人教版高中数学必修二《第七章 复数》单元导学案及答案

合集下载

部编版高中数学必修二第七章复数带答案知识汇总大全

部编版高中数学必修二第七章复数带答案知识汇总大全

(名师选题)部编版高中数学必修二第七章复数带答案知识汇总大全单选题1、已知下列三个命题:①若复数z 1,z 2的模相等,则z 1,z 2是共轭复数;②z 1,z 2都是复数,若z 1+z 2是虚数,则z 1不是z 2的共轭复数;③复数z 是实数的充要条件是z =z .则其中正确命题的个数为A .0个B .1个C .2个D .3个2、复数z =|√3+i |的虚部是( ) A .−12B .12C .−12i D .12i3、复数2−i 1+3i 在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限4、已知关于x 的方程(x 2+mx )+2x i =-2-2i (m ∈R)有实数根n ,且z =m +n i ,则复数z 等于( )A .3+iB .3-iC .-3-iD .-3+i5、已知复数z 满足z −z =2i ,则z 的虚部是( )A .−1B .1C .−iD .i6、设复数z 满足z ⋅i =−1+i ,则|z |=( )A .1B .√2C .√5D .√107、复数1−cosθ−i sinθ(θ∈[0,2π))的三角形式是( )A .2sin θ2(cosθ+π2+i sin θ+π2)B .2sin θ2(cos π−θ2+isin π−θ2) C .2sin θ2(cos θ−π2+i sin θ−π2)D .2cos θ2(cos π−θ2+i sin π−θ2) 8、z =(2+i )2−4在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限多选题9、已知i 为虚数单位,下列说法正确的是( )A .若复数z =1+i1−i ,则z 30=−1B .若复数z 满足|z −1|=|z −i |,则复平面内z 对应的点Z 在一条直线上C .若(x 2−1)+(x 2+3x +2)i是纯虚数,则实数x =±1D .复数z =2−i的虚部为−i10、对任意复数z =a +b i (a,b ∈R),i 为虚数单位,则下列结论中正确的是( )A .z −z̅=2aB .|z|=|z|C .z +z̅=2aD .z +z̅=2b i11、在复平面中,已知复数(a +1)i 2021+(1−a)i 2020对应的点在第二象限,则实数a 的可能取值为()A .0B .1C .2D .3填空题12、如果复数z 满足|z +i |+|z −i |=2,那么|z +i +1|的最小值是________.13、已知复数z =(−1+3i )(1−i )−(1+3i )i ,若μ=z +m i (m ∈R),则当|μz |≤√2时,实数m 的取值范围是______________.部编版高中数学必修二第七章复数带答案(十)参考答案1、答案:C解析:运用复数的模、共轭复数、虚数等知识对命题进行判断.对于①中复数z1和z2的模相等,例如z1=1+i,z2=√2i,则z1和z2是共轭复数是错误的;对于②z1和z2都是复数,若z1+z2是虚数,则其实部互为相反数,则z1不是z2的共轭复数,所以②是正确的;对于③复数z是实数,令z=a,则z̅=a所以z=z̅,反之当z=z̅时,亦有复数z是实数,故复数z是实数的充要条件是z=z̅是正确的.综上正确命题的个数是2个.故选C小提示:本题考查了复数的基本概念,判断命题是否正确需要熟练掌握基础知识,并能运用举例的方法进行判断,本题较为基础.2、答案:A分析:先根据模的定义计算,并化简得到z=12−12i,再根据虚部的定义作出判定.∵z=|√3+i|=√(√3)+12=1−i2=12−12i,∴z的虚部为−12,故选:A.3、答案:C分析:利用复数的除法可化简2−i1+3i,从而可求对应的点的位置.∵2−i1+3i =(2−i)(1−3i)10=−1−7i10,所以该复数对应的点为(−110,−710),在第三象限.故选:C.4、答案:B分析:根据复数相等得出m,n的值,进而得出复数z. 由题意知(n2+mn)+2n i=-2-2i,即{n 2+mn +2=02n +2=0,解得{m =3,n =−1 ,∴z =3−i 故选:B5、答案:A分析:设z =a +bi (a,b ∈R ),根据z −z =2i ,求得b =−1,即可求得复数z 的虚部,得到答案.设z =a +bi (a,b ∈R ),因为z −z =2i ,可得z −z =a −bi −(a +bi )=−2bi =2i ,则−2b =2,可得b =−1,所以复数z 的虚部是−1.故选:A小提示:关键点点睛:本题主要考查了复数的运算,共轭复数的概念,以及复数相等的应用,其中解答中熟记复数相等的条件是解答的关键,属于基础题.6、答案:B分析:利用复数的四则运算以及复数模的运算即可求解.解析因为z =−1+i i =(−1+i )⋅i i ⋅i =−i −1−1=1+i,所以z =1−i ,|z |=√2.故选:B7、答案:C分析:根据余弦的二倍角公式以及诱导公式将复数的代数系数转化为三角形式即可求解.1−cosθ−i sinθ=2sin 2θ2−2i sin θ2cos θ2 =2sin θ2(sin θ2−i cos θ2) =2sin θ2(cos π−θ2−i sin π−θ2)=2sin θ2[cos π−θ2+i sin (−π−θ2)] =2sin θ2(cosθ−π2+i sin θ−π2),故选:C.8、答案:B分析:将复数化为标准形式再根据复数的几何意义即可确定.z =(2+i )2−4=−1+4i,则z 在复平面内对应的点位于第二象限,故选:B.9、答案:AB分析:根据复数的运算直接计算可知A ;由复数的模的公式化简可判断B ;根据纯虚数的概念列方程直接求解可知C ;由虚部概念可判断D.对于A :因为z =1+i1−i =(1+i )2(1−i )(1+i )=i,所以z 30=i 30=i 4×7+2=i 2=−1,故A 正确;对于B :设z =x +y i (x,y ∈R ),代入|z −1|=|z −i |,得√(x −1)2+y 2=√x 2+(y −1)2,整理得y =x ,即点Z 在直线y =x 上,故B 正确;对于C :(x 2−1)+(x 2+3x +2)i是纯虚数,则{x 2−1=0,x 2+3x +2≠0 ,即x =1,故C 错误; 对于D :复数z =2−i的虚部为−1,故D 错误.故选:AB.10、答案:BC分析:写出共轭复数,然后计算判断各选项.由已知z =a −b i,因此z −z =2b i,z +z =2a ,|z |=√a 2+b 2=|z |.故选:BC .11、答案:CD分析:化简复数,再由复数所在象限列不等式组,即可求解.因为复数(a +1)i 2021+(1−a)i 2020=(1−a)+(a +1)i在第二象限,所以{a +1>01−a <0⇒a >1 故选:CD.12、答案:1分析:由|z+i|+|z−i|=2的几何意义得z对应复平面的点(a,b)的轨迹为线段AB,再由|z+i+1|的几何意义为复平面内点(a,b)到点(−1,−1)的距离,数形结合即可求出最小值.设z=a+bi,则|z+i|+|z−i|=|z−(−i)|+|z−i|=2的几何意义为复平面内点(a,b)到点(0,−1)及点(0,1)的距离和为2,又1−(−1)=2,设点A(0,−1)和点B(0,1),则点(a,b)的轨迹为线段AB,又|z+i+1|=|z−[(−1)+(−i)]|的几何意义为复平面内点(a,b)到点(−1,−1)的距离,设P(−1,−1),结合图像可知,当z=−i时,|z+i+1|的最小值为1.所以答案是:1.13、答案:[−√3+1,√3+1]分析:先对已知式子化简计算出复数z,从而可得|z|,复数μ,代入|μz|≤√2中化简可得1+(m−1)2≤4,从而可求出实数m的取值范围.z=(−1+3i)(1−i)−(1+3i)i =(2+4i)−(1+3i)i=1+ii=1−i,所以|z|=√2,μ=1+(m−1)i.由|μz|≤√2得|μ|≤2,所以1+(m−1)2≤4,即(m−1)2≤3,解得−√3+1≤m≤√3+1.所以答案是:[−√3+1,√3+1]。

2021年新教材高中数学第七章复数本章总结学案新人教A版必修第二册57

2021年新教材高中数学第七章复数本章总结学案新人教A版必修第二册57

第七章 复数本章总结专题一 复数的概念[例1] 已知复数z =m (m -1)+(m 2+2m -3)i ,当m 取何实数值时,复数z 是:(1)零;(2)纯虚数;(3)2+5i?[分析] 熟练掌握复数的代数形式、复数相等及复数表示各类数的条件是熟练解答复数问题的前提.[解] (1)由题意可得⎩⎪⎨⎪⎧m (m -1)=0,m 2+2m -3=0,即⎩⎪⎨⎪⎧m =0或m =1,m =-3或m =1,所以m =1, 即当m =1时,复数z 为零.(2)由题意可得⎩⎪⎨⎪⎧m (m -1)=0,m 2+2m -3≠0,解得⎩⎪⎨⎪⎧ m =0或m =1,m ≠-3且m ≠1,所以m =0,即m =0时,z 为纯虚数.(3)由题意可得⎩⎪⎨⎪⎧m (m -1)=2,m 2+2m -3=5,解得⎩⎪⎨⎪⎧m =2或m =-1,m =-4或m =2,所以m =2,所以当m =2时,复数z 为2+5i.当复数的实部与虚部含有字母时,利用复数的有关概念进行分类讨论.分别确定什么情况下是实数、虚数、纯虚数.当x +y i 没有说明x ,y ∈R 时,也要分情况讨论.[变式训练1] 已知复数z =a 2-a -6+a 2+2a -15a 2-4i ,分别求出满足下列条件的实数a 的值:(1)z 是实数;(2)z 是虚数;(3)z 是0. 解:(1)由a 2+2a -15=0且a 2-4≠0, 得a =-5或a =3,∴当a =-5或a =3时,z 为实数. (2)由a 2+2a -15≠0且a 2-4≠0, 得a ≠-5且a ≠3且a ≠±2,∴当a ≠-5且a ≠3且a ≠±2时,z 是虚数.(3)由a 2-a -6=0,a 2-4≠0且a 2+2a -15=0,得a =3, ∴当a =3时,z =0. 专题二 复数的四则运算[例2] (1)设i 是虚数单位,z 表示复数z 的共轭复数.若z =1+i ,则zi +i·z =( )A .-2B .-2iC .2D .2i (2)设复数z 满足(z -2i)(2-i)=5,则z =( ) A .2+3i B .2-3i C .3+2i D .3-2i[分析] 复数的加减法是实部与实部、虚部与虚部分别相加减,而乘法类比多项式乘法,除法类比根式的分母有理化,要注意i 2=-1.[解析] (1)因为z =1+i ,所以z =1-i ,z i =1+i i =-i 2-i -i 2=1-i ,所以zi +i·z =1-i +i(1-i)=(1-i)(1+i)=2,故选C.(2)由(z -2i)(2-i)=5,得z =2i +52-i =2i +5(2+i )(2-i )(2+i )=2i +2+i =2+3i.故选A.[答案] (1)C (2)A[变式训练2] 已知复数z =(1-i )2+3(1+i )2-i .(1)求复数z ;(2)若z 2+az +b =1-i ,求实数a ,b 的值. 解:(1)z =-2i +3+3i 2-i =3+i 2-i=(3+i )(2+i )5=1+i.(2)把z =1+i 代入z 2+az +b =1-i 得(1+i)2+a (1+i)+b =1-i , 即a +b +(2+a )i =1-i ,所以⎩⎪⎨⎪⎧ a +b =1,2+a =-1,解得⎩⎪⎨⎪⎧a =-3,b =4.专题三 复数相等的充要条件[例3] 设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3 D .2[分析] 复数相等的充要条件是把复数问题转化为实数问题的重要依据,是复数问题实数化这一重要数学思想的体现.[解析] 因为(1+i)x =1+y i ,所以x +x i =1+y i. 又因为x ,y ∈R ,所以x =1,y =x =1. 所以|x +y i|=|1+i|=2,故选B. [答案] B(1)对于两个复数z 1=a +b i ,z 2=c +d i (a ,b ,c ,d ∈R ).规定a +b i =c +d i 相等的充要条件是a =c ,b =d .,(2)根据复数相等的定义知,在a =c ,b =d 两式中,如果有一个不成立,那么a +b i ≠c +d i.[变式训练3] 已知x ,y ∈R ,i 为虚数单位,x +(y -2)i =21+i,则x +y =2. 解析:x +(y -2)i =21+i =2(1-i )(1+i )(1-i )=1-i ,所以⎩⎪⎨⎪⎧x =1,y -2=-1,解得x =1,y =1,则x +y =2.专题四 数形结合思想[例4] 若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值是( ) A .2 B .3 C .4 D .5[分析] 复数的几何意义及复数加减运算的几何意义充分体现了数形结合这一重要的数学思想方法,即通过几何图形来研究代数问题.熟练掌握复平面内的点、以原点为起点的平面向量和复数三者之间的对应关系,就能有效地利用数形转换来解决实际问题.[解析] 设z =x +y i(x ,y ∈R ),则|z +2-2i|=|x +2+(y -2)i|=1表示圆心为A (-2,2),半径为1的圆,而|z -2-2i|=|(x -2)+(y -2)i|表示圆A 上的点到B (2,2)的距离,如图所示,显然其最小值为|AB |-1=4-1=3.[答案] B复数既可用代数形式(或三角形式)表示,也可与向量、点坐标联系,使复数的运算具有了几何意义.因此,在解决某些复数问题时,若能以形助数则可使解答直观、简捷.[变式训练4]已知复数z的模为1,求|z-1-2i|的最大值和最小值.解:因为复数z的模为1,所以z在复平面上的对应点在以原点为圆心,1为半径的圆上.而|z-1-2i|=|z-(1+2i)|可以看成圆上的点Z到点A(1,2)的距离,如图所示.所以|z-1-2i|min=|AB|=|OA|-|OB|=5-1,|z-1-2i|max=|AC|=|OA|+|OC|=5+1.。

