微生物发酵碳源和氮源-10页word资料

合集下载

CO2对发酵的影响及控制

CO2对发酵的影响及控制
培养液中的CO2 主要作用于细胞膜的脂质核心 部位;
HCO 3 -主要影响细胞膜的膜蛋白
三、CO2的控制
在发酵液中的浓度变化不像溶解氧那样有 一定的规律。它的大小受到许多因素的影响, 如细胞的呼吸强度、 发酵液的流变学特性、通 气搅拌程度、 罐压大小、设备规模等。在发酵 过程中通常通过调节通风和搅拌来控制。
3、磷酸盐浓度的影响及控制
一般在基础培养基中采用适宜浓度。 对于初级代谢产物,磷酸盐浓度采用足量。 对于次级代谢产物,磷酸盐浓度采用生长亚适量。
一般磷酸盐采用单消,防止发生沉淀反应使溶磷量达不到最 适量。 要控制有机氮源中的磷含量,以防溶磷量超过最适量。 当菌体生长缓慢时,可适当补加适量的磷,促进菌体生长。
这可能是由于高浓度基质形成高渗透压,引起细胞 脱水而抑制生长。
3、菌体浓度的控制
菌浓的大小,对发酵产物的得率有着重要的影响。在 适当的比生长速率下,发酵产物的产率与菌浓成正比关系。
但菌浓过高,营养物质消耗过快,营养液的成分发生 明显改变,有毒物质的积累,就有可能改变菌体的代谢途 径。同时菌浓增加会引起溶氧浓度降低,并成为限制性因 素。
2、影响菌体浓度的因素
◆菌体浓度的增加与微生物的种类和自身的遗传特性有关;
◆菌体浓度的增加还受环境条件的影响;
◆菌体浓度的增加与营养基质的种类和浓度有关。
营养物质均存在一个上限浓度,在此限度以内,菌 体的比生长速率随着浓度增加而增加,但超过此上限, 浓度继续增加,反而会引起生长速率下降,这种效应就 是基质抑制作用。
产生分解代谢产物阻遏作用的碳源浓度过大,会抑 制产物合成。
◆碳源浓度的控制
在发酵过程中,补加糖类控制碳源浓度。补料的类型有: • 流加 • 少量多次的加入 • 多量少次的加入

(完整word版)生物反应工程原理

(完整word版)生物反应工程原理

1.微生物反应与酶促反应的主要区别?答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。

此外,二者还有以下区别:(1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。

(2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。

(3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。

微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。

(4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。

微生物反应是生物化学反应,通常是在常温、常压下进行;原料多为农产品,来源丰富。

(5)微生物反应产前准备工作量大,相对化学反应器而言,反应器效率低。

对于好氧反应,需氧,故增加了生产成本,且氧的利用率不高。

(6)相对于酶反应,微生物反应废水有较高BOD值。

2. 何为连续培养的稳定状态?当时,一定是微生物连续培养的稳定状态吗?答:连续培养是将细胞接种于一定体积的培养基后,为了防止衰退期的出现,在细胞达最大密度之前,以一定速度向生物反应器连续添加新鲜培养基;与此同时,含有细胞的培养物以相同的速度连续从反应器流出,以保持培养体积的恒定。

