计算机中的数据表示与运算

合集下载

数字逻辑与计算机组成原理:第二章 数据的表示与运算

数字逻辑与计算机组成原理:第二章  数据的表示与运算
数字逻辑与计算机组成原理
第二章 数据的表示与运算
第一节 数的表示
一、无符号数和有符号数
1、无符号数:
没有符号的数,寄存器中的每一位都可用 来存放数据
机器字长为n位,无符号数的表示范围 为0~2n-1
反映无符号数的表示范围
8位 16 位
0 ~ 255 0 ~ 65535
有两种常用的无符号表示法: ◆ 非负数码:表示0或一个正数
(1) 定义
整数
0,x
2n > x ≥ 0
[x]反 = ( 2n+1 – 1) + x 0 ≥ x > 2n(mod 2n+1 1)
x 为真值
n 为整数的位数
如 x = +1101
x = 1101
[x]反 = 0,1101
[x]反 = (24+1 1) 1101 = 11111 1101
用 逗号 将符号位
= 1,0010
和数值部分隔开
小数 x
[x]反 = ( 2 – 2-n) + x
1>x≥ 0 0 ≥ x > 1(mod 2 2-n)
x 为真值 n 为小数的位数
如 x = + 0.1101
x = 0.1010
[x]反 = 0.1101
[x]反 = (2 2-4) 0.1010
= 1.1111 0.1010
有符号小数: +0.1011,在机器中表示为
-0.1011,在机器中表示为
第一节 数的表示
一、无符号数和有符号数 2、有符号数
有符号整数: +1101,机器中表示为
-1101, 机器中表示为
第一节 数的表示
一、无符号数和有符号数

计算机中数据的表示和计算

计算机中数据的表示和计算

. . . .参考.学习第1章 计算机系统基础1.1 计算机中数据的表示和计算1.1.1 目标与要求通过本节学习掌握如下内容:• 掌握计算机中的常用数制,掌握十进制、二进制、八进制和十六进制之间相互转换的方法。

• 理解数据的机内表示方法,掌握原码、反码、补码、移码等码制及其特点。

• 掌握基本的算术和逻辑运算。

• 理解常用校验码的原理和特点,了解海明码、循环冗余码的编码方法和校验方法,掌握奇偶校验的原理和方法。

本节为基础内容,但是在历次考试中也是必考内容。

题目集中在上午的选择题部分。

考生对这一部分的复习应该达到熟练程度。

对于进制转换、几种码制的表示方式、其优缺点和不同码制的计算应熟练掌握,切忌在考场上为计算基本的转换而浪费宝贵的时间。

计算机中的数据是采用二进制表示的。

计算机中的数据按照基本用途可以分为两类:数值型数据和非数值数据。

数值型数据表示具体的数量,有正负大小之分。

非数值数据主要包括字符、声音、图像等,这类数据在计算机中存储和处理前需要以特定的编码方式转换为二进制表示形式。

1.1.2 数制及其转换1.数制r 进制即r 进位制,r 进制数N 写为按权展开的多项式之和为:1ki r i i m N D r -=-=⨯∑ 其中,i D 是该数制采用的基本数符号,r i 是权,r 是基数。

例如:十进制数123456.7可以表示为:123456.7=1⨯105+2⨯104+3⨯103+4⨯102+5⨯101+6⨯100+7⨯10–1计算机中常用的记数制是二进制、八进制、十六进制。