人教版高中数学必修二《第七章 复数》课后作业及答案解析

人教版高中数学必修二《第七章 复数》课后作业及答案解析

人教版高中数学必修二《第七章 复数》课后作业《7.1.1 数系的扩充和复数的概念》课后作业基础巩固1.复数2i -的虚部为( ) A .2B .1C .-1D .-i2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y =D .2x =,0y =3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .14.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( ) A .0B .1C .1-D .1或1-5.下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +yi =1+i 的充要条件是x =y =1; ②若a ,b ∈R 且a >b ,则a +i >b +i ; ③若x 2+y 2=0,则x =y =0. A .0 B .1 C .2 D .36.以复数3i 3-的实部为虚部的复数是________. 7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6π B .3π C .23π D .3π或23π 10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?《7.1.1 数系的扩充和复数的概念》课后作业答案解析基础巩固1.复数2i -的虚部为( ) A .2 B .1C .-1D .-i【答案】C【解析】复数2i -的虚部为-1,故选C .2.适合2()x i x y i -=+的实数x ,y 的值为( ) A .0x =,2y = B .0x =,2y =- C .2x =,2y = D .2x =,0y =【答案】B【解析】由题意得:02x x y =⎧⎨+=-⎩,解得:02x y =⎧⎨=-⎩故选:B3.设i 是虚数单位,如果复数()()17a a i ++-+的实部与虚部相等,那么实数a 的值为( )A .4B .3C .2D .1【答案】B【解析】由题意得17,3a a a +=-=,选B.4.若2(1)z a a i =+-,a R ∈(i 为虚数单位)为实数,则a 的值为( )A .0B .1C .1-D .1或1-【答案】D【解析】若()21z a a i =+-,a R ∈(i 为虚数单位)为实数,则210, 1.a a -=∴=±本题选择D 选项.5.下列命题中,正确命题的个数是( ) ①若,,则的充要条件是;②若,且,则;③若,则.A .B .C .D . 【答案】A【解析】对①,由于x ,y ∈C ,所以x ,y 不一定是x +yi 的实部和虚部,故①是假命题;对②,由于两个虚数不能比较大小,故②是假命题;③是假命题,如12+i 2=0,但1≠0,i≠0.6.以复数32i 32i -的实部为虚部的复数是________. 【答案】33i -. 【解析】32i -的虚部为3,32i -的实部为3- ∴所求复数为33i -故答案为:33i -7.若x 是实数,y 是纯虚数,且()212i x y -+=,则x ,y 的值为______.【答案】12x =,2i y = 【解析】由()212i x y -+=,得210,2i ,x y -=⎧⎨=⎩解得12x =,2i y =.故答案为:12x =,2i y =. 8.(1)已知21(2)0x y y i -++-=,其中i 为虚数单位,求实数x ,y 的值; (2)已知()(1)(23)(21)x y y i x y y i ++-=+++,其中i 为虚数单位,求实数x 、y 的值.【答案】(1)122x y ⎧=⎪⎨⎪=⎩;(2)42x y =⎧⎨=-⎩ 【解析】(1)()2120x y y i -++-= 21020x y y -+=⎧∴⎨-=⎩,解得:122x y ⎧=⎪⎨⎪=⎩(2)由()()()()12321x y y i x y y i ++-=+++得:23121x y x y y y +=+⎧⎨-=+⎩,解得:42x y =⎧⎨=-⎩能力提升9.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6πB .3π C .23π D .3π或23π 【答案】B【解析】若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 21cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=.10.若不等式()2222i 9i m m m m m---<+成立,则实数m 的值为______. 【答案】2【解析】依题意可得2220209m m m m m ⎧-=⎪-⎪=⎨⎪<⎪⎩,即0? 22033m m m m =⎧⎪=≠⎨⎪-<<⎩或且,解得2m =.故答案为:2. 11.已知复数()()2123i z m m m m =-++-,当实数m 取什么值时,(1)复数z 是零; (2)复数z 是实数; (3)复数z 是纯虚数.【答案】(1)1m =(2)1m =或3m =-(3)0m = 【解析】(1)若复数z 是零,则()210230m m m m ⎧-=⎨+-=⎩,解得1m =,即当1m =时,复数z 是零.(2)若复数z 是实数,则2230m m +-=,解得1m =或3m =-, 即当1m =或3m =-时,复数z 是实数. (3)若复数z 是纯虚数,则()210230m m m m ⎧-=⎨+-≠⎩,解得0m =,即当0m =时,复数z 是纯虚数.素养达成12.已知复数()2227656 ()1a a z a a i a R a -+=+--∈-,实数a 取什么值时,z 是:①实数?②虚数?③纯虚数?【答案】①6a =;②1a ≠±且6a ≠;③无解.【解析】()2227656 ()1a a z a a i a R a -+=+--∈- ①若复数z 是实数,则22560,10,a a a ⎧--=⎨-≠⎩即16,1,a a a =-=⎧⎨≠±⎩或即6a =.②若复数z 是虚数,则22560,10,a a a ⎧--≠⎨-≠⎩即16,1,a a a ≠-≠⎧⎨≠±⎩且即1a ≠±且6a ≠.③若复数z 是纯虚数,则222560,760,10,a a a a a ⎧--≠⎪-+=⎨⎪-≠⎩即16161a a a a a ≠-≠⎧⎪==⎨⎪≠±⎩且,且,,此时无解.《7.1.2 复数的几何意义》课后作业基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( ) A .1BCD .54.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3)D .(1,5)6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5D .310.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形?素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.《7.1.2 复数的几何意义》课后作业答案解析基础巩固1.在复平面内,复数-2+3i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【解析】复数-2+3i 在复平面内对应的点为(-2,3),故复数-2+3i 对应的点位于第二象限.2.设O 是原点,向量OA →,OB →对应的复数分别为2-3i ,-3+2i ,那么向量BA →对应的复数是( )A .-5+5iB .-5-5iC .5+5iD .5-5i【答案】D【解析】 由复数的几何意义,得OA →=(2,-3),OB →=(-3,2),BA →=OA →-OB →=(2,-3)-(-3,2)=(5,-5).所以BA →对应的复数是5-5i.3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是( )A .1BCD .5【答案】D【解析】由题意,34z i =-,∴z 对应的向量OA 的坐标为()3,4-5=.故选:D .4.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B ,若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i【答案】C【解析】 复数6+5i 对应的点为A (6,5),复数-2+3i 对应的点为B (-2,3).利用中点坐标公式得线段AB 的中点C (2,4),故点C 对应的复数为2+4i.5.已知0<a <2,复数z =a +i(i 是虚数单位),则|z |的取值范围是( ) A .(1,3) B .(1,5) C .(1,3) D .(1,5)【答案】B【解析】 |z |=a 2+1,∵0<a <2,∴1<a 2+1<5,∴|z |∈(1,5). 6.已知复数z 1=a +i ,z 2=2-i ,且|z 1|=|z 2|,则实数a =________. 【答案】±2【解析】依题意,a 2+1=4+1,∴a =±2.7.复数3-5i,1-i 和-2+a i 在复平面上对应的点在同一条直线上,则实数a 的值为________.【答案】5【解析】由点(3,-5),(1,-1),(-2,a )共线可知a =5.8.若复数z =(m 2+m -2)+(4m 2-8m +3)i(m ∈R)的共轭复数z 对应的点在第一象限,求实数m 的集合.【答案】m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.【解析】由题意得z =(m 2+m -2)-(4m 2-8m +3)i ,z 对应的点位于第一象限,所以有⎩⎪⎨⎪⎧m 2+m -2>0,-(4m 2-8m +3)>0,所以⎩⎪⎨⎪⎧m 2+m -2>0,4m 2-8m +3<0,所以⎩⎪⎨⎪⎧m <-2或m >1,12<m <32,即1<m <32,故所求m 的集合为⎩⎨⎧m ⎪⎪⎪⎭⎬⎫1<m <32.能力提升9.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C. 5 D .3【答案】D【解析】 ∵|z |=2,∴复数z 对应的轨迹是以原点为圆心,2为半径的圆,而|z -i|表示圆上一点到点(0,1)的距离,∴|z -i|的最大值为圆上点(0,-2)到点(0,1)的距离,易知此距离为3,故选D.10.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 【答案】12【解析】由条件知⎩⎪⎨⎪⎧m 2+2m -3≠0,m 2-9=0,∴m =3,∴z =12i ,∴|z |=12.11.已知复数z 1=3+i ,z 2=-12+32i.(1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? 【答案】(1)|z 1|>|z 2|. (2)见解析 【解析】(1)|z 1|= (3)2+12=2,|z 2|=⎝ ⎛⎭⎪⎫-122+322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.素养达成12.设复数z =log 2(m 2-3m -3)+ilog 2(m -2),m ∈R 对应的向量为OZ →. (1)若OZ →的终点Z 在虚轴上,求实数m 的值及|OZ →|; (2)若OZ →的终点Z 在第二象限内,求m 的取值范围.【答案】(1)m =4,|OZ →|=1. (2)m ∈⎝ ⎛⎭⎪⎫3+212,4.【解析】(1)log 2(m 2-3m -3)=0,所以m 2-3m -3=1. 所以m =4或m =-1;因为⎩⎪⎨⎪⎧m 2-3m -3>0,m -2>0,所以m =4,此时z =i ,OZ →=(0,1),|OZ →|=1.(2)⎩⎪⎨⎪⎧log 2(m 2-3m -3)<0,log 2(m -2)>0,m 2-3m -3>0,m -2>0,所以m ∈⎝ ⎛⎭⎪⎫3+212,4.《7.2.1 复数的加、减法运算及其几何意义》课后作业基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i +B .i -C .1D .1- i2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+B .15i -+C .410i -+D .110i -+3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+;(2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .CD .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.《7.2.1 复数的加、减法运算及其几何意义》课后作业答案解析基础巩固1.计算(3)(2)i i +-+的结果为( ) A .52i + B .i -C .1D .1- i【答案】C【解析】由题得()()32i i +-+=3+i-2-i=1.故选C 2.若5634z i i +-=+,则复数z 的值为( ) A .210i -+ B .15i -+C .410i -+D .110i -+【答案】A【解析】∵5634z i i +-=+,∴()3456210z i i i =+--=-+,故选:A 3.34i z =-,则复数()1i z z -+-在复平面内对应的点在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】34i z =-,5z ∴=,∴()1i 34i 51i 15i z z -+-=--+-=--,∴复数()1i z z -+-在复平面内对应的点为()1,5--,在第三象限.故选:C.4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O,若向量OA ,OB 对应的复数分别是3+i,-1+3i,则CD 对应的复数是 ( )A .2+4iB .-2+4iC .-4+2iD .4-2i【答案】D【解析】 由题意可得,在平行四边形中CD BA OA OB ==-, 则(3)(13)42i i i +--+=-,所以CD 对应的复数为42i -,故选D .5.已知i 为虚数单位,实数x ,y 满足1z y xi =+,2z yi x =-,且122z z -=,则xy 的值是( )A .1B .2C .2-D .1-【答案】A【解析】12()()i 2z z y x x y -=++-=,即2,0,x y x y +=⎧⎨-=⎩1x y ∴==,1xy ∴=.故选:A6.复平面内122,3z i z i =+=-两个复数122,3z i z i =+=-对应的两点之间的距离为_______.【解析】21|12|d z z i =-=-==7.复数65i +与34i -+分别表示向量OA 与OB ,则表示向量BA 的复数为_________. 【答案】9i + 【解析】BA OA OB =-,所以,表示向量BA 的复数为()()65349i i i +--+=+.故答案为:9i +.8.已知i 为虚数单位,计算: (1)(12)(34)(56)i i i ++--+; (2)5[(34)(13)]i i i -+--+; (3)()(23)3(,)a bi a bi i a b R +---∈.【答案】(1)18i --;(2)44i -+;(3)(43)a b i -+-【解析】(1)(12)(34)(56)(42i)(56)18i i i i i ++--+=--+=--. (2)5[(34)(13)]5(4)44i i i i i i -+--+=-+=-+.(3)()(23)3(2)[(3)3](43)a bi a bi i a a b b i a b i +---=-+---=-+-能力提升9.设f(z)=|z|,z 1=3+4i,z 2=-2-i,则f(z 1-z 2)= ( )A B .C D .【答案】D【解析】 由题意得1255z z i -=+,所以12()(55)55f z z f i i -=+=+==故选D .10.已知复数12z ai =+,()2z a i a R =+∈,且复数12z z -在复平面内对应的点位于第二象限,则a 的取值范围是________.【答案】(2,)+∞【解析】由题得12z z -=(2-a )+(a-1)i ,因为复数12z z -在复平面内对应的点位于第二象限,所以20,210a a a -<⎧∴>⎨->⎩.故答案为(2,)+∞ 11.如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:(1) ,AO BC 所表示的复数; (2)对角线CA 所表示的复数; (3)B 点对应的复数.【答案】(1) -3-2i (2) 5-2i (3) 1+6i【解析】(1) AO OA =-,所以AO 所表示的复数为-3-2i . 因为BC AO =,所以BC 所表示的复数为-3-2i .(2) CA OA OC =-,所以CA 所表示的复数为(3+2i )-(-2+4i )=5-2i . (3) OB OA OC =+,所以OB 所表示的复数为(3+2i )+(-2+4i )=1+6i , 即B 点对应的复数为1+6i .素养达成12.已知平行四边形OABC 的三个顶点O A C ,,对应的复数为032i -24i ++,,. (1)求点B 所对应的复数0z ;(2)若01z z -=,求复数z 所对应的点的轨迹.【答案】(1)016z i =+;(2)复数z 对应点的轨迹为以1,6B ()为圆心,1为半径的圆【解析】(1)由已知得(3,2),(2,4)OA OC ==-, ∴(1,6)OB OA OC =+=, ∴点B 对应的复数016z i =+. (2)设复数z 所对应的点Z , ∵01z z -=,∴点Z 到点()1,6B 的距离为1,∴复数z 所对应的点Z 的轨迹为以()1,6B 为圆心,1为半径的圆, 且其方程为()()22161x y -+-=.《7.2.2 复数的乘除运算》课后作业基础巩固1.已知复数z =2+i ,则z z ⋅=( )AB C .3D .52.设复数z 满足(1+i)z =2i ,则|z |=( )A .12B .2C D .23.若复数12az i i=+-(i 为虚数单位,a R ∈)的实部与虚部互为相反数,则a =( ) A .53-B .13- C .1- D .5-4.在复平面内,复数11i-的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.若为a 实数,且2i3i 1ia +=++,则a =( ) A .4-B .3-C .3D .46.已知复数(2i)(1i)a ++的实部为0,其中i 为虚数单位,则实数a 的值是_____. 7.设复数z 满足(23)64z i i -=+(其中i 为虚数单位),则z 的模为______. 8.计算:(1)(4)(62)(7)(43)i i i i -+--+; (2)32322323i ii i+-+-+; (3)(2)(1)(1)(1)i i i i i--+-+.能力提升9.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A .1 B .1- C .12D .2-10.在复平面内,复数z 与52i-对应的点关于实轴对称,则z =______.11.在复数范围内解下列一元二次方程: (1)290x +=;(2)210x x -+=.素养达成12.古代以六十年为一个甲子用十天干和十二地支相配六十年轮一遍,周而复始。

部编版高中数学必修二第七章复数带答案知识点归纳总结(精华版)

部编版高中数学必修二第七章复数带答案知识点归纳总结(精华版)

(名师选题)部编版高中数学必修二第七章复数带答案知识点归纳总结(精华版)

单选题 1、已知复数𝑧满足(𝑧−i)(2+i)=6−2i,则|𝑧|=( ) A.√3B.2C.√5D.√6 2、复数1−3𝑖(1−𝑖)(1+2𝑖)=( ).

A.−1B.−𝑖C.35−45𝑖D.35−𝑖

3、若复数5−3−i的实部与虚部分别为a,b,则点A(b,a)必在下列哪个函数的图象上( ) A.𝑦=2𝑥B.y=𝑥+12𝑥 C.𝑦=|𝑥|D.𝑦=−2𝑥2−1

4、3+𝑖1−3𝑖=( )

A.1B.−1C.𝑖D.−𝑖 5、复数 𝑧=1𝑎−1+(𝑎2−1)i是实数,则实数a的值为( )

A.1或-1B.1 C.-1D.0或-1 6、设z=i(2+i),则𝑧̅= A.1+2iB.–1+2i C.1–2iD.–1–2i 7、已知𝑎,b∈R,若𝑎2+𝑏+(𝑎−𝑏)𝑖>2 (i为虚数单位),则实数𝑎的取值范围是( )

A.𝑎>2或𝑎<−1B.𝑎>1或𝑎<−2C.−1<𝑎<2D.−2<𝑎<1 8、在复平面内,复数𝑧=(𝑎2−2𝑎)+(𝑎2−𝑎−2)i(𝑎∈𝑅)是纯虚数,则( )

A.𝑎=0或𝑎=2B.𝑎=0 C.𝑎≠1且𝑎≠2D.𝑎≠1或𝑎≠2 多选题 9、已知复数𝑧=4−3i,下列说法正确的是( ) A.复数z的虚部是−3iB.复数z的模为5 C.复数z的共轭复数是−4−3iD.在复平面内复数z对应的点在第四象限 10、已知复数𝑧满足𝑧2+2|𝑧|=0,则𝑧可能为( )

A.0B.−2C.2𝑖D.−2𝑖 11、在复平面内,复数z对应的点与复数2i−1对应的点关于实轴对称,则( ) A.复数z=1+i B.|𝑧̅|=√2 C.复数z对应的点位于第一象限 D.复数𝑧̅的实部是-1 填空题 12、已知𝑧+5−6i=3+4i,则复数𝑧=________. 13、把复数1+i对应的点向右平移1个单位长度得到点𝐴,把所得向量𝑂𝐴⃑⃑⃑⃑⃑ 绕点𝑂逆时针旋转90°,得到向量𝑂𝐵⃑⃑⃑⃑⃑ ,则点𝐵对应的复数为_________. 部编版高中数学必修二第七章复数带答案(四十七)参考答案 1、答案:C

