,解得:13kb=⎧⎨=-⎩∴一次函数解析式为y=x﹣3;(2)对于y=x﹣3,当y=0时,x=3,∴C(3,0)∴S△AOB=S△AOC+S△BOC=1115 3134222⨯⨯+⨯⨯=;(3)由图象可得,当﹣1<x<0或x>4时,一次函数的值大于反例函数的值.【点睛】本题考查的是反比例函数与一次函数的交点问题及三角形的面积公式,熟知坐标轴上点的坐标特点是解答此题的关键.20.(1)y=12(x﹣3)2﹣2;(2)详见解析.【分析】(1)设出二次函数解析式的顶点式,代入A(1,0)求出a即可;(2)求出点B坐标,画出函数G的图像,然后依据函数图象进行回答即可.【详解】解:(1)由上述信息可知该函数图象的顶点坐标为:(3,﹣2),设二次函数的表达式为:y=a(x﹣3)2﹣2.∵该函数图象经过点A(1,0),∴0=a(1﹣3)2﹣2,解得a=12,∴二次函数解析式为:y=12(x﹣3)2﹣2;(2)∵A(1,0),对称轴是x=3;∴B(5,0),如图所示:当m>0时,直线y=m与G有一个交点;当m=0时,直线y=m与G有两个交点;当﹣2<m<0时,直线y=m与G有三个交点;当m=﹣2时,直线y=m与G有两个交点;当m<﹣2时,直线y=m与G有一个交点.【点睛】本题主要考查的是二次函数的图象和性质、待定系数法求二次函数的解析式,数形结合是解题的关键.21.(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)证明△EFB∽△DFC,根据相似三角形对应角相等可得∠EFB=∠FDC,从而证得BD⊥AC;(2)由EFB∽DFC,可得ABD ACE∠=∠,从而证明AEC∽FEB,根据相似三角形的性质可得AE FEEC EB=,再根据AEC FEB∠=∠,从而得AEF∽CEB,根据相似三角形的性质即可得.试题解析:(1)EF FC FB DF⋅=⋅,EF FBDF FC∴=,EFB DFC∠=∠,EFB∴∽DFC,FEB FDC∴∠=∠,CE AB⊥,90FEB∴∠=,90FDC∴∠=,BD AC∴⊥;()2EFB∽DFC,ABD ACE∴∠=∠,CE AB⊥,90FEB AEC∴∠=∠=,AEC∴∽FEB,AEECFE EB ∴=,AEFEEC EB ∴=,90AEC FEB ∠=∠=,AEF ∴∽CEB ,AFEFCB EB ∴=,AF BE BC EF ∴⋅=⋅.22.(1)20110101112x x x z x x -+≤≤⎧=⎨≤≤⎩(,为整数)(,为整数);(2)()()()2216801840400910102001112x x x x w x x x x x x x ⎧-++≤≤⎪=-+≤≤⎨⎪-+≤≤⎩,为整数,为整数,为整数;(3)x=8时,w 有最大值144万元.【详解】分析:(1)根据表格中的数据可以求得各段对应的函数解析式,本题得以解决; (2)根据题目中的解析式和(1)中的解析式可以解答本题;(3)根据(2)中的解析式可以求得各段的最大值,从而可以解答本题.