连续培养的稳定状态时,此时反应器的培养状态可以达到恒定,细胞在稳定状态下生长。

在稳定状态下细胞所处的环境条件如营养物质浓度、产物浓度、pH值可保持恒定,细胞浓度以及细胞比生长速率可维持不变。

稳定状态可有效的延长分批培养中的对数生长期。

理论上讲,该过程可无限延续下去。

细胞很少受到培养环境变化带来的生理影响,特别是生物反应器的主要营养物质葡萄糖和谷氨酰胺,维持在一个较低的水平,从而使他们的利用效率提高,有害产物积累有所减少。

第二章发酵工业微生物菌种制备原理和技术-PPT

第二章发酵工业微生物菌种制备原理和技术-PPT

筛选一些具有特殊性质得微生物时,需根据该微生物独特 得生理特性到相应得地点采样(极端环境)。如:
高温酶产生菌:温度较高得南方,或温泉、火山爆发处 及北方得堆肥中采集样品;
低温酶产生菌:寒冷得地方,如南北极地区、冰窖、深 海中采样;
耐压菌:海洋底部采样。 耐高渗透压酵母菌:通常到甜果、蜜饯或甘蔗渣堆积处
菌种纯化就是指在特定环境中只让1种来自同一祖先得微生物 群体生存得技术。
菌株分离、筛选虽为两个环节,但却不能绝然分开,因为分离中 得一些措施本身就具有筛选作用。工业微生物产生菌得筛选 一般包括两大部分:一就是从自然界分离所需要得菌株,二就是 把分离到得野生型菌株进一步纯化并进行代谢产物鉴别。
3、分离思路
从自然界筛选
B、采样季节:以温度适中,雨量不多得秋初为好。
C、采土方式:在选好适当地点后,用小铲子除去表土,取 离地面5-15cm处得土约10g,盛入清洁得牛皮纸袋或塑 料袋中,扎好,标记,记录采样时间、地点、环境条件等, 以备查考。为了使土样中微生物得数量与类型尽少变 化,宜将样品逐步分批寄回,以便及时分离。
别出来。
抗生素筛选
6、生产性能得测定
由于纯种分离后,得到得菌株数量非常大,如果对每 一菌株都作全面或精确得性能测定,工作量十分巨大, 而且就是不必要得。一般采用两步法,即初筛与复筛, 经过多次重复筛选,直到获得1~3株较好得菌株,供 发酵条件得摸索与生产试验,进而作为育种得出发菌 株。这种直接从自然界分离得到得菌株称为野生型 菌株,以区别于用人工育种方法得到得变异菌株(亦 称突变株)。
采样。如有人曾在花蜜中分离到一株能耐30%高糖得耐 高渗透压得酵母菌。
(3)含微生物样品得富集培养(优化得过程) ----施加选择性压力分离法

4.微生物的营养(1)

4.微生物的营养(1)
Cncnc-micro
加富培养基
是在培养基中加入血、血清、动植物组 织提取。用来培养要求较苛刻的某些异 养微生物。
Cncnc-micro
无机盐(mineral salts)
无机盐功能 构成微生物细胞的组成成分 调解微生物细胞的渗透压, PH值和氧 化还原电位 有些无机盐如S、Fe还可做为化能自养微 生物的能源 构成酶活性基的组成成分,维持E活性。 Mg、Ca、K是多种E的激活剂
Cncnc-micro
无机盐种类
构成微生物细胞以C、H、O、N、P、S六种元素 为主, 此外Ca、K 、Mg、Fe,约占细胞干重的 95%以上。 大量元素Ca、K 、Mg、Fe,以无机盐阳离子形 式被吸收,配培养基要加进磷酸盐、硫酸盐。
Cncnc-micro
化能自养微生物
在完全无机的环境中生长发育,以无机 化合物氧化为时释放的能量为能源,以 CO2为碳源,合成细胞物质的微生物叫化 能自养微生物。 这类细菌包括硫细菌、硝化细菌、H细 菌、铁细菌等,硫细菌和硝化细菌与生 产密切相关。
Cncnc-micro
异养微生物(有机营养型)
在完全有机环境中生长繁殖,以含碳 有机物为碳源,含氮有机物或无机物为 氮源,合成细胞物质,称为异养微生物。
Cncnc-micro
氮源种类
分子态氮:固氮微生物以分子氮为唯一氮源 无机态氮:硝酸盐、铵盐几乎所有微生物能利用 有机态氮:蛋白质及其降解产物 实验室常用牛肉膏、蛋白胨、酵母膏做氮源 生产用玉米浆、豆饼、葵花饼、花生饼等。 a 速效氮源:玉米浆、铵盐等 b 迟效氮源:豆饼、花生饼等
Cncnc-micro
基团转位:是在研究糖的运输时发现的 一种主动运输方式。 运输过程中需要能量,被运输的物质发 生化学变化的运输叫基团移位。 许多糖就是靠基团移位进行运输的。 这种运输方式是微生物通过磷酸转移酶 系统来运输营养物质的。

微生物发酵法制备pdo的工艺流程

微生物发酵法制备pdo的工艺流程

微生物发酵法制备pdo的工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!微生物发酵法制备 1,3-丙二醇(PDO)是一种利用微生物将可再生资源转化为高附加值化学品的技术。

微生物发酵工程概述-课件 (一)

微生物发酵工程概述-课件 (一)

