复习二元一次方程

合集下载

人教版七年级下册第8章二元一次方程组专题复习

人教版七年级下册第8章二元一次方程组专题复习

专题一:二元一次方程组的解法1.解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.② 2.解方程组:⎩⎪⎨⎪⎧a =2b +8,①a =-b -1.②3.解方程组:⎩⎪⎨⎪⎧x +y =6,①2x -y =9.② 4.解方程组:⎩⎪⎨⎪⎧y =2x ,①3y +2x =8.②5.解方程组:⎩⎪⎨⎪⎧3m -2n =-13,①5m +8n =1.② 6.解方程组:⎩⎪⎨⎪⎧x +0.4y =40,①0.5x +0.7y =35.②7.解方程组:⎩⎪⎨⎪⎧x -2y =3,①3x +4y =-1.② 8.解方程组:⎩⎪⎨⎪⎧5x +4y =6,①2x +3y =1.②9.解方程组:⎩⎪⎨⎪⎧x =y -52,①4x +3y =65.② 10.解方程组:⎩⎪⎨⎪⎧3x +5y =19,①8x -3y =67.②11.解方程组:⎩⎨⎧x -y2=9,①x 3-y 2=7.②12.解方程组:⎩⎪⎨⎪⎧x 2=y 3,①3x +4y =18.②13.解方程组:⎩⎪⎨⎪⎧x 4+y 3=13,3(x -4)=4(y +2). 14.解方程组:⎩⎪⎨⎪⎧x +2y +12=4(x -1),3x -2(2y +1)=4.15.解方程组:⎩⎪⎨⎪⎧2x -y =5,①x -1=12(2y -1).②16.阅读材料:善于思考的小军在解方程组⎩⎪⎨⎪⎧2x +5y =3,①4x +11y =5②时,采用了一种“整体代换”的解法:解:将方程②变形:4x +10y +y =5,即2(2x +5y)+y =5,③ 把方程①代入③,得2×3+y =5.∴y =-1. 把y =-1代入①,得x =4.∴原方程组的解为⎩⎪⎨⎪⎧x =4,y =-1.请你解决以下问题:(1)模仿小军的“整体代换法”解方程组:⎩⎪⎨⎪⎧3x -2y =5,①9x -4y =19;②(2)已知x ,y 满足方程组⎩⎪⎨⎪⎧3x 2-2xy +12y 2=47,①2x 2+xy +8y 2=36,② 求x 2+4y 2的值.专题二、二元一次方程组的同解、错解、参数问题1.关于方程组同解问题的字母系数的求法:当两个二元一次方程组同解时,可利用两个已知的二元一次方程(不含字母系数的方程)组成方程组,并求出方程组的解,然后利用这个解得到关于字母系数的方程组,进而求出字母系数.2.求二元一次方程组中的字母参数的一般步骤:(1)把字母系数看作已知数并解方程组;(2)根据方程组的特点,得到关于字母系数的方程;(3)解方程求得字母系数.类型之一 方程组的同解问题已知方程组⎩⎪⎨⎪⎧4x -3y =19,ax -by =-6和⎩⎪⎨⎪⎧bx -ay =-6,5x +3y =-10的解相同,求代数式(4a -3b )2 018的值.【变式跟进】1.若关于x 、y 的方程组⎩⎪⎨⎪⎧mx +2ny =4,x +y =1与⎩⎪⎨⎪⎧x -y =3,nx +(m -1)y =3有相同的解.(1)求这个相同的解;(2)求m 、n 的值.类型之二 方程组的错解问题已知方程组⎩⎪⎨⎪⎧ax +by =3,5x -cy =1,甲正确地解得⎩⎪⎨⎪⎧x =2,y =3,而乙粗心地把c 看错了,得⎩⎪⎨⎪⎧x =3,y =6.试求出a 、b 、c 的值.【变式跟进】2.甲、 乙两人共同解关于x 、y 的方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-10;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 020+(-b )2 019的值.3.由于粗心,在解方程组⎩⎪⎨⎪⎧□x -2y =5,7x -4y =△时,小明把系数□抄错了,得到的解是⎩⎨⎧x =-13,y =-103;小亮把常数△抄错了,得到的解是⎩⎪⎨⎪⎧x =-9,y =-16.请找出错误,并写出□和△原来的数字,再求出正确的解.4.甲、乙两人同时解方程组⎩⎪⎨⎪⎧ax +by =8,cx -3y =-2,甲正确解得⎩⎪⎨⎪⎧x =1,y =-1;乙因为抄错c 的值,解得⎩⎪⎨⎪⎧x =2,y =-6.求a 、b 、c 的值.类型之三 方程组的参数问题如果2x +3y -z =0,且x -2y +z =0,那么xz (z ≠0)的值为( )A .-17B .-15 C.12 D .-3【变式跟进】5.已知|a -2b +7|+(2c +a -7)2=0,若b ≠0,求a +cb 的值.6.阅读以下内容:已知实数x 、y 满足x +y =2,且⎩⎪⎨⎪⎧3x +2y =7k -2,①2x +3y =6,②,求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x 、y 的方程组⎩⎪⎨⎪⎧3x +2y =7k -2,2x +3y =6,再求k 的值.乙同学:先将方程组中的两个方程相加,再求k 的值.丙同学:先解方程组⎩⎪⎨⎪⎧x +y =2,2x +3y =6,再求k 的值.