ANSYS分析指南精华:非线性_结构分析
ANSYS与结构分析解析

第一章ANSYS与结构分析1.1 ANSYS功能与软件结构工程和制造业的生命力在于产品的创新,而计算机的发展和广泛应用大大提高了产品开发、设计、分析和制造的效率和产品性能,用计算机对设计产品实时或进行随后的分析称为计算机辅助工程。
即CAE(Computer Aided Engineering)。
该技术是由计算机技术和工程分析技术相结合形成的新兴技术,它涉及计算力学、计算数学、结构动力学、数字仿真技术、工程管理学与计算机技术等学科。
随着有限元理论和计算机硬件的发展,CAJ软件和技术越来越成熟,已逐渐成为工程师实现工程创新和产品创新的得力助手和有效工具。
大型通用CAE软件可对多种类型功能和产品物理力学性能进行分析,其应用范围及其广泛,如ANSYS、ADINA、NASTRAN、MARC、ABAQUS、ADAMS、I-DEAS、SAP 等。
ANSYS软件是融结构、流体、电磁场、声场和热场分析于一体的大型大型通用有限元分析软件,可广泛应用于土木、地质、矿业、材料、机械、仪器仪表、热工电子、水利、生物医学和原子能等工程的分析和科学研究。
它可在大多数计算机和操作系统(如Windows、UNIX、Linux、HP-UX等)中运行,可与大多数CAD软件接口。
1970年,Dr.John.Swanson成立了Swanson Analysis System,Inc,后来重组后改称AN-SYS公司,总部设在美国宾西法尼亚州的匹兹堡。
近几年来,ANSYS 软件发展迅速,功能不断增强,目前最高版本为11.0beta。
1.1.1 ANSYS软件的技术特点ANSYS的主要技术特点如下:(1)强大的建模能力:仅靠ANSYS本身就可建立各种复杂的几何模型,可采用自底向上、自顶向下或两者混合建模方法,通过各种布尔运算和操作建立所需几何实体。
(2)强大的求解能力:ANSYS提供了数种求解器,主要类型有迭代求解器(预条件共轭梯度、雅可比共轭梯度、不完全共轭梯度),直接求解器(波前、稀疏矩阵)、特征值求解法(分块Lanczos法、子空间法、凝聚发、QR阻尼法)、并行求解器(分布式并行、代数多重网格)等,用户可根据问题类型选择合适的求解器。
09 ANSYS13.0 Workbench 结构非线性培训 错误诊断

7-6
Workbench Mechanical - Diagnostics
... 求解信息
3) 向下翻页直到一系列星号出现,这时就会 看到求解器读取有限单元数据的信息。 这个列表非常有用,它不仅提供了模型 中零件数量的信息,同样也列出了接触 区域的ID号。
– 监视求解同样可以使用户更深入地了解系统的响应
• 在WB-Mechanical中有两种方法可以供用户监视求解:
– Solution Information 分支提供方程求解器行为 – Results Tracker 提供求解过程中系统的响应
7-14
Workbench Mechanical - Diagnostics
Training Manual
7-8
Workbench Mechanical - Diagnostics
... 求解信息
5) 随后将会列出接触单元的细节. 这里,将列出有关接触单元的各种选项包括 接触Normal Stiffness 和Pinball 半径 任何注意或警告信息都会对观察有用. 例如,在这里会给出初始渗透或缝隙大小 (以当前的长度单位)。
• 本章介绍的功能需要ANSYS Structural licenses 及其以上的授权。
7-2
Workbench Mechanical - Diagnostics
A. 求解信息
• 在第二章中,已经介绍过求解信息分支
Training Manual
– 回顾通过 Solution Information 分支可以观察到详细 ANSYS 求解器输出和收
ANSYS在体外预应力混凝土结构非线性分析中的应用

确性 。
[ 键 词 ] AN YS 体 外 预 应 力 梁 本 构 关 系 关 S
.
