行程问题练习题及答案
小升初行程问题大全(含答案)

小升初行程(Cheng)问题大全(含答案)【题(Ti)目1】有甲乙丙三(San)车各以一定的速度从A到(Dao)B,乙比丙(Bing)晚出发10分钟,出(Chu)发后40分钟追上丙,甲比乙又晚(Wan)出发10分钟,出发(Fa)后60分钟追上丙,问,甲出发后多少分钟可以追上乙?【题目2】正方形ABCD是一条环形公路,已知汽车在AB上的时速为90千米,在BC上的时速是120千米,在CD上的时速是60千米,在DA上的时速是80千米。
已知从CD上的一点P同时反向各发一辆汽车,他们将在A、B的中点上相遇。
那么如果从PC中点M点同时反向各发一辆汽车,他们将在A、B上的一点N相遇。
求AN占AB的几分之几?【题目3】甲乙二人在400米的跑道上进行两次竞赛,第一次乙先跑到25米后,甲开始追乙,到终点比乙提前7.5秒,第二次乙先跑18秒后,甲追乙,当乙到终点时,甲距终点40米,求在400米内,甲乙速度各多少?【题目4】甲乙两人分别从AB两地同时出发,在AB之间往返跑步,甲每秒跑3米,乙每秒跑7米。
如果他们第四次相遇点与第五次相遇点的距离是150米,那么AB之间的距离是多少米?【题目5】甲乙两辆车在一条长为10千米的环形公路上从同一地点同时反向开出,甲车开出4千米时两车相遇。
如果每次相遇后两车都提速10%,求第三次相遇时甲车离出发点多远。
【题目6】甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们下山的速度是各自上山速度的2倍。
甲到达山顶时乙距山顶还有400米;甲回到山脚时,乙刚好下到半山腰。
求山脚到山顶的距离。
【题目7】甲乙两车同时从A、B两地出发相向而行,两车中途相遇后,甲又用4小时到B地,乙又用9小时到A地,相遇时,甲车比乙车多行了90千米,求甲乙两车每小时各行多少千米?【题目1】一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?【题目2】甲乙两车分别从AB两地同时出发相向而行,出发时,甲和乙的速度比是4:3,相遇后,甲的速度减少10%,乙的速度增加20%。
小学奥数3-1-1 行程问题基础.专项练习及答案解析

1. 行程的基本概念,会解一些简单的行程题.2. 掌握单个变量的平均速度问题及其三种基本解题方法:“特殊值法”、“设而不求法”、“设单位1法”3. 利用对比分析法解终(中)点问题一、s 、v 、t 探源我们经常在解决行程问题的过程中用到s 、v 、t 三个字母,并用它们来分别代表路程、速度和时间。
那么,为什么分别用这三个字母对应这三个行程问题的基本量呢?今天我们就一起了解一下。
表示时间的t ,这个字母t 代表英文单词time ,翻译过来就是时间的意思。
表示速度的字母v ,对应的单词同学们可能不太熟悉,这个单词是velocity ,而不是我们常用来表示速度的speed 。
velocity 表示物理学上的速度。
与路程相对应的英文单词,一般来说应该是distance ,但这个单词并不是以字母s 开头的。
关于为什么会用s 来代表路程,有一个比较让人接受的说法,就是在行程问题的公式中,代表速度的v 和代表时间的t 在字母表中比较接近,所以就选取了跟这两个字母位置都比较接近的s 来表示速度。
二、关于s 、v 、t 三者的基本关系速度×时间=路程 可简记为:s vt =路程÷速度=时间 可简记为:t s v =÷路程÷时间=速度 可简记为:v s t =÷三、平均速度平均速度的基本关系式为:平均速度=总路程÷总时间;总时间=总路程÷平均速度;总路程=平均速度⨯总时间。
