2023高考数学真题试卷(上海)
2023年全国统一高考数学试卷(新高考II)(解析版)

2023年全国统一高考数学试卷(新高考Ⅱ)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共计40分。
每小题给出的四个选项中,只有一个选项是正确的。
请把正确的选项填涂在答题卡相应的位置上。
1.(5分)在复平面内,(1+3i)(3﹣i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解答】解:(1+3i)(3﹣i)=3﹣i+9i+3=6+8i,则在复平面内,(1+3i)(3﹣i)对应的点的坐标为(6,8),位于第一象限.故选:A.2.(5分)设集合A={0,﹣a},B={1,a﹣2,2a﹣2},若A⊆B,则a=( )A.2B.1C.D.﹣1【答案】B【解答】解:依题意,a﹣2=0或2a﹣2=0,当a﹣2=0时,解得a=2,此时A={0,﹣2},B={1,0,2},不符合题意;当2a﹣2=0时,解得a=1,此时A={0,﹣1},B={1,﹣1,0},符合题意.故选:B.3.(5分)某学校为了了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( )A.种B.种C.种D.种【答案】D【解答】解:∵初中部和高中部分别有400和200名学生,∴人数比例为400:200=2:1,则需要从初中部抽取40人,高中部取20人即可,则有种.故选:D.4.(5分)若f(x)=(x+a)为偶函数,则a=( )A.﹣1B.0C.D.1【答案】B【解答】解:由>0,得x>或x<﹣,由f(x)是偶函数,∴f(﹣x)=f(x),得(﹣x+a)ln=(x+a),即(﹣x+a)ln=(﹣x+a)ln()﹣1=(x﹣a)ln=(x+a),∴x﹣a=x+a,得﹣a=a,得a=0.故选:B.5.(5分)已知椭圆C:的左焦点和右焦点分别为F1和F2,直线y=x+m与C交于点A,B两点,若△F1AB面积是△F2AB面积的两倍,则m=( )A.B.C.D.【答案】C【解答】解:记直线y=x+m与x轴交于M(﹣m,0),椭圆C:的左,右焦点分别为F1(﹣,0),F2(,0),由△F1AB面积是△F2AB的2倍,可得|F1M|=2|F2M|,∴|﹣﹣x M|=2|﹣x M|,解得x M=或x M=3,∴﹣m=或﹣m=3,∴m=﹣或m=﹣3,联立可得,4x2+6mx+3m2﹣3=0,∵直线y=x+m与C相交,所以Δ>0,解得m2<4,∴m=﹣3不符合题意,故m=.故选:C.6.(5分)已知函数f(x)=ae x﹣lnx在区间(1,2)上单调递增,则a的最小值为( )A.e2B.e C.e﹣1D.e﹣2【答案】C【解答】解:对函数f(x)求导可得,,依题意,在(1,2)上恒成立,即在(1,2)上恒成立,设,则,易知当x∈(1,2)时,g′(x)<0,则函数g(x)在(1,2)上单调递减,则.故选:C.7.(5分)已知α为锐角,cosα=,则sin=( )A.B.C.D.【答案】D【解答】解:cosα=,则cosα=,故=1﹣cosα=,即==,∵α为锐角,∴,∴sin=.故选:D.8.(5分)记S n为等比数列{a n}的前n项和,若S4=﹣5,S6=21S2,则S8=( )A.120B.85C.﹣85D.﹣120【答案】C【解答】解:等比数列{a n}中,S4=﹣5,S6=21S2,显然公比q≠1,设首项为a1,则=﹣5①,=②,化简②得q4+q2﹣20=0,解得q2=4或q2=﹣5(不合题意,舍去),代入①得=,所以S8==(1﹣q4)(1+q4)=×(﹣15)×(1+16)=﹣85.故选:C.二、选择题:本大题共小4题,每小题5分,共计20分。
2022年上海市高考数学试卷真题+参考答案+详细解析

2022年上海市高考数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.(4分)已知1z i =+(其中i 为虚数单位),则2z = .2.(4分)双曲线2219x y -=的实轴长为 .3.(4分)函数22()cos sin 1f x x x =-+的周期为 . 4.(4分)已知a R ∈,行列式1||32a 的值与行列式0||41a 的值相等,则a = . 5.(4分)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 . 6.(4分)0x y -,10x y +-,求2z x y =+的最小值 .7.(5分)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n = .8.(5分)若函数210()000a x x f x x a x x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,求参数a 的值为 .9.(5分)为了检测学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的概率为 .10.(5分)已知等差数列{}n a 的公差不为零,n S 为其前n 项和,若50S =,则(0i S i =,1,2,⋯,100)中不同的数值有 个.11.(5分)若平面向量||||||a b c λ===,且满足0a b ⋅=,2a c ⋅=,1b c ⋅=,则λ= .12.(5分)设函数()f x 满足1()()1f x f x=+对任意[0,)x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有{|()y y f x =,0}f x a A =,则a 的取值范围为 .二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项. 13.(5分)若集合[1A =-,2),B Z =,则(A B = )A .{2-,1-,0,1}B .{1-,0,1}C .{1-,0}D .{1}-14.(5分)若实数a 、b 满足0a b >>,下列不等式中恒成立的是( ) A.a b +>B.a b +<C.22ab +> D.22ab +< 15.(5分)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q16.(5分)设集合222{(,)|()()4||,}x y x k y k k k Z Ω=-+-=∈, ①存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧; ②存在直线l ,使得集合Ω中存在无数点在l 上;( ) A .①成立②成立 B .①成立②不成立 C .①不成立②成立D .①不成立②不成立三、解答题(本大题共有5题,满分76分).17.(14分)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.18.(14分)33()log ()log (6)f x a x x =++-.(1)若将函数()f x 图像向下移(0)m m >后,图像经过(3,0),(5,0),求实数a ,m 的值. (2)若3a >-且0a ≠,求解不等式()(6)f x f x -.19.(14分)在如图所示的五边形中,6AD BC ==,20AB =,O 为AB 中点,曲线CD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称,MO AB ⊥; (1)若点P 与点C 重合,求POB ∠的大小;(2)P 在何位置,求五边形MQABP 面积S 的最大值.20.(16分)设有椭圆方程2222:1(0)x y a b a bΓ+=>>,直线:420l x y +-=,Γ下端点为A ,M 在l 上,左、右焦点分别为1(2,0)F -、2(2,0)F .(1)2a =,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM ∆中有一内角余弦值为35,求b ;(3)在椭圆Γ上存在一点P 到l 距离为d ,使12||||6PF PF d ++=,随a 的变化,求d 的最小值.21.(18分)数列{}n a 对任意*n N ∈且2n ,均存在正整数[1,1]i n ∈-,满足12n n i a a a +=-,11a =,23a =. (1)求4a 可能值; (2)命题p :若1a ,2a ,,8a 成等差数列,则930a <,证明p 为真,同时写出p 逆命题q ,并判断命题q 是真是假,说明理由;(3)若23m m a =,*()m N ∈成立,求数列{}n a 的通项公式.2022年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分) 1.(4分)已知1z i =+(其中i 为虚数单位),则2z = 22i - . 【解析】1z i =+,则1z i =-,所以222z i =-.故答案为:22i -. 【评注】本题考查了共轭复数的概念,是基础题.2.(4分)双曲线2219x y -=的实轴长为 6 .【解析】由双曲线2219x y -=,可知:3a =,所以双曲线的实轴长26a =.故答案为:6.【评注】本题考查双曲线的性质,是基础题.3.(4分)函数22()cos sin 1f x x x =-+的周期为 π .【解析】2222222()cos sin 1cos sin cos sin 2cos cos21f x x x x x x x x x =-+=-++==+,22T ππ==. 故答案为:π.【评注】本题主要考查了三角函数的恒等变换,三角函数的周期性及其求法,倍角公式的应用,属于基础题.4.(4分)已知a R ∈,行列式1||32a 的值与行列式0||41a 的值相等,则a = 3 . 【解析】因为1||2332a a =-,0||41a a =,所以23a a -=,解得3a =.故答案为:3. 【评注】本题考查了行列式表示的值,属于基础题.5.(4分)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为 24π. .【解析】因为圆柱的底面积为9π,即29R ππ=,所以3R =,所以224S Rh ππ==侧.故答案为:24π. 【评注】本题考查了圆柱的侧面积公式,属于基础题. 6.(4分)0x y -,10x y +-,求2z x y =+的最小值 32. 【解析】如图所示:由0x y -,10x y +-,可知行域为直线0x y -=的左上方和10x y +-=的右上方的公共部分, 联立010x y x y -=⎧⎨+-=⎩,可得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,即图中点11(,)22A ,当目标函数2z x y =+沿着与正方向向量(1,2)a =的相反向量平移时,离开区间时取最小值, 即目标函数2z x y =+过点11(,)22A 时,取最小值:1132222+⨯=.故答案为:32.【评注】本题考查了线性规划知识,难点在于找到目标函数取最小值的位置,属于中档题. 7.(5分)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n = 10 .【解析】二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,即220353n n n n C C -⨯=⨯,即(1)592n n -=⨯,10n ∴=,故答案为:10.【评注】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.8.(5分)若函数210()000a x x f x x a x x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,求参数a 的值为 1 .【解析】函数210()000a x x f x x a x x ⎧-<⎪=+>⎨⎪=⎩,为奇函数,()()f x f x ∴-=-,(1)(1)f f ∴-=-,21(1)a a ∴--=-+,即(1)0a a -=,求得0a =或1a =. 当0a =时,1,0()0,0,0x f x x x x -<⎧⎪==⎨⎪>⎩,不是奇函数,故0a ≠;当1a =时,1,0()0,01,0x x f x x x x -<⎧⎪==⎨⎪+>⎩,是奇函数,故满足条件,综上,1a =,故答案为:1.【评注】本题主要考查函数的奇偶性的定义和性质,属于中档题.9.(5分)为了检测学生的身体素质指标,从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的概率为37. 