【人教A版】高中数学必修第二册第七章:7.1.2复数的几何意义 教学设计

【人教A版】高中数学必修第二册第七章:7.1.2复数的几何意义 教学设计

【人教A版】高中数学必修第二册第七章7.1.2 复数的几何意义教学设计(教师独具内容)课程标准:理解复数的几何意义.教学重点:复数的几何意义、复数的模的概念及共轭复数的概念.教学难点:复数的几何意义的理解与应用.核心素养:1.通过复数、复平面内的点、复平面内的向量之间的对应关系培养直观想象素养.2.通过求复数的模及求一个复数的共轭复数培养数学运算素养.共轭复数的性质(1)两个共轭复数的对应点关于实轴对称.(2)实数的共轭复数是它本身,即z=z-⇔z∈R.利用这个性质,可以证明一个复数是实数.(3)z z-=|z|2=|z-|2∈R.z与z-互为实数化因式.1.判一判(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.( )(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( )(3)复数的模一定是正实数.( )(4)两个复数互为共轭复数是它们的模相等的必要条件.( )2.做一做(1)若OZ→=(0,-3),则OZ→对应的复数为____.(2)复数z=1-4i位于复平面上的第____象限.(3)复数3i的模是____.(4)复数5+6i的共轭复数是____.题型一复数与复平面内的点例1 在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应点(1)在虚轴上;(2)在第二象限;(3)在直线y=x上,分别求实数m的取值范围. [跟踪训练1] 实数m取什么值时,复数z=(m2+5m+6)+(m2-2m-15)i.(1)对应的点在x轴上方;(2)对应的点在直线y=-x上.题型二复数与复平面内的向量例2 已知平行四边形OABC的三个顶点O,A,C对应的复数分别为0,3+2i,-2+4i,试求:(1)AO→表示的复数;(2)CA→表示的复数;(3)点B对应的复数. [跟踪训练2] (1)复数4+3i与-2-5i分别表示向量OA→与OB→,则向量AB→表示的复数是____.(2)在复平面内的长方形ABCD的四个顶点中,点A,B,C对应的复数分别是2+3i,3+2i,-2-3i,求点D对应的复数.题型三复数的模例3 设z∈C,则满足条件|z|=|3+4i|的复数z在复平面内对应的点Z的集合是什么图形?[跟踪训练3] 设z∈C,且满足下列条件,在复平面内,复数z对应的点Z 的集合是什么图形?(1)1<|z|<2;(2)|z-i|<1.1.已知a∈R,且0<a<1,i为虚数单位,则复数z=a+(a-1)i在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.(多选)若复数z=(a2-2a)+(a2-a-2)i对应的点Z在虚轴上,则a的值可以是( )A.0 B.1C.2 D.33.若复数z1=2+b i与复数z2=a-4i互为共轭复数,则a=____,b=____.4.已知复数z=3+a i,且|z|<5,则实数a的取值范围是____.5.如果复数z=(m2+m-1)+(4m2-8m+3)i(m∈R)对应的点在第一象限,求实数m的取值范围.一、选择题1.复数z1=1+3i和z2=1-3i在复平面内的对应点关于( )A.实轴对称B.一、三象限的角平分线对称C.虚轴对称D.二、四象限的角平分线对称2.当23<m<1时,复数z=(3m-2)+(m-1)i的共轭复数在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限3.复数z1=a+2i,z2=-2+i,如果|z1|<|z2|,则实数a的取值范围是( ) A.-1<a<1 B.a>1C.a>0 D.a<-1或a>04.(多选)若|4+25i|+x+(3-2x)i=3+(y+5)i(i为虚数单位),其中x,y是实数,则( )A.x=3 B.y=4C.x+y i=-3+4i D.|x+y i|=55.已知复数z满足|z|2-2|z|-3=0,则复数z对应点的轨迹是( )A.1个圆B.线段C.2个点D.2个圆二、填空题6.i为虚数单位,设复数z1,z2在复平面内对应的点关于原点对称,若z1=2-3i,则z-2=____.7.已知复数(2k2-3k-2)+(k2-k)i在复平面内对应的点在第二象限,则实数k的取值范围是____.8.已知复数z1=-1+2i,z2=1-i,z3=3-2i,它们所对应的点分别是A,B,C,若OC→=xOA→+yOB→(x,y∈R),则x+y的值是____.三、解答题9.已知复数z=(1+2m)+(3+m)i(m∈R).(1)若m=1,且|z-|=|x+(x-1)i|,求实数x的值;(2)当m为何值时,|z-|最小?并求|z-|的最小值.1.在复平面上,复数i,1,4+2i对应的点分别是A,B,C,求平行四边形的ABCD的点D对应的复数.2.已知x为实数,复数z=x-2+(x+2)i.(1)当x为何值对,复数z的模最小?(2)当复数z的模最小时,复数z在复平面内对应的点Z位于函数y=-mx+n的图象上,其中mn>0,求1m+1n的最小值及取得最小值时m,n的值.7.1.2 复数的几何意义(教师独具内容)课程标准:理解复数的几何意义.教学重点:复数的几何意义、复数的模的概念及共轭复数的概念.教学难点:复数的几何意义的理解与应用.核心素养:1.通过复数、复平面内的点、复平面内的向量之间的对应关系培养直观想象素养.2.通过求复数的模及求一个复数的共轭复数培养数学运算素养.共轭复数的性质(1)两个共轭复数的对应点关于实轴对称.(2)实数的共轭复数是它本身,即z=z-⇔z∈R.利用这个性质,可以证明一个复数是实数.(3)z z-=|z|2=|z-|2∈R.z与z-互为实数化因式.1.判一判(正确的打“√”,错误的打“×”)(1)在复平面内,对应于实数的点都在实轴上.( )(2)在复平面内,虚轴上的点所对应的复数都是纯虚数.( )(3)复数的模一定是正实数.( )(4)两个复数互为共轭复数是它们的模相等的必要条件.( )答案(1)√(2)×(3)×(4)×2.做一做(1)若OZ→=(0,-3),则OZ→对应的复数为____.(2)复数z=1-4i位于复平面上的第____象限.(3)复数3i的模是____.(4)复数5+6i的共轭复数是____.答案(1)-3i (2)四(3) 3 (4)5-6i题型一复数与复平面内的点例1 在复平面内,若复数z=(m2-m-2)+(m2-3m+2)i对应点(1)在虚轴上;(2)在第二象限;(3)在直线y =x 上,分别求实数m 的取值范围.[解] 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2.(1)由题意得m 2-m -2=0,解得m =2或m =-1. (2)由题意得⎩⎨⎧m 2-m -2<0,m 2-3m +2>0,∴⎩⎨⎧-1<m <2,m >2或m <1,∴-1<m <1.(3)由已知得m 2-m -2=m 2-3m +2,∴m =2.复数集与复平面内所有的点组成的集合之间存在着一一对应关系.每一个复数都对应着一个有序实数对,复数的实部对应着有序实数对的横坐标,而虚部则对应着有序实数对的纵坐标,只要在复平面内找到这个有序实数对所表示的点,就可根据点的位置判断复数实部、虚部的取值.[跟踪训练1] 实数m 取什么值时,复数z =(m 2+5m +6)+(m 2-2m -15)i. (1)对应的点在x 轴上方; (2)对应的点在直线y =-x 上. 解 (1)由题意得m 2-2m -15>0, 解得m <-3或m >5,所以当m <-3或m >5时,复数z 对应的点在x 轴上方.(2)由题意,得m 2-2m -15=-(m 2+5m +6),整理,得2m 2+3m -9=0,解得m =32或m =-3.所以当m =32或m =-3时,复数z 对应的点在直线y =-x 上.题型二 复数与复平面内的向量例2 已知平行四边形OABC 的三个顶点O ,A ,C 对应的复数分别为0,3+2i ,-2+4i ,试求:(1)AO →表示的复数;(2)CA →表示的复数;(3)点B 对应的复数.[解] 由题意得O 为原点,OA →=(3,2),OC →=(-2,4). (1)∵AO →=-OA →=-(3,2)=(-3,-2)∴AO →表示的复数为-3-2i.(2)∵CA →=OA →-OC →=(3,2)-(-2,4)=(5,-2), ∴CA →表示的复数为5-2i.(3)∵OB →=OA →+OC →=(3,2)+(-2,4)=(1,6), ∴OB →表示的复数为1+6i ,即点B 对应的复数为1+6i.复数与平面向量一一对应是复数的另一种几何意义,利用这种几何意义,复数问题可以转化为平面向量来解决,平面向量问题也可以用复数方法来求解.[跟踪训练2] (1)复数4+3i 与-2-5i 分别表示向量OA →与OB →,则向量AB →表示的复数是____.(2)在复平面内的长方形ABCD 的四个顶点中,点A ,B ,C 对应的复数分别是2+3i,3+2i ,-2-3i ,求点D 对应的复数.答案 (1)-6-8i (2)见解析解析 (1)因为复数4+3i 与-2-5i 分别表示向量OA →与OB →,所以OA →=(4,3),OB →=(-2,-5),又AB →=OB →-OA →=(-2,-5)-(4,3)=(-6,-8),所以向量AB →表示的复数是-6-8i.(2)记O 为复平面的原点,由题意得OA →=(2,3),OB →=(3,2),OC →=(-2,-3). 设OD →=(x ,y ),则AD →=(x -2,y -3),BC →=(-5,-5). 由题知,AD →=BC →,所以⎩⎨⎧x -2=-5,y -3=-5,即⎩⎨⎧x =-3,y =-2,故点D 对应的复数为-3-2i. 题型三 复数的模例3 设z ∈C ,则满足条件|z |=|3+4i|的复数z 在复平面内对应的点Z 的集合是什么图形?[解] 由|z |=|3+4i|得|z |=5.这表明向量OZ →的长度等于5,即点Z 到原点的距离等于5.因此满足条件的点Z的集合是以原点O为圆心,以5为半径的圆.巧用复数的模的几何意义解题(1)复平面内|z|的意义我们知道,在实数集中,实数a的绝对值,即|a|是表示实数a的点与原点O 间的距离.那么在复数集中,类似地,有|z|是表示复数z的点Z到坐标原点间的距离.也就是向量OZ→的模,|z|=|OZ→|.(2)复平面内任意两点间的距离设复平面内任意两点P,Q所对应的复数分别为z1,z2,则|PQ|=|z2-z1|.运用以上性质,可以通过数形结合的方法解决有关问题.[跟踪训练3] 设z∈C,且满足下列条件,在复平面内,复数z对应的点Z 的集合是什么图形?(1)1<|z|<2;(2)|z-i|<1.解(1)根据复数模的几何意义可知,复数z对应的点Z的集合是以原点O为圆心,1和2为半径的两圆所夹的圆环,不包括圆环的边界.(2)根据模的几何意义,|z-i|=1表示复数z对应的点到复数i对应的点(0,1)的距离为1.∴满足|z-i|<1的点Z的集合为以(0,1)为圆心,1为半径的圆内的部分(不含圆的边界).1.已知a∈R,且0<a<1,i为虚数单位,则复数z=a+(a-1)i在复平面内所对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限答案 D解析∵0<a<1,∴a>0且a-1<0,故复数z=a+(a-1)i在复平面内所对应的点(a ,a -1)位于第四象限.故选D.2.(多选)若复数z =(a 2-2a )+(a 2-a -2)i 对应的点Z 在虚轴上,则a 的值可以是( )A .0B .1C .2D .3答案 AC解析 由点Z 在虚轴上可知,点Z 对应的复数是纯虚数和0,∴a 2-2a =0,解得a =2或a =0.故选AC.3.若复数z 1=2+b i 与复数z 2=a -4i 互为共轭复数,则a =____,b =____. 答案 2 4解析 因为z 1与z 2互为共轭复数,所以a =2,b =4.4.已知复数z =3+a i ,且|z |<5,则实数a 的取值范围是____. 答案 -4<a <4解析 |z |=32+a 2<5,解得-4<a <4.5.如果复数z =(m 2+m -1)+(4m 2-8m +3)i(m ∈R )对应的点在第一象限,求实数m 的取值范围.解 因为复数z 对应的点在第一象限, 所以⎩⎨⎧m 2+m -1>0,4m 2-8m +3>0,解得m <-1-52或m >32.所以实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,-1-52∪⎝ ⎛⎭⎪⎫32,+∞.一、选择题1.复数z 1=1+3i 和z 2=1-3i 在复平面内的对应点关于( ) A .实轴对称B .一、三象限的角平分线对称C .虚轴对称D .二、四象限的角平分线对称 答案 A解析 复数z 1=1+3i 在复平面内的对应点为Z 1(1,3),复数z 2=1-3i 在复平面内的对应点为Z 2(1,-3),点Z 1与Z 2关于实轴对称.2.当23<m <1时,复数z =(3m -2)+(m -1)i 的共轭复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 ∵23<m <1,∴2<3m <3,∴0<3m -2<1且-13<m -1<0,∴复数z 在复平面内对应的点位于第四象限.∵一对共轭复数在复平面内对应的点关于实轴对称,∴复数z 的共轭复数在复平面内对应的点位于第一象限.故选A .3.复数z 1=a +2i ,z 2=-2+i ,如果|z 1|<|z 2|,则实数a 的取值范围是( ) A .-1<a <1 B .a >1 C .a >0 D .a <-1或a >0答案 A解析 依题意有a 2+22<-22+12,解得-1<a <1.4.(多选)若|4+25i|+x +(3-2x )i =3+(y +5)i(i 为虚数单位),其中x ,y 是实数,则( )A .x =3B .y =4C .x +y i =-3+4iD .|x +y i|=5答案 BCD解析 由已知,得6+x +(3-2x )i =3+(y +5)i , 所以⎩⎨⎧x +6=3,3-2x =y +5,解得⎩⎨⎧x =-3,y =4,所以|x +y i|=|-3+4i|=5,故选BCD.5.已知复数z 满足|z |2-2|z |-3=0,则复数z 对应点的轨迹是( ) A .1个圆B .线段C .2个点D .2个圆答案 A解析 由题意可知(|z |-3)(|z |+1)=0,即|z |=3或|z |=-1.∵|z |≥0,∴|z |=3.∴复数z 对应的轨迹是1个圆.二、填空题6.i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z -2=____.答案 -2-3i解析 复数z 1=2-3i 对应的点为(2,-3),则z 2对应的点为(-2,3).所以z 2=-2+3i ,z -2=-2-3i.7.已知复数(2k 2-3k -2)+(k 2-k )i 在复平面内对应的点在第二象限,则实数k 的取值范围是____.答案 -12<k <0或1<k <2解析 根据题意,有⎩⎨⎧2k 2-3k -2<0,k 2-k >0,即⎩⎨⎧-12<k <2,k <0或k >1,所以实数k 的取值范围是-12<k <0或1<k <2.8.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-2i ,它们所对应的点分别是A ,B ,C ,若OC →=xOA→+yOB →(x ,y ∈R ),则x +y 的值是____.答案 5解析 由已知,得OA →=(-1,2),OB →=(1,-1),OC →=(3,-2),∴xOA →+yOB →=x (-1,2)+y (1,-1)=(-x +y,2x -y ).由OC →=xOA→+yOB →, 可得⎩⎨⎧-x +y =3,2x -y =-2,解得⎩⎨⎧x =1,y =4,∴x +y =5.三、解答题9.已知复数z =(1+2m )+(3+m )i(m ∈R ).(1)若m =1,且|z -|=|x +(x -1)i|,求实数x 的值;(2)当m 为何值时,|z -|最小?并求|z -|的最小值. 解 (1)由m =1,得z =3+4i ,z -=3-4i , 则由|z -|=|x +(x -1)i|, 得32+-42=x 2+x -12,整理得x 2-x -12=0,解得x =4或x =-3. (2)|z -|=1+2m2+[-3+m]2=5m 2+10m +10=5m +12+5≥ 5,当且仅当m =-1时,|z -|取得最小值,最小值为 5.1.在复平面上,复数i,1,4+2i 对应的点分别是A ,B ,C ,求平行四边形的ABCD 的点D 对应的复数.解 解法一:由已知条件得点A (0,1),B (1,0),C (4,2), 则AC 的中点E ⎝⎛⎭⎪⎫2,32,由平行四边形的性质知点E 也是边BD 的中点,设D (x ,y ),则⎩⎪⎨⎪⎧x +12=2,y +02=32,解得⎩⎨⎧x =3,y =3,即D (3,3),∴点D 对应的复数为3+3i.解法二:由已知得向量OA →=(0,1),OB →=(1,0),OC →=(4,2),其中O 为坐标原点.∴BA →=(-1,1),BC →=(3,2), ∴BD →=BA →+BC →=(2,3),∴OD →=OB →+BD →=(3,3),即点D 对应的复数为3+3i. 2.已知x 为实数,复数z =x -2+(x +2)i. (1)当x 为何值对,复数z 的模最小?(2)当复数z 的模最小时,复数z 在复平面内对应的点Z 位于函数y =-mx +n的图象上,其中mn>0,求1m+1n的最小值及取得最小值时m,n的值.解(1)|z|=x-22+x+22=2x2+8≥22,当且仅当x=0时,复数z的模最小,为2 2.(2)当复数z的模最小时,Z(-2,2).又点Z位于函数y=-mx+n的图象上,所以2m+n=2.又mn>0,所以1m+1n=⎝⎛⎭⎪⎫1m+1n⎝⎛⎭⎪⎫m+n2=32+mn+n2m≥32+2,当且仅当n2=2m2,2m+n=2时等号成立.所以m=2-2,n=22-2.所以1m+1n的最小值为32+2,此时m=2-2,n=22-2.。

高中数学必修二第七章复数基础知识手册(带答案)

高中数学必修二第七章复数基础知识手册(带答案)

高中数学必修二第七章复数基础知识手册单选题1、已知z =a −2+(1+2a)i 的实部与虚部相等,则实数a =( ) A .2B .−2C .3D .−3 答案:D分析:由题可得a −2=1+2a ,即得. 由题可知a −2=1+2a , 解得a =−3. 故选:D . 2、复数z =|√3+i |的虚部是( )A .−12B .12C .−12i D .12i 答案:A分析:先根据模的定义计算,并化简得到z =12−12i ,再根据虚部的定义作出判定.∵z =|√3+i|=√(√3)+12=1−i 2=12−12i ,∴z 的虚部为−12, 故选:A. 3、复数2−i1+3i在复平面内对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 答案:C分析:利用复数的除法可化简2−i1+3i ,从而可求对应的点的位置. ∵2−i1+3i=(2−i )(1−3i )10=−1−7i 10,所以该复数对应的点为(−110,−710),在第三象限.故选:C.4、在复平面内,把复数3−√3i对应的向量按顺时针方向旋转π3,所得向量对应的复数是()A.2√3B.−2√3i C.√3−3i D.3+√3i答案:B分析:由题意知复数3−√3i对应的向量按顺时针方向旋转π3,需要把已知向量对应的复数乘以复数的沿顺时针旋转后的复数,相乘得到结果.解:∵由题意知复数3−√3i对应的向量按顺时针方向旋转π3,∴旋转后的向量为(3−√3i)[cos(−π3)+i sin(−π3)]=(3−√3i)(12−√3i2)=32−3√3i2−√3i2+3i22=−2√3i.故选:B.5、若z(1−2i)=2+i,则复数z̅=()A.-1B.−i C.1D.i答案:B分析:由复数的除法运算和共轭复数的概念,即可求出结果.由z(1−2i)=2+i,得z=2+i1−2i =(2+i)(1+2i)(1−2i)(1+2i)=2−2+i+4i5=i,则z̅=−i.故选:B.6、复数1−cosθ−i sinθ(θ∈[0,2π))的三角形式是()A.2sinθ2(cosθ+π2+i sinθ+π2)B.2sinθ2(cosπ−θ2+isinπ−θ2)C.2sinθ2(cosθ−π2+i sinθ−π2)D.2cosθ2(cosπ−θ2+i sinπ−θ2)答案:C分析:根据余弦的二倍角公式以及诱导公式将复数的代数系数转化为三角形式即可求解.1−cosθ−i sinθ=2sin2θ2−2i sinθ2cosθ2=2sinθ2(sinθ2−i cosθ2)=2sinθ2(cosπ−θ2−i sinπ−θ2)=2sinθ2[cosπ−θ2+i sin(−π−θ2)]=2sinθ2(cosθ−π2+i sinθ−π2),故选:C.7、若i(1−z)=1,则z+z̅=()A.−2B.−1C.1D.2答案:D分析:利用复数的除法可求z,从而可求z+z̅.由题设有1−z=1i =ii2=−i,故z=1+i,故z+z̅=(1+i)+(1−i)=2,故选:D8、设(1+i)x=1+y i,其中i为虚数单位,x,y是实数,则|x+yi|=()A.1B.√2C.√3D.2答案:B分析:先利用复数相等求得x,y,再利用复数的模公式求解.因为(1+i)x=1+y i,所以{x=1y=x,解得{x=1y=1,所以|x+y i|=√x2+y2=√2.故选:B.多选题9、已知z1与z2是共轭复数(虚部均不为0),以下4个命题一定正确的是()A.z12<|z2|2B.z1z2=|z1z2|C.z1+z2∈R D.z1z2∈R答案:BC分析:z1与z2是共轭复数,设z1=a+bi(a,b∈R,b≠0),z2=a−bi.利用复数的运算性质及其有关概念即可得出合适的选项.因为z1与z2是共轭复数,设z1=a+bi(a,b∈R,b≠0),则z2=a−bi,对于A选项,当ab≠0时,z12=a2−b2+2abi,|z2|2=a2+b2,z12和|z2|2不能比大小,A选项错误;对于B 选项,z 1z 2=(a +bi )(a −bi )=a 2+b 2=|z 1z 2|,B 选项正确; 对于C 选项,z 1+z 2=(a +bi )+(a −bi )=2a ∈R ,C 选项正确; 对于D 选项,若ab ≠0,z 1z 2=a+bi a−bi=(a+bi )2a 2+b 2=a 2−b 2+2abi a 2+b 2∉R ,D 选项错误.故选:BC .10、在复平面中,已知复数(a +1)i 2021+(1−a)i 2020对应的点在第二象限,则实数a 的可能取值为( ) A .0B .1C .2D .3 答案:CD分析:化简复数,再由复数所在象限列不等式组,即可求解.因为复数(a +1)i 2021+(1−a)i 2020=(1−a)+(a +1)i 在第二象限,所以{a +1>01−a <0⇒a >1故选:CD.11、一个复数集X 称为某种运算的“和谐集”是指X 满足性质:①X ⊆C ;②∀a ,b ∈X 对某种规定的运算a ⊕b ,都有a ⊕b ∈X .则下列数集X 是相应运算的“和谐集”的是( )A .X ={x ∈c|x =i n ,∀n ∈Z},其中i 是虚数单位,规定运算:a ⊕b =ab ,(∀a ,b ∈X )B .X ={x ∈C|x ⋅x̅=1},规定运算:a ⊕b =ab ,(∀a,b ∈X)C .X ={x ∈C||x |≤1},规定运算:a ⊕b =ab ,(∀a ,b ∈X )D .X ={x ∈c||x̅|+|y ̅|≤|x −y |,y =1+i},规定运算:a ⊕b =a +b ,(∀a ,b ∈X ) 答案:ABCD分析:利用虚数单位的幂的运算性质可以判定A;利用共轭复数的性质可以判定B,利用复数的模的性质可以判定C;利用复数的模的三角不等式可以得到集合X 中的元素满足的充分必要条件是x ∈X⇔存在实数k ≤0,使得x =k(1+i),进而根据复数的加法运算公式可判定D.对于A,设a =i n 1,b =i n 2(n 1,n 2∈Z)则a ⊕b =ab=i n 1+n 2,∵n 1,n 2∈Z ,∴n 1+n 2∈Z ,所以i n 1+n 2∈X ,即a ⊕b ∈X ,故A 正确;对于B,∀a,b ∈X ,则a ·a −=1,b ·b −=1,故aa̅bb̅=1,即(ab )·(ab )−=1,∴ab ∈X , 即a ⊕b ∈X ,故B 正确;对于C,∀a,b ∈X ,则|a |<1,|b |<1,∴|a ·b |=|a ||b |<1,即a ·b ∈X , 即a ⊕b ∈X ,故C 正确;对于D,由于在复数范围内,|x̅|=|x |,|y ̅|=|y |,所以由|x|+|y |≤|x −y |⇔|x|+|y|≤|x −y |,有复数的模的不等式得到存在实数k ≤0,使得x =ky(k ≤0),又y =1+i ,于是x ∈X⇔存在实数k ≤0,使得x =k(1+i),∀a,b ∈X ,a =k (1+i ),b =k′(1+i)(k ≤0,k '≤0),所以a ⊕b =a +b =(k +k ′)(1+i),因为k ≤0,k '≤0,∴k +k ′≤0,所以即a ⊕b ∈X ,故D 正确; 故选:ABCD.小提示:本题考查复数的运算和模的性质,关键是认真审题,注意复数的模的性质的应用,常用的模的性质:|z 1z 2|=|z 1||z 2|,|z1z 2|=|z 1||z 2|,|z̅|=|z |,||z 1|−|z 2||≤|z 1+z 2|≤|z 1|+|z 2|(左侧取等号的条件是存在存在实数k ≤0,使得z 1=kz 2(z 2≠0),右侧取等号的条件是存在存在实数k ≥0,使得z 1=kz 2(z 2≠0),共轭复数的性质有z 1z 2̅̅̅̅̅̅=z 1̅z 2̅,λz 1+μz 2̅̅̅̅̅̅̅̅̅̅̅̅=λz 1̅+μz 2̅(λ,μ∈R),这些公式不难证明,在考试中往往十分有用. 填空题 12、已知(−1+√3i )3(1+i )6=a +b i (a,b ∈R ),则a +b =____________.答案:1分析:利用复数四则运算法则,计算(−1+√3i )3(1+i )6=i ,然后利用复数相等,得a =0,b =1,得答案.(−1+√3i )3(1+i )6=[2(−12+√32i )]3[(1+i )2]3=88i 3=1−i =i ,所以a =0,b =1,从而a +b =1.所以答案是:1. 13、已知复数z =(−1+3i )(1−i )−(1+3i )i,若μ=z +m i (m ∈R),则当|μz |≤√2时,实数m 的取值范围是______________. 答案:[−√3+1,√3+1]分析:先对已知式子化简计算出复数z ,从而可得|z |,复数μ,代入|μz |≤√2中化简可得1+(m −1)2≤4,从而可求出实数m 的取值范围. z =(−1+3i )(1−i )−(1+3i )i=(2+4i )−(1+3i )i=1+i i=1−i ,所以|z|=√2,μ=1+(m −1)i .由|μz|≤√2得|μ|≤2,所以1+(m−1)2≤4,即(m−1)2≤3,解得−√3+1≤m≤√3+1.所以答案是:[−√3+1,√3+1]14、在△ABC中,若面积S=b2+c2−a24,则∠A=______.答案:π4##45∘分析:结合三角形面积公式与余弦定理得sinA=cosA,进而得答案.解:由三角形的面积公式得S=12bcsinA,S=b2+c2−a24所以b2+c2−a24=12bcsinA,因为b2+c2−a2=2bccosA,所以2bccosA4=12bcsinA,即sinA=cosA,因为A∈(0,π),所以A=π4所以答案是:π4解答题15、已知复数z=m(m−1)+(m2+2m−3)i,当m取何实数值时,复数z是:(1)纯虚数;(2)z=2+5i.答案:(1)m=0;(2)m=2.解析:(1)利用m(m−1)=0,(m2+2m−3)≠0,即可求解.(2)利用复数相等的条件实部与虚部分别相等m(m−1)=2,(m2+2m−3)=5即可求解.(1)若复数是纯虚数,则{m(m−1)=0m2+2m−3≠0,解得{m=0或m=1m≠−3且m≠1,所以m=0(2)利用复数相等的条件实部与虚部分别相等可得{m(m−1)=2m2+2m−3=5,m=2或m=−1 m=2或m=−4,即m=2解得{。