板块一、简单行程公式解题知识精讲教学目标行程问题基础【例1】韩雪的家距离学校480米,原计划7点40从家出发8点可到校,现在还是按原时间离开家,不过每分钟比原来多走16米,那么韩雪几点就可到校?【考点】行程问题【难度】2星【题型】解答【解析】原来韩雪到校所用的时间为20分钟,速度为:4802024÷=(米/分),现在每分钟比原来多走16米,即现在的速度为241640+=(米/分),那么现在上学所用的时间为:4804012÷=(分钟),7点40分从家出发,12分钟后,即7点52分可到学校.【答案】7点52分【巩固】小白从家骑车去学校,每小时15千米,用时2小时,回来以每小时10千米的速度行驶,需要多少时间?【考点】行程问题【难度】2星【题型】解答【解析】从家到学校的路程:15230÷=(小时).⨯=(千米),回来的时间30103【答案】3小时【例2】甲、乙两地相距100千米。
五年级奥数行程问题应用题及答案

行程问题奥数题及答案1甲,乙两站相距300千米,每30千米设一路标,早上8点开始,每5分钟从甲站发一辆客车开往乙站,车速为60千米每小时,早上9点30分从乙站开出一辆小汽车往甲站,车速每小时100千米,已知小汽车第一次在某两相邻路标之间(不包括路标处)遇见迎面开来的10辆客车,问:从出发到现在为止,小汽车遇见了多少辆客车?行程答案:小汽车出发遇到第一辆客车是在(300-60×1.5)÷(100+60)=21/16小时,小汽车每行一段需要30÷100=3/10小时,此时在(21/16)÷(3/10)=4又3/8段的地方相遇。
遇到第一辆客车后,每隔5÷(100+60)=5/160小时遇到一辆客车,当在端点遇到客车时,每断路只能再遇到9辆车[(3/10)÷(5/160)=9.6],因此过路标少于3/10-9×(5/160)=3/160小时遇到客车时,才能满足条件。
当小汽车行完5段,就刚好在路标处遇到第7辆,因此这段只能遇到9辆,下一次刚好能遇到10辆,所以共遇到了7+9+10=26辆。
行程问题奥数题及答案2A城每隔30分钟有直达班车开往B镇,速度为每小时60千米;小王骑车从A城去B 镇,速度为每小时20千米。
当小王出发30分钟时,正好有一趟班车(这是第一趟)追上并超过了他;当小王到达B镇时,第三趟班车恰好与他同时到达。
A、B间路程为多少千米?行程答案:由于班车速度是小王速度的3倍,所以当第一趟班车追上并超过小王的`那一刻,由于小王已出发30分钟,所以第一趟班车已出发30÷3=10分钟;再过50分钟,第三趟班车出发,此时小王已走了30+50=80分钟,从此刻开始第三趟班车与小王同向而行,这是一个追及问题。
由于班车速度是小王速度的3倍,所以第三趟班车走完全程的时间内小王走了全程的三分之一,所以小王80分钟走了全程的三分之二,AB间路程为:20×80/60÷2/3=40千米。
四年级的行程问题应用题

小学四年级应用题练习题(附答案版)
1.小明骑自行车去公园,他以每小时10公里的速度骑行了2小时。
请问小明骑了多少公里?(答案:20公里)
2.小华步行去书店,她走了30分钟,速度是每小时4公里。
书店离家有多远?(答案:2公里)
3.一辆公交车从A地开往B地,全程150公里。
如果公交车的速度是每小时50公里,它需要多久才能到达B地?(答案:3小时)
4.小丽和她的家人开车去海边度假。
如果他们开车的速度是每小时60公里,而海边距离他们家200公里,他们需要多长时间才能到达?(答案:3小时20分钟)
5.一列火车以每小时80公里的速度行驶,它在4小时内能行驶多远?(答案:320公里)
6.小刚用滑板从家滑到学校,全程1.5公里,他用了15分钟。
他的平均速度是多少?(答案:每小时6公里)
7.一辆卡车以每小时90公里的速度行驶,它在半小时内能行驶多远?(答案:45公里)
8.小杰从家里骑自行车去图书馆,去程他以每小时12公里的速度骑了45分钟,回程他以每小时15公里的速度骑了30分钟。
图书馆离家多远?答案:(9公里)
9.一个邮递员以每小时5公里的速度步行分发邮件,他连续工作了4小时。
他总共走了多少公里?(答案:20公里)