体外 预应 力混 凝 土结构 是后 张预 应力混 凝 土
[ 摘 要 ] 体 外预 应 力 混凝 土 结 构 由 于其 体 外 索 和 梁 体 在 受 力 过 程 中 变形 不 相 协 调 的 特 点 使 计 算 比较 困难 , 采 用有 限元 进 行 数 值 分 析 是 常 用 的 一 种 方 法 。 体 外预 应 力 混 凝 土 结 构 有 限 元 建 模 有 其 特 殊 性 , 何 建 立 有 限 如 元 模 型 是 正 确 分 析 的基 础 。详 细 介 绍 了如 何 运 用 A Y NS S对 体 外 预 应 力 混 凝 土 简 支 梁 进 行 有 限 元 建 模 及 全
力 混凝 土简 支 梁 为例 , 用 ANS 采 YS有 限元 分 析 软 件对混 凝 土梁进 行 了非线 性 有限元 三维 建模 及
全 过程 分析 。
结构 体 系的一 个 重 要 分 支 , 在 混凝 土梁 体 外 使 指
用无 粘结 预应 力钢 筋 , 锚 固端 和梁相 连接 , 过 用 通
维普资讯
余海堂: N Y 在体外预应力混凝土结构韭 A SS 盐分析哩 应旦 () 2 非预 应力 钢筋 单元
入混凝 土 的应力 应变 关 系来确 定本 构关 系 。输 入
非 预应 力钢 筋 可 采 用 两 节 点 的 Ln 8单 元 , ik 每 个节 点有 三个 自由度 , 以在 X、 Z三个 方 向 可 Y、 平 移 , 单元 具 有 塑性 、 变 、 胀 、 力 刚化 、 该 蠕 膨 应 大
ANSYS软件在砌体结构非线性分析中的应用

安 阳工 学 院学 报 第 四期
Ju a fAn a gIsi t f e h oo y o r l y n n t ueo c n lg n o t T 6 7
A S S 件在砌体结构非线性 分析 中的应用 NY 软
宋 扬 高均 昭 赵 军,
到广泛 应用 , 但将 其应用 到砌 体结 构 中 的却 几乎 没 有 ,本 文尝试 利用 A S S软件对 砌体 结构 进行 模 NY
图 1 应 力 一 变 曲 线 控 制 点 应
3 选 用 N w o — a ho ) e tn R p sn迭 代 法 ( U L N 。 F L R) 如 果结 合 弧 长法 , 算 时 间会 增 加 。 通 过 比较 证 计 但
的教 学 与研 究 。
维普资讯
安 阳工 学 院 学 报
6 8
Ju n l fAn a gI s tt f e h oo y o ra y n n tueo c n lg o i T
实 结果 要 精确 许 多 。需 注 意 的 是如 果 不 选择 弧 长 法 。 不要 人 为地 固定 子步 数 , 则 程 序 只 能按 指 也 否
定 的子 步 计算 , e tn R p sn的优 点不 能 发挥 , N wo — a ho
拟 。首先我们 可 以认 为当程序计算 到 刚刚不收敛 时
上一子 步所对 应 的荷载 为破 坏荷载 。 后利 用子 步 然 比例及 对 应 的应 力 ( 或应 变 ) 判 断 开裂 荷 载 。当 来 然 , 需要 多次 尝试 , 步逼近 。其 中最关 键的 问题 这 步
是如何对 非线 性 问题 ( 括材 料非 线性 和接 触非 线 包
结果 误差 较 大 。 了增 大计算 精 度 , 用 F L 为 采 U LNR
索膜结构基于非线性有限元法的ANSYS找形分析

1 膜 结构 的非线性 有限元 法找形
1 1 非 线性 有 限元 法 简介 .
2 A S S找形及 算例 分析 NY
2 1 A S S找 形 分 析 原 理 . N Y
17 9 0年 , ・H u E ag和 G ・ ・ o e 提 出 了一 种基 于 H Pwl l N wo —R p sn非线性迭代 的索膜结 构找形方法。它是针 e tn aho
【 文献标识码】 B
{ ) 【 +口 ) A △s =( B 】 { U} 式 中{ 伪 单元 应力增 量矢 量 ; △8 为 单元应 变增 A { ) 量; D为材料本构矩 阵 . 为线性 应变位移转换 矩阵 ; L B BN为 非线性应变位移转换矩阵 ; A } { u 为单元节点位移增量 矢量。 根据虚功原理 , 推导 出非线性位移法找形 的 U L方程 : ( I M】 { U} R 一{ } 【 + ) h ={ ) F 式 中: R t { 沩 +△t 时刻 的荷载等效节点力矢量 , 此项在 找形过程 中可忽略不计 ; F 为 t { ) 时刻的单 元应力节 点力矢 量 ; 。 为线性应变增量 刚度矩 阵 ; N) { ) { L 为非 线性几何 刚
对 索 膜 结 构 具 有 强 烈 的几 何 非 线 性 的 特 点 , 小 应 变 、 位 在 大
A S S是一种基于非线性有 限元 思想 的通 用有 限元 软 NY 件, 可用于索膜结构 的找形 分形 。其基本 分析原理 是 : 先用
小弹性模量技术 , 目标 节点提 升到指定 高度 , 支座移 动 将 用
法进行初步找形 , 目标点 固定 , 它点 连动, 其 得到结构 的近似 平衡形状 。在 此几何 位形 基 础上 更新 节点坐 标 , 释放 预应 力, 重新设 定索膜结 构的 真实材料参 数和 预应 力 , 行 自平 进 衡迭代求解 。循环若 干次 , 释放掉不 平衡力 , 直至应力 分布
ANSYS结构分析教程篇