部编版高中数学必修二第七章复数带答案知识点归纳超级精简版

(名师选题)部编版高中数学必修二第七章复数带答案知识点归纳超级精简版单选题1、z =(2+i )2−4在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2、已知i 是虚数单位,则复数z =2−i 20202+i 2021对应的点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3、在复平面内,复数z =5i 3−4i (i 为虚数单位),则z 对应的点的坐标为( )A .(3,4)B .(−4,3)C .(45,−35)D .(−45,−35) 4、若复数z 满足z ⋅(2+i)=z ⋅(1−i)+1,则复数z 的实部为( )A .−32B .−1C .−12D .1 5、若复数z 满足(z -1)i =1+i 其中i 为虚数单位,则复数z 的共轭复数z̅=( )A .-2-iB .-2+iC .2-iD .2+i6、z 1、z 2是复数,则下列结论中正确的是( )A .若z 12+z 22>0,则z 12>−z 22B .|z 1−z 2|=√(z 1+z 2)2−4z 1⋅z 2C .z 12+z 22=0⇔z 1=z 2=0D .|z 12|=|z 1|27、若z (1+i )=1−i ,则z =( )A .1–iB .1+iC .–iD .i8、设z =-3+2i ,则在复平面内z 对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限多选题9、已知复数z 1=1−3i ,z 2=3+i ,则( )A .|z 1+z 2|=6B .z 1−z 2=−2+2iC .z 1z 2=6−8iD .z 1z 2在复平面内对应的点位于第二象限10、下列关于复数知识的论述,错误的有( )A .在复数集内a 4−b 4因式分解的结果是(a +b )(a −b )(a 2+b 2)B .2+3i >1+3iC .在复平面内,虚轴上的点都表示纯虚数D .复数2+3i 的虚部为3i11、已知λ,μ∈R ,AB ⃑⃑⃑⃑⃑ =(λ,1),AC ⃑⃑⃑⃑⃑ =(−1,1),AD ⃑⃑⃑⃑⃑ =(1,μ),那么( )A .CB⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ =(λ−1,1−μ) B .若AB ⃑⃑⃑⃑⃑ ∥AD ⃑⃑⃑⃑⃑ ,则λ=2,μ=12C .若A 是BD 中点,则B ,C 两点重合D .若点B ,C ,D 共线,则μ=1填空题12、i 2 021=________.13、若复数z =(m 2+m −2)+(4m 2−8m +3)i ,(m ∈R)的共轭复数z 对应的点在第一象限,则实数m 的取值范围为___________.部编版高中数学必修二第七章复数带答案(四十九)参考答案1、答案:B分析:将复数化为标准形式再根据复数的几何意义即可确定.z =(2+i )2−4=−1+4i ,则z 在复平面内对应的点位于第二象限,故选:B.2、答案:D分析:先化简i 2020,i 2021,再利用复数的除法化简得解.z =2−i 20202+i 2021=12+i =2−i (2+i)(2−i)=2−i 5. 所以复数对应的点(25,−15)在第四象限,故选:D小提示:名师点评复数z =x +yi(x,y ∈R)对应的点为(x,y),点(x,y)在第几象限,复数对应的点就在第几象限.3、答案:D分析:根据复数运算法则进行运算后,再由复数的几何意义得解.因为z =5i 3−4i =5i (3+4i )(3−4i )(3+4i )=3i−45=−45+35i ,所以z =−45−35i ,所以复数z 所对应的点的坐标为(−45,−35).故选:D .4、答案:D分析:利用复数的四则运算以及共轭复数的概念,根据对应相等即可求解.设z =a +bi (a 、b ∈R ),则(a +bi)⋅(2+i)=(a −bi)⋅(1−i)+1,化简得(2a −b)+(a +2b)i =(a −b +1)−(a +b)i ,根据对应相等得:{2a −b =a −b +1a +2b =−(a +b ), 解得a =1,b =−23,故选:D.5、答案:D分析:根据复数的除法运算以及共轭复数的概念即可求解.因为(z-1)i=1+i,所以z=1+2ii =(1+2i)ii×i=2−i,所以z=2+i.故选:D.6、答案:D解析:举反例z1=2+i,z2=2−i可判断选项A、B,举反例z1=1,z2=i可判断选项C,设z1=a+bi,(a,b∈R),分别计算|z12|、|z1|2即可判断选项D,进而可得正确选项.对于选项A:取z1=2+i,z2=2−i,z12=(2+i)2=3+2i,z22=(2−i)2=3−2i,满足z12+z22=6>0,但z12与z22是两个复数,不能比较大小,故选项A不正确;对于选项B:取z1=2+i,z2=2−i,|z1−z2|=|2i|=2,而√(z1+z2)2−4z1⋅z2=√42−4(2+i)(2−i)=√16−20无意义,故选项B不正确;对于选项C:取z1=1,z2=i,则z12+z22=0,但是z1≠0,z2≠0,故选项C不正确;对于选项D:设z1=a+bi,(a,b∈R),则z12=(a+bi)2=a2−b2+2abi|z12|=√(a2−b2)2+4a2b2=√(a2+b2)2=a2+b2,z1=a−bi,|z1|=√a2+b2,所以|z1|2=a2+b2,所以|z12|=|z1|2,故选项D正确.故选:D.7、答案:D分析:先利用除法运算求得z,再利用共轭复数的概念得到z即可.因为z=1−i1+i =(1−i)2(1+i)(1−i)=−2i2=−i,所以z=i.故选:D【点晴】本题主要考查复数的除法运算,涉及到共轭复数的概念,是一道基础题.8、答案:C分析:先求出共轭复数再判断结果.由z =−3+2i,得z =−3−2i,则z =−3−2i,对应点(-3,-2)位于第三象限.故选C .小提示:本题考点为共轭复数,为基础题目.9、答案:BC分析:直接根据复数的运算、共轭复数、复数的模及复数的几何意义依次判断4个选项即可.由题可知,|z 1+z 2|=√42+(−2)2=2√5,A 不正确;z 1−z 2=−2+2i ,B 正确;z 1z 2=(1−3i )(3+i)=3+i −9i −3i 2=6−8i ,C 正确;对应的点在第四象限,D 不正确.故选:BC.10、答案:ABCD分析:由(a 2+b 2)=(a +bi)(a −bi)可判断A ;虚数不可比较大小可判断B ;原点表示实数0可判断C ;复数2+3i 的虚部为3可判断D选项A :在复数集内,由于i 2=−1,a 4−b 4因式分解的结果是(a +b )(a −b )(a +b i )(a −b i ),故A 错误; 选项B :虚数不可比较大小,故B 错误;选项C :在复平面内,虚轴上的点都表示纯虚数(除了原点),故C 错误;选项D :复数2+3i 的虚部为3,故D 错误.故选:ABCD11、答案:AC分析:根据向量运算、向量平行(共线)等知识对选项进行分析,从而确定正确选项.A 选项,CB ⃑⃑⃑⃑⃑ +DC ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑ =AB ⃑⃑⃑⃑⃑ −AD ⃑⃑⃑⃑⃑=(λ,1)−(1,μ)=(λ−1,1−μ),A 选项正确.B 选项,若AB ⃑⃑⃑⃑⃑ //AD ⃑⃑⃑⃑⃑ ,则λ⋅μ=1,故可取λ=3,μ=13,B 选项错误.C 选项,若A 是BD 的中点,则AB⃑⃑⃑⃑⃑ =−AD ⃑⃑⃑⃑⃑ ,即(λ,1)=(−1,−μ)⇒λ=μ=−1, 所以AB⃑⃑⃑⃑⃑ =AC ⃑⃑⃑⃑⃑ =(−1,1),所以B,C 两点重合,C 选项正确.D 选项,由于B,C,D 三点共线,所以BC ⃑⃑⃑⃑⃑ //BD⃑⃑⃑⃑⃑⃑ , BC⃑⃑⃑⃑⃑ =AC ⃑⃑⃑⃑⃑ −AB ⃑⃑⃑⃑⃑ =(−1,1)−(λ,1)=(−1−λ,0), BD ⃑⃑⃑⃑⃑⃑ =AD ⃑⃑⃑⃑⃑ −AB⃑⃑⃑⃑⃑ =(1−λ,μ−1), 则(−1−λ)×(μ−1)=0×(1−λ)⇒λ=−1或μ=1,所以D 选项错误.故选:AC12、答案:i分析:利用周期性求得所求表达式的值.i 2021=i 505×4+1=i 1=i所以答案是:i13、答案:(1,32)分析:根据条件先分析z 的对应点所在象限,根据象限内坐标的特点列出关于m 的不等式组,由此求解出结果. 因为z 对应的点在第一象限,所以z 的对应点在第四象限,所以{m 2+m −2>04m 2−8m +3<0 ,解得1<m <32,即m ∈(1,32), 所以答案是:(1,32).。

人教A版高中数学必修第二册精品课件 第7章 复数 7.2.2 复数的乘、除运算

(2)复数乘法满足的运算律:对于任意z1,z2,z3∈C,有
交换律
z1z2= z2z1
结合律
(z1z2)z3= z1(z2z3)
乘法对加法的分配律
z1(z2+z3) = z1z2+z1z3
4.若复数z1=1+i,z2=3-i,则z1·z2等于(
A.4+2i
B.2+i
C.2+2i
D.3+4i
解析:z1·z2=(1+i)(3-i)=3+3i-i-i2=4+2i.

;

-± -( -)
(2)当 Δ<0 时,x=

.
4.在复数范围内,方程4x2+9=0的根为
解析:因为

答案:±i
2
x =-
= ±


,所以


x=±i.
.
合作探究·释疑解惑
探究一
探究二
探究三
探究一 复数的乘法运算
【例1】 (1)i(2+3i)=(
)
A.3-2i
提示:+
=
(+)(-)
(+)(-)
=
+
+

+
-
+
i.
3.(1)复数除法的法则是:
+
(a+bi)÷(c+di)=+
=
+
+

+
-
+
I
(a,b,c,d∈R,且 c+di≠0).
由此可见,两个复数相除(除数不为0),所得的商是一个确定的

高中数学第七章复数知识点归纳总结(精华版)(带答案)

高中数学第七章复数知识点归纳总结(精华版)单选题1、已知a∈R,若a–1+(a–2)i(i为虚数单位)是实数,则a=()A.1B.–1C.2D.–2答案:C分析:根据复数为实数列式求解即可.因为(a−1)+(a−2)i为实数,所以a−2=0,∴a=2,故选:C小提示:本题考查复数概念,考查基本分析求解能力,属基础题.2、若复数z满足|z−2−3i|=5,则复数z的共轭复数不可能为()A.2+8i B.−2−6i C.5+i D.5−7i答案:A分析:设复数z=a+bi,根据|z−2−3i|=5求出参数a,b满足的表达式,将选项代入判断是否成立即可设复数z=a+bi,则z−2−3i=(a−2)+(b−3)i,所以|z−2−3i|=√(a−2)2+(b−3)2=5,选项A中,a=2,b=−8,不满足等式,错误;选项B中,a=−2,b=6,满足等式,正确;选项C中,a=5,b=−1,满足等式,正确;选项D中,a=5,b=7,满足等式,正确;故选:A3、复数2i1−i(i是虚数单位)的虚部是()A.1B.−i C.2D.−2i答案:A分析:利用复数的除法法则及复数的概念即可求解.由题意可知,2i1−i =2i×(1+i)(1−i)(1+i)=−2+2i2=−1+i,所以复数2i1−i的虚部为1. 故选:A.4、若复数z =1+2i 1−i (i 为虚数单位),则z 在复平面对应的点所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限答案:C解析:由z =1+2i 1−i ,利用复数的除法化简得到z ,进而得到其共轭复数,再利用复数的几何意义求解. 因为z =(1+2i)(1+i)2=−1+3i 2=−12+32i , 所以z =−12−32i ,所以z 对应的点是(−12,−32),在第三象限,故选:C.5、在复平面内,把复数3−√3i 对应的向量按顺时针方向旋转π3,所得向量对应的复数是( )A .2√3B .−2√3iC .√3−3iD .3+√3i答案:B分析:由题意知复数3−√3i 对应的向量按顺时针方向旋转π3,需要把已知向量对应的复数乘以复数的沿顺时针旋转后的复数,相乘得到结果.解:∵由题意知复数3−√3i 对应的向量按顺时针方向旋转π3, ∴旋转后的向量为(3−√3i)[cos(−π3)+isin(−π3)]=(3−√3i)(12−√3i 2)=32−3√3i 2−√3i 2+3i 22=−2√3i . 故选:B .6、复数z =|√3+i|的虚部是( ) A .−12B .12C .−12i D .12i答案:A 分析:先根据模的定义计算,并化简得到z =12−12i ,再根据虚部的定义作出判定.∵z =|√3+i|=√(√3)+12=1−i 2=12−12i , ∴z 的虚部为−12,故选:A.7、已知复数z 满足z ⋅z +4iz =5+ai ,则实数a 的取值范围为( )A .[−4,4]B .[−6,6]C .[−8,8]D .[−12,12]答案:D分析:设z =x +yi,x,y ∈R ,由复数相等,得出x,y,a 的关系式,消去x 得到关于y 的一元二次方程有实数解,利用Δ≥0,求解即可得出答案.设z =x +yi,x,y ∈R ,则x 2+y 2+4i (x −yi )=5+ai ,整理得:x 2+y 2+4y +4xi =5+ai ,所以{x 2+y 2+4y =54x =a,消去x 得y 2+4y −5+a 216=0, 因为方程有解,所以Δ=16−4(a 216−5)≥0,解得:−12≤a ≤12.故选:D.8、已知i 为虚数单位,则1+3i 1−2i =( ). A .−2−3i B .−1−iC .−1+iD .3+2i答案:C分析:利用复数的除法化简可得结果.1+3i 1−2i=(1+3i )⋅(1+2i )(1−2i )⋅(1+2i )=−5+5i 5=−1+i ,故选:C.多选题 9、设z (1−i )=2+i ,则下列叙述中正确的是( )A .z 的虚部为−32B .z =12−32iC .∣z ∣=√102D .在复平面内,复数z 对应的点位于第四象限 答案:BC 分析:先根据复数的除法法则求得z 值,再根据复数的概念求出复数的虚部、共轭复数、模,再根据复数的几何意义判定选项D 错误.由z (1−i )=2+i ,得z =2+i 1−i =(2+i)(1+i)(1−i)(1+i)=1+3i 2=12+32i , 则:z 的虚部为32,即选项A 错误; z =12−32i ,即选项B 正确;|z |=√(12)2+(32)2=√102,即选项C 正确; 复数z 对应的点(12,32)位于第一象限,即选项D 错误. 故选:BC.10、1487年,瑞士数学家欧拉发现了复指数函数和三角函数的关系,并写下公式e iθ=cosθ+isinθ,这个公式在复变函数中有非常重要的地位,即著名的“欧拉公式”,被誉为“数学中的天桥”,据欧拉公式,则( )A .e πi 2=iB .|e πi 4|=1C .(1−√3i 2)3=1D .cos π4=e πi 4+e −πi 42答案:ABD分析:根据e iθ=cosθ+isinθ可判断ABD ,根据复数的乘法运算可判断C.因为e iθ=cosθ+isinθ所以e πi 2=cos π2+isin π2=i ,故A 正确e πi 4=cos π4+isin π4=√22+√22i ,|e πi 4|=√(√22)2+(√22)2=1,故B 正确 (1−√3i 2)3=(1−√3i 2)2(1−√3i 2)=−1−√3i 2⋅1−√3i 2=−1,故C 错误 e πi 4+e−πi 42=cos π4+isin π4+cos(−π4)+isin(−π4)2=cos π4,故D 正确 故选:ABD11、i 是虚数单位,下列说法中正确的有( )A .若复数z 满足z ⋅z =0,则z =0B .若复数z 1,z 2满足|z 1+z 2|=|z 1−z 2|,则z 1z 2=0C .若复数z =a +ai(a ∈R),则z 可能是纯虚数D .若复数z 满足z 2=3+4i ,则z 对应的点在第一象限或第三象限答案:AD解析:A 选项,设出复数,根据共轭复数的相关计算,即可求出结果;B 选项,举出反例,根据复数模的计算公式,即可判断出结果;C 选项,根据纯虚数的定义,可判断出结果;D 选项,设出复数,根据题中条件,求出复数,由几何意义,即可判断出结果.A 选项,设z =a +bi (a,b ∈R ),则其共轭复数为z =a −bi (a,b ∈R ),则z ⋅z =a 2+b 2=0,所以a =b =0,即z =0;A 正确;B 选项,若,z 2=i ,满足|z 1+z 2|=|z 1−z 2|,但z 1z 2=i 不为0;B 错;C 选项,若复数z =a +ai(a ∈R)表示纯虚数,需要实部为0,即a =0,但此时复数z =0表示实数,故C 错;D 选项,设z =a +bi (a,b ∈R ),则z 2=(a +bi )2=a 2+2abi −b 2=3+4i ,所以{a 2−b 2=32ab =4,解得{a =2b =1或{a =−2b =−1,则z =2+i 或z =−2−i , 所以其对应的点分别为(2,1)或(−2,−1),所以对应点的在第一象限或第三象限;D 正确.故选:AD.12、已知i 为虚数单位,则下列选项中正确的是( )A .复数z =3+4i 的模|z |=5B .若复数z =3+4i ,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限C .若复数(m 2+3m −4)+(m 2−2m −24)i 是纯虚数,则m =1或m =−4D .对任意的复数z ,都有z 2≥0答案:AB分析:求解复数的模判断A ;由共轭复数的概念判断B ;由实部为0且虚部不为0求得m 值判断C ;举例说明D 错误.解:对于A ,复数z =3+4i 的模|z|=√32+42=5,故A 正确;对于B ,若复数z =3+4i ,则z =3−4i ,在复平面内对应的点的坐标为(3,−4),在第四象限,故B 正确; 11z对于C,若复数(m2+3m−4)+(m2−2m−24)i是纯虚数,则{m 2+3m−4=0m2−2m−24≠0,解得m=1,故C错误;对于D,当z=i时,z2=−1<0,故D错误.故选:AB.小提示:本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题.13、设z1,z2是复数,则下列说法中正确的是()A.若|z1+z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1⋅z1=z2⋅z2D.若|z1|=|z2|,则z12=z22答案:BC分析:根据共轭复数、复数运算等知识对选项进行分析,从而确定正确选项.对于A选项,设z1=−1−i,z2=1+i,满足|z1+z2|=0,但不满足z1=z2,A选项错误.对于D选项,设z1=i,z2=1,满足|z1|=|z2|,但z12=−1,z22=1,z12≠z22,D选项错误.对于B选项,由于z1=z2,故可设z2=a+bi,a,b∈R,则z1=a−bi,则z1=z2,B选项正确.对于C选项,由于|z1|=|z2|,且z1⋅z1=|z1|2,z2⋅z2=|z2|2,所以z1⋅z1=z2⋅z2,C选项正确.故选:BC填空题14、已知复数z对应的点在复平面第一象限内,甲、乙、丙三人对复数z的陈述如下(i为虚数单位):甲:z+z=4;乙:z⋅z=3;丙:z =z25,在甲、乙、丙三人陈述中,有且只有两个人的陈述正确,则复数z=______.答案:2+i##i+2分析:设z=a+bi,则z=a−bi,然后分别求出甲,乙,丙对应的结论,先假设甲正确,则得出乙错误,丙正确,由此即可求解.解:设z=a+bi,则z=a−bi,甲:由z+z=4可得2a=4,则a=2,乙:由z⋅z=3可得:a2+b2=3,丙:由z =z25可得2z⋅z=z25,即z2a2+b2=z25,所以a2+b2=5,若a=2,则a2+b2=4+b2=3,则b2=−1不成立,4+b2=5,则b2=1,解得b=1或−1,所以甲,丙正确,乙错误,此时z=2+i或z=2−i,又复数z对应的点在复平面第一象限内,所以z=2+i,所以答案是:2+i.15、若复数m−3+(m2−9)i≥0,则实数m的值为________.答案:3分析:由题意知m−3+(m2−9)i为实数,实部大于或等于0,虚部等于0,即可求解.因为复数不能比较大小,所以m−3+(m2−9)i为实数,可得{m−3≥0m2−9=0解得m=3所以实数m的值为3,所以答案是:316、已知z1为复数,且|z1|=2,则|z1+2i|的最大值为____________.答案:4分析:由题意,设z1=a+bi(a,b∈R),得到a2+b2=4,则|z1+2i|=√a2+(b+2)2,利用复数的模的几何意义,即可得解.由题意设z1=a+bi(a,b∈R),则z1+2i=a+bi+2i=a+(b+2)i∵|z1|=2,∴√a2+b2=2,即a2+b2=4,即|z1|的模的轨迹可理解为以(0,0)为圆心,半径为2的圆.则|z1+2i|=√a2+(b+2)2,可理解为求点(a,b)到点(0,−2)之间的距离,数形结合可知,|z1+2i|的最大值为4.所以答案是:4解答题17、(Ⅰ)在①z+z=4,②z为纯虚数,③z为实数,这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知复数z=(m2−3m+2)+(m2−5m+6)i(i为虚数单位),z为z的共轭复数,若_________,求实数m的值;(注:如果选择多个条件分别解答,按第一个条件给分)(Ⅱ)在复数范围内解关于x的方程:x2+2x+2=0.答案:(Ⅰ)答案见解析(Ⅱ)x1=−1+i,x2=−1−i分析:(Ⅰ)由复数的类型以及运算,列出关系式,从而得出实数m的值;(Ⅱ)由配方法结合复数的性质得出方程的解.(Ⅰ)①∵z=(m2−3m+2)−(m2−5m+6)i,z+z=4∴2(m2−3m+2)=4,即m2−3m=0,解得m=0或m=3②∵z为纯虚数∴{m 2−3m+2=0m2−5m+6≠0,解得m=1③∵z为实数,∴m2−5m+6=0,解得m=2,m=3(Ⅱ)∵(x+1)2=−1=i2,∴x1=−1+i,x2=−1−i18、已知复数z=(m−1)+(2m+1)i(m∈R)(1)若z为纯虚数,求实数m的值;(2)若z在复平面内的对应点位于第二象限,求实数m的取值范围及|z|的最小值答案:(1)1;(2)m∈(−12,1),|z|min=3√55.解析:(1)利用纯虚数的定义,实部为零,虚部不等于零即可得出.(2)利用复数模的计算公式、几何意义即可得出.解:(1)∵z =(m −1)+(2m +1)i(m ∈R)为纯虚数,∴m −1=0且2m +1≠0∴m =1(2)z 在复平面内的对应点为(m −1,2m +1))由题意:{m −1<02m +1>0,∴−12<m <1. 即实数m 的取值范围是(−12,1).而|z|=√(m −1)2+(2m +1)2=√5m 2+2m +2=√5(m +15)2+95, 当m =−15∈(−12,1)时,|z|min =√95=3√55.。