2网络管理员考前辅导2.数制转换数制间转换是计算机从业人员必须具备的最基本的技能之一,也是每次《计算机技术与软件专业资格(水平)考试大纲中》要求掌握的技能。

请各位考生予以重视。

(1)十进制与二进制、八进制、十六进制相互转换算法:将十进制整数部分除以r取余,将十进制小数部分乘以r取整,将两部分合并。

下面举例说明算法。

例:将十进制数(347.625)10转化为二进制数。

计算机中数的表示及运算

计算机中数的表示及运算

计算机中数的表示及运算张晓军编写引言人类在文字出现以前,就已经会用道具(如绳子打结)计数了.在日常生活中,我们每天都在与数字打交道,而数字与数制是密不可分的.比如:60秒为1分,60分为1小时,其特点是"逢60进1",可取的数字是0,1,2,...,59,共有60个,这就是"六十进制".再比如:24小时为1天,这是24进制;7天为1星期,这是7进制;12个为1打,这是12进制;10mm为1cm,10cm为1dm,10dm为1m,这是我们最为熟悉的10进制.不管是什么进制,其基数(如60进制的基数就是60,10进制的基数就是10)正好等于该数制中不同"数字符号"的个数(如60进制中采用0,1,2,...,59共60个不同的数字符号,10进制中采用0,1,2,...,9共10个不同的数字符号).一、常用数制及其相互转换在数制系统中,各位数字所表示的值不仅与该数字有关,而且与它所在的位置有关.例如,在10进制数123中,百位上的1表示1个100,十位上的2表示2个10,个位上的3表示3个1,因此,有:123=1*100+2*10+3*1,其中100,10,1被称为百位、十位、个位的权。

十进制中,个、十、百、千、万……等各数位的权分别是1,10,100,1000,10000,……,一般地,写成10的幂,就是100,101,102,103,104,……;10则被称为十进制的基数1.1 十进制数特点:采用0,1,2,3,4,5,6,7,8,9共10个不同的数字符号,并且是"逢十进一,借一当十".对于任意一个十进制数,都可以表示成按权展开的多项式。

例如:1999=1*103+9*102+9*101+9*1002003=2*103+0*102+0*101+3*10048.25=4*101+8*100+2*10-1+5*10-21.2 二进制数在电子计算机中采用的是二进制.二进制数只需2个不同的数字符号:0和1,并且是"逢二进一,借一当二",它的基数是2.对于二进制数,其整数部分各数位的权,从最低位开始依次是1,2,4,8,……写成2的幂,就是20,21,22,23,……;其小数部分各数位的权,从最高位开始依次是0.5,0.25,0.125,……,写成2的幂,就是2-1,2-2,2-3,…….对于任意一个二进制数,也都可以表示成按权展开的多项式。