ANSYS结构分析基础篇一、总体介绍进行有限元分析的基本流程:1.分析前的思考1)采用哪种分析静态,模态,动态...2)模型是零件还是装配件零件可以form a part形成装配件,有时为了划分六面体网格采用零件,但零件间需定义bond接触3)单元类型选择线单元,面单元还是实体单元4)是否可以简化模型如镜像对称,轴对称2.预处理1)建立模型2)定义材料3)划分网格4)施加载荷及边界条件3.求解4.后处理1)查看结果位移,应力,应变,支反力2)根据标准规范评估结构的可靠性3)优化结构设计高阶篇:一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统;这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便;2、根据结构的特点,选择不同类型的单元;对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题;3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次;4、根据工程需要,确定分析类型和计算工况;要考虑参数区间及确定最危险工况等问题;5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷;二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式;位移插值函数需要满足相容协调条件,采用多项式形式的位移插值函数,这一条件始终可以满足;但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件;2、位移插值函数的收敛性完备性要求:1 位移插值函数必须包含常应变状态;2位移插值函数必须包含刚体位移;3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的;因此在实际应用中更多的情况下是利用形函数的性质来构造形函数;形函数的性质:1相关节点处的值为 1,不相关节点处的值为 0;2形函数之和恒等于 1;这里我们称为的相关节点, 为的相关节点,其它点均为不相关节点;三、单元分析目的:计算单元弹性应变能和外力虚功;使用最小势能原理,需要计算结构势能,由弹性应变能和外力虚功两部分构成;结构已经被离散,弹性应变能可以由单元弹性应变能叠加得到,外力虚功中的体力、面力都是分布在单元上的,也可以采用叠加计算;2、计算单元外力功从前面推导可以看出:单元弹性应变能可计算的部分只有单元刚度矩阵,单元外力虚功可计算的部分只有单元等效体力载荷向量和等效面力载荷向量;在实际分析时并不需要进行上述推导,只需要将假定的位移插值函数代入本节推导得出的单元刚度矩阵、等效体力载荷向量和等效面力载荷向量的计算公式即可;所以我们说有限元分析的第三步是计算单元刚度矩阵、等效体力载荷向量和等效面力载荷向量;几点说明:1单元刚度矩阵具有正定性、奇异性和对称性三各重要特性;所谓正定性指所有对角线元素都是正数,其物理意义是位移方向与载荷方向一致;奇异性是说单元刚度矩阵不满秩是奇异矩阵,其物理意义是单元含有刚体位移;对称性是说单元刚度矩阵是对称矩阵,程序设计时可以充分利用;2按照本节公式计算的单元等效体力载荷向量和等效面力载荷向量称为一致载荷向量;实际分析时有时也采用静力学原理计算单元等效体力载荷向量和等效面力载荷向量,实际应用表明在大多数情况下,这样做可以简化计算,同时又基本上不影响分析结果;二、预处理总述1、实体分析可是3D或2D,3D分析采用的高阶单元SOLID186或SOLID187划分的四面体TET 或六面体HEX单元,2D分析采用的高阶单元的三角形TRI或四边形QUA单元,2D分析时需要在创建项目时在GEOMETRY的分析类型项选择2D,实体分析得每个节点结构上只有3个自由度,如下图所示2、面体分析几何上是2D但离散元是3D,通常面体厚度给予赋值;面体网格划分采用壳单元,具有6个自由度;3、线体几何上是1D,离散元是3D,截面形状可通过line body进行设置,线体网格划分采用梁单元,具有6个自由度;4、同个part下的所有body共享相交边界,网格划分时共用交界上的节点,不需要设置接触;5、NameSelection的使用技巧,在model模块下,可点击右键insert NameSelection,一般Nameselection的选择方法可用几何选取,直接在模型上鼠标点选;另一种实用的选取方法为Worksheet,可以添加多种条件进行筛选,模型划分网格后,可以精确到对每个单元的选取;三、网格划分1、relevance选项控制网格的精度,值在-100到100间,越小越粗糙,越大越精密;relevance center 控制relevance中间点的精度,element size控制整个模型的最大单元尺寸;2、网格的高级尺寸控制a)接近度和曲度结合控制b)曲度c)邻近度d)固定尺寸曲度对于一些含曲线特征的几何体,可以控制其划分网格的精密度邻近度可以控制某个区域两个邻近的几何特征间的网格划分密度2、网格的高级选项形状检测:标准力学-线性分析、模态和热分析进阶力学-大变形分析、材料的非线性分析3、局部网格划分控制Method 选择Automatic 首先若能SWEEP则选用sweep划分HEX网格,否则选用patchconforming划分TET网格;四面体TET网格划分有两种方法:patchconforming和patch independent;对于不能通过sweep得到六面体的几何体可以选用Hex dominant或者Multizone划分方法4、尺寸控制Sizing可以通过element size单元最大尺寸、Number of divisions每个边的单元数量、Sphere of influence控制影响区,可设置影响半径来调节网格划分尺寸;Contact sizing可设置接触面的尺寸;5、其他设置element refinement可设置选择几何体的网格密度加密倍数;mapped face meshing 可设置映射面生成结构化网格;可通过side、corner、end点的定义来设置映射策略;inflation control设置膨胀层,主要用于流体分析的边界层划分;pinch 