10.小芳乘坐地铁去参加音乐会,地铁的速度是每小时40公里,她乘坐了45分钟。
音乐会的地点离她家有多远?(答案:30公里)。
五年级数学常考的行程问题练习(附答案)

五年级数学常考的行程问题练习(附答案)1.两个城市相距500千米,一列客车和一列货车同时从两个城市相对开出,客车平均速度是每小时55千米,货车平均速度是每小时45千米。
两车开出后几小时相遇?2.两辆汽车同时从甲乙两地相对开出,一辆汽车每小时行56千米,另一辆汽车每小时行63千米,经4小时相遇。
甲乙两地相距多少千米?3.客车与货车分别从相距275千米的两站同时相向开出,2.5小时在途中相遇。
已知客车每小时行60千米,货车每小时行多少千米?4.两辆汽车同时从相距465千米的两地相对开出,4.5小时后两车还相距120千米。
一辆汽车每小时行37千米,另一辆汽车每小时行多少千米?5.丙列火车同时从甲乙两城相对开出。
一列火车每小时行60千米,另一列火车每小时行80千米。
4小时后还相距210千米,求两城距离。
6.甲乙两队合挖一条水渠,甲队从东往西挖,乙队从西往东挖,甲队每天挖75米,比乙队每天多挖2.5米。
两队合作8天后还差52米这条水渠全长多少米?7.甲乙两地相距484千米,一辆汽车从甲地开往乙地,1.5小时后,一辆摩托车从乙地开往甲地,4小时与迎面开来的汽车相遇。
已知汽车每小时行40千米,求摩托车每小时行多少千米?8.甲镇与乙镇相距138千米,张王二人骑自行车分别从两镇同时出发相向而行。
张每小时行13千米,王每小时行12千米,王在行时中因修车耽误1小时,然后继续行进。
求从出发到相遇经过几小时?9.甲乙两城相距240千米。
客车从甲城开往乙城,每小时行50千米,货车从乙城开往甲城,每小时行30千米。
两车同时出发,2小时后还相距多少千米?10.甲、乙二人从相距31.2千米的两村相对起来,甲每小时行4千米,乙每小时行4.8千米。
两人相遇时乙行14.4千米,甲比乙先出发几小时?【参考答案】1.500/(55+45)=5(小时)2.(56+63)×4=476(千米)3.276/2.5-60=50(千米)4.(465-120)/4.5=39.7(千米)5.(60+80)×4+210=770(千米)6.(75=75-2.5)×8+52=1232(米)7.(484-40×1.5)/4-40=66(千米)8.(138-13)/(13+12)+1=6(小时)9.240-(50+30)×2=80(千米)10.(31.2-14.4)/4-14.4/4.8=1.2(小时)。
小学数学四年级《行程问题(一)》练习题(含答案)

小学数学四年级《行程问题(一)》练习题(含答案)【例1】小明以3千米/小时的速度走了45分钟,然后以一定的速度跑30 分钟,一共前进了6千米。
求小明跑步的速度。
分析:先算出步行的路程,再算出跑步的路程。
答案:小明走路走了3×45÷60=2.25千米,因此跑了6-2.25=3.75千米。
跑步的速度为3.75÷30×60=7.5千米/小时。
【例2】小彬和小明每天早晨坚持跑步,小明每秒跑6米,小彬每秒跑4米。
(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?分析:(1)利用路程=速度和×相遇时间。
(2)利用路程=速度差×追及时间。
答案:(1)100÷(6+4)=10秒。
(2)10÷(6-4)=5秒。
【例3】甲、乙两人从相距为180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.经过多少时间两人相遇?相遇后经过多少时间乙到达A地?分析:利用路程=速度和×相遇时间。
答案:经过180÷(15+45)=3小时两人相遇。
因为乙从B到A需要180÷45=4小时,所以相遇后经过1小时乙到达A地。
【例4】甲乙两人同时从相距27千米的两地相向而行,3小时相遇。
