第4章_非线性系统线性化
现代控制理论-4-控制系统的稳定性分析

外部稳定性只适用于线性系统,内部稳定性不但适用于线性系 统,而且也适用于非线性系统。对于同一个线性系统,只有在 满足一定的条件下两种定义才具有等价性。
不管哪一种稳定性,稳定性是系统本身的一种特性,只和系统 本身的结构和参数有关,与输入-输出无关。
V ( x)半负定
同时有
& V
(
x
)
-
2
x22
不可能恒为零。
由判据2可知,系统在原点处的平衡状态是渐近稳定的。
27
4.5 李雅普诺夫方法 在线性系统中的应用
28
一、线性定常连续系统的稳定性分析
目的:将李氏第二法定理来分析线性定常系统 x& Ax 的稳定性
讨论:V选&(x择) 二(x次T P型x)函 x&数T PVx +(xx)TPxx& TP(xAx为)T P李x +氏x函T PA数x。
如果d 与初始时刻 t0无关,则称平衡状态xe为一致渐近稳定。
渐近稳定几何表示法:
10
3、大范围渐近稳定
如果对状态空间的任意点,不管初始偏差有多大,都有渐
近稳定特性,即:lim x t
- xe
0
对所有点都成立,称平衡状态xe为大范围渐近稳定的。其
渐近稳定的最大范围是整个状态空间。
必要性:整个状态空间中,只有一个平衡状态。 (假设有2个平衡状态,则每个都有自己的稳定范 围,其稳定范围不可能是整个状态空间。)
(2) 求系统的特征方程:
det(lI
-
A)
l
- 1
求得: l1 2,l2 -3
现代控制理论习题解答(第四章)

第四章 控制系统的稳定性3-4-1 试确定下列二次型是否正定。
(1)3123212322212624)(x x x x x x x x x x v --+++= (2)232123222126410)(x x x x x x x x v ++---= (3)312321232221422410)(x x x x x x x x x x v --+++= 【解】: (1)04131341111,034111,01,131341111<-=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数不定。
(2)034101103031,0110331,01,4101103031<-=--->=--<-⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=P二次型函数为负定。
(3)017112141211003941110,010,1121412110>=---->=>⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=P 二次型函数正定。
3-4-2 试确定下列二次型为正定时,待定常数的取值范围。
312321231221211242)(x x x x x x x c x b x a x v --+++=【解】:312321231221211242)(x x x x x x x c x b x a x v --+++=x c b a x T ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1112121110212111,011,0111111>---->>c b a b aa 满足正定的条件为:⎪⎩⎪⎨⎧++>+>>1111111114410ca b c b a b a a3-4-3 试用李亚普诺夫第二法判断下列线性系统的稳定性。
;1001)4(;1111)3(;3211)2(;1110)1(x x x x x x x x ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=【解】: (1)设22215.05.0)(x x x v +=⎩⎨⎧≠≤==-=--=+=)0(0)0(0222221212211)(x x x x x x x x x x x x x v为半负定。