微生物发酵工程概述-课件 (一)
微生物发酵工程是指利用微生物在特定条件下对有机物进行代谢转化,以获得有用产物的一种技术。

微生物发酵工程又被称为微生物工艺学,被广泛应用于食品、医药、化学、农业等领域。

微生物发酵工程的主要过程包括培养微生物、加入发酵基质、维持发
酵条件、采集发酵产物等。

发酵基质通常是含有碳源、氮源、矿物质
等营养成分的液体或固体,通过调节基质中各成分的比例和浓度,可
以影响微生物的生长速率和代谢产物的种类和量。

微生物发酵工程的应用十分广泛。

在食品行业中,例如酿造啤酒、葡
萄酒、酸奶等,通过微生物代谢作用获取大量的发酵产品;在医药领域,利用微生物发酵工程可以大规模合成药物,如青霉素、链霉素、
抗肿瘤药物等;在化工行业,则可以生产酒精、有机酸、氨基酸、酶
制剂等。

微生物发酵工程的兴起始于20世纪初。

在过去的几十年中,随着生命
科学、材料科学、信息技术等多种学科的发展,微生物发酵工程也得
到了更深入的研究和更广泛的应用。

在微生物种类、发酵工艺、发酵
产物种类和质量等方面,都产生了重大的变化和进展。

总之,微生物发酵工程作为一种可持续发展的技术,在工业、农业、
医药、环保等诸多领域具有广泛的应用前景。

未来,随着各种新兴科
学技术的不断涌现,微生物发酵工程也将继续发展和创新,为人们创
造更多的价值。

微生物工程(发酵)第三章 培养基制备与灭菌

微生物工程(发酵)第三章 培养基制备与灭菌

3.3 培养基及设备的灭菌
3.3.1常见灭菌方法: • 加热灭菌 • 过滤灭菌 • 辐射灭菌 • 化学灭菌 • 熏蒸灭菌
1、高温灭菌
• 1)干热灭菌
烘箱内热空气灭菌 160℃,2小时
干)煮沸消毒
3)丁达尔灭菌 4)常规高压灭菌 121℃,15分钟; 115℃,30分钟;
类胡萝卜素高产菌Y11的培养基的优化
郭秒,食品与工业发酵,2004
类胡萝卜素的作用:色素、营养保健
原培养基:
初步确定可能的培养基成分(以碳源为例)
通过单因子实验确定适宜的培养基成分(以碳源为例)
考虑到成本:乙酸钠是较为合适的碳源 进一步:乙酸钠的浓度2%比较好
结果: 碳源:乙酸钠 0. 2% 氮源:氯化铵 0.2% 酵母膏0.03%
3.1.1.6 前体物质、抑制剂和促进剂
前体物质指某些化合物加入到发酵培养基中,能直接彼 微生物在生物合成过程中合成到产物物分子中去,而其自身 的结构并没有多大变化,但是产物的产量却因加入前体而有 较大的提高。
青霉素:分子量356
苯乙酸:分子量136
• 前体一般都有毒性,浓度过大对菌体的生 长不利 • 苯乙酸,一般基础料中仅仅添加 0.07%
有些促进剂的作用是沉淀或螯合有害的重金属离子。
抑制剂:能使酶的催化活性下降而不引起酶蛋白质 变性的物质; 可用透析或超滤的方式去除;
在培养基中添加抑制剂会抑制某些代谢途径的进行, 同时会使另一代谢途径活跃,从而获得人们所需要 的某一终产物或使正常代谢的某一代谢中间产物积 累起来;
3.1.2 发酵工业原料的选择原则
• • • • • • • • 因地制宜,就地取材; 营养丰富,浓度恰当; 资源丰富,容易收集; 易于储藏; 理化性质稳定,成分间无反应; 不影响通气、搅拌、产物分离,废物处理方便 不含毒副作用的物质 价格低廉