【解析】从游泳类1项,球类3项,田径类4项共8项项目中随机抽取4项进行检测,则每一类都被抽到的方法共有112121134134C C C C C C ⋅⋅+⋅⋅种,而所有的抽取方法共有48C 种,故每一类都被抽到的概率为11212113413448303707C C C C C C C ⋅⋅+⋅⋅==,故答案为:37.【评注】本题主要考查古典概率及其计算公式的应用,属于基础题.10.(5分)已知等差数列{}n a 的公差不为零,n S 为其前n 项和,若50S =,则(0i S i =,1,2,⋯,100)中不同的数值有 98 个.【解析】等差数列{}n a 的公差不为零,n S 为其前n 项和,50S =,∴5154502S a d ⨯=+=,解得12a d =-, 21(1)(1)2(5)222n n n n n dS na d nd d n n --∴=+=-+=-, 0d ≠,(0i S i ∴=,1,2,100)中050S S ==,233S S d ==-,142S S d ==-,其余各项均不相等,(0i S i ∴=,1,2,100)中不同的数值有:101398-=.故答案为:98.【评注】本题考查等差数列的前n 项和公式、通项公式等基础知识,考查运算求解能力,是中档题. 11.(5分)若平面向量||||||a b c λ===,且满足0a b ⋅=,2a c ⋅=,1b c ⋅=,则λ【解析】由题意,有0a b ⋅=,则a b ⊥,设,a c θ<>=, 21a c b c ⋅=⎧⎪⎨⋅=⎪⎩⇒2,1,2a c cos b c cos θπθ⎧=⎪⎨⎛⎫-= ⎪⎪⎝⎭⎩①② 则②①得,1tan 2θ=,由同角三角函数的基本关系得:cos θ=,则||||cos 2a c a c θλλ⋅==⋅=,2λ=λ=. 【评注】本题考查平面向量的数量积,考查学生的运算能力,属于中档题.12.(5分)设函数()f x 满足1()()1f x f x=+对任意[0,)x ∈+∞都成立,其值域是f A ,已知对任何满足上述条件的()f x 都有{|()y y f x =,0}f x a A =,则a 的取值范围为)+∞ . 【解析】法一:令11x x =+,解得x =,当1x ∈时,2111x x =∈+,当1)x ∈+∞时,2111x x =∈+,且当1)x ∈+∞时,总存在2111x x =∈+,使得12()()f x f x =,故51{|(),0}2fy y f x x A -==,若a <易得{}|(),0f y y f x x a ∉=,所以512a -,即实数a 的取值范围为)+∞; 法二:原命题等价于任意10,()()1a f x a f x a >+=++,所以11(1)1a x a x a a⇒-+++恒成立,即1(1)0a a -+恒成立,又0a >,所以512a -,即实数a的取值范围为)+∞. 故答案为:)+∞. 【评注】本题考查了抽象函数的性质的应用,同时考查了集合的应用,属于中档题. 二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项. 13.(5分)若集合[1A =-,2),B Z =,则(A B = )A .{2,1,0,1}--B .{1,0,1}-C .{1,0}-D .{1}-【解析】[1A =-,2),B Z =,{1,0,1}A B ∴=-,故选:B .【评注】本题考查了集合的交集的运算,是基础题.14.(5分)若实数a 、b 满足0a b >>,下列不等式中恒成立的是( ) A.a b +>B.a b +<C.22ab +> D .22ab +< 【解析】因为0a b >>,所以2a b ab+,当且仅当a b =时取等号, 又0a b >>,所以a b+>A 正确,B 错误,22222a a b b +⨯=22a b =,即4a b =时取等号,故CD 错误,故选:A . 【评注】本题考查了基本不等式的应用,考查了学生的理解能力,属于基础题.15.(5分)如图正方体1111ABCD A B C D -中,P 、Q 、R 、S 分别为棱AB 、BC 、1BB 、CD 的中点,联结1A S ,1B D .空间任意两点M 、N ,若线段MN 上不存在点在线段1A S 、1B D 上,则称MN 两点可视,则下列选项中与点1D 可视的为( )A .点PB .点BC .点RD .点Q【解析】线段MN 上不存在点在线段1A S 、1B D 上,即直线MN 与线段1A S 、1B D 不相交, 因此所求与1D 可视的点,即求哪条线段不与线段1A S 、1B D 相交,对A 选项,如图,连接1A P 、PS 、1D S ,因为P 、S 分别为AB 、CD 的中点,∴易证11//A D PS ,故1A 、1D 、P 、S 四点共面,1D P ∴与1A S 相交,A ∴错误;对B 、C 选项,如图,连接1D B 、DB ,易证1D 、1B 、B 、D 四点共面, 故1D B 、1D R 都与1B D 相交,B ∴、C 错误;对D 选项,连接1D Q ,由A 选项分析知1A 、1D 、P 、S 四点共面记为平面11A D PS ,1D ∈平面11A D PS ,Q ∉平面11A D PS ,且1A S ⊂平面11A D PS ,点11D A S ∉,1D Q ∴与1A S 为异面直线,同理由B ,C 选项的分析知1D 、1B 、B 、D 四点共面记为平面11D B BD ,1D ∈平面11D B BD ,Q ∉平面11D B BD ,且1B D ⊂平面11D B BD ,点11D B D ∉,1D Q ∴与1B D 为异面直线,故1D Q 与1A S ,1B D 都没有公共点,D ∴选项正确.故选:D .【评注】本题考查新定义,共面定理的应用,异面直线的判定定理,属中档题. 16.(5分)设集合222{(,)|()()4||,}x y x k y k k k Z Ω=-+-=∈, ①存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧; ②存在直线l ,使得集合Ω中存在无数点在l 上;( ) A .①成立②成立 B .①成立②不成立 C .①不成立②成立D .①不成立②不成立【解析】当0k =时,集合222{(,)|()()4||,}{(0,0)}x y x k y k k k Z Ω=-+-=∈=, 当0k >时,集合222{(,)|()()4||,}x y x k y k k k Z Ω=-+-=∈,表示圆心为2(,)k k ,半径为r =2y x =上,半径()r f k ==相邻两个圆的圆心距d =,相邻两个圆的半径之和为l =,因为d l >有解,故相邻两个圆之间的位置关系可能相离,当0k <时,同0k >的情况,故存在直线l ,使得集合Ω中不存在点在l 上,而存在点在l 两侧,故①正确, 若直线l 斜率不存在,显然不成立,设直线:l y mx n =+,若考虑直线l 与圆222()()4||x k y k k -+-=的焦点个数,2d =,r = 给定m ,n ,当k 足够大时,均有d r >,故直线l 只与有限个圆相交,②错误.故选:B . 【评注】本题考查了动点的轨迹、直线与圆的位置关系,属于中档题. 三、解答题(本大题共有5题,满分76分).17.(14分)如图所示三棱锥,底面为等边ABC ∆,O 为AC 边中点,且PO ⊥底面ABC ,2AP AC ==. (1)求三棱锥体积P ABC V -;(2)若M 为BC 中点,求PM 与面PAC 所成角大小.【解析】(1)在三棱锥P ABC -中,因为PO ⊥底面ABC ,所以PO AC ⊥,又O 为AC 边中点,所以PAC ∆为等腰三角形,又2AP AC ==.所以PAC ∆是边长为2的为等边三角形,PO ∴=,三棱锥体积2112133P ABC ABC V S PO -∆=⋅==,(2)以O 为坐标原点,OB 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系,则P,B ,(0,1,0)C,1,0)2M,31(,22PM =, 平面PAC 的法向量(3,0,0)OB =,设直线PM 与平面PAC 所成角为θ, 则直线PM 与平面PAC所成角的正弦值为3sin ||||||3PM OBPM OB θ⋅==⋅ 所以PM 与面PAC 所成角大小为 【评注】本题考查线面垂直的证明,考查线面角的求法,考查空间中线线、线面间的位置关系等基础知识,考查运算求解能力,是中档题.18.(14分)33()log ()log (6)f x a x x =++-.(1)若将函数()f x 图像向下移(0)m m >后,图像经过(3,0),(5,0),求实数a ,m 的值. (2)若3a >-且0a ≠,求解不等式()(6)f x f x -. 【解析】(1)因为函数33()log ()log (6)f x a x x =++-,将函数()f x 图像向下移(0)m m >后,得33()log ()log (6)y f x m a x x m =-=++--的图像, 由函数图像经过点(3,0)和(5,0),所以33log (3)10log (5)00a m a m ++-=⎧⎨++-=⎩,解得2a =-,1m =.(2)3a >-且0a ≠时,不等式()(6)f x f x -可化为3333log ()log (6)log (6)log a x x a x x ++-+-+, 等价于060600()(6)(6)a x x a x x a x x x a x +>⎧⎪->⎪⎪+->⎨⎪>⎪+-+-⎪⎩,解得660(3)0x ax x a x a x >-⎧⎪<⎪⎪<+⎨⎪>⎪-⎪⎩,当30a -<<时,03a <-<,366a <+<,解不等式得3a x -<, 当0a >时,0a -<,66a +>,解不等式得36x <;综上知,30a -<<时,不等式()(6)f x f x -的解集是(,3]a -,0a >时,不等式()(6)f x f x -的解集是[3,6).【评注】本题考查了函数的性质与应用问题,也考查了含有字母系数的不等式解法与应用问题,是中档题. 19.(14分)在如图所示的五边形中,6AD BC ==,20AB =,O 为AB 中点,曲线CD 上任一点到O 距离相等,角120DAB ABC ∠=∠=︒,P ,Q 关于OM 对称,MO AB ⊥; (1)若点P 与点C 重合,求POB ∠的大小;(2)P 在何位置,求五边形MQABP 面积S 的最大值.【解析】(1)点P 与点C 重合,由题意可得10OB =,6BC =,120ABC ∠=︒, 由余弦定理可得22212cos 361002610()1962OP OB BC OB BC ABC =+-⋅∠=+-⨯⨯⨯-=,所以14OP =,在OBP ∆中,由正弦定理得sin120sin OP BPPOB=︒∠,6sin POB=∠,解得sin POB ∠POB ∠的大小为;(2)如图,连结QA ,PB ,OQ ,OP ,曲线CMD 上任意一点到O 距离相等,14OP OQ OM OC ∴====,P ,Q 关于OM 对称,P ∴点在劣弧CM 中点或劣弧DM 的中点位置,QOM POM S S α∆∆==,则2BOP AOQ BOP S πα∆∠=∠==-,则五边形面积112()2[sin()sin ]196sin 140cos 222AOQ QOM S S S OQ OA OQ OM παααα∆∆=+=⋅⋅⋅-+⋅⋅⋅=+)αϕ=+,其中5tan 7ϕ=,当sin()1αϕ+=时,MQABP S 五边形取最大值,∴五边形MQABP 面积S 的最大值为.【评注】本题考查了扇形的性质、正、余弦定理和面积公式在解三角形问题中的应用,同时考查了学生的逻辑推理能力、运算能力等,属于中档题.20.(16分)设有椭圆方程2222:1(0)x y a b a bΓ+=>>,直线:0l x y +-,Γ下端点为A ,M 在l 上,左、右焦点分别为1(F 、2F .(1)2a =,AM 中点在x 轴上,求点M 的坐标;(2)直线l 与y 轴交于B ,直线AM 经过右焦点2F ,在ABM ∆中有一内角余弦值为35,求b ;(3)在椭圆Γ上存在一点P 到l 距离为d ,使12||||6PF PF d ++=,随a 的变化,求d 的最小值.【解析】(1)由题意可得2,a b c ==22:1,(0,42x y A Γ+=,AM 的中点在x 轴上,M ∴0x y +-=得M .(2)由直线方程可知B ,①若3cos 5BAM ∠=,则4tan 3BAM ∠=,即24tan 3OAF ∠=,∴234OA OF ==∴b =②若3cos 5BMA ∠=,则4sin 5BMA ∠=,4MBA π∠=,∴34cos()55MBA AMB ∠+∠=∴cos BAM ∠=tan 7BAM ∴∠=.