非线性动力系统的连续线性化模型及其数值计算方法

垫拯生』选盆煎非线性动力系统的连续线性化模型及其数值计算方法。
苏志霄郑兆昌(清华大学工程力学系,北京,100084)谁≮'I广摘要秭4用Taylor级数展开导出了任意自治或非自治非线性动力系统的瞬时线性化方程,该线性方程的连续变化描述了系统的全部复杂动力行为。
进一步求解系统的线性化方程,得到一种非线性动力系统数值计算的新的递推格式,计算实例表明其精度高于传统的Houbolt、Wilson.o及Newmark-13等方法,且在计算时间步长较大时,仍然具有足够的计算精度3文末通过数值计算研究了Duffing方程和vanderPol方程的混沌及周期特性。
关键词非线性动力系统连续线性化模型Dumng方程vailderPol方程近年来,非线性动力系统的定性分析方法在低维系统中的应用已逐步完善。
然而。
由于非线性系统一般不存在解析解,因此通常利用逐步积分法、有限差分法[1,2]及其他方法,如Taylor变换法[3】等数值算法得到其数值解。
各种数值方法均是基于时间历程上的差分方法,也即通过各种形式的函数曲线来近似代替时间步长上振动系统的实际响应形式。
运动学研究历史上,静止被认为是运动的瞬时存在状态。
与此类似,线性结构可认为是非线性系统的瞬时表现形式,线性系统的连续变化反映了非线性动力系统的全部复杂行为。
非线性系统的瞬态响应依赖于该瞬时的线性结构,而该时刻线性结构的确定又依赖于上一连续瞬时非线性系统的响应。
因此,非线性系统的响应具有连续递推性。
由此观点可发展为非线性动力系统的连续线性模型理论。
本文即从此出发,推导了一般自治或非自治非线性动力系统的瞬态线性方程,精确求解该线性化方程得到非线性系统的一种新的数值算法。
该方法本质上以瞬态线性结构的精确响应来近似代替离散时间段内非线性系统的响应,区别于传统差分方法中以直线或各种曲线近似代替的思想。
计算实例表明该方法较传统方法相比,大大提高了计算精度。
文末计算了强迫Duffmg方程与强迫vallderP01方程的混沌及周期特性。
机械工程控制基础(复习要点)

1
1
2)峰值时间:响应曲线达到第一个峰值所需 的时间。
tp d 1 2 n
3)最大超调量 M p :常用百分比值表示为:
Mp x0 (t p ) x0 () x0 ( )
( / 1 2 )
第四章 频率特性分析
1、频率响应与频率特性
频率响应:线性定常系统对谐波输入的稳态响应。 幅频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的幅值比,记为A(ω); 相频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的相位差,记为φ(ω); 频率特性:幅频特性与相频特性的统称。即:线性 定常系统在简谐信号激励下,其稳态输出信号 和输入信号的幅值比、相位差随激励信号频率 ω变化特性。记为
G B s 1 Gk s G q s
第三章 时间响应分析
1、时间响应及其组成 时间响应:系统在激励作用下,系统输出随 时间变化关系。 时间响应可分为零状态响应和零输入响应或 分为自由响应和强迫响应。 零状态响应:“无输入时的系统初态”为零 而仅由输入引起的响应。 零输入响应:“无输入时的系统初态”引起 的自由响应。 控制工程所研究的响应往往是零状态响应。
K 增益 T 1Fra bibliotekn 时间常数 n 固有频率
阻尼比
6)一阶微分环节: G s s 1 7)二阶微分环节: G s s 2 s 1
2 2
8)延时环节: G s e s
7、系统各环节之间的三种连接方式:
串联:
G s Gi s
G ( j ) A e
j