计算机组成原理第二章数据的表示和运算

计算机组成原理第二章数据的表示和运算

计算机组成原理第⼆章数据的表⽰和运算第⼆章数据的表⽰和运算数制与编码进制转换使⽤⼆进制的原因⼆进制与⼋进制、⼗六进制的转换各种进制的书写⽅式⼗进制转换为任意进制整数部分⼗进制转换⼆进制如(75)10752=37……1 K372=18……1 K1182=9……0 K292=4……1 K342=2……0 K422=1……0 K512=0……1 K6K0K1K2K3K4K5K6=1101001⼩数部分⼗进制转换⼆进制如(75.3)10⼩数部分=0.30.3∗2=0.6=0+0.6 K−10.6∗2=1.2=1+0.2 K−20.2∗2=0.4=0+0.4 K−30.4∗2=0.8=0+0.8 K−40.8∗2=1.6=1+0.6 K−5……0.3D=0.01001……B⼩数⽆法准确表述⼗进制转换⼆进制(拼凑法)总结Processing math: 52%BCD码(Binary-Coded Decimal)修正数据(9+9)10(9)10→(1001)2(9+9)2=100110011001+1001−−−−1001010010超出了8421码中的1010−1111+(6)10⇔+(0110)2修正10010+0110−−−−11000相加结果在合法范围(1010~1111)内,不需要修正其他编码总结字符与字符串ASCII码可印刷字符:32~126其余为控制、通信字符⼤写字母:65(0100 0001)~ 90(0101 1010)⼩写字母:97(0110 0001)~ 122(0111 1010)汉字的表⽰和编码输⼊:输⼊编码输出:汉字字形码字符串⼤端模式&⼩端模式总结奇偶校验码校验原理当d=1时,⽆检错能⼒;当d=2时,有检错能⼒;当d≥3时,若设计合理,可能具有检错纠错能⼒(海明码)奇偶校验码例题奇校验:(1)1001101 (0)1010111偶校验:(0)1001101 (1)1010111只能发现数据代码中奇数位的出错情况,但不能纠错总结海明码简单思路求解步骤总结循环冗余校验码基本思想校验步骤(模⼆除)G(x)=x3+x2+1=1∗x3+1∗x2+0∗x1+1∗x0→1101110101−−−−−−−−−−−−−−−−−−−1101 |101001000110111101101−−−−−−−−−−−−−−−−−−−01110000−−−−−−−−−−−−−−−−−−−11101101−−−−−−−−−−−−−−−−−−−01100000−−−−−−−−−−−−−−−−−−−11001101−−−−−−−−−−−−−−−−−−−001→校验位对应的CRC码为101001 001s余数为001、010时并不能确定是哪⼀位出错了此时是信息位过多,降低信息位就可以解决问题K个信息位,R个校验位,若⽣成多项式选择得当,且2R≥K+R+1,则CRC码可纠正1位错总结定点数的表⽰⽆符号数通常只有⽆符号整数,⽽没有⽆符号⼩数1001100B=1∗27+1∗26+0∗25+0∗24+1∗23+1∗22+0∗21+0∗20=156D有符号数的定点表⽰原码⽤尾数表⽰真值部分的绝对值,符号位“0/1”对应“正/负”若机器字长为n+1位,则尾数占n位反码若符号位为0,则反码与原码相同若符号位为1,则数值位全部取反反码是原码转变为补码的⼀个中间状态补码正数的补码=原码负数的补码=反码末位+1(要考虑进位)设机器字长为8位[+0]原=0000 0000[+0]反=0000 0000[+0]补=0000 0000[−0]原=1000 0000[−0]反=1111 1111[−0]补=1 0000 0000由于机器字长为8位,进位丢弃[−0]补=0000 0000逆向将负数补码转回原码的⽅法相同:尾数取反,末尾+1[−19]原=1001 0011[−19]反=1110 1100[−19]补=1110 1101[−19]原=1001 0010+0000 0001=1001 0011移码补码的基础上将符号位取反移码只能⽤于表⽰整数⼏种码表⽰定点整数练习假设机器字长为8位定点整数x=50[+50]原=0011 0010[+50]反=0011 0010[+50]补=0011 0010[+50]移=1011 0010定点整数x=−100[−100]原=1110 0100[−100]反=1001 1011[−100]补=1001 1100[−100]移=0001 1110知识回顾各种码的作⽤⽤加法代替减法表盘为例10+9=1919%12=7相当于求余数模运算的性质可以说在模12的情况下上述数字等价其中-3和9互为补数,⼆者绝对值之和等于模\begin{align} 有符号数&~~~~~~~~~~~~~~~~~~~⽆符号数\\ 14~~~~~~&0000~1110~~~~~~~~14\\ -14~~~+&1000~1110~~~~~~142\\ -----&-----------\\0~~~~~~&1001~1100~~~~~~156\\ &模-a的绝对值=a的补数\\ &0000~1110\\ -&0000~1110\\ -----&-----------\\ &0000~0000\\ &\\ &模2^8-0000~1110\\ &1~0000~0000\\ -&~~~0000~1110\\ -----&-----------\\ &~~~1111~0010\\ -----&-----------\\ &~~~0000~1110\\ +&~~~1111~0010\\ -----&-----------\\ &~1~0000~0000\\ \end{align}\begin{align} &求-66的补码\\ &[-66]_{原}=1100~0010\\ &[-66]_{反}=1011~1101\\ &[-66]_{补}=1011~1110\\ &[+88]_{原}=0101~1000\\ &1101~1000\\ +&0011~1110\\ --&-----------------\\ 1~&0001~0110~~~~~~22D\\ \end{align}移位运算算术移位原码的算术移位\begin{align} &[+20]_{原}=0001~0100\\ &{左移⼀位}=0010~1000=+40D\\ \end{align}反码的算数移位补码的算数移位\begin{align} &[-20]_{原}=1001~0100\\ &[-20]_{反}=1110~1011\\ &[-20]_{补}=1110~1100\\ &左移⼀位=1010~1000\\ &[-20]_{原}=1001~0100\\ &[-20]_{反}=1110~1011\\ &[-20]_{补}=1110~1100\\ &右移⼀位=1111~0110\\ \end{align}逻辑移位(针对⽆符号数)应⽤举例循环移位总结加减运算原码的加减运算补码的加减运算\begin{align} &A=15,B=-24,C=124,求[A+C]_{补}[B-C]_{补}\\ &[A]_{原}=0000~1111\\ &[A]_{反}=0000~1111\\ &[A]_{补}=0000~1111\\ &[B]_{原}=1001~1000\\ &[B]_{反}=1110~0111\\ & [B]_{补}=1110~1000\\ &[C]_{原}=0111~1100\\ &[C]_{反}=0111~1100\\ &[C]_{补}=0111~1100\\ &[A+C]_{补}\\ &0000~1111\\ +&0111~1100\\ ----&------------\\ &1000~1011\\&1111~0100\\ &1111~0101~~~~~~-117D\\ &[B-C]_{补}\\ 1&~0000~0000\\ -&~0111~1100\\ ----&-------------\\ &~1000~0100\\ +&~1110~1000\\ ----&-------------\\ &~0110~1100\\&~0110~1100\\ &~0110~1100~~~~~~+108D\\ \end{align}出现了溢出溢出判断⼀位符号逻辑表达式进位判断双符号位符号扩展整数⼩数总结乘法运算⼿算乘法(⼗进制)⼿算乘法(⼆进制)原码⼀位乘法实现⽅法:先加法再移位,重复n次(0)乘法进⾏前ACC置0(1)第⼀步加法加法移位(2)第⼆步加法加法移位(3)第三步加法加法移位(4)第四步加法加法移位乘法结果修正符号位原码⼀位乘法(⼿算模拟)\begin{align} &⾼位部分积~~~~ ~~~~低位部分积~~~~ ~~~~ ~~~~说明\\ &~~00.0000~~~~ ~~~~ ~~~~ ~~~~ 101\underline{1}|~~~~ ~~~~ 低位=1~~~~ +|x|\\ +|x|&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~|\\ ----&---------------------\\ &~~00.1101\\ 右移&~~00.0110~~~~ ~~~~ ~~~~ ~~~~ 110\underline{1}|1~~~~ ~~~ 低位=1~~~~ +|x|\\ +|x|&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~|\\ ----&---------------------\\ &~~01.0011\\ 右移&~~00.1001~~~~ ~~~~ ~~~~ ~~~~ 111\underline{0}|11~~ ~~~低位=0~~~~ +0 \\ +&~~00.0000\\ ----&---------------------\\&~~00.1001\\ 右移&~~00.0100~~~~ ~~~~ ~~~~ ~~~~ 111\underline{1}|011 ~~~低位=1~~~~ +|x| \\ +|x|&~~00.1101\\ ----&---------------------\\ &~~01.0001\\ 右移&~~00.1000~~~~ ~~~~ ~~~~ ~~~~ 111\underline{1}|1011 ~右移部分积和乘数全部移出 \\ &|x|=00.10001111\\ &x*y=-0.10001111\\ \end{align}补码的⼀位乘法辅助位⼿算模拟\begin{align} &⾼位部分积~~~~ ~~~~低位部分积~~~~ ~~~~ ~~~~说明\\ &~~00.0000~~~~ ~~~~ ~~~~ 0.101\underline{1}|0~~~~ ~~~~ ~~~~起始情况\\ +[-x]_补&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=-1,+[-x]_{补}\\ ----&-----------------------------\\ &~~00.1101\\ 右移&~~00.0110~~~~ ~~~~ ~~~~10.10\underline{1}|10~~~~ ~~~~ ~~~~右移部分积和乘数\\ +0&~~00.0000~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=0,+0\\ ----&-----------------------------\\ &~~00.0110\\ 右移&~~00.0011~~~~ ~~~~ ~~~~ 010.1\underline{0}|110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[x]_补&~~11.0011~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~~~~~ ~~~~ Y_4Y_5=01,Y_5-Y_4=1,+[x]_补\\ ----&-----------------------------\\ &~~11.0110\\ 右移&~~11.1011~~~~ ~~~~ ~~~~ 0010.