即2tan 7OAF ∠=,∴OA ,∴b ,综上b =.(3)设(cos ,sin )P a b θθ62a =-,很明显椭圆在直线的左下方,则62a =-,即)θϕ+=,222a b =+,∴)θϕ+=-,据此可得)22a θϕ+=-,|sin()|1θϕ+=,整理可得(1)(35)0a a --,即513a,从而58626233d a =--⨯=.即d 的最小值为83.【评注】本题主要考查椭圆方程的求解,点到直线距离公式及其应用,椭圆中的最值与范围问题等知识,属于中等题.21.(18分)数列{}n a 对任意*n N ∈且2n ,均存在正整数[1i ∈,1]n -,满足12n n i a a a +=-,11a =,23a =. (1)求4a 可能值; (2)命题p :若1a ,2a ,,8a 成等差数列,则930a <,证明p 为真,同时写出p 逆命题q ,并判断命题q 是真是假,说明理由;(3)若23m m a =,*()m N ∈成立,求数列{}n a 的通项公式. 【解析】(1)32125a a a =-=,43227a a a =-=或43129a a a =-=.(2)1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 为等差数列,∴*2,21([1,8],)n d a n n n N ==-∈∈, 9823030i i a a a a =-=-<.逆命题q :若930a <,则1a ,2a ,3a ,4a ,5a ,6a ,7a ,8a 为等差数列是假命题,举例: 11a =,23a =,35a =,47a =,59a =,611a =,713a =,875217a a a =-=,987221a a a =-=.(3)23m m a =,∴12222213,2(2)m m m m i a a a a i m ++++==-,2122(21)m m j a a a j m +=--, 22242m m j i a a a a +∴=--,∴12222244333m m m j i m m m a a a a a +++=-=⨯-==,以下用数学归纳法证明数列单调递增,即证明1n n a a +>恒成立: 当1n =,21a a >明显成立,假设n k =时命题成立,即11210k k k a a a a a -->>>>>>,则120k k k i k k i a a a a a a a +-=--=->,则1k k a a +>,命题得证. 回到原题,分类讨论求解数列的通项公式:1.若2j =1m -,则2212122m j i m i m i a a a a a a a --=+=+>-矛盾, 2.若2j =2m -,则13m j a -=,∴1323m m i j a a -=-=,22i m ∴=-, 此时11212223353m m m m m j a a a --+=-=⨯-=⨯,∴3*2*2115321,32,n n nn a n k k N n k k N -=⎧⎪⎪=⨯=+∈⎨⎪⎪=∈⎩, 3.若2j <2m -,则1223m j a -<⨯,∴1323m m i j a a -=->,21j m ∴=-,2221212m m m a a a ++-∴=-(由(2)知对任意m 成立),6532a a a =-,事实上:6522a a a =-矛盾. 综上可得3*2*2115321,32,n n nn a n k k N n k k N -=⎧⎪⎪=⨯=+∈⎨⎪⎪=∈⎩. 【评注】本题主要考查数列中的递推关系式,数列中的推理问题,数列通项公式的求解等知识,属于难题.。
2023年全国统一高考数学试卷(新高考I ) (解析版)

2023年全国统一高考数学试卷(新高考Ⅰ)参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合M={﹣2,﹣1,0,1,2},N={x|x2﹣x﹣6≥0},则M∩N=( )A.{﹣2,﹣1,0,1}B.{0,1,2}C.{﹣2}D.{2}【答案】C【解答】解:∵x2﹣x﹣6≥0,∴(x﹣3)(x+2)≥0,∴x≥3或x≤﹣2,N=(﹣∞,﹣2]∪[3,+∞),则M∩N={﹣2}.故选:C.2.(5分)已知z=,则z﹣=( )A.﹣i B.i C.0D.1【答案】A【解答】解:z===,则,故=﹣i.故选:A.3.(5分)已知向量=(1,1),=(1,﹣1).若(+λ)⊥(+μ),则( )A.λ+μ=1B.λ+μ=﹣1C.λμ=1D.λμ=﹣1【答案】D【解答】解:∵=(1,1),=(1,﹣1),∴+λ=(λ+1,1﹣λ),+μ=(μ+1,1﹣μ),由(+λ)⊥(+μ),得(λ+1)(μ+1)+(1﹣λ)(1﹣μ)=0,整理得:2λμ+2=0,即λμ=﹣1.故选:D.4.(5分)设函数f(x)=2x(x﹣a)在区间(0,1)单调递减,则a的取值范围是( )A.(﹣∞,﹣2]B.[﹣2,0)C.(0,2]D.[2,+∞)【答案】D【解答】解:设t=x(x﹣a)=x2﹣ax,对称轴为x=,抛物线开口向上,∵y=2t是t的增函数,∴要使f(x)在区间(0,1)单调递减,则t=x2﹣ax在区间(0,1)单调递减,即≥1,即a≥2,故实数a的取值范围是[2,+∞).故选:D.5.(5分)设椭圆C1:+y2=1(a>1),C2:+y2=1的离心率分别为e1,e2.若e2=e1,则a=( )A.B.C.D.【答案】A【解答】解:由椭圆C2:+y2=1可得a2=2,b2=1,∴c2==,∴椭圆C2的离心率为e2=,∵e2=e1,∴e1=,∴=,∴=4=4(﹣)=4(﹣1),∴a=或a=﹣(舍去).故选:A.6.(5分)过点(0,﹣2)与圆x2+y2﹣4x﹣1=0相切的两条直线的夹角为α,则sinα=( )A.1B.C.D.【答案】B【解答】解:圆x2+y2﹣4x﹣1=0可化为(x﹣2)2+y2=5,则圆心C(2,0),半径为r=;设P(0,﹣2),切线为PA、PB,则PC==2,△PAC中,sin=,所以cos==,所以sinα=2sin cos=2××=.故选:B.7.(5分)记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{}为等差数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】C【解答】解:若{a n}是等差数列,设数列{a n}的首项为a1,公差为d,则S n=na1+d,即=a1+d=n+a1﹣,故{}为等差数列,即甲是乙的充分条件.反之,若{}为等差数列,则可设﹣=D,则=S1+(n﹣1)D,即S n=nS1+n(n﹣1)D,当n≥2时,有S n﹣1=(n﹣1)S1+(n﹣1)(n﹣2)D,上两式相减得:a n=S n﹣S n﹣1=S1+2(n﹣1)D,当n=1时,上式成立,所以a n=a1+2(n﹣1)D,则a n+1﹣a n=a1+2nD﹣[a1+2(n﹣1)D]=2D(常数),所以数列{a n}为等差数列.即甲是乙的必要条件.综上所述,甲是乙的充要条件.故本题选:C.8.(5分)已知sin(α﹣β)=,cosαsinβ=,则cos(2α+2β)=( )A.B.C.﹣D.﹣【答案】B【解答】解:因为sin(α﹣β)=sinαcosβ﹣sinβcosα=,cosαsinβ=,所以sinαcosβ=,所以sin(α+β)=sinαcosβ+sinβcosα==,则cos(2α+2β)=1﹣2sin2(α+β)=1﹣2×=.故选:B.二、选择题:本题共4小题,每小题5分,共20分。
2023年新高考1卷数学真题试卷附详解

2023年高考数学试卷新课标Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N ⋂=( )A. {}2,1,0,1--B. {}0,1,2C. {}2-D. 22. 已知1i22iz -=+,则z z -=( ) A.i -B. iC. 0D. 13. 已知向量()()1,1,1,1a b ==-,若()()a b a b λμ+⊥+,则( ) A. 1λμ+= B. 1λμ+=- C. 1λμ= D. 1λμ=-4. 设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A. (],2-∞-B. [)2,0-C. (]0,2D. [)2,+∞5. 设椭圆2222122:1(1),:14x x C y a C y a +=>+=的离心率分别为12,e e .若21e =,则=a ( )A.B.C.D.6. 过点()0,2-与圆22410x y x +--=相切的两条直线的夹角为α,则sin α=( )A. 1B.C.D.7. 记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:{}nS n为等差数列,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件 8. 已知()11sin ,cos sin 36αβαβ-==,则()cos 22αβ+=( ). A.79 B.19C. 19-D. 79-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 有一组样本数据126,,,x x x ⋅⋅⋅,其中1x 是最小值,6x 是最大值,则( ) A. 2345,,,x x x x 的平均数等于126,,,x x x ⋅⋅⋅的平均数 B. 2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数 C. 2345,,,x x x x 的标准差不小于126,,,x x x ⋅⋅⋅的标准差 D. 2345,,,x x x x 的极差不大于126,,,x x x ⋅⋅⋅的极差10. 噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级20lgp pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则( ). A. 12p p ≥ B. 2310p p > C. 30100p p =D. 12100p p ≤11. 已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则( ).A. ()00f =B. ()10f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点12. 下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有( )A. 直径为0.99m 的球体B. 所有棱长均为1.4m 的四面体C. 底面直径为0.01m ,高为1.8m 的圆柱体D. 底面直径为1.2m ,高为0.01m 的圆柱体三、填空题:本题共4小题,每小题5分,共20分.13. 某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).14. 在正四棱台1111ABCD A B C D -中,1112,1,AB A B AA ===,则该棱台的体积为________.15. 已知函数()cos 1(0)f x x ωω=->在区间[]0,2π有且仅有3个零点,则ω的取值范围是________.16. 已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F .点A 在C 上,点B 在y 轴上,11222,3F A F B F A F B ⊥=-,则C 的离心率为________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.18. 如图,在正四棱柱1111ABCD A B C D -中,12,4AB AA ==.点2222,,,A B C D 分别在棱111,,AA BB CC ,1DD 上,22221,2,3AA BB DD CC ====.(1)证明:2222B C A D ∥;(2)点P 在棱1BB 上,当二面角222P A C D --为150︒时,求2B P . 19. 已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+. 20. 设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式; (2)若{}n b 为等差数列,且999999S T -=,求d .21. 甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .22. 