可以移出一些不必要的小的几何特征,划分网格时可以去掉一些小的凸起部分;划分网格前有个小圆台采用pinch划分网格后没有凸台Master选择蓝色线,Slave选择红色线,tolerance的值要比凸台的高度大;6、虚拟拓扑的应用虚拟拓扑有助于优化几何模型,可以合并面,分割面或边来提高网格划分质量;虚拟拓扑可以自动控制虚拟拓扑合并面虚拟拓扑分割边虚拟拓扑设置:behavior可以设置拓扑搜寻深度;7、子模型的应用当原几何模型较大,网格数量有限,为了对模型局部进行更精确的计算分析,可以采用子模型;子模型的一般创建方法:先对整体模型项目A进行分析计算,然后copy原项目得到项目B,对项目B中几何进行切割细化网格,将项目A的solution栏拖到Setup栏,最好在B项目求解设置下的submodeling 插入边界条件,子模型的切割边界应远离高应力区;四、静力学分析线弹性静力分析假设:a)各向同性线弹性材料b)小变形理论c)无时间、无阻尼效应1、point mass,质量点可以通过坐标或选择几何面、线、点加载在几何体上,质量点只受Acceleration,Standard earth gravity,Rotational velocity影响;2、求解设置可设置求解步数,定义每步的终止时间,静力分析中的time只是一个跟踪量求解器选择:自动,直接求解Direct,迭代求解Iterative弱弹簧的使用:为了满足静止约束,程序可自动添加弱弹簧,可以在结果中查看弱弹簧的反力,应该是一个很小的值,并不影响结构的应力分析;惯性释放:当物体受力不平衡产生加速度时,利用惯性释放可以产生一个惯性力进行静力分析,惯性释放只能用于线性结构分析;惯性释放下的应力:静力平衡下的应力3、施加载荷加速度、角速度、压力、力,静水压力模拟水压轴承力Bearing Load,施加在整个圆柱面上;remote force定义力的作用点螺栓预紧力Bolt Pretension施加在圆柱面上,可以定义预紧力或伸长量;Thermal condition,计算热应力,需要设置reference temperature4、施加约束Fix support 约束点、线、面的所有自由度;Displacement 位移约束Elastic Support 无摩擦的弹性支持面Frictionless Support,约束面的法向运动,作用在平面上等同于对称边界条件作用在圆柱面上约束径向运动cylindrical support 只作用在圆柱面上,可以设轴向,径向,切向三个自由度compression only support 基于罚函数方法对目标面建立一个刚性接触面simply supported 作用于点或边,面体或线体,约束所有平动除了转动自由度Fixed rotation 约束转动,放开平动nodal load and support 必须通过name selection 来选取nodetools-Solve process settings可以设置求解用的计算机CPU数五、接触基本设置接触是一种高度非线性特征,接触一般通过接触对描述,包括接触面contact和目标面target,程序一共有5种接触方式,其主要特征如下:Bonded 和 no separation 都是线性接触,bonded使两个接触面固定在一起,无间隙不能相对滑动而no separation 允许有较小的滑动,其他接触都是非线性;contact 接触行为behavior分为对称和非对称两种行为;接触面的处理interface treatment:adjust to touch程序自动取消两个接触面的间隙; add offset 可以设置偏移量,正值使两个接触面靠近可以模拟过盈配合,负值使两个接触面远离;Pinball region 可以设置判断接触区域的大小,当两个面都进入pinball region时程序则判定为发生接触;mesh connections建立网格连接connection worksheet表格查看连接信息joint 定义约束副,共有九种约束形式来约束body-body 或者body-ground;定义joint时需要定义reference和mobile regions,几何窗口左边显示的自由度,其中灰色的是被约束的,彩色的是自由的joint configure可以定义约束的初始状态Set定义初设状态,revert恢复原始状态;对于旋转面或圆柱面的约束类型,可以定义扭转刚度和扭转阻尼;大多数joints都可以通过stops来定义他的运动区域spring and beam:spring可以通过弹簧来连接body,可以定义初始值和弹簧刚度,beam可以定义材料和圆形截面半径;六、remote边界条件1、Remote boundary conditions provide a means to apply a condition whose center of action is not located where the condition is scoped , “remotely”.Remote 边界条件包括 point mass,springs,joints,remote displacement,remote force and moment loads;所有的remote边界条件都是采用MPC约束方程进行计算,几何行为可以设置为rigid,deformable and coupled,remote计算更耗时;设置remote边界一般先定义remote point,可以直接选择几何特征或给定坐标定义,也可以在定义remote边界条件时通过右键“promote remote point”定义;2、behavior controlrigid,deformable and coupled3、pinball control 可以通过pinball大小来定义约束方程的数量4、constraint equations 可以多个remote point间的相互约束关系;七、MultiStep的设置应用1、对于多步分析中的每一步,软件都作为一个独立的分析过程,载荷约束都可以单独设置;对于某些载荷或约束可以通过右键激活或抑制该步当查看计算结果选择两个载荷步之间的时间节点时,如0与1步的,则程序通过线性插值的方式得到的计算结果;2、Solution Combination结果组合Solution Combination可以通过不同的计算环境共享几何网格进行组合Solution Combination也可以通过同一计算环境的不同载荷步进行组合八、模态分析自由振动其中K-刚度矩阵和M-质量矩阵是常量,忽略阻尼C和外力F,应用线弹性材料和小变形理论,结构可以是约束的或非约束的,φ为模态坐标是个相对量;1.