频率特性又称频率响应函数,是激励频率ω的函数。 频率特性:在零初始条件下,系统输出y(t)的傅里叶 变换Y(ω)与输入x(t)的傅里叶变换X(ω)之比,即 Y j G ( j ) A e X
微分方程的线性化

df ( x) 1 d 2 f ( x) 2 y f ( x) f ( x0 ) ( ) x0 ( x x0 ) ( ) ( x x ) x0 0 2 dx 2! dx
当增量(x- x0)很小时,略去其高次幂项,则
df ( x) y y0 f ( x) f ( x0 ) ( ) x0 ( x x0 ) dx
线性化总结
1) 线性化是相对某一工作点,工作点不同,线
性化方程的系数也不同; 2) 偏差愈小,线性化精度愈高; 3) 线性化适用于连续变化的单值函数。 4) 式中变量是增量,不是绝对量,公式称为增量 方程式 5) 额定工作点若是坐标原点,增量可以写成绝对 量。 6) 当增量并不是很小时,在进行线性化时,为了 验证容许的误差值,需要分析泰勒式中的余项。
df ( x) y ( ) x0 x k x dx
df ( x) k dx x0
是比例系数,它是函数f(x)在工作点 A点的切线斜率。
将线性增量方程代入系统微分方程,便可得系统线性化 方程。
y kx
同理可得,多变量非线性函数
y f ( x1 , x 2 , x n )
微分方程的线性化
然而严格地说,实际物理元件和系统都是非线性 的。 叠加原理不适用于非线性系统,这给求解非线性 系统带来不便,因此需要对所研究的系统作线性 化处理。
非线性系统的线性化
非线性系统进行线性化的条件: 非线性函数是连续函数;系统在预定工作点附近作小偏 差运行,即变量的变化范围很小。
图示为连续变化的非线性 函数 y=f(x) 线性化方法是:把非线性 函数在 工作点x0附近展成 泰勒级数,略 去高次项, 便得一个以增量为变量的 线性函数:
第4章-非线性系统线性化

(2.2)
其中 y d 为希望输出,v为模型的输入,1,2,n, 为常数。同样取 y d 及
其前n-1阶导数为状态变量,可得其对应的可控型状态空间表达式为:
x dA dxdbdv yCxd
0 1
其中 x d
为模型的状态向量;Ad
0
0
C 1 0 0 为常数。
1 2
(2.2a)
0
0
1
,b d
非线性系统反馈线性化绪论
为此,控制系统的设计可分为两步:首先,设计控制律使系统的平衡状态 按预定的方式运动。然后,按某一指标设计系统,使其状态按最佳方式向平衡 状态收敛,从而实现对状态的控制。这一方法很好地解决了将仅适用于自由动 态系统分析与设计的李亚普诺夫直接方法应用于跟踪控制问题所带来的理论冲 突,将稳定性问题(调节问题)与跟踪问题统一起来。为控制系统的分析与设 计提供了一条新的思路。
基于动平衡状态理论的非线性系统反馈 线性化直接方法
按上述方法,基本设计过程如下:
考虑一般的非线性系统
x f(x,u,t)
(1.1)
其中,xRn 为状态向量,uRm 为控制向量,f 为向量函数。
设希望的线性系统动态特性为
x dA dxdB dv
(1.2)
其中 xd Rn为状态向量,vRm为控制向量,Ad Rnn ,Bd Rnm为常数矩 阵,并且 A d 的所有特征值均具有负实部。则下述基于李雅普诺夫第二方法的设
基于动平衡状态理论的非线性系统反馈 线性化直接方法
M e T P [ f( x ,u ,t ) ( A d x B d v ) 0 ]
(1.6)
则偏差系统(1.3)的原点平衡状态是大范围一致渐近稳定的。
若能选择 u使 M在所考虑的系统参数变化范围内非正,则可保证系统具 有参数不确定时反馈线性化的鲁棒性。
第4章-非线性系统线性化(1)

其中 xd 为模型的状态向量;Ad
0
0
1
,bd
0
,
C 1 0 0 为常数。
1
2
n
单变量输入输出反馈线性化直接方法及 鲁棒设计
根据动平衡状态理论,我们可以将xd 作为被控系统的动平衡状态,通过设