新教材 人教A版高中数学必修第二册 第七章复数 课后练习题及章末测验 精选配套习题 含解析

第七章 复数1、数系的扩充和复数的概念 ........................................................................................ - 1 -2、复数的几何意义 ........................................................................................................ - 5 -3、复数的加、减运算及其几何意义 ............................................................................ - 9 -4、复数的乘、除运算 .................................................................................................. - 14 -5、复数的三角表示 ...................................................................................................... - 19 - 章末综合测验................................................................................................................ - 23 -1、数系的扩充和复数的概念一、选择题 1.下列命题:(1)若a +b i =0,则a =b =0; (2)x +y i =2+2i ⇔x =y =2;(3)若y ∈R ,且(y 2-1)-(y -1)i =0,则y =1. 其中正确命题的个数为( ) A .0 B .1 C .2D .3B [(1),(2)所犯的错误是一样的,即a ,x 不一定是复数的实部,b ,y 不一定是复数的虚部;(3)正确,因为y ∈R ,所以y 2-1,-(y -1)是实数,所以由复数相等的条件得⎩⎨⎧y 2-1=0,-(y -1)=0,解得y =1.]2.若复数z =(m +2)+(m 2-9)i(m ∈R )是正实数,则实数m 的值为 ( ) A .-2 B .3 C .-3D .±3B [由题知⎩⎨⎧m 2-9=0,m +2>0,解得m =3,故选B .]3.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ) A .3-3i B .3+i C .-2+2iD .2+2iA [3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A .]4.4-3a -a 2i =a 2+4a i ,则实数a 的值为( ) A .1 B .1或-4 C .-4D .0或-4C [由题意知⎩⎨⎧4-3a =a 2,-a 2=4a ,解得a =-4.]5.设a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件B [因为a ,b ∈R ,“a =0”时“复数a +b i 不一定是纯虚数”.“复数a +b i 是纯虚数”,则“a =0”一定成立.所以a ,b ∈R ,“a =0”是“复数a +b i 是纯虚数”的必要不充分条件.]二、填空题6.设m ∈R ,m 2+m -2+(m 2-1)i 是纯虚数,其中i 是虚数单位,则m =________.-2 [⎩⎨⎧m 2+m -2=0,m 2-1≠0,∴m =-2.]7.(一题两空)已知z 1=-3-4i ,z 2=(n 2-3m -1)+(n 2-m -6)i ,且z 1=z 2,则实数m =________,n =________.2 ±2 [由复数相等的充要条件有 ⎩⎨⎧ n 2-3m -1=-3,n 2-m -6=-4⇒⎩⎨⎧m =2,n =±2.]8.下列命题:①若a ∈R ,则(a +1)i 是纯虚数;②若(x 2-1)+(x 2+3x +2)i(x ∈R )是纯虚数,则x =±1; ③两个虚数不能比较大小. 其中正确命题的序号是________.③ [当a =-1时,(a +1)i =0,故①错误;两个虚数不能比较大小,故③对;若(x 2-1)+(x 2+3x +2)i 是纯虚数,则⎩⎨⎧x 2-1=0,x 2+3x +2≠0,即x =1,故②错.]三、解答题9.若x ,y ∈R ,且(x -1)+y i >2x ,求x ,y 的取值范围. [解] ∵(x -1)+y i >2x ,∴y =0且x -1>2x , ∴x <-1,∴x ,y 的取值范围分别为x <-1,y =0.10.实数m 为何值时,复数z =m (m +2)m -1+(m 2+2m -3)i 是(1)实数;(2)虚数;(3)纯虚数.[解] (1)要使z 是实数,m 需满足m 2+2m -3=0,且m (m +2)m -1有意义,即m -1≠0,解得m =-3.(2)要使z 是虚数,m 需满足m 2+2m -3≠0,且m (m +2)m -1有意义,即m -1≠0,解得m ≠1且m ≠-3.(3)要使z 是纯虚数,m 需满足m m +2m -1=0,m -1≠0,且m 2+2m -3≠0,解得m =0或m =-2.11.(多选题)下列命题正确的是( ) A .1+i 2=0B .若a ,b ∈R ,且a >b ,则a +i>b +iC .若x 2+y 2=0,则x =y =0D .两个虚数不能比较大小AD [对于A ,因为i 2=-1,所以1+i 2=0,故A 正确.对于B ,两个虚数不能比较大小,故B 错.对于C ,当x =1,y =i 时,x 2+y 2=0成立,故C 错.D 正确.]12.已知关于x 的方程x 2+(m +2i)x +2+2i =0(m ∈R )有实根n ,且z =m +n i ,则复数z =( )A .3+iB .3-iC .-3-iD .-3+iB [由题意,知n 2+(m +2i)n +2+2i =0,即n 2+mn +2+(2n +2)i =0. 所以⎩⎨⎧n 2+mn +2=0,2n +2=0,解得⎩⎨⎧m =3,n =-1.所以z =3-i.]13.(一题两空)定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如果(x +y )+(x +3)i =⎪⎪⎪⎪⎪⎪3x +2y i -y 1,则实数x =________,y =________.-1 2 [由定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc 得⎪⎪⎪⎪⎪⎪3x +2y i -y 1=3x +2y +y i , 故有(x +y )+(x +3)i =3x +2y +y i.因为x ,y 为实数,所以有⎩⎨⎧x +y =3x +2y ,x +3=y ,解得x =-1,y =2.]14.已知复数z 1=4-m 2+(m -2)i ,z 2=λ+2sin θ+(cos θ-2)i(其中i 是虚数单位,m ,λ,θ∈R ).(1)若z 1为纯虚数,求实数m 的值; (2)若z 1=z 2,求实数λ的取值范围. [解] (1)∵z 1为纯虚数, ∴⎩⎨⎧4-m 2=0,m -2≠0,解得m =-2. (2)由z 1=z 2,得⎩⎨⎧4-m 2=λ+2sin θ,m -2=cos θ-2,∴λ=4-cos 2θ-2sin θ =sin 2θ-2sin θ+3 =(sin θ-1)2+2.∵-1≤sin θ≤1,∴当sin θ=1时,λmin =2, 当sin θ=-1时,λmax =6, ∴实数λ的取值范围是[2,6].2、复数的几何意义一、选择题1.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [z =-1-2i 对应点Z (-1,-2),位于第三象限. ] 2.已知z 1=5+3i ,z 2=5+4i ,则下列各式正确的是( ) A .z 1>z 2 B .z 1<z 2 C .|z 1|>|z 2|D .|z 1|<|z 2|D [z 1,z 2不能比较大小,排除选项A ,B ,又|z 1|=52+32,|z 2|=52+42,故|z 1|<|z 2|.]3.已知平行四边形OABC ,O ,A ,C 三点对应的复数分别为0,1+2i,3-2i ,则AB →的模|AB →|等于( )A . 5B .2 5C .4D .13D [由于OABC 是平行四边形,故AB →=OC →,因此|AB →|=|OC →|=|3-2i|=13.] 4.当23<m <1时,复数z =(3m -2)+(m -1)i 在复平面上对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵23<m <1,∴3m -2>0,m -1<0,∴点(3m -2,m -1)在第四象限.] 5.如果复数z 满足条件z +|z |=2+i ,那么z =( ) A .-34+i B .34-i C .-34-iD .34+iD [设z =a +b i(a ,b ∈R ),由复数相等的充要条件,得⎩⎨⎧a +a 2+b 2=2,b =1,解得⎩⎪⎨⎪⎧a =34,b =1,即z =34+i.] 二、填空题6.若复数z =(m 2-9)+(m 2+2m -3)i 是纯虚数,其中m ∈R ,则|z |=________. 12 [由条件,知⎩⎨⎧m 2+2m -3≠0,m 2-9=0,所以m =3,因此z =12i ,故|z |=12.]7.复数z =x -2+(3-x )i 在复平面内的对应点在第四象限,则实数x 的取值范围是________.(3,+∞) [∵复数z 在复平面内对应的点位于第四象限, ∴⎩⎨⎧x -2>0,3-x <0.解得x >3.] 8.设z 为纯虚数,且|z -1|=|-1+i|,则复数z =________. ±i [因为z 为纯虚数, 所以设z =a i(a ∈R ,且a ≠0), 则|z -1|=|a i -1|=a 2+1. 又因为|-1+i|=2, 所以a 2+1=2,即a 2=1, 所以a =±1,即z =±i.] 三、解答题9.已知复数z =a +3i(a ∈R )在复平面内对应的点位于第二象限,且|z |=2,求复数z .[解] 因为z 在复平面内对应的点位于第二象限, 所以a <0,由|z |=2知,a 2+(3)2=2,解得a =±1, 故a =-1, 所以z =-1+3i.10.在复平面内,若复数z =(m 2-m -2)+(m 2-3m +2)i 对应的点. (1)在虚轴上;(2)在第二象限;(3)在直线y =x 上. 分别求实数m 的取值范围.[解] 复数z =(m 2-m -2)+(m 2-3m +2)i 的实部为m 2-m -2,虚部为m 2-3m +2.(1)由题意得m 2-m -2=0. 解得m =2或m =-1. (2)由题意得⎩⎨⎧m 2-m -2<0,m 2-3m +2>0,∴⎩⎨⎧-1<m <2,m >2或m <1, ∴-1<m <1.(3)由已知得m 2-m -2=m 2-3m +2,∴m =2.11.(多选题)设复数z 满足z =-1-2i ,i 为虚数单位,则下列命题正确的是( )A .|z |= 5B .复数z 在复平面内对应的点在第四象限C .z 的共轭复数为-1+2iD .复数z 在复平面内对应的点在直线y =-2x 上AC [|z |=(-1)2+(-2)2=5,A 正确;复数z 在复平面内对应的点的坐标为(-1,-2),在第三象限,B 不正确;z 的共轭复数为-1+2i ,C 正确;复数z 在复平面内对应的点(-1,-2)不在直线y =-2x 上,D 不正确.故选AC .]12.已知复数z 的模为2,则|z -i|的最大值为( ) A .1 B .2 C .5D .3D [∵|z |=2,∴复数z 对应的轨迹是以原点为圆心,2为半径的圆,而|z -i|表示圆上一点到点(0,1)的距离,∴|z -i|的最大值为圆上点(0,-2)到点(0,1)的距离,易知此距离为3,故选D .] 13.(一题两空)已知复数z =lg(m 2+2m -14)+(m 2-m -6)i(i 为虚数单位),若复数z 是实数,则实数m =______;若复数z 对应的点位于复平面的第二象限,则实数m 的取值范围为________.3 (-5,-1-15) [若复数z 是实数, 则⎩⎨⎧m 2-m -6=0,m 2+2m -14>0,解得m =3. 若复数z 对应的点位于复平面的第二象限, 则⎩⎨⎧lg (m 2+2m -14)<0,m 2-m -6>0,即⎩⎨⎧0<m 2+2m -14<1,m 2-m -6>0,即⎩⎨⎧m 2+2m -14>0,m 2+2m -15<0,m 2-m -6>0,解得-5<m <-1-15.]14.已知复数(x -2)+y i(x ,y ∈R )的模为3,求yx 的最大值. [解] ∵|x -2+y i|=3,∴(x -2)2+y 2=3,故(x ,y )在以C (2,0)为圆心,3为半径的圆上,yx 表示圆上的点(x ,y )与原点连线的斜率.如图,由平面几何知识,易知yx 的最大值为 3. 15.已知复数z 1=3+i ,z 2=-12+32i. (1)求|z 1|及|z 2|并比较大小;(2)设z ∈C ,满足条件|z 2|≤|z |≤|z 1|的点Z 的轨迹是什么图形? [解] (1)|z 1|=(3)2+12=2, |z 2|=⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫322=1,∴|z 1|>|z 2|. (2)由|z 2|≤|z |≤|z 1|及(1)知1≤|z |≤2.因为|z |的几何意义就是复数z 对应的点到原点的距离,所以|z |≥1表示|z |=1所表示的圆外部所有点组成的集合,|z |≤2表示|z |=2所表示的圆内部所有点组成的集合,故符合题设条件点的集合是以O 为圆心,以1和2为半径的两圆之间的圆环(包含圆周),如图所示.3、复数的加、减运算及其几何意义一、选择题1.若(-3a +b i)-(2b +a i)=3-5i ,a ,b ∈R ,则a +b =( ) A .75B .-115 C .-185D .5B [(-3a +b i)-(2b +a i)=(-3a -2b )+(b -a )i =3-5i ,所以⎩⎨⎧-3a -2b =3,b -a =-5,解得a =75,b =-185,故有a +b =-115.] 2.若复数z 满足z +(3-4i)=1,则z 的虚部是( ) A .-2 B .4 C .3D .-4B [z =1-(3-4i)=-2+4i ,故选B .]3.若z 1=2+i ,z 2=3+a i(a ∈R ),且z 1+z 2所对应的点在实轴上,则a 的值为( )A .3B .2C .1D .-1D [z 1+z 2=2+i +3+a i =(2+3)+(1+a )i =5+(1+a )i.∵z 1+z 2所对应的点在实轴上,∴1+a =0,∴a =-1.]4.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,若向量OA →,OB →对应的复数分别是3+i ,-1+3i ,则CD →对应的复数是( )A .2+4iB .-2+4iC .-4+2iD .4-2iD [依题意有CD →=BA →=OA →-OB →,而(3+i)-(-1+3i)=4-2i ,即CD →对应的复数为4-2i.故选D .]5.若z ∈C ,且|z +2-2i|=1,则|z -2-2i|的最小值是( ) A .2 B .3 C .4D .5B [设z =x +y i ,则由|z +2-2i|=1得(x +2)2+(y -2)2=1,表示以(-2,2)为圆心,以1为半径的圆,如图所示,则|z -2-2i|=(x -2)2+(y -2)2表示圆上的点与定点(2,2)的距离,数形结合得|z -2-2i|的最小值为3.]二、填空题6.已知复数z 1=a 2-3-i ,z 2=-2a +a 2i ,若z 1+z 2是纯虚数,则实数a =________.3 [由条件知z 1+z 2=a 2-2a -3+(a 2-1)i ,又z 1+z 2是纯虚数,所以⎩⎨⎧a 2-2a -3=0,a 2-1≠0,解得a =3.]7.在复平面内,O 是原点,OA →,OC →,AB →对应的复数分别为-2+i,3+2i,1+5i ,则BC →对应的复数为________.4-4i [BC →=OC →-OB →=OC →-(OA →+AB →),对应的复数为3+2i -(-2+i +1+5i)=(3+2-1)+(2-1-5)i =4-4i.]8.设z 1=x +2i ,z 2=3-y i(x ,y ∈R ),且z 1+z 2=5-6i ,则z 1-z 2=________. -1+10i [∵z 1+z 2=5-6i ,∴(x +2i)+(3-y i)=5-6i , ∴⎩⎨⎧ x +3=5,2-y =-6,即⎩⎨⎧x =2,y =8,∴z 1=2+2i ,z 2=3-8i ,∴z 1-z 2=(2+2i)-(3-8i)=-1+10i.] 三、解答题 9.计算:(1)(2-i)+(-3+5i)+(4+3i); (2)4-(5+12i)-i ;(3)若z -(-3+5i)=-2+6i ,求复数z .[解] (1)(2-i)+(-3+5i)+(4+3i)=(2-3+4)+(-1+5+3)i =3+7i. (2)4-(5+12i)-i =(4-5)+(-12-1)i =-1-13i.(3)法一:设z =x +y i(x ,y ∈R ),因为z -(-3+5i)=-2+6i ,所以(x +y i)-(-3+5i)=-2+6i ,即(x +3)+(y -5)i =-2+6i ,因此⎩⎨⎧x +3=-2,y -5=6,解得⎩⎨⎧x =-5,y =11,于是z =-5+11i.法二:由z -(-3+5i)=-2+6i 可得z =-2+6i +(-3+5i), 所以z =(-2-3)+(6+5)i =-5+11i.10.在复平面内,A ,B ,C 分别对应复数z 1=1+i ,z 2=5+i ,z 3=3+3i ,以AB ,AC 为邻边作一个平行四边形ABDC ,求D 点对应的复数z 4及AD 的长.[解] 如图所示. AC →对应复数z 3-z 1, AB →对应复数z 2-z 1, AD →对应复数z 4-z 1.由复数加减运算的几何意义,得AD →=AB →+AC →, ∴z 4-z 1=(z 2-z 1)+(z 3-z 1),∴z 4=z 2+z 3-z 1=(5+i)+(3+3i)-(1+i)=7+3i.∴AD 的长为|AD →|=|z 4-z 1|=|(7+3i)-(1+i)|=|6+2i|=210. 11.(多选题)已知i 为虚数单位,下列说法中正确的是( )A .若复数z 满足|z -i|=5,则复数z 对应的点在以(1,0)为圆心,5为半径的圆上B .若复数z 满足z +|z |=2+8i ,则复数z =15+8iC .复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模D .复数z 1对应的向量为OZ 1→,复数z 2对应的向量为OZ 2→,若|z 1+z 2|=|z 1-z 2|,则OZ 1→⊥OZ 2→CD [满足|z -i|=5的复数z 对应的点在以(0,1)为圆心,5为半径的圆上,A 错误;在B 中,设z =a +b i(a ,b ∈R ),则|z |=a 2+b 2.由z +|z |=2+8i ,得a +b i +a 2+b 2=2+8i ,∴⎩⎨⎧a +a 2+b 2=2,b =8.解得⎩⎨⎧a =-15,b =8.∴z =-15+8i ,B 错误;由复数的模的定义知C 正确;由|z 1+z 2|=|z 1-z 2|的几何意义知,以OZ 1→,OZ 2→为邻边的平行四边形为矩形,从而两邻边垂直,D 正确.故选CD .]12.