详解;(1)当1≤x≤9时,设每件产品利润z (元)与月份x (月)的关系式为z=kx+b , 19218k b k b ==+⎧⎨+⎩,得120k b -⎧⎨⎩==, 即当1≤x≤9时,每件产品利润z (元)与月份x (月)的关系式为z=-x+20, 当10≤x≤12时,z=10,由上可得,z=20(19)10(1012)x x x x x -+≤≤⎧⎨≤≤⎩,取整数,取整数;(2)当1≤x≤8时,w=(-x+20)(x+4)=-x 2+16x+80当9≤x≤10时,w=(-x+20)(-x+20)=x 2-40x+400;当11≤x≤12时,w=10(-x+20)=-10x+200;∴w 与x 的关系式为: ()()()2216801840400910102001112x x x x w x x x x x x x ⎧-++≤≤⎪=-+≤≤⎨⎪-+≤≤⎩,为整数,为整数,为整数;(3)当1≤x≤8时,w=-x 2+16x+80=-(x-8)2+144,∴当x=8时,w 取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=-10x+200,则当x=10时,w 取得最大值,此时w=100,由上可得,当x 为8时,月利润w 有最大值,最大值144万元.点睛:本题考查二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.23.(1;(2)见解析;(3 【解析】【分析】(1)如图1中,作IE ⊥AB 于E .设ID=x .由△BEI ≌△BDI ,可得ID=IE=x ,BD=BE=1,AE=2,在Rt △AEI 中,根据AE 2+EI 2=AI 2,可得()2222,x x +=解方程即可; (2)如图2中,连接BI 、CI .首先证明△AMI ≌△ANI (ASA ),再证明△BMI ∽△INC ,可得22440x b ⇒++-=,推出NI 2=BM•CN ,由此即可解决问题;(3)过点N 作NG ∥AD 交MA 的延长线于G .由∠ANG=∠AGN=30°,推出AN=AG ,,NG 由AI ∥NG ,推出,BM NINI NC =,可得AM AM AN =+即可推出11AM AN += 【详解】 (1)如图1中,作IE ⊥AB 于E .设ID=x .∵AB=AC=3,AI 平分∠BAC ,∴AD ⊥BC ,BD=CD=1,在Rt △ABD 中,AD ===∵∠EBI=∠DBI ,∠BEI=∠BDI=90°,BI=BI ,∴△BEI ≌△BDI ,∴ID=IE=x ,BD=BE=1,AE=2,在Rt △AEI 中,∵AE 2+EI 2=AI 2,∴()2222x x +=,∴2x =∴2ID =(2)如图2中,连接BI 、CI .∵I 是内心,∴∠MAI=∠NAI ,∵AI ⊥MN ,∴∠AIM=∠AIN=90°,∵AI=AI ,∴△AMI ≌△ANI (ASA ),∴∠AMN=∠ANM ,∴∠BMI=∠CNI ,设∠BAI=∠CAI=α,∠ACI=∠BCI=β,∴∠NIC=90°﹣α﹣β,∵∠ABC=180°﹣2α﹣2β,∴∠MBI=90°﹣α﹣β,∴∠MBI=∠NIC ,∴△BMI ∽△INC ,∴,BMNINI NC =∴NI 2=BM•CN ,∵NI=MI ,∴MI 2=BM•CN .(3)过点N 作NG ∥AD 交MA 的延长线于G .∴∠ANG=∠AGN=30°,∴AN=AG ,NG =,∵AI ∥NG , ∴,AMAIMG GN = ∴AM AM AN =+∴11AM AN +=【点睛】考查全等三角形的判定与性质,相似三角形的判定与性质,综合性比较强,难度较大.。