\underline{1}|0110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[-x]_补&~~00.1101~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ Y_4Y_5=10,Y_5-Y_4=-1,+[-x]_补\\ ----&-----------------------------\\ &~~00.1000\\ 右移&~~00.0100~~~~~~~~ ~~~~ \underline{\underline{0001}}\underline{0}.|10110~~~~ ~~~~ ~~~~右移部分积和乘数\\ +[x]_补&~~11.0011~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~ ~~~~Y_4Y_5=01,Y_5-Y_4=1,+[x]_补\\ ----&-----------------------------\\ &~~11.0111\\ &[x*y]_补=11.0111~0001\\ &x*y=-0.1000~1111\\ \end{align}除法运算⼿算除法(⼗进制)⼿算除法(⼆进制)恢复余数法原码除法:恢复余数法(0)初始(1)第⼀步上商求余数判断上商是否正确01011上商后得11110,相减结果为负,应上商0修正逻辑左移(2)第⼆步上商求余数判断上商是否正确相减结果为正数,上商正确逻辑左移(3)第三步上商求余数判断上商是否正确上商⽆误逻辑左移(4)第四步上商求余数判断上商是否正确相减结果⼩于0,上商有误修正逻辑左移(5)第五步:最后⼀步除法上商&求余数判断上商是否正确最后⼀步除法,如果上商求余数结果⼩于0.还需要继续恢复余数(6)最后⼀步\begin{align} &余数=ACC*2^{-n}\\ \end{align}原码除法(⼿算)加减交替法默认规定被除数要⼩于除数,否则硬件电路⽆法运⾏,如果被除数⼤于除数,商的结果为⼤于1的数将⽆法表⽰通过第⼀步的商来判断被除数与除数的⼤⼩关系第⼀步商的结果⼀定为负值,如果为正值说明被除数⽐除数⼤,硬件电路会⽴即停⽌运算补码除法加减交替法总结C语⾔中的强制类型转换数据的存储和排列⼤⼩端模式边界对齐浮点数的表⽰浮点数尾数的规格化左规&右规规格化浮点数的特点总结IEEE754 浮点数标准\begin{align} &IEEE754规定偏置值=2^{n-1}\\ \end{align}IEEE 754 标准\begin{align} &(-0.75)_{10}=(-0.11)_2=(-1.1)*2^{-1}\\ &数符=1\\ &尾数部分=.1000~0000……(隐含最⾼位1)\\ &阶码真值=-1\\ &单精度浮点型偏移量=127D\\ &移码=阶码真值+偏移量=-1+111~1111=0111~1110(凑⾜8位)\\ \end{align}总结浮点数的运算浮点数的加减运算\begin{align} &(0)转换格式\\ &5D=101B,\frac{1}{256}=2^{-8},X=-101*2^-8=-0.101*2^{-5}=-0.101*2^{-101}\\ &59D=111011,\frac{1}{1024}=2^{-10},Y=111011*2^{-10}=0.111011*2^{-4}=0.111011*2^{-100}\\ &X: &[阶码]_{原}=-101\\ &[阶码]_{补}=1011\\ &阶码双符号位补码:11011\\ &[尾数]_{原}=-0.101\\ &[尾数]_{补}=1.011\\ &尾数双符号位补码:11.011\\&X=11011,11.011000000\\ &Y: &[阶码]_{原}=-100\\ &[阶码]_{补}=1100\\ &阶码双符号位补码:11100\\ &[尾数]_{原}=0.111011\\ &[尾数]_{补}=0.111011\\ &尾数双符号位补码:00.111011\\ &X=11100,00.111011000\\ &浮点数加减法运算步骤\\ &(1)对阶\\ &⼩阶向⼤阶看齐,尾数每右移⼀位,阶码+1\\ &[1]求阶差:[\Delta E]_补=||E_X|_原+|E_Y|_补|=11011+00100=11111\\ &\Delta=-1\\ &[2]对阶:X:11011,11.011000000\rightarrow 111011,11.1011000000\\ &X=-0.0101*2^{-100}\\ &(2)尾数减法\\ &-Y=11100,11.000101000\\ &11011,11.011000000\\ +&11100,11.000101000\\ ---&----------------------------\\ &10.110001000\\ &X_Y=11100,10.110001000\\ &(3)规格化\\&X_Y=11100,10.110001000\rightarrow11101,011000100\\ &(4)舍⼊ \\ &⽆需舍⼊\\ &(5)判断溢出\\ &常阶码,⽆溢出,结果真值为2^{-3}*(-0.1001111)_2 \end{align}舍⼊强制类型转换总结加法器设计算术逻辑单元ALU机器字长=ALU⼀次可以处理的数据长度基本逻辑运算⽤门电路求偶校验位⼀位全加器串⾏加法器并⾏加法器总结加法器、ALU的改进并⾏加法器的优化组内并⾏&串⾏ALU芯⽚优化。