微生物的营养

微生物的营养
的能量; 3、调节新陈代谢。
一、微生物细胞的化学组成
(一) 细胞化学元素组成:整个生物界大体相同,主要 是C、H、O、N(占干重90-97%),C占约50%, C/N一般是5:1。
主要元素:碳、氢、氧、氮、磷、硫、钾、镁、钙、 铁等;
微量元素:锌、锰、钠、氯、钼、硒、钴、铜、钨、 镍、硼等。
微生物细胞中几种主要元素的含量 (干重的%)
➢ 有些微生物需要从外界吸收现成的氨基酸作为 氮源才能生长,这类微生物叫做氨基酸异养型 生物,也叫营养缺陷型。
3、能源
➢ 定义:能为微生物的生命活动提供最初能量来源的营养物 或辐射能。
➢ 种类: (1)化学物质: 有机物——化能异养微生物的能源(同碳源); 无机物——化能自养微生物的能源(不同于碳源),如
类 元素水平 型
化合物水平
培养基原料水平
C·H·O·N·X 复杂蛋白质、核酸等 牛肉膏、蛋白胨、花生饼

粉等
机 C·H·O·N 多数氨基酸、简单蛋白 一般氨基酸、明胶等

质等
C·H·O
糖、有机酸、醇、脂类 葡萄糖、蔗糖、各种淀粉、

糖蜜等
C·H
烃类
天然气、石油及其不同馏 份、石蜡油等
无 C(?)


➢ 实验室常用的氮源
碳酸铵、硝酸盐、硫酸铵、胰酪蛋白、尿素、蛋白胨、 牛肉膏、酵母膏等。
➢ 生产上常用的氮源
硝酸盐、铵盐、尿素、氨以及蛋白含量较高的鱼粉、 蚕蛹粉、黄豆饼粉、花生饼份、玉米浆、麸皮等。
➢ 不需要利用氨基酸作为氮源,能利用尿素、铵 盐、硝酸盐甚至氮气等简单氮源自行合成所需 要的一切氨基酸,这种微生物称为氨基酸自养 型生物。
NH4+,NO2-,S,H2S,H2和Fe2+等,这类微生物主要有 硫化细菌、硝化细菌、氢细菌与铁细菌,在自然界物质转 换过程中起着重要的作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 微生物营养要求看,所有微生物都需要碳源,氮源,无机元素,水及生长物质。如果是好氧微生物还需要氧气。在实验室规模上配制含有纯化合物的培养基非常简单,但在大规模生产上是不合适的。 第一节 工业发酵培养基 发酵培养基的作用: -满足菌体的生长 -促进产物的形成 一、工业上常用的碳源(carbon source) 1. 应用最广的是谷物淀粉(玉米、马铃薯、木薯淀粉),淀粉水解后得葡萄糖。 使用条件:微生物必须能分泌水解淀粉、糊精的酶类。 缺点: a.难利用、发酵液比较稠、一般>2.0%时加入一定的α-淀粉酶。 b.成分较复杂,有直链淀粉和支链淀粉等。 优点: 来源广泛、价格低,可解除葡萄糖效应。 2. 葡萄糖 -所有的微生物都能利用葡萄糖,但会引起葡萄糖效应。 -工业上常用淀粉水解糖,但是糖液必须达到一定的质量指标。 3.糖蜜 制糖工业上的废糖蜜waste molasses或结晶母液 包括:甘蔗糖蜜(cane molasses)——糖高,氮少 甜菜糖蜜(beet molasses) 两者成分见P226 糖蜜使用的注意点:除糖份外,含有较多的杂质,对发酵产生不利的影响,需要进行预处理。 二、工业上常用的氮源(nitrogen source) 1.无机氮(迅速利用的氮源) 种类:氨水、铵盐或硝酸盐、尿素 特点:吸收快,但会引起pH值的变化 选择合适的无机氮源有两层意义: -满足菌体生长 -稳定和调节发酵过程中的pH 无机氮源的影响:硫酸铵>硝酸铵>硝酸钠>尿素 2.有机氮: 来源:一些廉价的原料,如玉米浆、豆饼粉、花生饼粉、鱼粉、酵母浸出膏等。其中玉米浆(玉米提取淀粉后的副产品)和豆饼粉既能做氮源又能做碳源。 成分复杂:除提供氮源外,还提供大量的无机盐及生长因子。 微生物早期容易利用无机氮,中期菌体的代谢酶系已形成——有机氮源。有机氮源来源不稳定,成份复杂,所以利用有机氮源时要考虑到原料波动对发酵的影响。 三、无机盐(inorganic mineral) 硫酸盐、磷酸盐、氯化物及一些微量元素。无机盐含量对菌体生长和产物的生成影响很大。 四、生长因子(growth factor) 微生物生长不可缺少的微量有机物质。如氨基酸、嘌呤、嘧啶、维生素。 生长因子不是所有微生物都必需的。只是对于某些自己不能合成这些成分的微生物才是必不第 2 页