在直角坐标系xOy 中,点P 到x 轴的距离等于点P 到点10,2⎛⎫ ⎪⎝⎭的距离,记动点P 的轨迹为W .(1)求W 的方程;(2)已知矩形ABCD 有三个顶点在W 上,证明:矩形ABCD 的周长大于2023年高考数学试卷新课标Ⅰ卷答案一、选择题.1. C解:因为{}(][)260,23,N x x x ∞∞=--≥=--⋃+,而{}2,1,0,1,2M =--,所以M N ⋂={}2-.故选:C . 2. A解:因为()()()()1i 1i 1i 2i 1i 22i 21i 1i 42z ----====-++-,所以1i 2z =,即i z z -=-. 故选:A . 3. D解:因为()()1,1,1,1a b ==-,所以()1,1a b λλλ+=+-,()1,1a b μμμ+=+- 由()()a b a b λμ+⊥+可得,()()0a b a b λμ+⋅+= 即()()()()11110λμλμ+++--=,整理得:1λμ=-. 故选:D . 4. D解:函数2xy =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥.所以a 的取值范围是[)2,+∞. 故选:D. 5. A解:由21e ,得22213e e =,因此2241134a a --=⨯,而1a >,所以a =故选:A. 6. B解:因为22410x y x +--=,即()2225x y -+=,可得圆心()2,0C ,半径r =过点()0,2P -作圆C 的切线,切点为,A B因为PC ==,则PA ==可得sin APC APC ∠==∠==则sin sin 22sin cos 2APB APC APC APC ∠=∠=∠∠==22221cos cos 2cos sin 04APB APC APC APC ∠=∠=∠-∠=-=-<⎝⎭⎝⎭即APB ∠为钝角.所以()sin sin πsin 4APB APB =-∠=∠=α. 故选:B. 7. C解:甲:{}n a 为等差数列,设其首项为1a ,公差为d 则1111(1)1,,222212n n n n S S S n n n d d dS na d a d n a n n n +--=+=+=+--=+ 因此{}nS n为等差数列,则甲是乙的充分条件. 反之,乙:{}nS n为等差数列,即111(1)1(1)(1)n n n n n n S S nS n S na S n n n n n n +++-+--==+++为常数,设为t即1(1)n nna S t n n +-=+,则1(1)n n S na t n n +=-⋅+,有1(1)(1),2n n S n a t n n n -=--⋅-≥ 两式相减得:1(1)2n n n a na n a tn +=---,即12n n a a t +-=,对1n =也成立 因此{}n a 为等差数列,则甲是乙的必要条件. 所以甲是乙的充要条件,C 正确. 故选:C. 8. B解:因为1sin()sin cos cos sin 3αβαβαβ-=-=,而1cos sin 6αβ=,因此1sin cos 2αβ=则2sin()sin cos cos sin 3αβαβαβ+=+=所以2221cos(22)cos 2()12sin ()12()39αβαβαβ+=+=-+=-⨯=. 故选:B.二、选择题.9. BD解:对于选项A :设2345,,,x x x x 的平均数为m ,126,,,x x x ⋅⋅⋅的平均数为n 则()()165234123456234526412x x x x x x x x x x x x x x x x n m +-+++++++++++-=-=因为没有确定()1652342,x x x x x x ++++的大小关系,所以无法判断,m n 的大小 例如:1,2,3,4,5,6,可得 3.5m n ==. 例如1,1,1,1,1,7,可得1,2m n ==. 例如1,2,2,2,2,2,可得112,6m n ==;故A 错误; 对于选项B :不妨设123456x x x x x x ≤≤≤≤≤可知2345,,,x x x x 的中位数等于126,,,x x x ⋅⋅⋅的中位数均为342x x +,故B 正确; 对于选项C :因为1x 是最小值,6x 是最大值则2345,,,x x x x 的波动性不大于126,,,x x x ⋅⋅⋅的波动性,即2345,,,x x x x 的标准差不大于126,,,x x x ⋅⋅⋅的标准差例如:2,4,6,8,10,12,则平均数()12468101276n =+++++= 标准差1s ==4,6,8,10,则平均数()14681074m =+++= 标准差2s ==5>,即12s s >;故C 错误; 对于选项D :不妨设123456x x x x x x ≤≤≤≤≤则6152x x x x -≥-,当且仅当1256,x x x x ==时,等号成立,故D 正确; 故选:BD. 10. ACD解:由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈= 对于选项A :可得1212100220lg20lg 20lg p p p p p L L p p p =-⨯=⨯-⨯ 因为12p p L L ≥,则121220lg0p p p L L p =-⨯≥,即12lg 0pp ≥ 所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确; 对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯ 因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥ 所以23pp ≥23,0p p >,可得23p ≥ 当且仅当250p L =时,等号成立,故B 错误; 对于选项C :因为33020lg40p p L p =⨯=,即30lg 2pp =可得3100p p =,即30100p p =,故C 正确; 对于选项D :由选项A 可知:121220lgp p p L L p =-⨯ 且12905040p p L L ≤-=-,则1220lg40p p ⨯≤ 即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确; 故选:ACD. 11. ABC解:因为22()()()f xy y f x x f y =+对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确. 对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确. 对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=令21,()()(1)()y f x f x x f f x =--=+-=又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误. 12. ABD解:对于选项A :因为0.99m 1m <,即球体的直径小于正方体的棱长 所以能够被整体放入正方体内,故A 正确;对于选项B :, 1.4> 所以能够被整体放入正方体内,故B 正确;对于选项C :, 1.8< 所以不能够被整体放入正方体内,故C 正确;对于选项D :, 1.2>设正方体1111ABCD A B C D -的中心为O ,以1AC 为轴对称放置圆柱,设圆柱的底面圆心1O 到正方体的表面的最近的距离为m h如图,结合对称性可知:11111110.62OC C A C O OC OO ===-= 则1111C O h AA C A =,即0.61h -=解得10.340.012h =>> 所以能够被整体放入正方体内,故D 正确; 故选:ABD.三、填空题.13. 64解:(1(当从8门课中选修2门,则不同的选课方案共有144116C C =种;(2(当从8门课中选修3门①若体育类选修课1门,则不同的选课方案共有1244C C 24=种;②若体育类选修课2门,则不同的选课方案共有2144C C 24=种;综上所述:不同的选课方案共有16242464++=种. 故答案为:64. 14.解:如图,过1A 作1A M AC ⊥,垂足为M ,易知1A M 为四棱台1111ABCD A B C D -的高因为1112,1,AB A B AA ===则111111111122222AO AC B AO AC ======故()1112AM AC A C =-=,则1A M ===所以所求体积为1(413V =⨯++=故答案为:6. 15. [2,3)解:因为02x π≤≤,所以02x πωω≤≤ 令()cos 10f x x ω=-=,则cos 1x ω=有3个根 令t x ω=,则cos 1t =有3个根,其中[0,2π]t ω∈结合余弦函数cos y t =的图像性质可得4π2π6πω≤<,故23ω≤<故答案为:[2,3).16.解:依题意,设22AF m =,则2113,22BF m BF AF a m ===+在1Rt ABF 中,2229(22)25m a m m ++=,则(3)()0a m a m +-=,故a m =或3a m=-(舍去)所以124,2AF a AF a ==,213BF BF a ==,则5AB a = 故11244cos 55AF a F AF ABa ∠===所以在12AF F △中,2221216444cos 2425a a c F AF a a +-∠==⨯⨯,整理得2259c a =故5c e a ==.四、解答题.17. (1 (2)6 【小问1详解】3A B C += π3C C ∴-=,即π4C =又2sin()sin sin()A C B A C -==+2sin cos 2cos sin sin cos cos sin A C A C A C A C ∴-=+ sin cos 3cos sin A C A C ∴= sin 3cos A A ∴=即tan 3A =,所以π02A <<sin10A ∴==. 【小问2详解】由(1)知,cos10A ==由sin sin()B A C =+sin cos cos sin A C A C =+=+=由正弦定理,sin sin c bC B=,可得52b ==11sin 22AB h AB AC A ∴⋅=⋅⋅sin 6h b A ∴=⋅==. 18. (1)证明见解析 (2)1 【小问1详解】以C 为坐标原点,1,,CD CB CC 所在直线为,,x y z 轴建立空间直角坐标系,如图则2222(0,0,0),(0,0,3),(0,2,2),(2,0,2),(2,2,1)C C B D A2222(0,2,1),(0,2,1)B C A D ∴=-=- 2222B C A D ∴∥又2222B C A D ,不在同一条直线上2222B C A D ∴∥.【小问2详解】 设(0,2,)(04)P λλ≤≤则22222(2,2,2)(0,2,3),=(2,0,1),A C PC D C λ=--=---设平面22PA C 的法向量(,,)n x y z =则22222202(3)0n A C x y z n PC y z λ⎧⋅=--+=⎪⎨⋅=-+-=⎪⎩ 令 2z =,得3,1y x λλ=-=-(1,3,2)n λλ∴=--设平面222A C D 的法向量(,,)m a b c =则2222222020m A C a b c m D C a c ⎧⋅=--+=⎪⎨⋅=-+=⎪⎩ 令 1a =,得1,2==b c(1,1,2)m ∴=cos ,cos1506n m n m n m⋅∴===︒=化简可得,2430λλ-+= 解得1λ=或3λ=(0,2,1)P ∴或(0,2,3)P21B P ∴=.19. (1)答案见解析 (2)证明见解析 【小问1详解】解:因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减; 当ln x a >-时,0fx,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增. 【小问2详解】由(1)得,()()()ln min 2ln ln ln e 1af a a x a f a a a --+=++=+=要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立. 令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增.