结构载荷和热载荷步,非线性接触不适用于模态分析,但可以施加约束或预应力;2.可以定义求解阶数和频率范围;3.由于并没有外部激励,模态变形只是一个相对量,并且是一个质量归一化的量;4.拉伸预应力将会增大自然频率,而压缩预应力将会降低自然频率;九、稳态热分析1.不考虑瞬态影响,K和Q可以是常量也可以是温度的函数,可以施加固定温度的边界条件;壳单元不考虑厚度方向的温度变化,线单元不考虑截面上的温度变化;接触中热传递:如果接触是bonded或no separation,热传递将会发生在pinball区域内的表面热接触通过以下公式进行传热:TCC默认被设为一个较大的数值用来模拟完美传热,同样可以人为设置较低的数值来模拟热阻;2.边界条件heat flow 热流量j/s,可应用于点、线、面heat flux 热通量j/m2/s,只能应用于面2D时可用于线internal heat generation 热源j/m3/s 只能用于实体perfectly insulated 绝热,默认应用于所有未设置边界条件的地方temperature 恒定温度,应用于点、线、面、实体convection 对流只能应用于面,其中h-对流传热系数,Tam-环境温度,用户可以自己设置;radiation 热辐射其中σ-玻尔兹曼常数,程序自动给定;ε-发射率,用户输入;F-form factor角系数,当correlation设为To ambient-F=1,即所有的辐射能都与周围环境进行交换当correlation设为 surface to surface ,辐射能只参与面面之间的交换,这时你可以设置Enclosure每个辐射面应该设置相同的enclosure number和Enclosure type可设为open 或perfect,如果计算报错可将其设为open;十、结果处理1.编辑legendPlane可以通过鼠标左键拖曳生产剖切面,也可以通过局部坐标系的XY平面生产剖切面 Tool 可以通过Geometry selection查看选择几何特征的计算结果,也可以先定义一个局部坐标系,再通过coordinate system查看具体某点局部坐标系的原点的计算结果;chart and Table可以对多个计算结果进行图表分析,Alert可以设置报警值,如强度极限;Geometry可以添加path和surface,path可以通过局部坐标系,边,点来定义,surface可以通过局部坐标系定义;查看edge的结果可以通过鼠标右键Convert to path result转换成基于path的计算结果,把X轴设为S即可绘制关于位置的图表;另外利用path结果可以得到应力线性化用于应力评判;error可以通过高的能量差异区来鉴别几何网格的合理性;可以通过Convergence来判断网格是否足够8.应力奇点,结构分析时由于几何模型、载荷施加等因素常常会导致应力奇点,影响计算结果的准确性,我们通过审查收敛结果来避免应力奇点;如果应力奇异区并不是我们感兴趣的区域,我们可以只对感兴趣区域的计算结果定义收敛控制,如下图所示;ANSYS结构动态分析篇一、简介动态分析包括以下模块:模态分析,谐响应分析,随机振动分析,响应谱分析及瞬态分析;动态分析中结构的惯性、阻尼都扮演着重要角色;自由振动:结构的自然频率和振型激励振动:曲柄轴和其他的旋转机械地震冲击载荷:地震工况,爆炸随机振动:火箭发射,道路交通时间载荷:汽车碰撞,汽锤、水锤等以上每种情况都可以选择相应的动态模块进行分析;1、模态分析模态分析是用来确定结构的振动特性,如自然频率和振型,通常也是进行其他动态分析的先决条件;如汽车的固有频率应发动机频率,叶片在预应力下的振动特性;2、谐响应分析谐响应分析常用来分析结构在持续的简谐载荷下的响应,如转动机械的响应;3、响应谱分析响应谱分析通常用来分析建筑结构在地震工况下的响应;4、随机振动分析宇宙空间站、航天飞机等一般都要进行随机振动分析,以便能承受一段时间内不同频率下的随机载荷;5、瞬态分析动态分析各模块的特点如下:基本方程如下:其中只有瞬态分析允许非线性,包括几何非线性、接触非线性、材料非线性;二、阻尼概述阻尼定义:阻尼是导致振动不断减弱甚至停止的一种能量耗散机制;阻尼一般与材料性质,运动速度,振动频率有关;阻尼分为以下类型:粘性阻尼-缓冲器、减震器材料/固体/滞后阻尼-内摩擦库伦或干摩擦阻尼-滑动摩擦数值阻尼-人工阻尼1、瞬态分析和阻尼模态分析中结构阻尼矩阵C的完整表达式如下:α和β阻尼用来确定瑞利阻尼对于大多数结构来说,α阻尼可以忽略,这时因此对于给定的β,低频率阻尼小,高频率阻尼大;而对于给定的α,低频率阻尼大,高频率阻尼小;α和β阻尼可以通过定义材料时输入:也可以通过全局阻尼输入:2、在谐响应分析中的材料/固体/滞后阻尼全函数的谐响应分析和模态叠加法分析中的结构阻尼矩阵C的完整表达式为:同样,α,β,g可以通过定义材料输入也可以通过求解设置输入:3、模态叠加法分析模态叠加法中的阻尼控制在谐响应分析、瞬态分析、响应谱分析及随机振动分析中都支持以下表达式:4、数值阻尼数值阻尼并不是真实的阻尼,是人工抑制由高频结构产生的数值噪声;默认值为用来过滤掉虚假的高频模态;使用较小的值来过滤掉对最终结果影响较小的非物理响应;注意:数值阻尼只适用于瞬态分析;三、模态分析应用模态分析用来分析结构的振动特性自然频率和振型,是大多数动态分析得基础;假设和限制:结构是线性的M和K是常量.