计合适的控制律,使所构成的控制系统中被控状态x 对动平衡状态xd 在大范围 内渐近稳定。从而实x现 x对d ,亦y即 yd对 的渐近逼近,使被控系统具有所希
非线性系统反馈线性化绪论
为此,控制系统的设计可分为两步:首先,设计控制律使系统的平衡状态 按预定的方式运动。然后,按某一指标设计系统,使其状态按最佳方式向平衡 状态收敛,从而实现对状态的控制。这一方法很好地解决了将仅适用于自由动 态系统分析与设计的李亚普诺夫直接方法应用于跟踪控制问题所带来的理论冲 突,将稳定性问题(调节问题)与跟踪问题统一起来。为控制系统的分析与设 计提供了一条新的思路。
基于动平衡状态理论的非线性系统反馈 线性化直接方法
按上述方法,基本设计过程如下:
考虑一般的非线性系统
x f (x,u,t)
(1.1)
其中,x Rn 为状态向量,u Rm 为控制向量,f 为向量函数。
设希望的线性系统动态特性为
xd Ad xd Bd v
(1.2)
其中 xd Rn为状态向量,v Rm 为控制向量,Ad Rnn ,Bd Rnm 为常数矩 阵,并且 Ad 的所有特征值均具有负实部。则下述基于李雅普诺夫第二方法的设
按上述思想,提出如下的基于平衡状态控制原理的非线性控制系统反馈线 性化的直接方法:
现代控制理论第四章稳定性理论及Lyapunov方法

【解】(1) 平衡状态为: xe 0 0 T
构造李雅普诺夫函数 V (x) x12 x22 V (x) (2x12 6x22 ) 0
系统在平衡状态渐近稳定,并且 x ,V (x) ,是
大范围渐近稳定。
(2) 平衡状态为: xe 0 0 T
主要知识点: 1、 BIBO (有界输入有界输出)稳定的定义、定理。
§4-3 李雅普诺夫稳定性的概念
主要知识点:
1、系统状态的运动和平衡状态
2、李雅普诺夫意义下稳定、渐近稳定、全局渐近稳 定和不稳定的定义
§4-4 李雅普诺夫间接法(第一法)/线性化局部稳定 主要知识点: 1、线性系统的稳定性判别定理 2、内部稳定和外部稳定的关系 3、非线性系统线性化方法和稳定性判别定理(李雅普诺夫间 接法/第一法)
1 2
x1 x2
x14
x12
2
x22
2
x1
x2
0
V(x) 4x13x1 2x1 x1 4x2 x2 2x1 x2 2x1 x2 2(x14 x22) 0
因此系统在坐标原点是渐近稳定的,并且 x ,V (x) ,
1 0 0
19/ 78 10/ 39 1/ 2
由方程 GT PG P I 解出 P 10 / 39 49 / 78
19
/13 26
不定号,因此系统不渐近稳定。
实际上,该系统的特征值为0.1173+2.6974i, 0.1173-2.6974i, -1.2346都在单位圆外,系统是不稳定的。
试确定其平衡状态的稳定性。
【解】 系统平衡状态为: xe 0 0 T
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)精确线性化方法(exact linearization method),如微分几何方法,隐函数方 法和逆系统方法等;
2)基于参考模型的渐近线性化方法,如模型参考方法及模型参考自适应方法 等。而确切地说,这两种线性化方法都是模型参考方法,不过前者可称为隐含 模型参考方法(implicit model reference approach),而后者为实际模型参考 方法(real model refernce approach)。
传统近似线性化方法
最小二乘法
近似线性化
误差最小
传统近似线性化
泰勒展开
忽略高阶项
雅可比矩阵 傅里叶级数展开
忽略高阶项 忽略高次谐波
非线性系统反馈线性化_主要内容
• 4.0 绪论 • 4.1 基于动平衡状态理论的非线性系统反馈线性化直接方法 • 4.2 单变量输入输出反馈线性化直接方法及鲁棒设计