设z ∈C ,且|z +1|-|z -i|=0,则|z +i|的最小值为( ) A .0 B .1 C .22D .12C [由|z +1|=|z -i|知,在复平面内,复数z 对应的点的轨迹是以(-1,0)和(0,1)为端点的线段的垂直平分线,即直线y =-x ,而|z +i|表示直线y =-x 上的点到点(0,-1)的距离,其最小值等于点(0,-1)到直线y =-x 的距离,即为22.]13.若复数z 满足z =|z |-3-4i ,则z =________. 76-4i [设复数z =a +b i(a ,b ∈R ),则⎩⎨⎧a =a 2+b 2-3,b =-4,所以⎩⎪⎨⎪⎧a =76,b =-4,所以z =76-4i.]14.在复平面内,A ,B ,C 三点所对应的复数分别为1,2+i ,-1+2i ,其中i 为虚数单位.(1)求AB →,BC →,AC →对应的复数; (2)判断△ABC 的形状; (3)求△ABC 的面积.[解] (1)AB →对应的复数为2+i -1=1+i , BC →对应的复数为-1+2i -(2+i)=-3+i , AC →对应的复数为-1+2i -1=-2+2i. (2)∵|AB →|=2,|BC →|=10,|AC →|=8=22, ∴|AB →|2+|AC →|2=|BC →|2,∴△ABC 为直角三角形. (3)S △ABC =12×2×22=2.15.设z 为复数,且|z |=|z +1|=1,求|z -1|的值. [解] 设z =a +b i(a ,b ∈R ),则z +1=(a +1)+b i , 又|z |=|z +1|=1,所以⎩⎪⎨⎪⎧a 2+b 2=1,(a +1)2+b 2=1,即⎩⎨⎧a 2+b 2=1,a 2+b 2+2a =0,解得⎩⎪⎨⎪⎧a =-12,b 2=34,故|z -1|=|(a +b i)-1|=|(a -1)+b i|=(a -1)2+b 2=⎝ ⎛⎭⎪⎫-12-12+34= 3.4、复数的乘、除运算一、选择题 1.(1+i )3(1-i )2=( ) A .1+i B .1-i C .-1+iD .-1-iD [(1+i )3(1-i )2=2i (1+i )-2i =-1-i ,选D .]2.已知复数z 满足(z -1)i =1+i ,则z =( ) A .-2-i B .-2+i C .2-iD .2+iC [z -1=1+ii =1-i ,所以z =2-i ,故选C .] 3.在复平面内,复数i1+i+(1+3i)2对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限B [i 1+i+(1+3i)2=12+12i +(-2+23i)=-32+⎝ ⎛⎭⎪⎫23+12i ,对应点⎝ ⎛⎭⎪⎫-32,23+12在第二象限.] 4.若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4D .45D [∵(3-4i)z =|4+3i|, ∴z =53-4i =5(3+4i )(3-4i )(3+4i )=35+45i. 故z 的虚部为45,选D .]5.设复数z 的共轭复数是 z ,若复数z 1=3+4i ,z 2=t +i ,且z 1·z -2是实数,则实数t 等于( )A .34B .43C .-43D .-34A [∵z 2=t +i ,∴z -2=t -i.z 1·z -2=(3+4i)(t -i)=3t +4+(4t -3)i , 又∵z 1·z -2∈R ,∴4t -3=0,∴t =34.]二、填空题6.i 为虚数单位,若复数z =1+2i2-i ,z 的共轭复数为z ,则z ·z =________.1 [∵z =1+2i 2-i =(1+2i )(2+i )(2-i )(2+i )=5i5=i ,∴z =-i ,∴z ·z =1.]7.已知a +2ii =b +i(a ,b ∈R ),其中i 为虚数单位,则a +b =________. 1 [∵a +2ii =b +i ,∴a +2i =(b +i)i =-1+b i , ∴a =-1,b =2,∴a +b =1.]8.设复数z 1,z 2在复平面内的对应点分别为A ,B ,点A 与B 关于x 轴对称,若z 1(1-i)=3-i ,则|z 2|=________.5 [∵z 1(1-i)=3-i , ∴z 1=3-i 1-i =(3-i )(1+i )(1-i )(1+i )=2+i ,∵A 与B 关于x 轴对称,∴z 1与z 2互为共轭复数, ∴z 2=z 1=2-i ,∴|z 2|= 5.] 三、解答题 9.已知复数z =52-i. (1)求z 的实部与虚部;(2)若z 2+m z +n =1-i(m ,n ∈R ,z 是z 的共轭复数),求m 和n 的值.[解] (1)z =5(2+i )(2-i )(2+i )=5(2+i )5=2+i ,所以z 的实部为2,虚部为1.(2)把z =2+i 代入z 2+m z +n =1-i , 得(2+i)2+m (2-i)+n =1-i , 即2m +n +3+(4-m )i =1-i , 所以⎩⎨⎧2m +n +3=1,4-m =-1.解得m =5,n =-12.10.把复数z 的共轭复数记作z ,已知(1+2i)z =4+3i ,求z 及z z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i ,由已知得:(1+2i)(a -b i)=(a +2b )+(2a -b )i =4+3i ,由复数相等的定义知,⎩⎨⎧a +2b =4,2a -b =3.得a =2,b =1,∴z =2+i. ∴zz =2+i2-i =2+i 22-i 2+i=3+4i 5=35+45i.11.(多选题)下面是关于复数z =2-1+i(i 为虚数单位)的命题,其中真命题为( )A .|z |=2B .z 2=2iC .z 的共轭复数为1+iD .z 的虚部为-1BD [∵z =2-1+i =2(-1-i )(-1+i )(-1-i )=-1-i ,∴|z |=2,A 错误;z 2=2i ,B 正确; z 的共轭复数为-1+i ,C 错误; z 的虚部为-1,D 正确.故选BD .]12.(多选题)设z 1,z 2是复数,则下列命题中的真命题是( ) A .若|z 1-z 2|=0,则z 1=z 2B .若z 1=z 2,则z 1=z 2C .若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D .若|z 1|=|z 2|,则z 21=z 22ABC [A ,|z 1-z 2|=0⇒z 1-z 2=0⇒z 1=z 2⇒z 1=z 2,真命题;B ,z 1=z 2⇒z 1=z 2=z 2,真命题;C ,|z 1|=|z 2|⇒|z 1|2=|z 2|2⇒z 1·z 1=z 2·z 2,真命题;D ,当|z 1|=|z 2|时,可取z 1=1,z 2=i ,显然z 21=1,z 22=-1,即z 21≠z 22,假命题.]13.(一题两空)若z 1=a +2i ,z 2=3-4i ,且z 1z 2为纯虚数,则实数a 的值为________,z 1z 2=________.83 16-143i [z 1z 2=a +2i 3-4i =(a +2i )(3+4i )9+16=3a +4a i +6i -825=(3a -8)+(4a +6)i25,∵z 1z 2为纯虚数, ∴⎩⎨⎧3a -8=0,4a +6≠0, ∴a =83.∴z 1·z 2=⎝ ⎛⎭⎪⎫83+2i (3-4i)=8-323i +6i +8 =16-143i.]14.已知3+2i 是关于x 的方程2x 2+px +q =0的一个根,求实数p ,q 的值. [解] 因为3+2i 是方程2x 2+px +q =0的根, 所以2(3+2i)2+p (3+2i)+q =0, 即2(9+12i -4)+(3p +2p i)+q =0, 整理得(10+3p +q )+(24+2p )i =0,所以⎩⎨⎧ 10+3p +q =0,24+2p =0,解得⎩⎨⎧p =-12,q =26.]15.设z 是虚数,ω=z +1z 是实数,且-1<ω<2, (1)求|z |的值及z 的实部的取值范围; (2)设u =1-z1+z,证明u 为纯虚数. [解] (1)因为z 是虚数,所以可设z =x +y i ,x ,y ∈R ,且y ≠0. 所以ω=z +1z =x +y i +1x +y i=x +y i +x -y i x 2+y 2=x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i. 因为ω是实数且y ≠0,所以y -yx 2+y 2=0,所以x 2+y 2=1,即|z |=1. 此时ω=2x . 因为-1<ω<2, 所以-1<2x <2, 从而有-12<x <1,即z 的实部的取值范围是⎝ ⎛⎭⎪⎫-12,1.(2)证明:设z =x +y i ,x ,y ∈R ,且y ≠0, 由(1)知,x 2+y 2=1, ∴u =1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=1-x 2-y 2-2y i (1+x )2+y 2=-y 1+x i.因为x ∈⎝ ⎛⎭⎪⎫-12,1,y ≠0,所以y1+x≠0, 所以u 为纯虚数.5、复数的三角表示一、选择题1.复数12-32i 的三角形式是( ) A .cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3B .cos π3+isin π3 C .cos π3-isin π3 D .cos π3+isin 5π6A [12-32i =cos 53π+isin 53π =cos ⎝ ⎛⎭⎪⎫2π-π3+isin ⎝ ⎛⎭⎪⎫2π-π3=cos ⎝ ⎛⎭⎪⎫-π3+isin ⎝ ⎛⎭⎪⎫-π3.] 2.复数sin 50°-isin 140°的辐角的主值是( ) A .150° B .40° C .-40°D .320°D [sin 50°-isin 140°=cos(270°+50°)+isin(180°+140°)=cos 320°+isin 320°.]3.复数sin 4+icos 4的辐角的主值为( ) A .4B .3π2-4C .2π-4D .5π2-4D [sin 4+icos 4=cos ⎝ ⎛⎭⎪⎫52π-4+isin ⎝ ⎛⎭⎪⎫52π-4.] 4.若复数cos θ+isin θ和sin θ+icos θ相等,则θ的值为( ) A .π4B .π4或5π4C .2k π+π4(k ∈Z )D .k π+π4(k ∈Z )D [因为cos θ+isin θ=sin θ+icos θ, 所以cos θ=sin θ,即tan θ=1, 所以θ=π4+k π,(k ∈Z ).]5.如果θ∈⎝ ⎛⎭⎪⎫π2,π,那么复数(1+i)(cos θ-isin θ)的三角形式是( )A .2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫9π4-θ+isin ⎝ ⎛⎭⎪⎫9π4-θB .2[]cos ()2π-θ+isin ()2π-θC .2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫π4+θ+isin ⎝ ⎛⎭⎪⎫π4+θD .2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫3π4+θ+isin ⎝ ⎛⎭⎪⎫3π4+θA [因为1+i =2⎝ ⎛⎭⎪⎫cos π4+isin π4,cos θ-isin θ=cos(2π-θ)+isin(2π-θ), 所以(1+i)(cos θ-isin θ)=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫π4+2π-θ+isin ⎝ ⎛⎭⎪⎫π4+2π-θ=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫9π4-θ+isin ⎝ ⎛⎭⎪⎫9π4-θ.]二、填空题6.已知z =cos 2π3+isin 2π3,则arg z 2=________. 43π [因为arg z =2π3,所以arg z 2=2arg z =2×2π3=4π3.]7.把复数1+i 对应的向量按顺时针方向旋转π2,所得到的向量对应的复数是________.1-i [(1+i)⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π2+isin ⎝ ⎛⎭⎪⎫-π2=2⎝ ⎛⎭⎪⎫cos π4+isin π4⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π2+isin ⎝ ⎛⎭⎪⎫-π2=2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫π4-π2+isin ⎝ ⎛⎭⎪⎫π4-π2 =2⎣⎢⎡⎦⎥⎤cos ⎝ ⎛⎭⎪⎫-π4+isin ⎝ ⎛⎭⎪⎫-π4=1-i.]8.设复数z 1=1+3i ,z 2=3+i ,则z 1z 2的辐角的主值是________.π6 [由题知,z 1=2⎝ ⎛⎭⎪⎫cos π3+isin π3, z 2=2⎝ ⎛⎭⎪⎫cos π6+isin π6,所以z 1z 2的辐角的主值为π3-π6=π6.]三、解答题9.设复数z 1=3+i ,复数z 2满足|z 2|=2,已知z 1z 22的对应点在虚轴的负半轴上,且arg z 2∈(0,π),求z 2的代数形式.[解] 因为z 1=2⎝ ⎛⎭⎪⎫cos π6+isin π6,设z 2=2(cos α+isin α),α∈(0,π), 所以z 1z 22=8⎣⎢⎡⎦⎥⎤cos ⎝⎛⎭⎪⎫2α+π6+isin ⎝ ⎛⎭⎪⎫2α+π6. 由题设知2α+π6=2k π+3π2(k ∈Z ),所以α=k π+2π3(k ∈Z ), 又α∈(0,π),所以α=2π3,所以z 2=2⎝ ⎛⎭⎪⎫cos 2π3+isin 2π3=-1+3i.10.已知z =-1+i i -2i ,z 1-z z 2=0,arg z 2=7π12,若z 1,z 2在复平面内分别对应点A ,B ,且|AB |=2,求z 1和z 2.[解] 由题设知z =1-i ,因为|AB |=2,即|z 1-z 2|=2,所以|z 1-z 2|=|z z 2-z 2|=|(1+i)z 2-z 2|=|i z 2|=|z 2|=2,又arg z 2=7π12, 所以z 2=2⎝ ⎛⎭⎪⎫cos 7π12+isin 7π12=1-32+3+12i ,z 1=z z 2=(1+i)z 2=2⎝ ⎛⎭⎪⎫cos π4+isin π4·2⎝ ⎛⎭⎪⎫cos 7π12+isin 7π12=2⎝ ⎛⎭⎪⎫cos 5π6+isin 5π6=-3+i. 11.若复数z =(a +i)2的辐角的主值是3π2,则实数a 的值是( ) A .1 B .-1 C .- 2D .-3B [因为z =(a +i)2=(a 2-1)+2a i ,arg z =3π2, 所以⎩⎨⎧a 2-1=0,a <0,所以a =-1,故选B .]12.设π<θ<5π4,则复数cos 2θ+isin 2θcos θ-isin θ的辐角的主值为( )A .2π-3θB .3θ-2πC .3θD .3θ-πB [cos 2θ+isin 2θcos θ-isin θ=cos 2θ+isin 2θcos (-θ)+isin (-θ)=cos 3θ+isin 3θ.因为π<θ<5π4,所以3π<3θ<15π4, 所以π<3θ-2π<7π4,故选B .]13.已知复数z 满足z 2+2z +4=0,且arg z ∈⎝ ⎛⎭⎪⎫π2,π,则z 的三角形式为________.z =2⎝ ⎛⎭⎪⎫cos 2π3+isin 2π3 [由z 2+2z +4=0,得z =12(-2±23i)=-1±3i. 因为arg z ∈⎝ ⎛⎭⎪⎫π2,π,所以z =-1-3i 应舍去,所以z =-1+3i =2⎝ ⎛⎭⎪⎫cos 2π3+isin 2π3.]14.设O 为复平面的原点,A 、B 为单位圆上两点,A 、B 所对应的复数分别为z 1、z 2,z 1、z 2的辐角的主值分别为α、β.若△AOB 的重心G 对应的复数为13+115i ,求tan(α+β).[解] 由题意可设z 1=cos α+isin α,z 2=cos β+isin β. 因为△AOB 的重心G 对应的复数为13+115i , 所以z 1+z 23=13+115i ,即⎩⎪⎨⎪⎧cos α+cos β=1,sin α+sin β=15,所以⎩⎪⎨⎪⎧2cos α+β2cos α-β2=1,2sin α+β2cos α-β2=15,所以tan α+β2=15,故tan(α+β)=2tan α+β21-tan 2α+β2=512.章末综合测验(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z =11-20i ,则1-2i -z 等于( ) A .z -1 B .z +1 C .-10+18iD .10-18iC [1-2i -z =1-2i -(11-20i)=-10+18i.] 2.3+i 1+i =( ) A .1+2iB .1-2iC .2+iD .2-iD [3+i 1+i =(3+i )(1-i )(1+i )(1-i )=3-3i +i +12=2-i.故选D .] 3.若复数z 满足z1-i=i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+iA [由已知得z =i(1-i)=i +1, 则z =1-i ,故选A .]4.若复数z 满足i z =2+4i ,则在复平面内,z 对应的点的坐标是( ) A .(2,4) B .(2,-4) C .(4,-2)D .(4,2)C [z =2+4ii =4-2i 对应的点的坐标是(4,-2),故选C .] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i. ∴⎩⎨⎧4a =0,a 2-4=-4.解得a =0.故选B .] 6.若复数2-b i1+2i (b ∈R )的实部与虚部互为相反数,则b =( )A . 2B .23 C .-23 D .2C [因为2-b i 1+2i =(2-b i )(1-2i )5=2-2b 5-4+b 5i ,又复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,所以2-2b 5=4+b 5,即b =-23.]7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( )A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对C [设z =x +y i(x ,y ∈R ),则z 2=(x +y i)2=x 2-y 2+2xy i.∵z 2为纯虚数,∴⎩⎨⎧x 2-y 2=0,xy ≠0.∴y =±x (x ≠0).] 8.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5)D .(1,3)C [由已知,得|z |=a 2+1. 由0<a <2,得0<a 2<4, ∴1<a 2+1<5.∴|z |=a 2+1∈(1,5).故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.给出下列复平面内的点,这些点中对应的复数为虚数的为( ) A .(3,1) B .(-2,0) C .(0,4)D .(-1,-5) ACD [易知选项A 、B 、C 、D 中的点对应的复数分别为3+i 、-2、4i 、-1-5i ,因此A 、C 、D 中的点对应的复数为虚数.]10.已知复数z =a +b i(a ,b ∈R ,i 为虚数单位),且a +b =1,下列命题正确的是( )A .z 不可能为纯虚数B .若z 的共轭复数为z ,且z =z ,则z 是实数C .若z =|z |,则z 是实数D .|z |可以等于12BC [当a =0时,b =1,此时z =i 为纯虚数,A 错误;若z 的共轭复数为z ,且z =z ,则a +b i =a -b i ,因此b =0,B 正确;由|z |是实数,且z =|z |知,z 是实数,C正确;由|z|=12得a2+b2=14,又a+b=1,因此8a2-8a+3=0,Δ=64-4×8×3=-32<0,无解,即|z|不可以等于12,D错误.