线性无阻尼的自由振动方程:假设{u}为简谐运动,则有因此求解行列式的特征值和特征向量;注意,{φ}为振型反应结构振幅的比例关系,可对质量矩阵进行正则化2、参与因子与有效质量参与因子:,其中{D}是笛卡尔坐标系中各个坐标轴单位位移响应;测量各个模态在各个方向运动的总质量,较大的值意味着该模态在该方向容易被激励;有效质量:理论上,各个方向的有效质量的总和应该等于结构的总质量,但取决于模态展开的数量;3、模态展开方法接触:由于模态分析时线性分析,只允许Bonded和No separation,其他接触程序视为无接触;4、阻尼模态分析特征值是复杂的,特征值的虚数部分表示自然频率,而实数部分衡量系统的稳定性,正值不稳定,负值稳定;模态展开方法:四、谐响应分析应用输入条件:简谐变化的载荷力,压力和位移,多个载荷应具有同样得频率,力和位移可以是同相或异相;假设和限制:结构具有固定的或与频率相关的刚度,阻尼,质量,不允许非线性;所有的载荷位移按相同频率做简谐变化;当施加的载荷的频率接近结构的自然频率时,发生共振;增加阻尼降低响应的振幅;阻尼较小的变化都会导致共振区响应的大幅变化;谐响应的运动方程如下:求解方法有两种:1、全函数法,直接求解矩阵方程;该方法求解准确,但速度慢于MSUP且耗资源,支持几乎所有的载荷和边界条件,其中加速度、轴承载荷、力矩相角只能为0;2、模态叠加法MUSP,对方程进行坐标变换{u}={φ}{y},将{M}和{K}变换成对角矩阵进行解耦,再求解n个解耦的方程{y},其中{C}必须是是对称矩阵,此方法需先进行模态分析;模态叠加法是一种近似求解,准确度取决了模态的展开阶数,一般比FULL法快;基本设置:cluster results-include residual vector-在模态叠加分析中,当施加的载荷激励高阶模态时,动态响应将会很粗糙;因此采用residual vector方法,除了采用模态的特征向量,还利用附件的模态转换向量来计算高阶频率;五、响应谱分析响应谱分析主要用来替代时程分析来确定结构对时间变化载荷的响应:如地震载荷,风载,海浪载荷,活塞载荷,火箭发动机振动等;对于多自由度长时程的分析往往通过响应谱分析来近似快速的求解最大响应;1、响应谱响应谱一般是单自由度系统在给定时程内的最大响应,该响应可以是位移,速度和加速度;多个不同频率相同阻尼的单自由度振荡器K,C,M就可以绘制响应谱,其中阻尼已经包含在响应谱中,也可以给定其他的阻尼绘制相应的响应谱;位移,速度,加速度响应谱之间是可以相互转换的,转换公式如下:2、分析类型响应谱分析分为单点响应谱SPRS分析和多点响应谱分析MPRS.SPRS-已知激励方向和频率的响应谱作用在所有的支撑点上,通常用来分析建筑结构的地震载荷;参与因子γ是对给定自然频率结构响应的量度,表征每个模态对特定方向的响应贡献多少;对于每个特征频率ω,谱值S都可以通过对数插值从响应谱中得到,但超过响应谱频率不会进行插值,而是取最近点的谱值;模态系数A,定义为放大系数来乘以特征向量来给出每个模态的实际位移,计算公式如下;响应R,计算公式如下如果系统有多个模态,那么应该对各个模态下的响应R进行叠加组合响应谱分析计算最大的位移和应力响应,它不能准确计算实际响应,因此有以下3种叠加方法SRSS,CQC和ROSE;SRSS:以下情况,SRSS法不再适用:1)考虑近间距自然频率的模态2)考虑部分或全刚度响应的模态3)包含未展开的高阶频率4、如果各阶模态频率有足够的间距,可以使用SRSS法叠加;评判各阶模态是否是近距频率,对于不同的阻尼比有不同的评判准则;对于阻尼比ζ≤2%,如果fi<fj,且fj≤,则是近距频率;对于阻尼比ζ>2%,如果fi<fj,且fj≤1+5ζfi,则是近距频率;对于近距频率模态,可选用CQC或ROSE进行叠加,其中纠正系数0≤ε≤1,ε=0,不纠正;ε=1,全纠正;0<ε<1,部分纠正;CQC和ROSE计算公式中ε是基于模态的频率和阻尼计算得到;CQC计算公式如下ROSE计算公式如下5、响应谱中有两个特征频率fsp峰值频率和fzpa0周期加速度区域低频区<fsp,不考虑模态纠正除非有近距频率,可用SRSS,CQC或ROSE;中频区在fsp和fzpa之间,由周期区向刚性区转变,模态包含周期部分和刚性部分,通常用系数α将响应分为周期部分和刚性部分;α=0,周期;α=1,刚性;0<α<1,部分周期部分刚性;高频区>fzpa,刚性区,模态需要完全纠正;计算α有两种方法:Lindley-Yow和Gupta;Lindley-Yow法:α=αSa, α=ZPA/Sa,ZPA-0周期的加速度,Sa第i阶频率的加速度;当Sa<ZPA,α=0;Sa=ZPA, α=1;Sa>ZPA,随着Sa的减小α增大;Gupta法:α=αf,Lindley-Yow法中刚性响应影响所有的模态其对应的频率响应Sa>ZPA,但不应该用于其模态频率f<fsp;Gupta法中刚性响应影响所有的模态只有其频率f>f1=fsp,因此Gupta法适用大部分情况,应优先选用;6、刚性响应计算首先如前面描述的单独进行各个模态的响应计算,当打开刚性响应影响Rigid Response Effect时,这些模态响应R就不再是进行直接组合,而是分为周期Rp和刚性部分Rr;刚性响应系数α可选择Gupta或Lindley-Yow法计算;周期部分和刚性部分响应计算如下:然后分别进行组合叠加,对于周期部分响应Rp可用SRSS,CQC或ROSE方法进行叠加,如果含有近距频率模态时需要纠正不能使用SRSS法;刚性部分响应Rr进行代数和叠加即可最后将周期部分响应和刚性部分响应进行组合得到总的响应Rt7、缺省质量响应进行模态分析时,我们不可能展开所有模态来考虑结构100%的质量,因此我们关心的模态中所有质量占总质量的百分比即为有效质量比率,但展开的最高模态频率因远大于响应谱的fzpa,才能得到较为准确的分析结果;有时需要展开的模态阶数太多,我们可以通过模态分析计算缺省的质量将其进行额外的响应分析Missing Mass Response,这样就不必展开的模态频率要远大于fzpa;当f>fzpa,加速度响应是刚性的,因此可以进行静态的加速度分析;1)首先可以计算频率大于fzpa总的惯性力FT2)计算各个模态的惯性力3)计算各模态惯性力的合力。