所以()2min 1ln 02222g a g ⎛⎛==--=>⎝⎭⎝⎭,则()0g a >恒成立. 所以当0a >时,3()2ln 2f x a >+恒成立,证毕. 20.(1)3n a n = (2)5150d =【小问1详解】21333a a a =+,132d a d ∴=+,解得1a d = 32133()6d d S a a =+==∴又31232612923T b b b d d d d=++=++= 339621S T d d∴+=+= 即22730d d -+=,解得3d =或12d =(舍去) 1(1)3n a a n d n ∴=+-⋅=.【小问2详解】{}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+ 2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d = 1d >,0n a ∴>又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去) 当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解; 当1a d =时,501495051a a d d =+==,解得5150d =. 综上,5150d =. 21. (1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 【小问1详解】记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6=⨯-+⨯=.【小问2详解】设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+ 构造等比数列{}i p λ+设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭ 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎬⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. 【小问3详解】因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅ 所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- 故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 22. (1)214y x =+ (2)见解析 【小问1详解】设(,)P x y ,则y =两边同平方化简得214y x =+ 故21:4W y x =+. 【小问2详解】法一:设矩形的三个顶点222111,,,,,444A a a B b b C c c ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭在W 上,且a b c <<,易知矩形四条边所在直线的斜率均存在,且不为0.则1,AB BC k k a b b c =⋅-+<+,令2240114AB k b a b a b am ⎛⎫+-+ ⎪⎝=+⎭==<- 同理令0BC k b c n =+=>,且1mn =-,则1m n=-设矩形周长为C ,由对称性不妨设||||m n ≥,1BC AB k k c a n m n n-=-=-=+则11||||(((2C AB BC b a c b c a n n ⎛=+=--≥-=+ ⎝.0n >,易知10n n ⎛+> ⎝则令()222111()1,0,()22f x x x x f x x x x x x '⎛⎫⎛⎫⎛⎫=++>=+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 令()0f x '=,解得x =当0,2x ⎛∈ ⎝⎭时,()0f x '<,此时()f x 单调递减当,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭,()0f x '>,此时()f x 单调递增则min 27()4f x f ==⎝⎭故122C ≥=,即C ≥当C =时,n m ==,且((b a b a -=-,即m n =时等号成立,矛盾,故C >得证.法二:不妨设,,A B D 在W 上,且BA DA ⊥依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线BA ,DA 的斜率均存在且不为0则设BA ,DA 的斜率分别为k 和1k-,由对称性,不妨设1k ≤ 直线AB 的方程为21()4y k x a a =-++则联立22141()4y x y k x a a ⎧=+⎪⎪⎨⎪=-++⎪⎩得220x kx ka a -+-=()()222420k ka a k a ∆=--=->,则2k a ≠则||2|AB k a =-同理||2AD a =+||||2|2AB AD k a a ∴+=-1122k a a k k ⎫≥-++≥+=⎪⎭令2k m =,则(]0,1m ∈,设32(1)1()33m f m m m m m+==+++则2221(21)(1)()23m m f m m m m '-+=+-=,令()0'=f m ,解得12m =当10,2m ⎛⎫∈ ⎪⎝⎭时,()0f m '<,此时()f m 单调递减 当1,2m ⎛⎫∈+∞⎪⎝⎭,()0f m '>,此时()f m 单调递增 则min 127()24f m f ⎛⎫==⎪⎝⎭||||AB AD ∴+≥但12|2|2|2k a a k a a k ⎫-+≥-++⎪⎭,此处取等条件为1k =,与最终取等时k =,故AB AD +>. 法三:为了计算方便,我们将抛物线向下移动14个单位得抛物线2:W y x '=,\矩形ABCD 变换为矩形A B C D '''',则问题等价于矩形A B C D ''''的周长大于设 ()()()222001122,,,,,B t t A t t C t t ''', 根据对称性不妨设 00t ≥.则 1020,A B B C k t t k t t ''''=+=+, 由于 A B B C ''''⊥, 则 ()()10201t t t t ++=-.由于 1020,A B t B C t ''''=-=-, 且 0t 介于 12,t t 之间,则 1020A B B C t t ''''+=--. 令 20tan t t θ+=10πcot ,0,2t t θθ⎛⎫+=-∈ ⎪⎝⎭,则2010tan ,cot t t t t θθ=-=--,从而))002cot tan 2A B B C t t θθ''''+=++-故330022222(cos sin )11sin cos sin cos 2sin cos cos sin sin cos sin cos t A B B C t θθθθθθθθθθθθθθ''''-+⎛⎫+=-++=+ ⎪⎝⎭①当π0,4θ⎛⎤∈ ⎥⎝⎦时第 21 页 共 21 页332222sin cos sin cos sin cos cos sin A B B C θθθθθθθθ''''++≥=+≥=≥ ②当 ππ,42θ⎛⎫∈⎪⎝⎭ 时,由于102t t t <<,从而000cot tan t t t θθ--<<- 从而0cot tan 22t θθ-<<又00t ≥ 故0tan 02t θ≤<,由此330222(cos sin )sin cos sin cos sin cos t A B B C θθθθθθθθ''''-++=+ 3323222sin (cos sin )(sin cos )sin cos 1cos sin cos sin cos cos sin θθθθθθθθθθθθθθ-+>+=+==2≥≥=当且仅当cos 3θ=时等号成立,故A B B C ''''+>,故矩形周长大于。
2023年高考数学真题及答案

2023年高考数学真题及答案【注意:此处按照文章的正文格式进行撰写,不再重复标题或其他内容】
一、选择题部分
1. 根据题意填空: 2023年高考数学真题选择题第一小题答案为______。
2. 判断题: 2023年高考数学真题第二小题正确选项为
________。
3. 单项选择题: 2023年高考数学真题第三小题正确选项为
______。
二、填空题部分
1. 第一小题:计算_________。
2. 第二小题:求解方程______的根。
3. 第三小题:若曲线_______关于点(1,2)对称,请给出它的对称轴方程。
三、解答题部分
1. 第一大题:计算__________。
答案:根据题意,我们可以列方程如下:_______,经过解方程,得出答案为______。
2. 第二大题:证明_________。
证明:首先,我们已知_______,又因为_______,所以根据数学定理_______,我们可以得出_______。
证毕。
2023年高考数学真题及答案的详细解析请参考附件。
结束语:这份2023年高考数学真题及答案是为广大考生准备的,希望对于备战高考的同学们有所帮助。
祝愿大家在考试中取得优异的成绩,实现自己的高考目标!。
2023年全国统一高考数学试卷(新高考Ⅰ)含答案解析

绝密★启用前2023年全国统一高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合M={−2,−1,0,1,2},N={x|x2−x−6≥0},则M∩N=( )A. {−2,−1,0,1}B. {0,1,2}C. {−2}D. {2}2.已知z=1−i2+2i,则z−z−=( )A. −iB. iC. 0D. 13.已知向量a⃗=(1,1),b⃗⃗=(1,−1).若(a⃗⃗+λb⃗⃗)⊥(a⃗⃗+μb⃗⃗),则( )A. λ+μ=1B. λ+μ=−1C. λμ=1D. λμ=−14.设函数f(x)=2x(x−a)在区间(0,1)单调递减,则a的取值范围是( )A. (−∞,−2]B. [−2,0)C. (0,2]D. [2,+∞)5.设椭圆C1:x2a2+y2=1(a>1),C2:x24+y2=1的离心率分别为e1,e2.若e2=√ 3e1,则a=( )A. 2√ 33B. √ 2C. √ 3D. √ 66.过点(0,−2)与圆x2+y2−4x−1=0相切的两条直线的夹角为α,则sinα=( )A. 1B. √ 154C. √ 104D. √ 647.记S n为数列{a n}的前n项和,设甲:{a n}为等差数列;乙:{S nn}为等差数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件8.已知sin(α−β)=13,cosαsinβ=16,则cos(2α+2β)=( )A. 79B. 19C. −19D. −79二、多选题:本题共4小题,共20分。
2023新高考II卷数学真题及答案
2023新高考II卷数学真题及答案
2023新高考II卷数学试卷及答案
2023高考数学选择题题型及分布规律
1.集合交并补运算
2.充分必要条件,命题真假
3.复数四则运算
4.三视图恢复与,体积表面积内外截球计算
5.算法循环结构
6.概率,排列组合计算,积分计算
6.函数奇偶周期对称抽象函数与导函数(及结论)
7.分段函数8空间几何平行垂直夹角体积计算
9线性规划
10三角函数求值
11解三角形相关夹角面积周长
12向量共线垂直乘积夹角模长最值及向量有关三角形计算等
13.数列通项,某一项,求和,最值
14.复杂图形辨别及导数相关图形辨别
15.函数比较大小,非常规(指数,对数,三角,抽象)不等式求解及恒成立,参数范围求解。
16基本不等式相关最值
17.统计(抽样,频率分布直方图,数字特征及图形相关概率)
18导函数,抽象导函数,单调性,切线,最值及导数不等式压轴
19线(直线,切线,弦),曲线(椭圆,双曲线,抛物线),点(中点),图形(三角形,菱形,矩形)与圆(特殊,普通)关系
20.圆锥曲线方程,离心率,最值及参数等相关计算
21.创新题
22.综合类复杂题多为参数范围求解综合类问题
2023高考数学选择题解题技巧
1.剔除法:利用数学选择题已知条件和选项所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
2.特特殊值检验法:对于具有一般性的数学选择题问题,在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2023年新高考II卷数学真题(解析版)
1 q
故选:C.