已知甲每小时行5千米,乙每小时行多少千米?分析:先求出速度和。
答案:速度和为27÷3=9千米/小时。
所以乙每小时行9-5=4千米。
【例5】甲乙两人同时从相距3.5千米的两地背向而行,甲向东每小时行5千米,乙向西每小时行4.8千米。
3.5小时后两人相距多少千米?分析:利用路程=速度和×时间,注意一开始两人已有距离。
答案:相距3.5+(5+4.8)×3.5=37.8千米。
第6单元:普通行程问题专项练习-四年级数学上册典型例题系列(解析版)人教版

四年级数学上册典型例题系列第六单元:普通行程问题专项练习(解析版)1.一列火车要通过735米长的隧道,已知火车长240米,火车每秒行25米,这列火车全部通过隧道要用多长时间?【答案】39秒【分析】根据题意,要求这列火车全部通过隧道的时间,车尾也要离开隧道,所以路程是隧道的长加上火车的长度,再除以火车的速度,求出来的就是这列火车全部通过隧道的时间。
【详解】(735+240)÷25=975÷25=39(秒)答:这列火车全部通过隧道要用39秒。
【点睛】本题主要考查的是三位数除以两位数的应用,解题关键在于弄清楚题目中的数量关系,计算过程中要细心认真。
2.如图,小红从家到学校要13分钟,如果她用同样的速度从家到少年宫要走几分钟?【答案】8分钟【分析】首先根据路程÷时间=速度,用小红从家到学校的路程除以用的时间,求出小红每分钟走多少米;然后用小红从家到少年宫的路程除以小红的速度,即可求出她用同样的速度从家到少年宫要走几分钟。
【详解】845÷13=65(米/分钟)520÷65=8(分钟)答:她用同样的速度从家到少年宫要走8分钟。
【点睛】此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握,解答此题的关键是求出小红每分钟走多少米。
3.李涛12分钟走了840米,照这样的速度,他从家到学校要走15分钟,他家离学校有多远?【答案】1050米【分析】速度=路程÷时间,依此计算出李涛步行的速度,然后再根据“路程=速度×时间”即可计算出李涛家到学校的路程,依此列式并计算即可。
【详解】840÷12=70(米/分)70×15=1050(米)答:他家离学校有1050米远。
【点睛】此题考查的是普通的行程问题,熟练掌握路程、速度、时间之间的关系,是解答此题的关键。
小学数学应用题行程问题及其拓展专项练习含有详细答案解析(50题

小学数学应用题行程问题及其拓展专项练习含有详细答案解析(50题小学数学应用题行程问题及其拓展专项练习含有详细答案解析(50题)1、(4分)如图,在一条马路边有A、B、C、D四个车站,甲、乙两辆相同的汽车分别从A、D两地出发相向而行,在BC的中点相遇.已知它们在AB、BC、CD上的速度分别为30千米/时、40千米/时、50千米/时.如果甲晚出发1小时,则它们将在B点相遇;如果乙在每一段上的速度都减半,而甲的速度不变,它们的相遇地点离B点65千米,请求出A,D之间的距离.2、(4分)费叔叔开车回家,原计划按照40千米/时的速度行驶.行驶到路程的一半时发现之前的速度只有30千米/时,那么在后一半路程中,速度必须达到多少才能准时到家?3、(4分)甲、乙两人在400米圆形跑道上进行10000米比赛,两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次从后面追上乙时,甲的速度就减少1米/秒,而乙的速度增加0.5米/秒,直到乙比甲快.请问:领先者到达终点时,另一人距终点多少米?4、(4分)一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行,这两只蚂蚁每秒钟分别爬行5.5厘米和3.5厘米,在运动过程中它们不断地调头,如果把出发算作第零次调头,那么相邻两次调头的时间间隔依次是1秒,3秒,5秒,…,即是一个由连续奇数组成的数列.