初中数学九年级数学上学期期中测考试题考试卷及答案 (新版)沪科版.docx

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:函数的图象经过点(,,则函数的图象不经过第()象限.A .一 B.二 C.三 D.四试题2:对于任意实数,抛物线总经过一个固定的点,这个点是()A.(1, 0)B.(, 0)C.(, 3)D.(1, 3)试题3:把抛物线先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A. B.C. D.试题4:当时,下列图象有可能是抛物线的是()评卷人得分试题5:已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0B.1C.2D.3试题6:二次函数y=(a≠0)的图象如图所示,其对称轴为x=1.下列结论中错误的是()A.abc<0B.2a+b=0C.b2-4ac>0D.a-b+c>0试题7:反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的关系式可能分别是()A.,B.,C. ,D.,试题8:在同一坐标系中,函数和的图象大致是()试题9:正比例函数与反比例函数的图象相交于A、C两点,AB⊥x轴于点B,CD⊥x轴于点D(如图),则四边形ABCD 的面积为()A.1B.C.2D.试题10:已知反比例函数的图象如图所示,则二次函数的图象大致为()试题11:已知,是同一个反比例函数图象上的两点.若,且,则这个反比例函数的表达式为 .试题12:已知二次函数中,函数y与自变量x的部分对应值如下表:x... -1 0 1 2 3 ...y... 10 5 2 1 2 ...则当时,x的取值范围是_____.试题13:有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线;乙:与轴相交的两个交点的横坐标都是整数;丙:与轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式__________________.试题14:设抛物线过,,三点,其中点在直线上,且点到抛物线对称轴的距离等于1,则抛物线的函数表达式为 .试题15:已知二次函数,下列说法中错误的是________.(把所有你认为错误的序号都写上)①当时,随的增大而减小;②若图象与轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位长度,再向左平移3个单位长度后过点,则.试题16:若反比例函数的图象位于第一、三象限内,正比例函数的图象过第二、四象限,则的整数值是________.试题17:已知反比例函数,图象上到轴的距离等于1的点的坐标为________.试题18:若一次函数的图象与反比例函数的图象没有公共点,则实数k的取值范围是 .试题19:已知二次函数.(1)求函数图象的顶点坐标及对称轴.(2)求此抛物线与轴的交点坐标.试题20:炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A与射击目标B的水平距离为600 m,炮弹运行的最大高度为1 200 m.(1)求此抛物线的关系式.(2)若在A、B之间距离A点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.试题21:如图所示是某一蓄水池的排水速度h)与排完水池中的水所用的时间t(h)之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量.(2)写出关于的函数的表达式.(3)如果要6 h排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是,那么水池中的水要多少小时排完?试题22:如图,已知函数y=(x0)的图象经过点A,B,点A的坐标为 (1,2).过点A作AC∥y轴,AC=1(点C位于点A 的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC,OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.试题23:若反比例函数与一次函数的图象都经过点A(a,2).(1)求反比例函数的函数表达式;(2)当反比例函数的值大于一次函数的值时,求自变量x的取值范围.试题24:如图,一位运动员在距篮筐4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮筐.已知篮筐中心到地面的距离为3.05米.(1)建立如图所示的直角坐标系,求抛物线的表达式;(2)已知该运动员身高1.8米,在这次投篮中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.第24题图试题25:九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式.(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.试题1答案:A 解析:因为函数的图象经过点(,,所以,所以,根据一次函数的图象可知不经过第一象限.试题2答案:D 解析:当时,,故抛物线经过固定点(1,3).试题3答案:C 解析:抛物线y=向右平移1个单位长度后,所得函数的表达式为,抛物线向上平移2个单位长度后,所得函数的表达式为.试题4答案:A 解析:因为,所以抛物线开口向上.因为,所以抛物线与轴的交点在轴上方,排除B,D.又,所以,所以抛物线的对称轴在轴右侧,故选A.试题5答案:D 解析:∵抛物线与轴有两个交点,∴方程有两个不相等的实数根,∴,①正确.∵抛物线的开口向下,∴.又∵抛物线的对称轴是直线,,∴.∵抛物线与轴交于正半轴,∴,∴,②正确.方程的根是抛物线与直线交点的横坐标,当时,抛物线与直线没有交点,此时方程没有实数根,③正确,∴正确的结论有3个.试题6答案:D 解析: ∵二次函数的图象开口向下,∴a0.∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c0.∵二次函数图象的对称轴是直线x=1,∴,∴b0,∴,∴A正确.∵,∴,即,∴ B正确.∵二次函数的图象与x轴有2个交点,∴方程有两个不相等的实数根,∴b2-4ac>0,∴ C正确.