ANSYS结构分析教程篇
ANSYS结构分析基础篇一、总体介绍进行有限元分析的基本流程:1.分析前的思考1)采用哪种分析(静态,模态,动态...)2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六面体网格采用零件,但零件间需定义bond接触)3)单元类型选择(线单元,面单元还是实体单元)4)是否可以简化模型(如镜像对称,轴对称)2.预处理1)建立模型2)定义材料3)划分网格4)施加载荷及边界条件3.求解4.后处理1)查看结果(位移,应力,应变,支反力)2)根据标准规范评估结构的可靠性3)优化结构设计高阶篇:一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。
这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。
2、根据结构的特点,选择不同类型的单元。
对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。
4、根据工程需要,确定分析类型和计算工况。
要考虑参数区间及确定最危险工况等问题。
5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。
二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。
位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。
但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。
2、位移插值函数的收敛性(完备性)要求:1)位移插值函数必须包含常应变状态。
2)位移插值函数必须包含刚体位移。
3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。
ANSYS结构分析教程篇
ANSYS结构分析基础篇一、总体介绍进行有限元分析的基本流程:1.分析前的思考1)采用哪种分析(静态,模态,动态...)2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六面体网格采用零件,但零件间需定义bond接触)3)单元类型选择(线单元,面单元还是实体单元)4)是否可以简化模型(如镜像对称,轴对称)2.预处理1)建立模型2)定义材料3)划分网格4)施加载荷及边界条件3.求解4.后处理1)查看结果(位移,应力,应变,支反力)2)根据标准规范评估结构的可靠性3)优化结构设计高阶篇:一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。
这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。
2、根据结构的特点,选择不同类型的单元。
对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。
3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。
4、根据工程需要,确定分析类型和计算工况。
要考虑参数区间及确定最危险工况等问题。
5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。
二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。
位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。
但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。
2、位移插值函数的收敛性(完备性)要求:1)位移插值函数必须包含常应变状态。
2)位移插值函数必须包含刚体位移。
3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。
09 ANSYS13.0 Workbench 结构非线性培训 错误诊断
... 求解信息
Training Manual
2) Solver Output 记录了根据指定的单元(中节点)选择激活的单元技术和相 关的材料,参照附录B中更多关于单元技术的细节.
高阶单元的弹性材料或 金属塑性 Default URI 低阶单元的2D平面应力 弹性材料或金属塑性
Enhanced Strain
• 单元畸变通常是由于载荷过大或过度约束所造成的严重问题。对分载荷会自动进行, 但有时会需要一些修正措施来解决这个问题。
7-11
Workbench Mechanical - Diagnostics
... 求解信息
7) 最后, 当求解完成以后,在求解输出窗 口的最后会提供一些本次分析的统计数 据。 求解时间与计算其它单元的时间的百分 比以及整个方程的求解时间.
Training Manual
从Solver Section 2 回顾列出的接触区 域名称和ID号. 从那个例子可知,以上 的接触实常数号9 是 “Teeth 3” 区域部 分.
7-9
Workbench Mechanical - Diagnostics
... 求解信息
Training Manual
敛曲线, 例如,绘制力敛曲线.
Text Output
Graphical Output
7-3
Workbench Mechanical - Diagnostics
... 求解信息
Training Manual
• 信息窗口 “Messages” 位于Solution Information Worksheet正下方,提供了 一些警告错误的列表.