方法二:设等比数列an 的公比为 q ,
因为 S4 5, S6 21S2 ,所以 q 1,否则 S4 0 ,
从而, S2, S4 S2, S6 S4, S8 S6 成等比数列,
所以有, 5
S2
2
S2
21S2
5 ,解得:
S2
1 或
S2
5 4
,
当 S2 1时, S2, S4 S2, S6 S4, S8 S6 ,即为 1, 4, 16, S8 21,
A. bc 0
B. ab 0
C. b2 8ac 0
).
D. ac 0
【答案】BCD 【解析】
【分析】求出函数 f (x) 的导数 f (x) ,由已知可得 f (x) 在 (0, ) 上有两个变号零点,转化为一元二次方
程有两个不等的正根判断作答.
【详解】函数
f
(x)
a ln
x
b xc x2Fra bibliotekA. 该圆锥的体积为 π
B. 该圆锥的侧面积为 4 3π
C. AC 2 2
D. △PAC 的面积为 3
【答案】AC 【解析】 【分析】根据圆锥的体积、侧面积判断 A、B 选项的正确性,利用二面角的知识判断 C、D 选项的正确性.
【详解】依题意, APB 120, PA 2 ,所以 OP 1,OA OB 3 ,
B. MN 8 3
D. OMN 为等腰三角形
【分析】先求得焦点坐标,从而求得 p ,根据弦长公式求得 MN ,根据圆与等腰三角形的知识确定正确答
案.
【详解】A 选项:直线 y 3 x 1 过点 1, 0 ,所以抛物线 C : y2 2 px p 0 的焦点 F 1, 0 ,
2023高考全国甲卷数学真题及答案(文数)
2023高考全国甲卷数学真题及答案(文数)2023年普通高等学校招生全国统一考试文科数学试题2023年普通高等学校招生全国统一考试文科数学参考答案学好高考数学的技巧高考数学题目的总结比较。
建立自己的题库。
多做。
主要是指做高考数学习题,学数学一定要做习题,并且应该适当地多做些。
养成好的学习习惯,做好预习,把预习没看懂的东西,第二天上课着重听。
抓住课堂。
高考数学理科学习重在平日功夫,不适于突击复习。
高质量完成作业。
所谓高质量是指高正确率和高速度。
翻译:把中文翻译成为数学语言,包括:字母表示未知数、图像表示函数式或几何题目、概率语言等等。
该方法常用于函数,几何以及不等式等题目。
特殊化:在面对抽象或者难以理解的题目的时候,我们尝试用最极端最特殊的数字来代替变量,帮助我们理解题目。
该方法常用于在选择题目中排除选项,在解大题的过程中也经常会用到特殊化的结论。
盯住目标:把高考数学目标和已知结合,联想相关的定理、定义、方法。
在压轴题目中,往往需要不断转化目标,即盯住目标需要反复使用!各省高考用卷情况1、新高考一卷(8个省份)适用省份:山东、河北、湖北、福建、湖南、广东、江苏,浙江考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。
特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。
其中广东、福建、江苏、湖南、湖北、河北6个省是3+1+2模式的高考省份,山东省是综合改革3+3省份。
2、新高考二卷(3个省份)适用省份:海南、辽宁、重庆考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。
其中辽宁、重庆两省市是3+1+2省份,海南是综合改革3+3省份。
3、全国甲卷(5个省份)适用省份:云南、贵州、四川、西藏、广西考试科目:语文、数学、外语、文综、理综特点:语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。
2023年全国乙卷理科数学高考真题(含参考答案)
2023年普通高等学校招生全国统一考试(全国乙卷)理科数学(含参考答案)一、选择题1.设252i1i i z +=++,则z =()A.12i- B.12i+ C.2i- D.2i+2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.∁∪B.∪∁C.∁∩D.∪∁3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.304.已知e ()e 1xax x f x =-是偶函数,则=a ()A.2- B.1- C.1 D.25.设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18 B.16C.14D.126.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A. B.12-C.12D.27.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种8.已知圆锥PO的底面半径为O 为底面圆心,PA ,PB 为圆锥的母线,120AOB ∠=︒,若PAB的面积等于4,则该圆锥的体积为()A.πB.C.3πD.9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.25C.35D.2510.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.1211.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1B.()1,2- C.()1,3 D.()1,4--12.已知O 的半径为1,直线P A 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC 的中点,若PO =,则PA PD ⋅的最大值为()A.12B.12+C.1+D.2二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:试验序号i 12345678910伸缩率ix 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记()1,2,,10i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O ,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.20.已知椭圆2222:1(0)C b b x a a y +>>=的离心率是3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.21.已知函数1()ln(1)f x a x x ⎛⎫=++⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫=⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ≤⎧⎨+-≤⎩所确定的平面区域的面积.参考答案(2023·全国乙卷·理·1·★)设252i1i i z +=++,则z =()(A )12i -(B )12i+(C )2i -(D )2i+答案:B解析:由题意,2252222i 2i 2i (2i)i i 2i 12i 1i i 11(i )i i iz ++++=====--=-++-+,所以12i z =+.(2023·全国乙卷·理·2·★)设全集U =R ,集合{|1}M x x =<,{|12}N x x =-<<,则{|2}x x ≥=()(A )∁∪(B )∪∁(C )∁∩(D )∪∁答案:A解析:正面求解不易,直接验证选项,A 项,由题意,{|2}M N x x =< ,所以(){|2}U M N x x =≥ ð,故选A.(2023·全国乙卷·理·3·★)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()(A )24(B )26(C )28(D )30答案:D解析:如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.(2023·全国乙卷·理·4·★★)已知e ()e 1xax x f x =-是偶函数,则a =()(A )2-(B )1-(C )1(D )2答案:D解法1:要求a ,可结合偶函数的性质取特值建立方程,由()f x 为偶函数得(1)(1)f f -=,故1e ee 1e 1a a ---=--①,又111e e e e 11e e 1a a a a ------==---,代入①得1e ee 1e 1a a a -=--,所以1e e a -=,从而11a -=,故2a =,经检验,满足()f x 为偶函数.解法2:也可直接用偶函数的定义来分析,因为()f x 为偶函数,所以()()f x f x -=恒成立,从而e e e 1e 1x x ax ax x x ---=--,故e e e 1e 1x x ax ax ---=--,所以e e e 1e e 1x ax x axax --⋅=--,从而e e e 1e 1ax x xax ax -=--,故e e ax x x -=,所以ax x x -=,故(2)0a x -=,此式要对定义域内任意的x 都成立,只能20a -=,所以2a =.(2023·全国乙卷·理·5·★)设O 为平面坐标系的原点,在区域22{(,)|14}x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于4的概率为()()(A )18(B )16(C )14(D )12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·理·6·★★)已知函数()sin()f x x ωϕ=+在区间2(,)63ππ单调递增,直线6x π=和23x π=为函数()y f x =的图象的两条对称轴,则5()12f π-=()(A )(B )12-(C )12(D 答案:D解析:条件中有两条对称轴,以及它们之间的单调性,据此可画出草图来分析,如图,2362T T πππ-=⇒=,所以22Tπω==,故2ω=±,不妨取2ω=,则()sin(2)f x x ϕ=+,再求ϕ,代一个最值点即可,由图可知,()sin(2)sin()1663f πππϕϕ=⨯+=+=-,所以232k ππϕπ+=-,从而52()6k k πϕπ=-∈Z ,故55()sin(22)sin(2)66f x x k x πππ=+-=-,所以5555(sin[2()]sin()sin 12126332f πππππ-=⨯--=-==.(2023·全国乙卷·理·7·★★)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()(A )30种(B )60种(C )120种(D )240种答案:C解析:恰有1种课外读物相同,可先把相同的课外读物选出来,再选不同的,由题意,先从6种课外读物中选1种,作为甲乙两人相同的课外读物,有16C 种选法,再从余下5种课外读物中选2种,分别安排给甲乙两人,有25A 种选法,由分步乘法计数原理,满足题意的选法共1265C A 120=种.(2023·全国乙卷·理·8·★★★)已知圆锥PO ,O 为底面圆心,P A ,PB 为圆锥的母线,o 120AOB ∠=,若PAB ∆的面积等于,则该圆锥的体积为()(A )π(B (C )3π(D )答案:B解析:求圆锥的体积只差高,我们先翻译条件中的PAB S ∆,由于P A ,PB 和APB ∠都未知,所以不易通过1sin 2PAB S PA PB APB ∆=⋅⋅∠求P A ,再求PO ,故选择AB 为底边来算PAB S ∆,需作高PQ ,而AB 可在AOB ∆中求得,在AOB ∆中,由余弦定理,222AB OA OB =+-2cos 9OA OB AOB ⋅⋅∠=,所以3AB =,取AB 中点Q ,连接PQ ,OQ ,则OQ AB ⊥,PQ AB ⊥,所以1133222PAB S AB PQ PQ PQ ∆=⋅=⨯⨯=,又4PAB S ∆=,所以324PQ =,故2PQ =,在AOQ ∆中,o 1602AOQ AOB ∠=∠=,所以cos OQ OA AOQ =⋅∠=OP =所以圆柱PO 的体积213V π=⨯=.