可少的营养物。如以糖质原料为碳源的谷氨酸生产菌均为生物素缺陷型(biotin auxotroph),以生物素为生长因子。 1.生物素 作用: (1)主要影响细胞膜通透性。P263 (2)影响菌体的代谢途径。 生物素浓度对菌体生长和谷氨酸积累均有影响。大量合成谷氨酸所需要的生物素浓度比菌体生长的需要量低,即为菌体生长需要的“亚适量”。原因:P263,P260(OD值) 生物素过量:菌体大量繁殖,不产或少产谷氨酸。 生物素不足:菌体生长不好,谷氨酸产量也低。 -谷氨酸产生菌为生物素缺陷型。 -要达到菌体生长需要的“亚适量”。 生物素存在于动植物组织中,多与蛋白质呈结合状态存在。用酸水解可以分开。那么,生产上有哪些原料可以作为生物素来源呢? 2.提供生长因子的农副产品原料 (1)玉米浆:(corn steep liquor, CSL) 最具代表性。虽然主要用作氮源,但含有乳酸,少量还原糖和多糖,含有丰富的氨基酸,核酸,维生素,无机盐等。常作为提供生长因子的物质。所以,从某种意义上说,玉米浆液用于配制发酵培养基是发酵工业中的一个重大发现。 (2)麸皮水解液:可代替玉米浆,但蛋白质,氨基酸等营养成分比玉米浆少。 (3)糖蜜:两种糖蜜(cane molasses,beet molasses)均可代替玉米浆。但氨基酸等有机氮含量较低。 (4)酵母:可用酵母膏,酵母浸出液或直接用酵母粉。 第二节 淀粉水解糖的制备 在工业生产中,将淀粉水解为葡萄糖(glucose)的过程称淀粉的糖化,制得的溶液叫淀粉水解糖。其主要糖分是葡萄糖。根据水解条件不同,尚有数量不等的少量麦芽糖及其它一些二糖,低聚糖等复合糖。 一、淀粉水解制糖的意义 1.大多数微生物不能直接利用淀粉(所有的氨基酸生产菌不能直接利用) 2.有些微生物能够直接利用淀粉作原料,但必须在微生物产生淀粉酶后才能进行,过程缓慢,发酵周期延长。 3.若直接利用淀粉作原料,灭菌过程的高温会导致淀粉结块,发酵液粘度剧增。 二、淀粉水解糖的制备方法及原理 (一)酸解法(acid hydrolysis method) 以酸为催化剂,在高温高压下使淀粉水解生成葡萄糖的方法。 1.水解过程: 总反应式: (C6H10O5)n+nH2O → nC6H12O6 过程:(C6H10O5)n → (C6H10O5)x → C12H22O11 → C6H12O6 淀粉 糊精 麦芽糖 葡萄糖 H+对作用点无选择性,A-1,4-糖苷键和A -1,6-糖苷键均被切断。 2.葡萄糖的复合反应和分解反应 在水解过程中,由于受到酸和热的作用,一部分葡萄糖会发生复合反应和分解反应。 淀粉 ↓盐酸 第 3 页