∵当时,y=a-b+c<0,∴ D错误.试题7答案:B 解析:双曲线的两分支分别位于第二、四象限,即.A中,当时,抛物线开口向下,对称轴,不符合题意,错误;B中,当时,抛物线开口向下,对称轴,符合题意,正确;C中,当,即时,抛物线开口向上,不符合题意,错误;D中,当时,抛物线开口向下,但对称轴,不符合题意,错误.故选B.试题8答案:A 解析:由于不知道k的符号,此题可以分类讨论,当时,反比例函数的图象在第一、三象限,一次函数的图象经过第一、二、三象限,可知A项符合;同理可讨论当时的情况.试题9答案:C 解析:联立方程组得A(1,1),C().所以,所以S四边形ABCD.试题10答案:D 解析: 由反比例函数的图象可知,当时,,即,所以在二次函数中,,则抛物线开口向下,对称轴为,则,故选D.试题11答案:解析: 设反比例函数的表达式为,因为,,所以.因为,所以,解得k=4,所以反比例函数的表达式为.试题12答案:0<x<4 解析:根据二次函数图象的对称性确定出该二次函数图象的对称轴,然后解答即可.∵x=1和x=3时的函数值都是2,∴二次函数图象的对称轴为直线x=2.由表可知,当x=0时,y=5,∴当x=4时,y=5.由表格中数据可知,当x=2时,函数有最小值1, ∴a>0,∴当y<5时,x的取值范围是0<x<4.试题13答案:本题答案不唯一,只要符合题意即可,如试题14答案:或解析:由题意知抛物线的对称轴为或.(1)当对称轴为直线时,,抛物线经过,,∴解得∴.(2)当对称轴为直线时,,抛物线经过,,∴解得∴.∴抛物线的函数表达式为或.试题15答案:③解析:①因为函数图象的对称轴为,又抛物线开口向上,所以当时,随的增大而减小,故正确;②若图象与轴有交点,则Δ,解得,故正确;③当时,不等式的解集是,故不正确; ④因为抛物线,将图象向上平移1个单位长度,再向左平移3个单位长度后为,若过点,则,解得.故正确.只有③不正确.试题16答案:4 解析:由反比例函数的图象位于第一、三象限内,得,即.又正比例函数的图象过第二、四象限,所以,所以,所以的整数值是4.试题17答案:(2,1)或()解析:∵反比例函数的图象上的一点到轴的距离等于1,∴.①当时,,解得;②当时,,解得.综上所述,反比例函数的图象上到轴的距离等于1的点的坐标为(2,1)或().试题18答案:解析:若一次函数的图象与反比例函数的图象没有公共点,则方程没有实数根,将方程整理得判别式Δ,解得.试题19答案:分析:(1)首先把已知函数解析式配方,然后利用抛物线的顶点坐标、对称轴的公式即可求解;(2)根据抛物线与轴交点坐标特点和函数关系式即可求解.解:(1)∵,∴顶点坐标为(1,8),对称轴为直线.(2)令,则,解得,.∴抛物线与轴的交点坐标为(),().试题20答案:解:(1)建立直角坐标系,设点A为原点,则抛物线过点(0,0),(600,0),从而抛物线的对称轴为.又抛物线的最高点的纵坐标为1 200,则其顶点坐标为(300,1 200),所以设抛物线的关系式为,将(0,0)代入得,所以抛物线的关系式为.(2)将代入关系式,得,所以炮弹能越过障碍物.试题21答案:分析:观察图象易知(1)蓄水池的蓄水量.(2)与之间是反比例函数关系,所以可以设,依据图象上点(12,4)的坐标可以求得与之间的函数的表达式.(3)求当h时的值.(4)求当h时,t的值.解:(1)蓄水池的蓄水量=12×4=48 .(2)函数的表达式为.(3).如果要6 h排完水池中的水,那么每小时的排水量应该是8 .(4)依题意有,解得(h).所以如果每小时排水量是5 ,那么水池中的水要9.6小时排完.试题22答案:解:(1)反比例函数y=(x>0)的图象经过点A(1,2),∴k=2.∵AC∥y轴,AC=1,∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上,∴点D的坐标为(2,1).∴CD的长为1.∴(2)∵BE=,AC=1,∴.∵BE⊥CD,∴点B的纵坐标是.设,把点代入y=得即点B的横坐标是,∴点E的横坐标是,CE的长等于点E的横坐标减去点C的横坐标.∴CE=.试题23答案:解:(1)因为的图象过点A(),所以.因为的图象过点A(3,2),所以,所以.(2)由反比例函数与一次函数的图象相交,得到方程:,解得.所以另外一个交点是(-1,-6).画出图象,可知当或时,.试题24答案:解:(1)设抛物线的表达式为.由图象可知抛物线过点:(0,3.5),(1.5,3.05),所以解得所以抛物线的表达式为.(2)当时,,所以球出手时,他跳离地面的高度是(米).试题25答案:解:(1)当1≤x<50时,y=(x+40-30)(200-2x)=-2x2+180x+2 000; 当50≤x≤90时,y=(90-30)(200-2x)=-120x+12 000.综上,y=(2)当1≤x<50时,y=-2x2+180x+2 000=-2(x-45)2+6 050.∵a=-2<0,∴当x=45时,y有最大值,最大值为6 050元.当50≤x≤90时,y=-120x+12 000,∵k=-120<0,∴y随x的增大而减小.∴当x=50时,y有最大值,最大值为6 000元.综上可知,当x=45时,当天的销售利润最大,最大利润为6 050元. (3)当1≤x<50时,由,解得20≤x≤70,故20≤x<50;当50≤x≤90时,由,解得x≤60,故50≤x≤60.综上可知,20≤x≤60.所以该商品在销售过程中,共有41天每天销售利润不低于4 800元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共21页) 2014-2015学年上海市闵行区九年级(上)期中数学试卷 一、选择题(本大题共6题,每题3分,满分18分) 1.(3分)下列图形一定是相似图形的是( ) A.两个矩形 B.两个正方形 C.两个直角三角形 D.两个等腰三角形 2.(3分)已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中正确的是( ) A.sinA= B.cosA= C.tanA= D.cotA= 3.(3分)如果两个三角形相似,其中一个三角形的两个内角分别为82°、53°,那么另一个三角形中最小的内角为 ( ) A.82° B.53° C.45° D.不能确定 4.(3分)如图:在△ABC中,点D、E分别在AB、AC上,根据下列给定的条件,不能判断DE与BC平行的是( )