(2023·全国乙卷·理·9·★★★)已知ABC ∆为等腰直角三角形,AB 为斜边,ABD ∆为等边三角形,若二面角C ABD --为o 150,则直线CD 与平面ABC 所成角的正切值为()(A )15(B )25(C (D )25答案:C解析:两个等腰三角形有公共的底边,这种情况常取底边中点构造线面垂直,如图,取AB 中点E ,连接DE ,CE ,由题意,DA DB =,AC BC =,所以AB DE ⊥,AB CE ⊥,故DEC ∠即为二面角C AB D --的平面角,且AB ⊥平面CDE ,所以o 150DEC ∠=,作DO CE ⊥的延长线于O ,则DO ⊂平面CDE ,所以DO AB ⊥,故DO ⊥平面ABC ,所以DCO ∠即为直线CD 与平面ABC 所成的角,不妨设2AB =,则1CE =,DE =,因为o 150DEC ∠=,所以o 30DEO ∠=,故3cos 2OE DE DEO =⋅∠=,sin OD DE DEO =⋅∠=52OC OE CE =+=,所以tan OD DCO OC ∠==.【反思】两个等腰三角形有公共底边这类图形,常取底边中点,构造两个线线垂直,进而得出线面垂直.(2023·全国乙卷·理·10·★★★★)已知等差数列{}n a 的公差为23π,集合*{cos |}n S a n =∈N ,若{,}S a b =,则ab =()(A )1-(B )12-(C )0(D )12答案:B解析:由题意,S 中的元素为1cos a ,2cos a ,3cos a ,…,由于cos y x =周期为2π,恰为公差的3倍,所以cos n a 必以3为周期重复出现,故只需考虑前三个值.但题干却说{,}S a b =,只有两个元素,为什么呢?这说明前三个值中恰有两个相等,若讨论是哪两个相等来求1a ,则较繁琐,我们直接画单位圆,用余弦函数的定义来看,如图,由三角函数定义可知,在终边不重合的前提下,余弦值相等的两个角终边关于x 轴对称,所以要使1cos a ,2cos a ,3cos a 中有两个相等,则1a ,2a ,3a 的终边只能是如图所示的两种情况,至于三个终边哪个是1a ,不影响答案,只要它们逆时针排列即可,若为图1,则131cos cos 2a a ==,2cos 1a =-,所以S 中的元素是12和1-,故12ab =-;若为图2,则1cos 1a =,231cos cos 2a a ==-,所以S 中的元素是1和12-,故12ab =-.(2023·全国乙卷·理·11·★★★)设A ,B 为双曲线2219y x -=上两点,下列四个点中,可能为线段AB 中点的是()(A )(1,1)(B )(1,2)-(C )(1,3)(D )(1,4)--答案:D解析:涉及弦中点,考虑中点弦斜率积结论,A 项,记(1,1)M ,由中点弦斜率积结论,9AB OM k k ⋅=,因为1OM k =,所以9AB k =,又直线AB 过点M ,所以AB 的方程为19(1)y x -=-,即98y x =-①,只要该直线与双曲线有2个交点,那么A 项就正确,可将直线的方程代入双曲线方程,算判别式,将①代入2219y x -=整理得:272144730x x -+=,21(144)47273144(144273)2880∆=--⨯⨯=⨯-⨯=-<,所以该直线与双曲线没有两个交点,故A 项错误,同理可判断B 、C 也错误,此处不再赘述;D 项,记(1,4)N --,则4ON k =,由中点弦斜率积结论,9AB OM k k ⋅=,所以94AB k =,又直线AB 过点N ,所以AB 的方程为91(1)4y x -=-,整理得:9544y x =-②,将②代入2219y x -=整理得:263901690x x +-=,判别式2290463(169)0∆=-⨯⨯->,所以该直线与双曲线有两个交点,故D 项正确.(2023·全国乙卷·理·12·★★★★)已知⊙O 半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若PO =,则PA PD ⋅的最大值为()(A )122(B )1222+(C )1+(D )2+答案:A解析:1OA =,1PO PA =⇒==,所以cos cos PA PD PA PD APD PD APD ⋅=⋅∠=∠ ①,且PAO ∆是等腰直角三角形,所以4APO π∠=,因为D 是BC 的中点,所以OD BC ⊥,求PA PD ⋅要用APD ∠,故可设角为变量,引入CPO ∠为变量,可与直角PDO ∆联系起来,更便于分析,设CPO θ∠=,则04πθ≤<,有图1和图2两种情况,要讨论吗?观察发现图2的每一种PD ,在图1中都有一个对称的位置,二者PD相同,但图2的夹角APD ∠更大,所以cos APD ∠更小,数量积也就更小,从而PA PD ⋅的最大值不会在图2取得,故可只考虑图1,如图1,4APD APO CPO πθ∠=∠-∠=-,代入①得cos()4PA PD PD πθ⋅=- ①,注意到PD与θ有关,故将它也用θ表示,统一变量,由图可知,cos PD PO DPC θ=∠=,代入①得:cos()4PA PD πθθ⋅=-222sin)cos sin cos22θθθθθθ=+=+1)1cos214sin2222πθθθ+++=+=,故当8πθ=时,sin(214πθ+=,PA PD⋅取得最大值12+.(2023·全国乙卷·理·13·★)已知点A在抛物线2:2C y px=上,则点A到C的准线的距离为_____.答案:94解析:点A在抛物线上25212p p⇒=⋅⇒=,所以抛物线的准线为54x=-,故A到该准线的距离591()44d=--=.(2023·全国乙卷·理·14·★)若x,y满足约束条件312937x yx yx y-≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y=-的最大值为______.答案:8解析:作出可行域如下图所示:=2−,移项得=2−,联立有3129x yx y-=-⎧⎨+=⎩,解得52xy=⎧⎨=⎩,设()5,2A,显然平移直线2y x=使其经过点A,此时截距−最小,则最大,代入得=8(2023·全国乙卷·理·15·★★)已知{}na为等比数列,24536a a a a a=,9108a a=-,则7a=_____.答案:2-解析:已知和要求的都容易用通项公式翻译,故直接翻译它们,34252453611111a a a a a a qa q a q a q a q=⇒=,化简得:11a q=①,8921791011188a a a q a q a q=-⇒==-②,由①可得11aq=,代入②得:158q=-,所以52q=-③,结合①③可得6557112a a q a q q q==⋅==-.(2023·全国乙卷·理·16·★★★★)设(0,1)a ∈若函数()(1)x x f x a a =++在(0,)+∞上单调递增,则a 的取值范围是_____.答案:51[,1)2解析:直接分析()f x 的单调性不易,可求导来看,由题意,()ln (1)ln(1)x x f x a a a a '=+++,因为()f x 在(0,)+∞上,所以()0f x '≥在(0,)+∞上恒成立,即ln (1)ln(1)0x x a a a a +++≥,参数a 较多,没法集中,但x 只有两处,且观察发现可同除以x a 把含x 的部分集中起来,所以(1)ln ln(1)0x xa a a a +++≥,故1ln (1)ln(1)0x a a a+++≥①,想让式①恒成立,只需左侧最小值0≥,故分析其单调性,因为111a+>,11a +>,所以ln(1)0a +>,从而1ln (1)ln(1)x y a a a =+++在(0,)+∞上,故011ln (1ln(1)ln (1ln(1)ln ln(1)x a a a a a a a a+++>+++=++,所以①恒成立ln ln(1)0a a ⇔++≥,从而ln[(1)]0a a +≥,故(1)1a a +≥,结合01a <<解得:112a ≤<.(2023·全国乙卷·理·17·★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验,选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,(1,2,,10)i y i =⋅⋅⋅,试验结果如下:试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记(1,2,,10)i i i z x y i =-=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s .(1)求z ,2s ,(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)解:(1)由题意,i z 的数据依次为9,6,8,8-,15,11,19,18,20,12,所以10111()(9688151119182012)111010i i i z x y ==-=++-++++++=∑,10222222222111()[(911)(611)(811)(811)(1511)(1111)(1911)1010i i s z z ==-=-+-+-+--+-+-+-+∑222(1811)(2011)(1211)]61-+-+-=.(2)由(1)可得z =,所以甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·理·18·★★★)在ABC ∆中,已知o 120BAC ∠=,2AB =,1AC =.(1)求sinABC ∠;(2)若D 为BC 上一点,且o 90BAD ∠=,求ADC ∆的面积.解:(1)(已知两边及夹角,可先用余弦定理求第三边,再用正弦定理求角)由余弦定理,22222o 2cos 21221cos1207BC AB AC AB AC BAC =+-⋅⋅∠=+-⨯⨯⨯==,由正弦定理,sin sin AC BC ABC BAC =∠∠,所以o sin sin 14AC BAC ABC BC ⋅∠∠===.(2)如图,因为o 120BAC ∠=,o 90BAD ∠=,所以o 30CAD ∠=,(求ADC S ∆还差AD ,只要求出ABC ∠,就能在ABD ∆中求AD ,ABC ∠可放到ABC ∆中来求)由余弦定理推论,222cos2AB BC AC ABC AB BC +-∠===⋅,所以cos AB BD ABC ==∠,AD ==故o 11sin 1sin 3022ADCS AC AD CAD ∆=⋅⋅∠=⨯⨯=.(2023·全国乙卷·理·19·★★★★)在三棱锥P ABC -中,AB BC ⊥,2AB =,BC =PB PC ==,BP ,AP ,BC 的中点分别为D ,E ,O ,AD ,点F 在AC 上,BF AO ⊥.(1)证明:EF ∥平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的大小.解:(1)证法1:(由图可猜想DEFO 是平行四边形,故尝试证DE 平行且等于OF .注意到D ,E ,O 都是所在棱的中点,故若能证出F 是中点,则DE ,OF 都平行且等于AB 的一半,问题就解决了.那F 的位置由哪个条件决定呢?