– 仿射非线性系统输入输出线性化及鲁棒设计 – 线性时变系统反馈线性化直接方法及鲁棒设计 – 线性定常系统设计—闭环极点配置 – 一般非线性系统的直接反馈线性化设计:逆系统方法 • 4.3 反馈线性化与标准型 – 输入—状态线性化 – 输入—输出线性化 – 线性系统的内动态子系统 – 零动态子系统 • 4.4 数学知识 – 微分同胚与状态变换 – 弗罗贝尼斯定理 • 4.5 非线性系统反馈线性化 – 单输入单输出系统的输入—状态线性化 – 单输入单输出系统的输入—输出线性化 – 多输入—多输出系统的反馈线性化 • 4.6 近似线性化方法
(2.4)
取状态偏差的二次型函数
V (e) eT Pe
(2.5)
其中 P PT Rnn ,且 P 0 。则有 V (e) 的导数为:
V(e) eT (AdT P PAd )e 2eT P[(A0 Ad )x fb (x,u,t) bdv] eTQe 2M (2.6)
计可以实现系统状态 x 对 xd 的渐近跟踪,从而实现非线性系统动态特性的线性
化。
令状态偏差为 e x xd ,则有 e x xd
由式(1.1)和式(1.2)可得系统的状态偏差方程为:
e x xd f (x,u,t) ( Ad xd Bd v) Ad e [ f (x,u,t) ( Ad x Bdv)] (1.3)
在非线性系统的模型参考方法中,基于李亚普诺夫直接方法的非线性系统 反馈线性化方法是最重要和最有效的一种设计方法,这类方法称为非线性系统 反馈线性化的直接方法。
运用控制系统动平衡状态的概念,提出一种建立在控制系统动平衡状态渐 近稳定概念上的新的设计方法。本方法认为:控制系统的输入直接控制的是系 统的动平衡状态。系统的输出和状态是在系统结构的约束下运动的。当系统对 其平衡状态大范围渐近稳定时,其状态将在系统结构约束下渐近收敛于系统的 平衡状态。当其平衡状态运动时,系统的状态亦将跟踪其平衡状态运动。因此 控制系统平衡状态的运动,即可实现对系统运动状态及输出的控制。
第四章
非线性系统的线性化
1、传统近似线性化 2、精确线性化 3、现代近似线性化
非线性系统线性化方法
Company Logo
传统近似 线性化
基本思想: 一阶近似
适用于工作 点范围不大 情况
精确线性化
现代近似 线性化
条件苛刻, 计算复杂
基本思想:通过坐标 变换把强非线性系统 变换成弱非线性系统 或通过状态反馈以保 持线性系统的部分特 点。
V (e, e
t
)
T
[
f
(
x,
u,
t
)
(
Ad
x
Bd
v)]
0
(1.7)
则被控的状态偏差系统(1.3)是大范围一致渐近稳定。
证明: 因为V (e,t) 是偏差自由系统在平衡状态的李雅普诺夫函数,因此有
V(e, t )
dV dt
V e
T
de dt
(1.5)
其中 Q (AdT P PAd ) Rnn ,M eT P[ f (x,u,t) ( Ad x Bd v)]为标量函数。
由于 Ad 的所有特征值均具有负实部,因此可找到正定矩阵 P ,使 Q 为一 负定矩阵。若能选取控制向量 u(x, xd ,u(d ), v,t)( u(d) 为可能用到的 u 的各阶导 数),使 M 0 ,则 V (e) 为李雅普诺夫函数。
Bd v)]
dV dt
V e
T
Ad
e
V e
T
[ f
(x,u,t) ( Ad x
Bd v)]
由于上式右端第一项负定,显然若式(1.7)成立,则V(e, t )负定。式(1.3) 的被控状态偏差系统大范围一致渐近稳定。
非线性系统的反馈线性化,确切地说还可以分为输入--状态线性化和输 入--输出线性化。
按上述思想,提出如下的基于平衡状态控制原理的非线性控制系统反馈线 性化的直接方法:
(1)按系统的动态性能要求设计一满足希望特性的线性动态系统作为模 型参考系统。
(2)以模型参考系统的状态作为实际被控系统的被控平衡状态。利用李 亚普诺夫直接方法设计控制律使系统对动平衡状态渐进稳定。从而被控系统近 似具有模型参考系统的动态特性,实现非线性系统的反馈线性化。