A. B. C. D. 5.(3分)如果线段b是线段a,c的比例中项,a:c=4:9,那么下列结论中正确的是( ) A.a:b=4:9 B.b:c=2:3 C.a:b=3:2 D.b:c=3:2 6.(3分)如图:已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列三角形中与△BDF一定相似的是( ) 第2页(共21页)

A.△BAC B.△BEC C.△BAE D.△BFA 二、填空题(本大题共12题,每题2分,满分24分) 7.(2分)已知:x:y=2:3,则(x+y):y= . 8.(2分)如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.5厘米,那么A、B两地的实际距离是 千米. 9.(2分)已知两个相似三角形的相似比是4:9,那么它们对应的角平分线之比是 . 10.(2分)已知在△ABC中,AD是中线,G是重心,如果GD=3cm,那么AG= cm. 11.(2分)已知点D是线段AB的黄金分割点(AD>BD),如果AB=2,那么AD的长为 .(结果保留根号) 12.(2分)已知向量与方向相反,长度为5,则用来表示为: . 13.(2分)如图,在△ABC中,D,E分别是AB,AC的中点,那么△ADE与四边形DBCE的面积之比是 .

14.(2分)如图,AD∥BC∥EF,AE:AB=2:3,DF=8,则FC= . 15.(2分)在Rt△ABC中,∠C=90°,BC=3,,那么AB= . 16.(2分)已知在△ABC中,AB=AC=5cm,BC=5,那么∠A= 度. 17.(2分)如图,四边形ABCD中,AC与BD交于点O,若BD=3DO,当OC: 第3页(共21页)

OA的值为 时,则有AB∥DC. 18.(2分)如图,已知平行四边形ABCD的面积等于12,AB=6,点P是AB上一点,PQ∥AD交BD于点Q,当AP:BP=1:5时,四边形PBCQ的面积是 .

三、解答题(第19-22题每题7分;第23-24题每题9分;第25题12分,共58分) 19.(7分)计算:2sin260°﹣tan45°+cos30°•cot60°. 20.(7分)已知两个不平行的向量、,求作:.(不要求写作法)

21.(7分)如图,在Rt△ABC中,∠C=90°,AC=3,tanB=. (1)求BC的长;(2)求cosA的值.

22.(7分)如图,已知在△ABC中,AD是BC边的中线,AE=EF=CF,BE与AD交于点G,求DF:GB的值. 第4页(共21页)

23.(9分)已知:如图,在△ABC中,点D为边BC上的点,=,∠BAD=∠CAE. (1)求证:△BAC∽△DAE; (2)当∠BAC=90°时,求证:EC⊥BC.

24.(9分)正方形ABCD中,AB=8,点P是CD上的一点,CE⊥BP垂足为E,EF⊥AE与边BC交于点F (1)求证:△FCE∽△ABE; (2)当△ABE的周长是△FCE周长2倍时,求CP的长.

25.(12分)如图1,已知正方形ABCD边长为1,点Q为BC延长线上的一个动点,QA与CD、BD分别交于点P、E. (1)当CQ=时,求的值; (2)如图2,如果对角线AC与BD相交于点O,联结QO,交CD于点F,设CQ=x,S△EOQ=y,求y关于x的函数关系式,并求出x的取值范围; (3)在(2)的条件下,△DEP能否与△DBQ相似,若能请求出x的值,若不能请说明理由. 第5页(共21页) 第6页(共21页)

2014-2015学年上海市闵行区九年级(上)期中数学试卷 参考答案与试题解析

一、选择题(本大题共6题,每题3分,满分18分) 1.(3分)下列图形一定是相似图形的是( ) A.两个矩形 B.两个正方形 C.两个直角三角形 D.两个等腰三角形 【解答】解:A、两个矩形,对应角相等,对应边不一定成比例,故不符合题意; B、两个正方形,形状相同,大小不一定相同,符合相似性定义,故符合题意; C、两个直角三角形,只有一个直角相同,锐角不一定相等,故不符合题意; D、两个等腰三角形顶角不一定相等,故不符合题意. 故选:B.