显然是BF AO ⊥,我们可以设AF AC λ=,利用向量来翻译BF AO ⊥,求出λ)设AF AC λ= ,则()(1)BF BA AF BA AC BA BC BA BA BC λλλλ=+=+=+-=-+ ,12AO AB BO BA BC =+=-+ ,因为BF AO ⊥,所以1((1))()2BF AO BA BC BA BC λλ⋅=-+⋅-+ 22(1)4(1)402BA BC λλλλ=-+=-+= ,解得:12λ=,所以F 是AC 的中点,又D ,E ,O 分别是BP ,AP ,BC 的中点,所以DE 和OF 都平行且等于AB 的一半,故DE 平行且等于OF ,所以四边形DOFE 是平行四边形,故EF ∥OD ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO .证法2:(分析方法同解法1,证明F 为AC 中点的过程,也可用平面几何的方法)如图1,在ABC ∆中,因为BF AO ⊥,所以o 21AOB AOB ∠+∠=∠+∠=12∠=∠又2AB =,BC =O 为BC 中点,所以BO =tan 1BO AB ∠==tan 3AB BC ∠==,所以tan 1tan 3∠=∠,故13∠=∠,结合①可得23∠=∠,所以BF CF =,连接OF ,因为O 是BC 中点,所以OF BC ⊥,又AB BC ⊥,所以OF ∥AB ,结合O 为BC 中点可得F 为AC 的中点,接下来同证法1.(2)(要证面面垂直,先找线面垂直,条件中有AO BF ⊥,于是不外乎考虑证AO ⊥面BEF 或证BF ⊥面AOD ,怎样选择呢?此时我们再看其他条件,还没用过的条件就是一些长度,长度类条件用于证垂直,想到勾股定理,我们先分析有关线段的长度)由题意,1622DO PC ==,302AD ==,AO ==所以222152AO DO AD +==,故AO OD ⊥,(此时结合OD ∥EF 我们发现可以证明AO ⊥面BEF )由(1)可得EF ∥OD ,所以AO EF ⊥,又AO BF ⊥,且BF ,EF 是平面BEF 内的相交直线,所以AO ⊥平面BEF ,因为AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(3)解法1:(此图让我们感觉面PBC ⊥面ABC ,若这一感觉正确,那建系处理就很方便.我们先分析看是不是这样的.假设面PBC ⊥面ABC ,由于AB BC ⊥,于是AB ⊥面PBC ,故AB BD ⊥,但我们只要稍加计算,就会发现222AB BD AD +≠,矛盾,所以我们的感觉是不对的,也就不方便建系.怎么办呢?那就在两个半平面内找与棱垂直的射线,它们的夹角等于二面角的大小.事实上,这样的射线已经有了)由题意,AO BF ⊥,由前面的过程可知AO OD ⊥,所以射线OD 与BF 的夹角与所求二面角相等,(OD 与BF 异面,直接求射线OD 和BF 的夹角不易,故考虑通过平移使其共面,到三角形中分析)因为OD ∥EF ,所以EFB ∠的补角等于射线OD 和BF 的夹角,由题意,AC ==,12BF AC =,12EF PC ==(只要求出BE ,问题就解决了,BE 是ABP ∆的中线,可用向量来算,先到ABD ∆中求cos ABP ∠)在ABD ∆中,2226cos 26AB BD AD ABP AB BD +-∠==-⋅,因为1()2BE BA BP =+ ,所以2221163(2)[4622()]4462BE BA BP BA BP =++⋅=⨯++⨯⨯-= ,故62BE =,在BEF ∆中,2222cos 22BF EF BE BFE BF EF +-∠==⋅,所以o 45BFE ∠=,故二面角D AO C --的大小为o 135.解法2:(得出所求二面角等于射线OD 与BF 夹角的过程同解法1.要计算此夹角,也可用向量法.观察图形可发现OA ,OB ,OD 的长度都已知或易求,两两夹角也好求,故选它们为基底,用基底法算OD 和BF的夹角)1113122()2()22222BF BCCF OB CA OB CBBA OB OB OA OB OB OA =+=-+=-++=-++-=-+,所以31313()cos 22222OD BF OD OD OB OD OA DOB BOD ⋅=⋅-+=-⋅+⋅=-⨯∠=-∠,又222cos 2OB OD BD BOD OB OD +-∠==⋅,所以32OD BF ⋅=- ,从而32cos ,ODBF OD BF OD BF-⋅<>==-⋅,故o ,135OD BF <>=,所以二面角D AO C --为o 135.解法3:(本题之所以不便建系,是因为点P 在面ABC的射影不好找,不易写坐标.那有没有办法突破这一难点呢?有的,我们可以设P 的坐标,用已知条件来建立方程组,直接求解P 的坐标)以B 为原点建立如图2所示的空间直角坐标系,则(0,0,0)B ,(2,0,0)A ,C ,O ,设(,,)(0)P x y z z >,则(,,222x y z D,由PB PC ⎧=⎪⎨=⎪⎩可得2222226(6x y z x y z ⎧++=⎪⎨+-+=⎪⎩,解得:y =,代回两方程中的任意一个可得224x z +=②,(此时发现还有AD =这个条件没用,故翻译它)又AD =,所以222222(2)5[(]244424x y z x y z -++=+-+,将y =代入整理得:22220x z x ++-=③,联立②③结合0z >解得:1x =-,z =,(到此本题的主要难点就攻克了,接下来是流程化的计算)所以123()222D -,故123()222DO =-,(AO =- ,设平面AOD 的法向量为(,,)xy z =m,则10220DO x y AO x ⎧⋅=+-=⎪⎨⎪⋅=-=⎩m m ,令1x =,则y z ⎧=⎪⎨=⎪⎩,所以=m 是平面AOD 的一个法向量,由图可知(0,0,1)=n 是平面AOC 的一个法向量,所以2cos ,2⋅<>==⋅m n m n m n ,由图可知二面角D AO C --为钝角,故其大小为o 135.【反思】当建系后有点的坐标不好找时,直接设其坐标,结合已知条件建立方程组,求解坐标,这也是一种好的处理思路.(2023·全国乙卷·理·20·★★★)已知椭圆2222:1(0)C b b x a a y +>>=的离心率是53,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x +=(2)证明见详解解析:(1)由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得325a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫ ⎪+⎝⎭,同理可得2220,2y N x ⎛⎫⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段PQ 的中点是定点()0,3.(2023·全国乙卷·理·21·★★★★)已知函数1()()ln(1)f x a x x=++.(1)当1a =-时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)是否存在a ,b ,使得曲线1(y f x=关于直线x b =对称?若存在,求a ,b 的值;弱不存在,说明理由;(3)若()f x 在(0,)+∞上存在极值,求a 的取值范围.解:(1)当1a =-时,1()(1)ln(1)f x x x =-+,2111()ln(1)(1)1f x x x x x'=-++-⋅+,所以(1)0f =,(1)ln 2f '=-,故所求切线方程为0ln 2(1)y x -=--,整理得:(ln 2)ln 20x y +-=.(2)由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln 2a a +=-,则12a a +=-,解得12a =,经检验11,22a b ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.(3)由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax -++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()''1201g x a x =-=+可得1=12x a -,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x-+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+<⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x-++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=-- ⎪⎝⎭,则()()22211111022x n x x x x--⎛⎫=-+=≤ ⎪⎝⎭',则()n x 单调递减,注意到()10n =,故当()1,x ∈+∞时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<- ⎪⎝⎭,所以()()()2=1ln 1g x ax x x x +-++()()211>1121ax x x x x ⎡⎤+-+⨯+-⎢⎥+⎣⎦21122a x ⎛⎫=-+ ⎪⎝⎭,令211022a x ⎛⎫-+= ⎪⎝⎭得2x =0g >,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.答案:(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+-(1)求不等式()6x f x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ⎧≤⎨+-≤⎩所确定的平面区域的面积.答案:(1)[2,2]-;(2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-(2)作出不等式组()60f x yx y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC ,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023高考数学真题试卷(上海)
2023年数学真题试卷(上海卷)
2023年上海高考时间安排:
时间
6月7日
6月8日
6月9日
9:00-11:30
15:00-17:00
9:00-11:30
15:00-17:00
8:00起
科目
语文
数学
-
外语笔试(含听力)
外语听说测试
2023年上海高考科目安排:
上海市普通高校招生统一文化考试科目为:语文、数学、外语。
(1)6月7日上午语文科目考试,9:15起禁止考生进入考点,11:00后考生可提前交卷出场。
(2)6月7日下午数学科目考试,3:15起禁止考生进入考点,4:30后考生可提前交卷出场。
(3)6月8日下午外语笔试(含听力)科目考试,2:45起禁止考生进入考点,4:30后考生可提前交卷出场。
(4)6月9日外语听说测试,考生需根据《外语听说测试准考证》上考试场次提前45分钟到考点报到,提前35分钟进入准备室。
2023年上海高考各科分数是多少
各科具体分值分布如下:
1.本科:语文、数学、外语每门满分均为150分,不分文理,考试时间安排在6月;外语提供两次考试机会,其中一次考试已安排在1月份进行,选择其中较好的一次成绩计入高考总分。
考生自主选择的3门选考科目,每门满分均为70分。
2.高职(专科):语文、数学和外语科目每门满分均为150分,不分文理,总分为450分。
外语提供两次考试机会,其中一次考试已安排在1月份进行,选择其中较好的一次成绩计入高考总分。
普通高中学业水平考试成绩计分:
普通高中学业水平等级性考试成绩在计入高考总分时,由五等细化为A+、A、B+、B、B-、C+、C、C-、D+、D、E共11级,分别占5%、10%、10%、10%、10%、
10%、10%、10%、10%、10%、5%。
其中,A+为满分70分,E计40分。
相邻两级之间的分差均为3分。