问:两只蚂蚁爬行了多长时间才能第一次相遇?5、(4分)龟兔赛跑,全程1.04千米.兔子每小时跑4千米,乌龟每小时爬0.6千米.乌龟不停地爬,但兔子却边跑边玩,兔子先跑了1分钟然后玩15分钟,又跑2分钟然后玩15分钟,再跑3分钟然后玩15分钟…请问:先到达终点的比后到达终点的快多少分钟?6、(4分)如图,甲、乙两人绕着一个正方形的房子玩捉迷藏.正方形ABCD的边长为24米,甲、乙都从A点出发逆时针行进,甲出发时,乙要靠在A点的墙壁上数10秒后再出发,已知甲每秒跑4米,乙每秒跑6米,且两人每到达一个顶点都需要休息3秒钟.请问:乙出发几秒后第一次追上甲?7、(4分)刘老师从家到单位时,前的路程骑车,后面的路程乘车;从单位回家时,前的路程乘车,后面的路程骑车.结果去单位的时间比回家的时间少2分钟.已知刘老师骑车每小时行8千米,乘车每小时行16千米,请问:刘老师家到单位的距离是多少千米?8、(4分)甲、乙两人分别从A、B两地同时出发,6小时后在中点相遇;若甲每小时多走4千米,乙提前1小时出发,则仍在中点相遇.那么两地相距多少千米?9、(4分)如图,A与B、B与C之间的公路长度相等,且每段公路上都有限速标志(单位:千米/时).甲货车从A出发,乙货车从C出发,并且两车在A、C之间往返行驶.结果当甲车到达C后再返回到B时,乙车刚好第一次到达B.已知甲、乙两车在各段公路上均以所能达到的最快速度行驶(不会超过车子本身的最高时速,也不能超过公路上的最高限速),且甲车的最高时速是乙车的4倍,那么甲车的最高时速是多少?10、(4分)如图,一只蚂蚁沿等边三角形的三条边爬行,在三条边上它每分钟分别爬行50厘米、20厘米、40厘米.蚂蚁由A点开始,如果顺时针爬行一周,平均速度是多少?如果顺时针爬行了一周半,平均速度又是多少?11、(4分)甲、乙两班进行越野行军比赛,甲班以4千米/时的速度走了路程的一半,又以6千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4千米/时的速度行进,另一半时间以6千米/时的速度行进.问:甲、乙两班哪个班将获胜?12、(4分)甲和乙两地相距100千米,张先骑摩托车从甲出发,1小时后李驾驶汽车从甲出发,两人同时到达乙地.摩托车开始速度是50千米/小时,中途减速为40千米/小时.汽车速度是80千米/小时.汽车曾经在途中停驶10分钟,那么张驾驶的摩托车减速时在他出发后的小时.13、(4分)男、女两名田径运动员在长120米的斜坡上练习跑步(如图,坡顶为A,坡底为剐.两人同时从A点出发,在A、B之间不停地往返奔跑,已知男运动员上坡速度是每秒3米,下坡速度是每秒5米,女运动员上坡速度是每秒2米,下坡速度是每秒3米.请问:两人第一次迎面相遇的地点离A点多少米?第二次迎面相遇的地点离A点多少米?14、(4分)小明和小强从400米环形跑道的同一点出发,背向而行,当他们第1次相遇时,小明转身往回跑;再次相遇时,小强转身往回跑;以后的每次相遇分别是小明和小强两人交替调转方向.两人的速度在运动过程中始终保持不变,小明每秒跑3米,小强每秒跑5米.试问:当他们第99次相遇时,相遇点距离出发点多少米?15、(4分)在一条南北走向的公路上有A、B两镇,A镇在B镇北面4.8千米处.甲、乙两人分别同时从A镇、B镇出发向南行走,甲的速度是每小时9千米,乙的速度是每小时6千米,甲在运动过程中始终不改变方向,而乙向南走3分钟后,便转身往回走2分钟,接着按照先向南走3分钟,再向北走2分钟的方式循环运动.请问:两人相遇的地点距B镇多少千米?16、(4分)如图,正方形边长是100米,甲、乙两人同时从A、B沿图中所示的方向出发,甲每分钟走75米,乙每分钟走65米,且两人每到达一个顶点都需要休息2分钟,求甲从出发到第一次看见乙所用的时间.17、(4分)甲、乙两人分别从A、B两地同时出发相向而行,20分钟后在某处相遇,如果甲每分钟多走15米,而乙比甲提前2分钟出发,则相遇时仍在此处.