2.(3分)已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中正确的是( ) A.sinA= B.cosA= C.tanA= D.cotA=

【解答】解:如图: 由勾股定理得:AB===, 所以sinA===,cosA===,tanA==,cotA==, 所以只有选项D正确,选项A、B、C都错误. 故选:D.

3.(3分)如果两个三角形相似,其中一个三角形的两个内角分别为82°、53°,那么另一个三角形中最小的内角为 ( ) A.82° B.53° C.45° D.不能确定 第7页(共21页)

【解答】解:∵一个三角形的两个内角分别为82°、53°, ∴另一个内角=180°﹣82°﹣53°=45°. ∵两个三角形相似, ∴另一个三角形中最小的内角为45°. 故选:C.

4.(3分)如图:在△ABC中,点D、E分别在AB、AC上,根据下列给定的条件,不能判断DE与BC平行的是( )

A. B. C. D. 【解答】解:∵,∴DE∥BC,A不合题意; ∵,∴DE∥BC,B不合题意; ∵,∴DE∥BC,C不合题意; ,不能判断DE与BC平行,D符合题意; 故选:D.

5.(3分)如果线段b是线段a,c的比例中项,a:c=4:9,那么下列结论中正确的是( ) A.a:b=4:9 B.b:c=2:3 C.a:b=3:2 D.b:c=3:2 【解答】解:∵a:c=4:9, ∴9a=4c, ∴a=c,c=a. ∵线段b是线段a,c的比例中项, ∴a:b=b:c,即b2=ac=c2=a2, 第8页(共21页)

∴b=c=a, ∴a:b=c:c=2:3, ∴b:c=a:b=2:3, 故选:B.

6.(3分)如图:已知D是△ABC中的边BC上的一点,∠BAD=∠C,∠ABC的平分线交边AC于E,交AD于F,那么下列三角形中与△BDF一定相似的是( )

A.△BAC B.△BEC C.△BAE D.△BFA 【解答】证明:∵BE平分∠ABC, ∴∠ABE=∠CBE, ∵∠BAD=∠C, ∴△BFA∽△BEC, ∴∠BFA=∠BEC, ∴∠BFD=∠BEA, ∵∠ABE=∠CBE, ∴△BDF∽△BAE. 故选:C.

二、填空题(本大题共12题,每题2分,满分24分) 7.(2分)已知:x:y=2:3,则(x+y):y= . 第9页(共21页)

【解答】解:∵=, ∴=+1=+1=. 故答案为:.

8.(2分)如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.5厘米,那么A、B两地的实际距离是 35 千米. 【解答】解:设A、B两地的实际距离是x厘米, ∵比例尺为1:1 000 000,A、B两地的图上距离是3.5厘米, ∴=, 解得:x=3500000, ∵3500000厘米=35千米, ∴A、B两地的实际距离是35千米. 故答案为:35.

9.(2分)已知两个相似三角形的相似比是4:9,那么它们对应的角平分线之比是 4:9 . 【解答】解:∵两个相似三角形的相似比是4:9, ∴它们对应的角平分线之比是4:9. 故答案为:4:9.

10.(2分)已知在△ABC中,AD是中线,G是重心,如果GD=3cm,那么AG= 6 cm. 【解答】解:∵G是△ABC的重心,且AD是中线, ∴AG=2GD=6cm.

11.(2分)已知点D是线段AB的黄金分割点(AD>BD),如果AB=2,那么AD的长为 .(结果保留根号) 【解答】解:由于D为线段AB=8cm的黄金分割点, 第10页(共21页)

且AD>BD, 则AD=2×=﹣1. 故本题答案为:﹣1.

12.(2分)已知向量与方向相反,长度为5,则用来表示为: =﹣且||=||=5 . 【解答】解:∵与方向相反,长度为5, ∴=﹣且||=||=5. 故答案为:=﹣且||=||=5.

13.(2分)如图,在△ABC中,D,E分别是AB,AC的中点,那么△ADE与四边形DBCE的面积之比是 1:3 .

【解答】解:∵D,E分别是AB,AC的中点 ∴DE∥BC ∴△ADE∽△ABC, ∴AD:AB=1:2 ∴△ADE与△ABC的面积之比为1:4 ∴△ADE与四边形DBCE的面积之比是1:3. 故答案为:1:3.

14.(2分)如图,AD∥BC∥EF,AE:AB=2:3,DF=8,则FC= 4 .

相关文档
最新文档