故选BC.]11.已知复数z0=1+2i(i为虚数单位)在复平面内对应的点为P0,复数z满足|z-1|=|z-i|,下列结论正确的是()A.P0点的坐标为(1,2)B.复数z0的共轭复数对应的点与点P0关于虚轴对称C.复数z对应的点Z在一条直线上D.P0与z对应的点Z间的距离的最小值为2 2ACD[复数z0=1+2i在复平面内对应的点为P0(1,2),A正确;复数z0的共轭复数对应的点与点P0关于实轴对称,B错误;设z=x+y i(x,y∈R),代入|z-1|=|z-i|,得|(x-1)+y i|=|x+(y-1)i|,即(x-1)2+y2=x2+(y-1)2,整理得,y =x,即Z点在直线y=x上,C正确;易知点P0到直线y=x的垂线段的长度即为P0、Z之间距离的最小值,结合平面几何知识知D正确.故选ACD.] 12.对任意z1,z2,z∈C,下列结论成立的是()A.当m,n∈N*时,有z m z n=z m+nB.当z1,z2∈C时,若z21+z22=0,则z1=0且z2=0C.互为共轭复数的两个复数的模相等,且|z|2=|z|2=z·zD.z1=z2的充要条件是|z1|=|z2|AC[由复数乘法的运算律知A正确;取z1=1,z2=i,满足z21+z22=0,但z1=0且z2=0不成立,B错误;由复数的模及共轭复数的概念知结论成立,C正确;由z1=z2能推出|z1|=|z2|,但|z1|=|z2|推不出z1=z2,因此z1=z2的必要不充分条件是|z1|=|z2|,D错误.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.21 [复数z =(5+2i)2=21+20i ,其实部是21.]14.a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =________. 3 [a +i i =(a +i )·(-i )i·(-i )=1-a i ,则⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=a 2+1=2, 所以a 2=3.又a 为正实数,所以a = 3.]15.设a ,b ∈R ,a +b i =11-7i1-2i (i 为虚数单位),则a +b 的值为________.8 [a +b i =11-7i 1-2i =(11-7i )(1+2i )(1-2i )(1+2i )=25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3.从而a +b =8.]16.设z 的共轭复数是z ,若z +z =4,z ·z =8,则|z |=________,z-z =________(本题第一空2分,第二空3分).22 ±i [设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得, ⎩⎨⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8,⇒⎩⎨⎧ x =2,x 2+y 2=8,⇒⎩⎨⎧x =2,y =±2.∴|z |=2 2.所以zz =x -y i x +y i =x 2-y 2-2xy ix 2+y 2=±i.]四、简答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,(1)z 是实数? (2)z 是纯虚数? [解] (1)要使复数z 为实数, 需满足⎩⎨⎧m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1.即当m =-2或-1时,z 是实数.(2)要使复数z 为纯虚数, 需满足⎩⎨⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3.即当m =3时,z 是纯虚数.18.(本小题满分12分)已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2. [解] 因为z 1=1-i ,所以z 1=1+i , 所以z 1·z 2=2+2i -z 1=2+2i -(1+i)=1+i. 设z 2=a +b i(a ,b ∈R ),由z 1·z 2=1+i , 得(1-i)(a +b i)=1+i , 所以(a +b )+(b -a )i =1+i ,所以⎩⎨⎧a +b =1,b -a =1,解得a =0,b =1,所以z 2=i.19.(本小题满分12分)已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i 且|z |=a 2+b 2=1,即a 2+b 2=1.① 因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i ,而(3+4i)z 是纯虚数, 所以3a -4b =0,且3b +4a ≠0.② 由①②联立, 解得⎩⎪⎨⎪⎧a =45,b =35,或⎩⎪⎨⎪⎧a =-45,b =-35.所以z =45-35i ,或z =-45+35i.20.(本小题满分12分)复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .[解] 由z 2+a z <0可知z 2+az 是实数且为负数. z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =1-i.因为a 为纯虚数,所以设a =m i(m ∈R ,且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m 2-2i <0,故⎩⎪⎨⎪⎧-m 2<0,m2-2=0,所以m =4,即a =4i.21.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .[解] 设z =x +y i(x ,y ∈R ),C (x ,y ), 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |, 即⎩⎨⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎨⎧ x 1=-5,y 1=0或⎩⎨⎧x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.22.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i. (1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. [解] (1)∵(1+2i)z =4+3i ,∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i 5=2-i ,∴z =2+i.(2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限, ∴⎩⎨⎧4-(a +1)2>0,4(a +1)>0,解得-1<a<1,即实数a的取值范围为(-1,1).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学必修二《第七章 复数》单元导学案《7.1.1数系得扩充和复数得概念》导学案【学习目标】1.了解引进复数的必要性,理解并掌握虚数单位i2.理解复数的基本概念及复数相等的充要条件. 【自主学习】 知识点1 复数的引入在实数范围内,方程x 2+1=0无解.为了解决x 2+1=0这样的方程在实数系中无解的问题,我们设想引入一个新数i ,使i 是方程x 2+1=0的根,即使i·i=-1.把这个新数i 添加到实数集中去,得到一个新数集.把实数a 与实数b 和i 相乘的结果相加,结果记作a +b i(a ,b ∈R ),这些数都应在新数集中.再注意到实数a 和数i ,也可以看作是a +b i(a ,b ∈R )这样的数的特殊形式,所以实数系经过扩充后得到的新数集应该是C ={a +b i|a ,b ∈R },称i 为虚数单位. 知识点2 复数的概念、分类 1.复数的有关概念(1)复数的概念:形如a +b i 的数叫做复数,其中a ,b ∈R ,i 叫做虚数单位.a 叫做复数的实部,b 叫做复数的虚部.(2)复数的表示方法:复数通常用字母z 表示,即z =a +b i.(3)复数集定义:全体复数所构成的集合叫做复数集.通常用大写字母C 表示. 2.复数的分类及包含关系(1)复数(a +b i ,a ,b ∈R )⎩⎨⎧实数(b =0)虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数(a =0)非纯虚数(a ≠0)(2)集合表示:知识点3 复数相等复数相等的充要条件设a ,b ,c ,d 都是实数,那么a +b i =c +d i ⇔a =c 且b =d .即它们的实部与虚部分别对应相等.【合作探究】 探究一 复数的概念【例1】写出下列复数的实部和虚部,并判断它们是实数,虚数,还是纯虚数. ①2+3i ;②-3+12i ;③2+i ;④π;⑤-3i ;⑥0.解 ①的实部为2,虚部为3,是虚数;②的实部为-3,虚部为12,是虚数;③的实部为2,虚部为1,是虚数;④的实部为π,虚部为0,是实数;⑤的实部为0,虚部为-3,是纯虚数;⑥的实部为0,虚部为0,是实数.【练习1】下列命题中,正确命题的个数是( ) ①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1; ②若a ,b ∈R 且a >b ,则a +i >b +i ; ③若x 2+y 2=0,则x =y =0. A.0 B.1 C.2 D.3 【答案】 A解析 ①由于x ,y ∈C ,所以x +y i 不一定是复数的代数形式,不符合复数相等的充要条件,所以①是假命题.②由于两个虚数不能比较大小,所以②是假命题.③当x =1,y =i 时,x 2+y 2=0成立,所以③是假命题.故选A.探究二 复数的分类【例2】设z =12log (m -1)+ilog 2(5-m )(m ∈R ).(1)若z 是虚数,求m 的取值范围; (2)若z 是纯虚数,求m 的值.解 (1)因为z 是虚数,故其虚部log 2(5-m )≠0, m 应满足的条件是⎩⎪⎨⎪⎧m -1>0,5-m >0,5-m ≠1,解得1<m <5,且m ≠4.(2)因为z 是纯虚数,故其实部12log (m -1)=0,虚部log 2(5-m )≠0,m 应满足的条件是⎩⎪⎨⎪⎧m -1=1,5-m >0,5-m ≠1,解得m =2.【练习2】实数k 为何值时,复数z =(1+i)k 2-(3+5i)k -2(2+3i)分别是(1)实数;(2)虚数;(3)纯虚数;(4)零.解 由z =(1+i)k 2-(3+5i)k -2(2+3i)=(k 2-3k -4)+(k 2-5k -6)i. (1)当k 2-5k -6=0时,z ∈R ,即k =6或k =-1. (2)当k 2-5k -6≠0时,z 是虚数,即k ≠6且k ≠-1.(3)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6≠0时,z 是纯虚数,解得k =4.(4)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6=0时,z =0,解得k =-1.探究三 两个复数相等【例3】(1)已知x 2-y 2+2xy i =2i ,求实数x ,y 的值.(2)关于x 的方程3x 2-a2x -1=(10-x -2x 2)i 有实根,求实数a 的值.解 (1)∵x 2-y 2+2xy i =2i ,∴⎩⎪⎨⎪⎧x 2-y 2=0,2xy =2,解得⎩⎪⎨⎪⎧x =1,y =1,或⎩⎪⎨⎪⎧x =-1,y =-1.(2)设方程的实数根为x =m ,则原方程可变为 3m 2-a2m -1=(10-m -2m 2)i ,∴⎩⎪⎨⎪⎧3m 2-a 2m -1=0,10-m -2m 2=0,解得a =11或a =-715.【练习3】已知复数z =3x -1-x +(x 2-4x +3)i >0,求实数x 的值. 解 ∵z >0,∴z ∈R ,∴x 2-4x +3=0,解得x =1或x =3.∵z >0,∴3x -1-x >0,且x 2-4x +3=0.对于不等式3x -1-x >0,x =1满足,x =3不满足,故x =1.《7.1.2复数的几何意义》导学案【学习目标】1.理解用复平面内的点或以原点为起点的向量表示复数,及它们之间的一一对应关系2.掌握实轴、虚轴、模等概念.3.掌握用向量的模表示复数的模的方法. 【自主学习】知识点1 复平面的概念和复数的几何意义 1.复平面的概念根据复数相等的定义,任何一个复数z =a +b i ,都可以由一个有序实数对(a ,b )唯一确定.因为有序实数对(a ,b )与平面直角坐标系中的点一一对应,所以复数与平面直角坐标系中的点之间可以建立一一对应.如图所示,点Z 的横坐标是a ,纵坐标是b ,复数z =a +b i 可用点Z (a ,b )表示.这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴.显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数.2.复数的几何意义按照这种表示方法,每一个复数,有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应.因此,复数集C 和复平面内所有的点所成的集合是一一对应的,即复数z =a +b i 复平面内的点Z (a ,b ),这是复数的一种几何意义.3.复数集与复平面中的向量的一一对应关系在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,而有序实数对与复数是一一对应的.这样,我们还可以用平面向量来表示复数.如图所示,设复平面内的点Z 表示复数z =a +b i ,连接OZ ,显然向量OZ →由点Z 唯一确定;反过来,点Z (相对于原点来说)也可以由向量OZ →唯一确定.因此,复数集C 与复平面内的向量所成的集合也是一一对应的(实数0与零向量对应),即复数z =a +b i 平面向量OZ →,这是复数的另一种几何意义.知识点2 复数的模1.如图所示,向量OZ →的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|.如果b =0,那么z =a +b i 是一个实数a ,它的模等于|a |(就是a 的绝对值).由模的定义可知:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R ).2.复数的模的性质,设z 1,z 2是任意两个复数,则 (1)|z 1·z 2|=|z 1|·|z 2|,||21Z Z =|z 1||z 2|(|z 2|≠0)(复数的乘、除法将在下节学习到). (2)|z n 1|=|z 1|n (n ∈N *).(3)|||z 1|-|z 2|≤|z 1+z 2|≤|z 1|+|z 2|,等号成立的条件是: ①当|z 1+z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量同向共线; ②当||z 1|-|z 2||=|z 1+z 2|时,即z 1,z 2所对应的向量反向共线.(4)||z 1|-|z 2||≤|z 1-z 2|≤|z 1|+|z 2|,等号成立的条件是:①当|z 1-z 2|=|z 1|+|z 2|时,即z 1,z 2所对应的向量反向共线;②当||z 1|-|z 2||=|z 1-z 2|时,即z 1,z 2所对应的向量同向共线.【合作探究】探究一 复数与复平面内的点【例1】在复平面内,若复数z =(m 2-2m -8)+(m 2+3m -10)i 对应的点:(1)在虚轴上;(2)在第二象限;(3)在第二、四象限;(4)在直线y =x 上,分别求实数m 的取值范围.解 复数z =(m 2-2m -8)+(m 2+3m -10)i 的实部为m 2-2m -8,虚部为m 2+3m -10.(1)由题意得m 2-2m -8=0. 解得m =-2或m =4.(2)由题意,⎩⎪⎨⎪⎧m 2-2m -8<0,m 2+3m -10>0,∴2<m <4.(3)由题意,(m 2-2m -8)(m 2+3m -10)<0, ∴2<m <4或-5<m <-2.(4)由已知得m 2-2m -8=m 2+3m -10,故m =25.【练习1】实数m 取什么值时,复数z =(m 2+5m +6)+(m 2-2m -15)i. (1)对应的点在x 轴上方; (2)对应的点在直线x +y +4=0上.解 (1)由m 2-2m -15>0,得m <-3或m >5,所以当m <-3或m >5时,复数z 对应的点在x 轴上方.(2)由(m 2+5m +6)+(m 2-2m -15)+4=0, 得m =1或m =-52,所以当m =1或m =-52时,复数z 对应的点在直线x +y +4=0上.探究二 复数的模的几何意义【例2】设z ∈C ,在复平面内对应点Z ,试说明满足下列条件的点Z 的集合是什么图形. (1)|z |=2; (2)1≤|z |≤2.解 (1)方法一 |z |=2说明复数z 在复平面内对应的点Z 到原点的距离为2,这样的点Z 的集合是以原点O 为圆心,2为半径的圆.方法二 设z =a +b i ,由|z |=2,得a 2+b 2=4.故点Z 对应的集合是以原点O 为圆心,2为半径的圆.(2)不等式1≤|z |≤2可以转化为不等式组⎩⎪⎨⎪⎧|z |≤2,|z |≥1.不等式|z |≤2的解集是圆|z |=2及该圆内部所有点的集合.不等式|z|≥1的解集是圆|z|=1及该圆外部所有点的集合.这两个集合的交集,就是满足条件1≤|z|≤2的点的集合.如图中的阴影部分,所求点的集合是以O为圆心,以1和2为半径的两圆所夹的圆环,并且包括圆环的边界.【练习2】若复数z满足|z-i|≤2(i为虚数单位),则z在复平面所对应的图形的面积为 .答案2π解析设z=x+y i(x,y∈R),则z-i=x+y i-i=x+(y-1)i,∴|z-i|=x2+(y-1)2,由|z-i|≤2知x2+(y-1)2≤2,x2+(y-1)2≤2.∴复数z对应的点(x,y)构成以(0,1)为圆心,2为半径的圆面(含边界),∴所求图形的面积为S=2π.故填2π.探究三复数的模及其应用【例3】已知复数z=3+a i,且|z|<4,求实数a的取值范围.解方法一∵z=3+a i(a∈R),∴|z|=32+a2,由已知得32+a2<42,∴a2<7,∴a∈(-7,7).方法二利用复数的几何意义,由|z|<4知,z在复平面内对应的点在以原点为圆心,以4为半径的圆内(不包括边界),由z=3+a i知z对应的点在直线x=3上,所以线段AB(除去端点)为动点Z的集合.由图可知:-7<a<7.【练习3】已知复数|z|=1,求复数3+4i+z的模的最大值及最小值.解令ω=3+4i+z,则z=ω-(3+4i).∵|z|=1,∴|ω-(3+4i)|=1,∴复数ω在复平面内对应的点的轨迹是以(3,4)为圆心,1为半径的圆,如图,容易看出,圆上的点A 所对应的复数ωA 的模最大,为32+42+1=6;圆上的点B 所对应的复数ωB 的模最小,为32+42-1=4,∴复数3+4i +z 的模的最大值和最小值分别为6和4.《7.2.1复数的加、减运算及其几何意义》导学案【学习目标】1.熟练掌握复数的代数形式的加、减法运算法则2.理解复数加、减法的几何意义,能够利用“数形结合”的思想解题. 【自主学习】知识点1 复数的加、减法法则及几何意义与运算律复数的和z 1+z 2与向量OZ 1→+OZ 2→=OZ →的坐标对应复数的差z 1-z 2与向量OZ 1→-OZ 2→=Z 2Z 1→的坐标对应z +z =z +z【合作探究】探究一 复数加、减法的运算【例1】(1)计算(2+4i)+(3-4i); (2)计算(-3-4i)+(2+i)-(1-5i). 