计算机原理第二章运算方法和运算器

计算机原理第二章运算方法和运算器
算术移位
算术移位时,符号位保持不变,其 余位进行相应移动。算术左移相当 于乘以2,算术右移相当于除以2并 向下取整。
乘法运算方法
原码一位乘法
将被乘数和乘数均取原码,从乘数的最低位开始逐位判断,若为1则加上被乘 数的原码,若为0则不变。重复此过程直至乘数所有位均判断完毕。
补码一位乘法
将被乘数和乘数均取补码,从乘数的最低位开始逐位判断,若为1则加上被乘数 的补码并考虑进位,若为0则只考虑进位。重复此过程直至乘数所有位均判断完 毕。
节能技术
采用节能技术,如动态电压调整、睡眠模式等, 以降低运算器在空闲或低负载时的功耗。
06
计算机中数的表示和运算 方法扩展
大数表示和运算方法
大数的概念
超出计算机基本数据类型表示范围的整数或浮点数。
大数表示方法
采用多精度表示法,将大数拆分成多个基本数据类型的数进行表示 和存储。
大数运算方法
设计相应的大数运算算法,如大数加法、减法、乘法、除法等。
转换方法
根据机器数的表示方法,通过相应的运算将其转换为真值。
定点数与浮点数
定点数
表示范围与精度
小数点位置固定的数,可表示整数或 小数。
定点数表示范围有限,精度较高;浮 点数表示范围大,但精度相对较低。
浮点数
小数点位置可变的数,由阶码和尾数 两部分组成,可表示大范围的数值。
02
基本运算方法
定点加减法运算
运算流水线设计
在算术逻辑单元(ALU)中采用流 水线技术,将复杂的运算过程分解 为多个简单的运算步骤,提高运算 速度。
超标量流水线设计
在一个周期内同时发射多条指令, 通过多个功能部件并行执行,进一 步提高处理器的性能。

1.1计算机中数的表示及运算

1.1计算机中数的表示及运算

考点1.1 计算机中数据的表示及运算一. 机器数和码制原码、反码、补码具体概念我就不重复了,只重申下相关结论:a.正数的原码、反码、补码都相同。

b.负数的反码为原码的按位取反(保持符号位不变),补码为反码加1。

二.存储单元中的数据(存储单元包括存储器中的存储单元和寄存器)在计算机的存储器的存储单元中的数据均以补码形式存放的,于是在计算机中的数据表示有下面结论:a不使用原码与反码。

但原码与反码可以作为计算真值的中间媒介。

b存储单元中的数据以补码形式存在。

c 数据的存取与运算都以补码形式进行。

d补码就是机器数,机器数就是补码三.定点数与浮点数1. 数的定点表示方法定点数是小数点固定的数。

在计算机中没有专门表示小数点的位,小数点的位置是约定默认的。

一般固定在机器数的最低位之后,或是固定在符号位之后。

前者称为定点纯整数,后者称为定点纯小数。

(1). 定点整数——小数点位置固定在数的最低位之后如:Dn-1 Dn-2 • • • • • • D1 D0.范围:2n-1 -1~ -2n-1 (采用字长n=16位补码时其值为32767 ~ -32768)(2). 定点小数——小数点位置固定在数的符号位之后、数值最高位之前。