如果甲比乙晚4分钟出发,乙每分钟少走25米,也能在此处相遇.那么A、B两地之间相距多少千米?18、(4分)小明准时从家出发,以3.6千米/时的速度从家步行去学校,恰好提前5分钟到校.某天,当他走了1.2千米,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课,后来算了一下,如果小明从家开始就跑步,可以比一直步行早15分钟到学校.那么他家离学校多少千米?小明跑步的速度是每小时多少千米?19、(4分)甲、乙两车分别从A、B两地同时出发相向而行,6小时后相遇在C点.如果甲车速度不变,乙车每小时多行5千米,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,则相遇地点距C点16千米.请问:A、B两地间的距离是多少千米?20、(4分)李刚骑自行车从甲地到乙地,要先骑一段上坡路,再骑一段平坦路,他到乙地后,立即返回甲地,来回共用了3小时.李刚在平坦路上比上坡路每小时多骑6千米,下坡路比平坦路每小时多骑3千米,还知道他在第1小时比第2小时少骑5千米,第2小时比第3小时少骑3千米.其中,第2小时骑了一段上坡路,又骑了一段平坦路,请问:(1)李刚骑上坡路所用的时间是多少分钟?(2)李刚骑下坡路所用的时间是多少分钟?(3)甲、乙两地之间的距离是多少千米?21、(4分)如图,有4个村镇A、B、C、D,在连接它们的3段等长的公路AB、BC、CD上,汽车行驶的最高时速限制分别是60千米/时、20千米/时和30千米/时.一辆客车从A镇出发驶向D镇,到达D镇后立即返回;一辆货车同时从D镇出发,驶向B镇.两车相遇在C镇,而当货车到达B镇时,客车又回到了C镇,已知客车和货车在各段公路上均以其所能达到且被允许的最大速度行驶,货车在与客车相遇后自身所具有的最高时速比相遇前提高了,求客车的最高时速.22、(4分)学校组织春游,同学们下午一点出发,走了一段平坦的路,爬了一座山,然后按原路返回,下午七点回到学校.已知他们的步行速度平地为4千米/时,上山为3千米/时,下山为6千米/时.问:他们一共走了多少路?感谢您的阅读,祝您生活愉快。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题练习题及答案
行程问题练习题及答案「篇一」
甲、乙两车同时从A、B两地出发相向而行,两车在离B地64千米处第一次相遇.相遇后两车仍以原速继续行驶,并且在到达对方出发点后,立即沿原路返回,途中两车在距A地48千米处第二次相遇,A、B之间的距离是多少?
解答:
【分析】甲、乙两车共同走完一个AB全程时,乙车走了 64千米,从上图可以看出:它们到第二次相遇时共走了 3个AB全程,因此,我们可以理解为乙车共走了 3
个64千米,再由上图可知:减去一个48千米后,正好等于一个AB全程。
AB 间的距离是64 × 3-48=144 (千米)
两汽车同时从A、B两地相向而行,在离A城52千米处相遇,到达对方城市后立即以原速沿原路返回,在离A城44千米处相遇。
两城市相距千米
A.200
B.150
C.120
D.100
选择Do
解析:第一次相遇时两车共走一个全程,第二次相遇时两车共走了两个全程,从A城出发的汽车在第二次相遇时走了 52X2;104千米,从B城出发的汽车走了 52+44=94千米,故两城间距离为(104+96)÷2=100千米。
行程问题练习题及答案「篇二」
1.某店原来将一批苹果按100%的利润(即利润是成本的100%)定价出售.由于
定价过高,无人购买,后来不得不按38%的利润重新定价,这样出售了其中的40%. 此时,因害怕剩余水果腐烂变质,不得不再次降价,售出了剩余的全部水果.结果,实际获得的总利润是原定利润的30. 2%.那么第二次降价后的价格是原定价的百分之多少?