0
C 1 0 0 为常数。
1
1 0 2
0
0
1
,bd
0
,
n
单变量输入输出反馈线性化直接方法及 鲁棒设计
根据动平衡状态理论,我们可以将xd 作为被控系统的动平衡状态,通过设
计合适的控制律,使所构成的控制系统中被控状态x 对动平衡状态xd 在大范围 内渐近稳定。从而实x现 x对d ,亦y即 yd对 的渐近逼近,使被控系统具有所希
(2.1b)
单变量输入输出反馈线性化直接方法及 鲁棒设计
其中 x x1 x2 xn T Rn 为状态向量,u Rm1表示控制 u 及其前m阶
导数。
设上述系统的希望动态特性可用下述线性定常模型系统表示:
y (n) d
n yd (n1)
y (n2) n1 d
L
ห้องสมุดไป่ตู้
2 y 1y
(2.2)
其中 yd 为希望输出,v 为模型的输入,1, 2 , n , 为常数。同样取 yd 及
其前n-1阶导数为状态变量,可得其对应的可控型状态空间表达式为:
xd Ad xd bd v y Cxd
(2.2a)
0
其中 xd 为模型的状态向量;Ad
精确线性化方法中,微分几何方法和逆系统方法已形成各自的理论体系并 在许多领域得到成功的应用。相比之下基于隐函数方法的直接线性化方法由 于其可应用的范围较窄,理论上又难以深入,被研究得要少得多。
非线性系统反馈线性化绪论
模型参考方法在跟踪控制系统设计中是一种十分有效的方法。这一方法不 仅在相对复杂的非线性系统设计中得到应用,即使在线性定常系统的设计中同 样也得到大量的应用。
非线性系统反馈线性化绪论
非线性系统的反馈线性化是近年来引起人们极大兴趣的一种非线性控制系 统设计方法。这种方法的思路是通过状态或输出的反馈,将一个非线性系统的 动态特性变成(全部或部分)线性的动态特性,从而可以应用熟知的线性控制 的方法对系统进行设计与控制。反馈线性化通过严格的状态变换与反馈变换来 达到,线性化过程中没有忽略任何高阶非线性项,因而这种线性化是精确的。
若选取的 u 使 M 0 ,则称非线性系统(1.1)被精确线性化。 我们可给出定理1.1更一般的情况如下:
定理1.2 考虑状态偏差系统(1.3)。设其对应的自由动态系统e Ad e 在 平衡状态 e 0 大范围一致渐近稳定,V (e,t) 是自由系统在平衡状态的李雅普诺夫
函数。如果控制策略 u(x,v,t) 使
因为当状态偏差 e 的欧几里德范数 e 时,V (e) ,平衡状态 e 0 是在大范围内渐近稳定的。从而有t 时,x xd 。由上面的分析可直接给出 如下定理:
定理1.1 给定非线性时变系统(1.1)及模型参考系统(1.2)。设 Ad 稳
定,V (e) eT Pe 是模型参考自由系统(对应于 v 0)在原点平衡状态的李雅普诺 夫函数。那么,若存在控制 u 使
基于动平衡状态理论的非线性系统反馈 线性化直接方法
M eT P[ f (x, u,t) ( Ad x Bd v)] 0
(1.6)
则偏差系统(1.3)的原点平衡状态是大范围一致渐近稳定的。
若能选择 u 使 M 在所考虑的系统参数变化范围内非正,则可保证系统具 有参数不确定时反馈线性化的鲁棒性。
(2.1)
其中为 u(t) 输入,y(t)为输出。取输出及其前n-1阶导数为状态变量,方程 (2.1)可表示为如下的状态空间表达形式:
x1 0 1 0
x2
0 0 1
xn1
0 0 0
xn 0 0 0
0 x1 0
非线性系统反馈线性化绪论
为此,控制系统的设计可分为两步:首先,设计控制律使系统的平衡状态 按预定的方式运动。然后,按某一指标设计系统,使其状态按最佳方式向平衡 状态收敛,从而实现对状态的控制。这一方法很好地解决了将仅适用于自由动 态系统分析与设计的李亚普诺夫直接方法应用于跟踪控制问题所带来的理论冲 突,将稳定性问题(调节问题)与跟踪问题统一起来。为控制系统的分析与设 计提供了一条新的思路。