如:D0. D-1 • • • • • • D-(n-2) D-(n-1)范围:1 - 2-(n-1) ~ -1(采用字长n=16位时其值为32767/32768 ~ -1)其中n表示字长多少位例1:2. 数的浮点表示方法浮点数:浮点数是指小数点位置不固定的数,它既有整数部分又有小数部分,如123.55、33.789等。

(1). 浮点数的表示:是把字长分成阶码和尾数两部分。

其根据就是:与科学计数法相似,任意一个J进制数N,总可以写成N = J E× M式中M称为数N的尾数(mantissa),是一个纯小数;E为数N的阶码(e x ponent),是一个整数,J称为比例因子J E的底数。

数据与信息的概念及数据在计算机中的表示和处理过程

数据与信息的概念及数据在计算机中的表示和处理过程

数据与信息的概念及数据在计算机中的表示和处理过程数据和信息是我们日常生活中经常提到的两个概念。

虽然它们经常在一起出现,但它们却有着不同的含义。

在计算机科学领域中,数据和信息也扮演着重要的角色。

本文将探讨数据与信息的概念以及数据在计算机中的表示和处理过程。

一、数据的概念数据是指能够输入到计算机中并被处理的原始符号。

它可以是数字、文字、图像、音频等形式。

数据是客观存在的,可以被记录、传输和存储。

它可以被看作是对现实世界的描述或者观察结果的呈现。

数据可以进一步分为定量数据和定性数据。

定量数据用数字来表示,它包含有关数量、大小、长度等方面的信息。

例如,一个人的年龄、体重、身高等都可以用数字来表示。

而定性数据则用文字或符号来表示,它包含有关性质、状态、类别等方面的信息。

例如,一个人的性别、血型、学历等都可以用文字或符号来表示。

二、信息的概念信息是经过加工处理的数据,它具有一定的意义和价值。

信息可以为人们所理解和使用。

当数据被收集、整理、分析和解释后,就可以得到有用的信息。

它可以帮助人们做出决策、发现问题、理解事物的内在联系等。

信息具有一定的特征,其中最重要的特征就是它具有意义。

信息需要具备一定的准确性、完整性、及时性和可靠性。

准确性是指信息应该是正确、可信的;完整性是指信息需要包含所有相关的内容;及时性是指信息需要在需要时及时提供;可靠性是指信息应该来自于可靠的来源。

三、数据在计算机中的表示和处理过程在计算机中,数据是通过二进制(0和1)来表示的。

计算机使用二进制系统是因为它更容易在电子电路中实现,并且更容易保持数据的稳定和精确性。

在计算机中,所有的数据都被转换成二进制的形式进行处理和存储。

数据在计算机中的处理过程包括输入、处理和输出三个主要阶段。

首先,数据需要通过输入设备(例如键盘、鼠标、摄像头等)被输入到计算机中。

接下来,计算机对输入的数据进行处理,包括存储、加工、分析等操作。

最后,计算机将处理后的数据通过输出设备(例如显示器、打印机、扬声器等)输出给用户。

数据在计算机中的表示

数据在计算机中的表示
详细描述
二进制与十六进制的转换
05
数据处理
减法运算
减法运算与加法运算类似,只不过是结果的符号位需要根据减数和被减数的符号来确定。
除法运算
除法运算可以通过连续的减法和移位操作实现,同样适用于整数和浮点数等数据类型。
乘法运算
乘法运算可以通过连续的加法和移位操作实现,适用于整数和浮点数等数据类型。
加法运算
使用专业的数据恢复工具,如数据恢复软件或硬件设备,来恢复误删除或损坏的数据。
数据恢复工具
遵循标准的数据恢复流程,确保数据能够完整、准确地恢复。
数据恢复流程
在数据恢复过程中,要警惕潜在的安全风险,如数据泄露和恶意软件感染。
数据安全风险
数据恢复
感谢您的观看
THANKS
总结词
详细描述
十六进制与十进制的转换
二进制和十六进制都是计算机内部使用的数字表示方式,它们之间的转换对于理解计算机内部操作至关重要。
总结词
二进制与十六进制之间的转换可以通过分组和权值计算实现。将二进制数每4位一组分为若干组,再将每组转换为相应的十六进制数。反之,将十六进制数每1位转换为4位的二进制数。例如,二进制数10100101转换为十六进制数为2D。
由一系列字符组成,如"Hello"、"World"等。
字符编码
用于将字符转换为计算机内部可以处理的二进制代码,如ASCII码、Unicode码等。
布尔型数据
只有两个值,真(True)和假(False)。
枚举型数据
一组固定的值,如星期几、月份等。
逻辑型数据
02
数据存储
数据的最小单位,表示二进制的一位,可以是0或1。
太字节(TB)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机中的数据表示与运算数据表示是计算机科学中的一个基本概念,它涉及到如何将不同类型的数据转化为计算机能够理解和处理的形式。