解 (1)原式=(2+3)+(4-4)i =5.(2)原式=(-3+2-1)+(-4+1+5)i =-2+2i.【练习1】计算(1-2i)-(2-3i)+(3-4i)-(4-5i)+…+(2 011-2 012i)-(2 012-2 013i).解 方法一 原式=(1-2+3-4+…+2 011-2 012)+(-2+3-4+5+…-2 012+2 013)i =-1 006+1 006i.方法二 (1-2i)-(2-3i)=-1+i , (3-4i)-(4-5i)=-1+i ,…,(2 011-2 012i)-(2 012-2 013i)=-1+i. 将上列1 006个式子累加可得原式=1 006(-1+i)=-1 006+1 006i.探究二 复数加、减法的几何意义【例2】如图所示,在平行四边形OABC 中,顶点O ,A ,C 分别表示0,3+2i ,-2+4i.求:(1)AO →所表示的复数,BC →所表示的复数; (2)对角线CA →所表示的复数;(3)对角线OB →所表示的复数及OB →的长度. 解 (1)因为AO →=0-(3+2i)=-3-2i , 所以AO →所表示的复数为-3-2i. 因为BC →=AO →,所以BC →所表示的复数为-3-2i. (2)因为CA →=OA →-OC →,所以CA →所表示的复数为(3+2i)-(-2+4i)=5-2i. (3)因为对角线OB →=OA →+AB →=OA →+OC →,所以OB →所表示的复数为(3+2i)+(-2+4i)=1+6i , 所以|OB →|=12+62=37.【练习2】满足条件|z +1-i|=|4-3i|的复数z 在复平面内对应的点的轨迹是( ) A.一条直线 B.两条直线 C.一个圆 D.一个椭圆【答案】 C解析 根据复数减法的几何意义,|z +1-i|表示复平面内复数z 对应的点Z 到点(-1,1)的距离,而|4-3i|表示复数4-3i 的模,等于5,故满足|z +1-i|=5的复数z 在复平面内对应的点的轨迹是以(-1,1)为圆心,5为半径的圆.探究三 复数加、减法的综合应用【例3】已知|z 1|=|z 2|=|z 1-z 2|=1,求|z 1+z 2|. 解 方法一 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ), ∵|z 1|=|z 2|=|z 1-z 2|=1, ∴a 2+b 2=c 2+d 2=1,① (a -c )2+(b -d )2=1,② 由①②得2ac +2bd =1, ∴|z 1+z 2|=(a +c )2+(b +d )2=a 2+c 2+b 2+d 2+2ac +2bd = 3. 方法二 设O 为坐标原点,z 1,z 2,z 1+z 2对应的点分别为A ,B ,C .∵|z 1|=|z 2|=|z 1-z 2|=1, ∴△OAB 是边长为1的正三角形, 又以OA ,OB 为邻边作平行四边形OACB ,∴四边形OACB 是一个内角为60°,边长为1的菱形, 且|z 1+z 2|是菱形的较长的对角线OC 的长, ∴|z 1+z 2|=|OC →| =(|OA →|2+|AC →|2+2|OA →||AC →|cos 60°)= 3.【练习3】已知|z 1|=|z 2|=1,z 1+z 2=12+32i ,求复数z 1,z 2及|z 1-z 2|.解 由于|z 1+z 2|=⎪⎪⎪⎪⎪⎪12+32i =1,设z 1,z 2,z 1+z 2对应的向量分别为OA →,OB →,OC →,则因|OA →|=|OB →|=|OC →|=1,故A ,B ,C 三点均在以原点为圆心,1为半径的圆上,如图所示,由平行四边形法则和余弦定理易得cos∠AOC =|OA →|2+|OC →|2-|AC →|22|OA →||OC →|=12,故∠AOC =60°,所以平行四边形OACB 为菱形,且△BOC ,△COA 都是等边三角形,即∠AOB =120°.又∵OC →与x 轴正半轴的夹角为60°,故点A 在x 轴上,即A (1,0). 而x B =|OB →|cos 120°=-12,y B =|OB →|sin 120°=32,∴B 的坐标为⎝ ⎛⎭⎪⎫-12,32.∴⎩⎪⎨⎪⎧z 1=1,z 2=-12+32i ,或⎩⎪⎨⎪⎧z 1=-12+32i ,z 2=1.方法一 |z 1-z 2|=⎪⎪⎪⎪⎪⎪32-32i = 3.方法二 由结论|z 1+z 2|2+|z 1-z 2|2=2(|z 1|2+|z 2|2)知,|z 1-z 2|2=2|z 1|2+2|z 2|2-|z 1+z 2|2=3,∴|z 1-z 2|= 3. 方法三 由余弦定理可得|AB →|2=|OA →|2+|OB →|2-2|OA →||OB →|cos 120°=3, 又∵z 1-z 2=OA →-OB →=BA →,∴|z 1-z 2|=|BA →|=|AB →|= 3.《7.2.1复数的乘、除运算》导学案【学习目标】1.掌握复数代数形式的乘法和除法计算2.理解复数乘法的交换律、结合律和乘法对加法的分配律.3.理解共轭复数的概念. 【自主学习】 知识点1 复数的乘法 1.复数的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ), 则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i. 2.复数乘法的运算律对任意复数z 1、z 2、z 3∈C ,有知识点2 共轭复数如果两个复数满足实部相等,虚部互为相反数时,称这两个复数为共轭复数,z 的共轭复数用Z 表示.即z =a +b i ,则Z =a -b i.知识点3 复数的除法设z 1=a +b i ,z 2=c +d i(c +d i≠0), 则z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -adc 2+d 2i.【合作探究】探究一 复数乘法的运算【例1】计算:(1)(2+i)(2-i);(2)(1+2i)2. 解 (1)(2+i)(2-i)=4-i 2=4-(-1)=5;(2)(1+2i)2=1+4i +(2i)2=1+4i +4i 2=-3+4i.【练习1】计算:(1)(1-2i)(3+4i)(-2+i); (2)(3+4i)(3-4i); (3)(1+i)2.解 (1)(1-2i)(3+4i)(-2+i)=(11-2i)(-2+i) =-20+15i ;(2)(3+4i)(3-4i)=32-(4i)2=9-(-16)=25; (3)(1+i)2=1+2i +i 2=2i.探究二 复数除法的运算【例2】计算:(1)(i -2)(i -1)(1+i )(i -1)+i +-3-2i2-3i ;(2)(-1+3i )3(1+i )6+-2+i 1+2i. [分析] 复数的除法法则,通过分子、分母都乘以分母的共轭复数,使“分母实数化”,这个过程与“分母有理化”类似.[解] (1)因为(i -2)(i -1)(1+i )(i -1)+i =(i -2)(i -1)i 2-1+i=(i -2)(i -1)-2+i=i -1,-3-2i 2-3i =(-3-2i )(2+3i )(2-3i )(2+3i )=-13i13=-i. 所以(i -2)(i -1)(1+i )(i -1)+i +-3-2i 2-3i=i -1+(-i)=-1.(2)(-1+3i )3(1+i )6+-2+i 1+2i =(-1+3i )3[(1+i )2]3+(-2+i )(1-2i )(1+2i )(1-2i )=(-1+3i )3(2i )3+-2+4i +i +25=⎝ ⎛⎭⎪⎫-12+32i 3-i+i =1-i +i =i(-i )i+i =2i.【练习2】计算:(1)7+i 3+4i ;(2)(-1+i )(2+i )-i .解 (1)7+i 3+4i =(7+i )(3-4i )(3+4i )(3-4i )=25-25i25=1-i ;(2)(-1+i )(2+i )-i =-3+i -i =(-3+i )·i-i·i=-1-3i.探究三 共轭复数【例3】已知复数z 满足z ·z +2i·z =4+2i ,求复数z .[分析] 设z =x +y i(x ,y ∈R )→由题意得到方程组求x ,y 的值→得到复数z . [解] 设z =x +y i(x ,y ∈R ),则z =x -y i ,由题意,得(x +y i)(x -y i)+2(x +y i)i =(x 2+y 2-2y )+2x i =4+2i ,∴⎩⎪⎨⎪⎧x 2+y 2-2y =4,2x =2,解得⎩⎪⎨⎪⎧x =1,y =3或⎩⎪⎨⎪⎧x =1,y =-1,∴z =1+3i 或z =1-i.【练习3】若f (z )=2z +z -3i ,f (z +i)=6-3i ,求f (-z ). 解 因为f (z )=2z +z -3i ,所以f (z +i)=2(z +i)+()i z +(z +i)-3i =2z +2i +z -i -3i =2z +z -2i. 又f (z +i)=6-3i , 所以2z +z -2i =6-3i.设z =a +b i(a ,b ∈R ),则z =a -b i , 所以2(a -b i)+(a +b i)=6-i , 即3a -b i =6-i.由复数相等的定义,得⎩⎪⎨⎪⎧3a =6,-b =-1,解得⎩⎪⎨⎪⎧a =2,b =1,所以z =2+i ,故f (-z )=2(-2-i)+(-2+i)-3i =-6-4i.《7.3.1复数的三角表示式》导学案【学习目标】1.知道复数的模和辐角的定义2.会求复数的模和辐角主值3.能求出复数的三角形式 【自主学习】知识点1 复数的三角形式1.定义:r (cos θ+isin θ)叫做复数z =a +b i 的三角表示式,简称三角形式.其中,r 是复数z 的模;θ是以x 轴的非负半轴为始边,向量OZ →所在射线(射线OZ )为终边的角,叫做复数z =a +b i 的辐角.为了与三角形式区分开来,a +b i 叫做复数的代数表示式,简称代数形式.2.非零复数z 辐角θ的多值性以x 轴正半轴为始边,向量OZ →所在的射线为终边的角θ叫复数z =a +b i 的辐角,因此复数z 的辐角是θ+2k π(k ∈Z ) (k ∈Z ).3.辐角主值(1)表示法:用arg z 表示复数z 的辐角主值. (2)定义:适合[0,2π)的角θ叫辐角主值. (3)唯一性:复数z 的辐角主值是确定的、唯一的.知识点2 复数的代数形式与三角形式的互化复数z =a +b i =r (cos θ+isin θ)的两种表示式之间的关系为⎩⎨⎧a =r ·cos θ,b=r ·sin θ,r =a 2+b 2.【合作探究】探究一 代数形式与三角形式的转换【例1】下列各式是否是三角形式,若不是,化为三角形式:(1)z 1=-2(cos θ+isin θ); (2)z 2=cos θ-isin θ.[解] (1)由“模非负”知,不是三角形式,需做变换:z 1=2(-cos θ-isin θ),复平面上点Z 1(-2cos θ,-2sin θ)在第三象限(假定θ为锐角),余弦“-cos θ”已在前,不需再变换三角函数名称,因此可用诱导公式“π+θ”将θ变换到第三象限.∴z 1=2(-cos θ-isin θ)=2[cos(π+θ)+isin(π+θ)].(2)由“加号连”知,不是三角形式,复平面上点Z 2(cos θ,-sin θ)在第四象限(假定θ为锐角),不需改变三角函数名称,可用诱导公式“2π-θ”或“-θ”将θ变换到第四象限.∴z 2=cos θ-isin θ=cos(-θ)+isin(-θ)或z 2=cos θ-isin θ=c os(2π-θ)+isin(2π-θ),考虑到复数辐角的不唯一性,复数的三角形式也不唯一.归纳总结:对这类与三角形式很相似的式子,如何将之变换为三角形式,对于初学者来讲是个难点.有了“定点→定名→定角”这样一个可操作的步骤,应能够很好地解决此类问题.【练习1】下列各式是否是三角形式,若不是,化为三角形式:(1)z 3=-sin θ+icos θ; (2)z 4=-sin θ-icos θ; (3)z 5=cos60°+isin30°.解:(1)由“余弦前”知,不是三角形式,复平面上点Z 3(-sin θ,cos θ)在第二象限(假定θ为锐角),需改变三角函数名称,可用诱导公式“π2+θ”将θ变换到第二象限.∴z 3=-sin θ+icos θ=cos(π2+θ)+isin(π2+θ).(2)不是三角形式,同理(1)可得z 4=-sin θ-icos θ=cos(32π-θ)+isin(32π-θ).(3)由“角相同”知,不是三角形式,z 5=cos60°+isin30°=12+12i =12(1+i)=12×2(cos π4+isin π4)=22(cos π4+isin π4).探究二 将复数的三角形式化为代数形式【例2】将复数⎪⎭⎫⎝⎛+32sin32cos 23ππi 化为代数形式为________.【答案】 -322+362i[解析]⎪⎭⎫ ⎝⎛+32sin32cos 23ππi =32⎪⎪⎭⎫ ⎝⎛+i 2321- =-322+362i.归纳总结:将复数的三角形式r (cos θ+isin θ)化为代数形式a +b i (a ,b ∈R )时,其中a =r cos θ,b =r sin θ.【练习2】复数⎪⎭⎫⎝⎛34sin-34cos 6ππi 的代数形式是 .【答案】-3-33i解析:⎪⎭⎫ ⎝⎛34sin-34cos 6ππi =6⎪⎪⎭⎫ ⎝⎛i 23-21-=-3-33i.探究三 复数的模与辐角主值【例3】求复数z =1+cos θ+isin θ(π<θ<2π)的模与辐角主值. [解] z =1+cos θ+isin θ=1+(2cos 2θ2-1)+2i·sinθ2cosθ2=2cosθ2(cosθ2+isin θ2),①∵π<θ<2π,∴π2<θ2<π,∴cos θ2<0,∴①式右端=-2cos θ2(-cos θ2-isin θ2) =-2cos θ2[cos(π+θ2)+isin(π+θ2)],∴r =-2cos θ2,z 的辐角为π+θ2+2k π(k ∈Z ). ∵π2<θ2<π,∴32π<π+θ2<2π, ∴arg z =π+θ2.归纳总结:复数的三角形式z =r (cos θ+isin θ)中,模r ≥0,θ为任意角,若θ为辐角主值,则θ∈[0,2π).【练习3】将z =1+itan θ1-itan θ(114π<θ<3π)化为三角形式,并求其辐角主值.解:z =1+itan θ1-itan θ=1+isin θcos θ1-isin θcos θ=cos θ+isin θcos θ-isin θ=(cos θ+isin θ)2(cos θ-isin θ)(cos θ+isin θ)=cos2θ+isin2θ. ∵114π<θ<3π, ∴112π<2θ<6π, ∴32π<2θ-4π<2π, ∴arg z =2θ-4π.探究四 复数辐角的应用【例4】复数z 满足arg(z +3)=56π,求|z +6|+|z -3i|最小值.[解] 由arg(z +3)=56π,知z +3的轨迹是射线OA ,则z 轨迹应是平行于OA ,且过点(-3,0)的射线BM (如图),∴|z +6|+|z -3i|就表示射线BM 上点到点P (-6,0)和点Q (0,3)距离之和,连接PQ 与射线BM 交于点N ,当复数z 在复平面内的点为N 点时,|z +6|+|z -3i|所取的值最小,即|z +6|+|z -3i|=|PN |+|NQ |=|PQ |=35, ∴所求最小值=3 5.归纳总结:解此类题的本质是将数学式子利用其几何意义转化成几何问题进行解决.如果纯粹用代数方法求解,难度会很大.对有关最值问题,尤其是模(距离)和辐角主值最值问题,用数形结合方法显然较为简便【练习4】已知|z -2i|≤1,求arg(z -4i)最大值.解:∵|z -2i|≤1,∴点Z 轨迹是以(0,2)为圆心,1为半径的圆面.如图,在其上任取一点Z ,连接Z 与点(0,4)得一以(0,4)为起点,Z 为终点的向量,将起点平移到原点,则θ为其对应的辐角主值,显然arg(z -4i)最大值为53π.《7.3.2复数乘、除运算的三角表示及其几何意义》导学案【学习目标】1.利用复数三角形式熟练进行复数乘除运算,并能根据乘除运算的几何意义解决相关问题2.注意多种解题方法的灵活运用,体会数形结合、分类讨论等数学思想方法 【自主学习】知识点1 复数的三角形式的运算设z 1=r 1(cos θ1+isin θ1),z 2=r 2(cos θ2+isin θ2),则(1)乘法:z 1·z 2=r 1r 2[cos(θ1+θ2)+isin(θ1+θ2)],这就是说,两个复数相乘,积的模等于各复数的模的积,积的辐角等于各复数的辐角的和.(2)除法:z 1÷z 2=z 1z 2=r 1r 2[cos(θ1-θ2)+isin(θ1-θ2)](其中z 2≠0),这就是说,两个复数相除,商的模等于被除数的模除以除数的模所得的商,商的辐角等于被除数的辐角减去除数的辐角所得的差.(3)乘方:z n=r n(cos nθ+isin nθ). (4)开方:n z =nr (cos θ+2k πn +isin θ+2k πn)(k =0,1,2,…,n -1).知识点2 复数三角形式乘、除运算的几何意义两个复数z 1,z 2相乘时,可以像图中所示那样,先分别画出与z 1,z 2对应的向量OZ1→,OZ2→,然后把向量OZ1→绕点O 按逆时针方向旋转一个角θ2(如果θ2<0,就要把OZ1→按顺时针方向旋转一个角|θ2|),再把它的模变为原来的r 2倍,得到向量OZ →,OZ →表示的复数就是积z 1z 2.这就是复数乘法的几何意义.z 2≠0,z 1z 2的几何意义是把z 的对应向量OZ1→按顺时针方向旋转一个角θ2(如果θ2<0,就要把OZ1→按逆时针方向旋转一个角|θ2|),再把它的模变为原来的1r 2倍,所得的向量即表示商z 1z 2.【合作探究】探究一 复数的三角形式的乘、除运算【例1】2(cos π12+isin π12)·3(cos π6+isin π6).[解]2(cos π12+isin π12)·3(cos π6+isin π6)=2·3[cos(π12+π6)+isin(π12+π6)]=6(cos π4+isin π4)=6(22+22i)=3+3i.归纳总结:r 1(cos θ1+isin θ1)·r 2(cos θ2+isin θ2)=r 1r 2[cos (θ1+θ2)+isin (θ1+θ2)]计算,简便得多.这就是复数的三角形式乘法运算公式.【练习1】设复数z =cos θ+isin θ,θ∈(π,2π),求复数z 2+z 的模和辐角.解:z 2+z =(cos θ+isin θ)2+cos θ+isin θ=cos2θ+isin2θ+cos θ+isin θ=(cos2θ+cos θ)+i(sin2θ+sin θ)=2cos 3θ2cos θ2+i(2sin 3θ2cos θ2) =2cos θ2(cos 32θ+isin 32θ) =-2cos θ2 ⨯ ⎣⎢⎡⎦⎥⎤cos (-π+32θ)+isin (-π+32θ). ∵θ∈(π,2π),∴θ2∈(π2,π), ∴-2cos θ2>0, 所以复数z 2+z 的模为-2cos θ2,辐角为(2k -1)π+3θ2(k ∈Z ).探究二 复数的乘、除运算的几何意义【例2】向量OZ →与-1+i 对应,把OZ →按逆时针方向旋转120°,得到OZ ′→,求与向量OZ ′→对应的复数[解] 将向量OZ →逆时针方向旋转120°,得到OZ ′→,由于模未发生变化,应当是OZ →对应复数乘以1·(cos120°+isin120°),即z ′=(-1+i)(cos120°+isin120°)=2(cos135°+isin135°)(cos120°+isin120°)=2(cos255°+isin255°)=1-32-1+32i. 归纳总结:利用复数乘、除法的几何意义来解决三角形中角的大小问题,十分方便【练习2】如图,已知平面内并列的三个相等的正方形,利用复数证明∠1+∠2+∠3=π2.证明:∠1,∠2,∠3分别等于复数1+i,2+i,3+i 的辐角主值,这样∠1+∠2+∠3就是(1+i)(2+i)(3+i)=10i 的辐角,∠1,∠2,∠3都是锐角,所以∠1+∠2+∠3=π2.。

相关文档
最新文档