【分析与解】第二次降价的利润是:
(30. 2%-40%×38%) ÷ (l-40%)=25%o
价格是原定价的(1+25%) ÷ (1+100%) =62. 5%o
2.某商品76件,出售给33位顾客,每位顾客最多买三件.如果买一件按原定价,买两件降价10%,买三件降价20%,最后结算,平均每件恰好按原定价的85% 出售.那么买三件的顾客有多少人?
【分析与解】3X (l-20%)+lX100%=340%=4X85%,所以1个买一件的与1个买三件的平均,正好每件是原定价的85%。
由于买2件的,每件价格是原定价的1TO%=9O%,所以将买一件的'与买三件的一一配对后,仍剩下一些买三件的人,由于
3× (2×90%)+2× (3×80%)=12×85%o
所以剩下的买三件的人数与买两件的人数的比是2:3。
于是33个人可分成两种,一种每2人买4件,一种每5人买12件.共买76 件,所以后一种
于是买三件的有33-15-4=14(人)o
3.甲容器中有纯酒精11立方分米,乙容器中有水15立方分米.第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器.这样甲容器中的纯酒精含量为62. 5%,乙容器中的纯酒精含量为25%.那么,第二次从乙容器倒入甲容器的混合液是多少立方分米?
【分析与解】设最后甲容器有溶液立方分米,那么乙容器有溶液(U+15-)立方分米。
有62.5%X+25%X(26-)=1L解得=12,即最后甲容器有溶液12立方分米,乙容器则有溶液26-12=14立方分米。
而第二次操作是将乙容器内溶液倒入甲容器中,所以乙溶液在第二次操作的前后浓度不变,那么在第二次操作前,即第一次操作后,乙容器内含有水15立方分米,则乙容器内溶液15÷(l-25%): 20立方分米。
而乙容器最后只含有14立方分米的溶液,较第二次操作前减少了 20-14=6立方分米,这6立方分米倒给了甲容器。
即第二次从乙容器倒入甲容器的混合液是6立方分米。
行程问题练习题及答案「篇三」
L羊跑5步的时间马跑3步,马跑4步的距离羊跑7步,现在羊已跑出30 米,马
开始追它。
问:羊再跑多远,马可以追上它?
解:
根据“马跑4步的距离羊跑7步”,可以设马每步长为7x米,则羊每步长为 4x 米。
根据“羊跑5步的时间马跑3步”,可知同一时间马跑3*7x米=21X米,则羊跑5*4x=20米。
可以得出马与羊的速度比是21x: 20x=21: 20
根据“现在羊已跑出30米”,可以知道羊与马相差的路程是30米,他们相差的份数是21-20=1,现在求马的21份是多少路程,就是30÷ (21-20)X21=630米
2.甲乙辆车同时从a b两地相对开出,几小时后再距中点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b两地相距多少千米?
答案720千米。
由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了 10份,乙行了 8份(总路程为18份),两车相差2份。
又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。
所以算式是(40+40) ÷(10- 8) X (10+8)=720 千米。
3.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?
答案为两人跑一圈各要6分钟和12分钟。
解:
600÷ 12=50,表示哥哥、弟弟的速度差
600÷4=150,表示哥哥、弟弟的速度和
(50+150) ÷2=100,表示较快的速度,方法是求和差问题中的较大数
(150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数
600÷ 100=6分钟,表示跑的快者用的时间
600/50=12分钟,表示跑得慢者用的时间
4.慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间?答案为53秒
算式是(140+125) ÷ (22-17)=53 秒
可以这样理解:“快车从追上慢车的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。