而数据运算则是对这些表示的数据进行各种数学或者逻辑操作的过程。

在计算机领域中,数据表示和数据运算是非常重要且密切相关的概念,对于提高计算机的性能和功能都具有重要的影响。

本文将讨论计算机中的数据表示与运算的相关内容,并简要介绍一些常见的数据表示方式和运算方法。

一、数据表示
1. 二进制表示
在计算机中,数据以二进制方式进行表示。

二进制是一种使用0和1来表示数字的数制,它是计算机中最基本的数据表示方式。

在二进制表示中,每一位都表示一个2的幂次方,从右往左依次是2^0、2^1、2^2、2^3,以此类推。

通过组合不同的位数,可以表示不同的数字、字符和符号。

2. 十进制表示
尽管计算机使用二进制表示数据,但是在人类的日常生活中我们通常使用十进制来表示数字。

十进制是一种使用0到9的数码来表示数字的方式,它是最常用的数字表示方法。

在计算机中,需要将十进制表示的数字转换为二进制表示的数字进行处理。

3. 其他进制表示
除了二进制和十进制,计算机中还使用其他进制来表示数据,例如
八进制和十六进制。

八进制使用0到7的数码来表示数字,而十六进
制使用0到9的数码和A到F的字母来表示数字。

这些进制表示方式
在计算机编程和底层数据处理中比较常见。

二、数据运算
1. 整数运算
在计算机中,对于整数的运算可以使用常见的加、减、乘、除等运
算符进行操作。

计算机可以快速进行整数运算,同时也支持不同进制
的整数运算。

整数运算是计算机中的基本运算之一。

2. 浮点数运算
除了整数运算,计算机还支持浮点数运算。

浮点数是一种用于表示
有小数部分的数字的数据类型。

在计算机内部,浮点数的表示方式是
通过科学计数法来实现的。

浮点数运算包括加、减、乘、除等运算,
但是由于浮点数的精度限制,会存在一定的舍入误差。

3. 逻辑运算
逻辑运算是计算机中的另一种重要运算方式。

逻辑运算包括与、或、非等逻辑操作符,用于处理逻辑表达式和判断条件的真假。

逻辑运算
在计算机的控制流和条件判断中起着关键的作用。

4. 位运算
位运算是对二进制数据进行操作的一种运算方式。

位运算包括与、或、非、异或等操作符,用于对二进制位进行逻辑操作。

位运算在计
算机的底层数据处理和位掩码运算中广泛应用。

三、总结
计算机中的数据表示与运算对于计算机科学和计算机工程领域的发
展具有重要的意义。

通过合适的数据表示方式,能够更高效地存储和
处理数据。

同时,进行正确的数据运算可以实现各种数学和逻辑操作,为计算机的功能和性能提供支持。

在实际应用中,需要根据具体的需
求选择适当的数据表示方式和运算方法,以达到最佳效果。

这篇文章主要介绍了计算机中的数据表示与运算的相关内容。

通过
对数据表示的介绍,我们了解了计算机中常见的二进制、十进制、八
进制和十六进制表示方法。

同时,对于数据运算的讨论,我们介绍了
整数运算、浮点数运算、逻辑运算和位运算等不同类型的运算方式。

在计算机领域中,数据表示与运算是计算机科学中的核心概念,掌握
好这些基本概念对于深入了解计算机系统和编程语言都是非常重要的。

相关文档
最新文档