... 求解信息
•
Training Manual
非线性_接触分析ANSYS
接触分析接触问题是一种高度非线性行为,需要较大的计算资源,为了进行实为有效的计算,理解问题的特性和成立合理的模型是很重要的。
接触问题存在两个较大的难点:其一,在你求解问题之前,你不知道接触区域,表面之间是接触或分开是未知的,突然转变的,这随载荷、材料、边界条件和其它因素而定;其二,大多的接触问题需要计算摩擦,有几种摩擦和模型供你挑选,它们都是非线性的,摩擦使问题的收敛性变得困难。
一般的接触分类接触问题分为两种大体类型:刚体-柔体的接触,和柔体-柔体的接触,在刚体-柔体的接触问题中,接触面的一个或多个被看成刚体,(与它接触的变形体相较,有大得多的刚度),一般情况下,一种软材料和一种硬材料接触时,问题可以被假定为刚体-柔体的接触,许多金属成形问题归为此类接触,另一类,柔体-柔体的接触,是一种更普遍的类型,在这种情况下,两个接触体都是变形体(有近似的刚度)。
ANSYS接触能力ANSYS支持三种接触方式:点-点,点-面,和面-面,每种接触方式利用的接触单元适用于某类问题。
为了给接触问题建模,首先必需熟悉到模型中的哪些部份可能会彼此接触,若是彼此作用的其中之一是一点,模型的对应组元是一个结点。
若是彼此作用的其中之一是一个面,模型的对应组元是单元,例如梁单元,壳单元或实体单元,有限元模型通过指定的接触单元来识别可能的接触匹对,接触单元是覆盖在分析模型接触面之上的一层单元,至于ANSYS 利用的接触单元和利用它们的进程,下面分类详述。
点-点接触单元点-点接触单元主要用于模拟点-点的接触行为,为了利用点-点的接触单元,你需要预先知道接触位置,这种接触问题只能适用于接触面之间有较小相对滑动的情况(即便在几何非线性情况下)若是两个面上的结点一一对应,相对滑动又以忽略不计,两个面挠度(转动)维持小量,那么可以用点-点的接触单元来求解面-面的接触问题,过盈装配问题是一个用点-点的接触单元来模拟面-面的接触问题的典型例子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旗开得胜
读万卷书 行万里路
1
目 录
非线性结构分析的定义…………………………………………………1
非线性行为的原因………………………………………………… 1
非线性分析的重要信息…………………………………………… 3
非线性分析中使用的命令………………………………………………8
非线性分析步骤综述……………………………………………………8
第一步:建模……………………………………………………… 9
第二步:加载且得到解…………………………………………… 9
第三步:考察结果…………………………………………………16
非线性分析例题(GUI方法)……………………………………… 20
第一步:设置分析标题………………………………………… 21
第二步:定义单元类型……………………………………………21
第三步:定义材料性质……………………………………………22
第四步:定义双线性各向同性强化数据表………………………22
旗开得胜
读万卷书 行万里路
2
第五步:产生矩形…………………………………………………22
第六步:设置单元尺寸……………………………………………23
第七步:划分网格…………………………………………………23
第八步:定义分析类型和选项……………………………………23
第九步:定义初始速度……………………………………………24
第十步:施加约束…………………………………………………24
第十一步:设置载荷步选项………………………………………24
第十二步:求解……………………………………………………25
第十三步:确定柱体的应变………………………………………25
第十四步:画等值线………………………………………………26
第十五步:用Post26定义变量……………………………………26
第十六步:计算随时间变化的速度………………………………26
非线性分析例题(命令流方法)……………………………………… 27
非线性结构分析
非线性结构的定义
旗开得胜
读万卷书 行万里路
3
在日常生活中,会经常遇到结构非线性。例如,无论何时用钉书针钉书,金
属钉书钉将永久地弯曲成一个不同的形状。(看图1─1(a))如果你在一个木
架上放置重物,随着时间的迁移它将越来越下垂。(看图1─1(b))。当在
汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。
(看图1─1(c))如果将上面例子所载荷变形曲线画出来,你将发现它们都显
示了非线性结构的基本特征--变化的结构刚性.
图1─1 非线性结构行为的普通例子
旗开得胜
读万卷书 行万里路
4
非线性行为的原因
引起结构非线性的原因很多,它可以被分成三种主要类型:
状态变化(包括接触)
许多普通结构的表现出一种与状态相关的非线性行为,例如,一根只能拉伸的电缆可能
是松散的,也可能是绷紧的。轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也
可能是融化的。这些系统的刚度由于系统状态的改变在不同的值之间突然变化。状态改变也
许和载荷直接有关(如在电缆情况中), 也可能由某种外部原因引起(如在冻土中的紊乱热
力学条件)。ANSYS程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子
集。
几何非线性
如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。一个例的垂
向刚性)。随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减 少,导致杆端显示出在
较高载荷下不断增长的刚性。
图1─2 钓鱼杆示范几何非线性
旗开得胜
读万卷书 行万里路
5
材料非线性
非线性的应力──应变关系是结构非线性名的常见原因。许多因素可以影响材料的应力
──应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时
间总量(如在蠕变响应状况下)。
牛顿一拉森方法
ANSYS程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。然而,
非线性结构的行为不能直接用这样一系列的线性方程表示。需要一系列的带校正的线性近似
来求解非线性问题。
逐步递增载荷和平衡迭代
一种近似的非线性救求解是将载荷分成一系列的载荷增量。可以在几个载荷步内或者在一个
载步的几个子步内施加载荷增量。在每一个增量的求解完成后,继续进行下一个载荷增量之
前程序调整刚度矩阵以反映结构刚度的非线性变化。遗憾的是,纯粹的增量近似不可避免地
随着每一个载荷增量积累误差,导种结果最终 失去平衡,如图1─3(a)所示所示。
.
(a)
纯粹增量式解 (b)全牛顿-拉普森迭代求解(2个载荷增量)