复合反应 葡萄糖 分解反应 ↙↗ ↘ 复合二糖 5‘-羟甲基糠醛 ↓ ↑ ↓ 复合低聚糖 有机酸、有色物质 损失葡萄糖量 7% <1% 不利影响: (1)降低了葡萄糖的收率。 (2)给产物的提取和糖化液的精制带来困难。 复合反应:葡萄糖分子间经1,6糖苷键结合成龙胆二糖(有苦味),异麦芽糖和其它低聚糖(复合低聚糖)。生成的多数复合糖不能被微生物利用,使发酵结束时残糖高。 分解反应:生成的5‘-羟甲基糠醛是产生色素的根源,增加了糖化液精制脱色的困难。 如何控制分解反应和复合反应的发生? (1)淀粉乳浓度 (2)酸浓度 都不能过高 原因P229-230 (3)温度 3.评价 优点:工艺简单,水解时间短,生产效率高,设备周转快。 缺点: (1)副产物多,影响糖液纯度,一般DE值(葡萄糖值)只有90%左右。 (2)对淀粉原料要求严格,不能用粗淀粉,只能用纯度较高的精制淀粉。 DE值:dextrose equivalent value (葡萄糖当量值) 表示淀粉糖的含糖量。 还原糖含量(%) DE值= ---------- х 100% 干物质含量(%) P231(中间)图最高点下降的原因? (二)酶解法(enzyme hydrolysis method) 用专一性很强的淀粉酶及糖化酶将淀粉水解为葡萄糖的工艺。 分两步: (1)液化:用A-淀粉酶将淀粉转化为糊精和低聚糖 (2)糖化:用糖化酶(又称葡萄糖淀粉酶)将糊精和低聚糖转化为葡萄糖。 所以,淀粉的液化和糖化均在酶作用下进行,又称双酶法(double enzyme hydrolysis method)。 液化(liquification) α-淀粉酶水解底物内部的α-1,4糖苷键,不能水解α-1,6糖苷键,一般采用耐高温淀粉酶,使液化速度加快。85-90℃。 淀粉的糊化与老化:由于淀粉颗粒的结晶性结构对酶作用的抵抗力非常强,需要先加热淀粉乳,使淀粉颗粒吸水膨胀,糊化,破坏结晶性结构。 糊化:淀粉受热后,淀粉颗粒膨胀,晶体结构消失,互相接触变成糊状液体,即使停止搅拌,淀粉也不会再沉淀的现象。 老化:指分子间氢键已断裂的糊化淀粉又重新排列形成新的氢键的过程,也就是复结晶的过程。 第 4 页

▲淀粉酶很难进入老化淀粉的结晶区起作用,必须采取相应的措施控制糊化淀粉的老化。 液化程度的控制(液化后需糖化的原因):如果让液化持续下去,虽然最终产物也是葡萄糖和麦芽糖,但: a.糖液的DE值低(α-淀粉酶不能水解α-1,6糖苷键) b.液化在较高温度下进行,液化时间加长,一部分已液化的淀粉又会重新结合成硬束状态,老化,使糖化酶难以作用。 c.液化的目的是为了给糖化酶的作用创造条件,而糖化酶水解糊精及低聚糖等分子时,需先与底物分子生成络合结构,然后发生水解作用,这就要求被作用的底物分子有一定的大小范围才有利于糖化酶生成这种结构,底物分子过大或过小都会妨碍酶的结合和水解速度。 根据生产经验,DE值在20-30之间为好,液化终点可通过碘液判断,此时呈棕色。P25 液化到终点后,为了避免液化酶对糖化酶的影响,需对液化液进行灭酶处理,升温到100℃,保持10分钟,降温,供糖化用。 2. 糖化(saccharification) 糖化酶从非还原性末端水解α-1,4糖苷键和α-1,6糖苷键。 终点确定:DE值达最高时(DE值不再上升时),停止酶反应(加热至80℃,20min灭酶)。否则 DE值将由于葡萄糖经α-1,6糖苷键起复合反应而降低。糖化的温度(50-60℃)和pH值(4.0-5.0)决定于所用糖化剂的性质。 3.评价 优点: (1)反应条件温和,不需高温、高压设备。 (2)副反应少,水解糖液纯度高。 (3)对原料要求粗放,可用粗原料并在较高淀粉乳浓度下水解。 (4)糖液颜色浅,质量高。 缺点: (1)生产周期长,一般需要48小时。 (2)需要更多的设备,且操作严格。 (三)酸酶结合法(acid-enzyme hydrolysis method) 集酸解法和酶解法的优点而采取的生产工艺。根据原料淀粉性质分: 1.酸酶法:先将淀粉酸水解成糊精和低聚糖,再用糖化酶将其水解为葡萄糖。 -淀粉酶液化,短时间液化,反应往往不彻底。适用:淀粉颗粒坚硬(如玉米、小麦)的原料,若用 -淀粉酶液化,再用酸水解。2.酶酸法:先用 适用:颗粒大小不一(如碎米淀粉)的淀粉原料,若用酸法,则水解不均匀。或者小的水解,大的未水解;或者大的水解,时间长,小的则发生复合反应。 (四)不同糖化工艺的比较 项目 酸解法 酸酶结合法 酶解法 DE值 91 95 98

相关文档
最新文档