你最欣赏甲、乙、丙哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路,运算的简洁性,以及你依此可以总结什么解题策略等等)专题三、二元一次方程组的实际应用专题1和、差、倍、分问题1.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4 000元,那么当日售出成人票张.2.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”3.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40 kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?4.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”两个牧童各有多少只羊?5.2018年某市“奥博园丁杯队名比赛场次胜负积分坏小子7 7 0 14后街男孩7 6 1 13极速7 5 2 12小小牛7 4 3 11注:平局后出现加时赛,一定比出胜负.问:(1)某队的负场总积分能等于它的胜场总积分的2倍吗?(2)某队的胜场总积分能等于它的负场总积分的5倍吗?专题2按比例分配、原料的混合与配套问题1.把浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%消毒酒精溶液500克,求甲、乙两种酒精溶液各多少克?2.某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1 000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?3.在“某地大地震”灾民安置工作中,某企业捐助了一批板材24 000 m2,某灾民安置点用该企业捐助的这批板材全部搭建成A,B两种型号的板房,供2 300名灾民临时居住.已知建一间A型板房和一间B型板房问:该灾民安置点搭建A型板房和B型板房各多少间?4.为迎接新年,某工艺厂准备生产A、B两种礼盒.这两种礼盒主要用甲、乙两种原料,已知生产一套A 礼盒需要甲原料和乙原料分别为4盒和3盒;生产一套B礼盒需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20 000盒和30 000盒,如果所进原料全部用完,求该厂能生产A、B两种礼盒各多少套?5现有50万单位的维生素A和40万单位的维生素B,请你算一算,能制成甲、乙两种食物各多少千克?专题3 行程问题与顺逆流(风)问题1.甲、乙两人在400米的环形跑道上练习赛跑.如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.求甲、乙两人的平均速度.2.甲、乙两码头相距60千米,某船往返两地,顺流时用3小时,逆流时用4小时,求船在静水中的航速及水流速度.3.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m ,下坡路每分钟走80 m ,上坡路每分钟走40 m ,则他从家里到学校需10 min ,从学校到家里需15 min .问:从小华家到学校的平路和下坡路各有多远?4.A 、B 两地相距176 km ,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A ,B 两地同时出发赶往滑坡点疏通公路.10时,甲队赶到,半小时后乙队赶到.若滑坡受损公路长1 km ,甲队行进的速度是乙队的32倍多5 km ,求甲、乙两队赶路的速度.5.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.专题4 几何问题1.一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°,则可得到的方程组为( )A .⎩⎪⎨⎪⎧x =y -50x +y =180B .⎩⎪⎨⎪⎧x =y +50x +y =180C .⎩⎪⎨⎪⎧x =y -50x +y =90D .⎩⎪⎨⎪⎧x =y +50x +y =902.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是( )A .⎩⎪⎨⎪⎧x +2y =75y =3xB .⎩⎪⎨⎪⎧x +2y =75x =3yC .⎩⎪⎨⎪⎧2x +y =75y =3xD .⎩⎪⎨⎪⎧2x +y =75x =3y3.如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是 .4.根据图中的信息,求梅花鹿和长颈鹿现在的高度.5.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 cm ,放入一个大球水面升高 cm ; (2)如果要使水面上升到50 cm ,应放入大球、小球各多少个?6.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,谁的设计符合实际,按照他的设计,鸡场的面积多大?二元一次方程组的解法小专题1.解方程组:⎩⎪⎨⎪⎧2x +y =3,①3x -5y =11.② 解:由①,得,y =3-2x.③把③代入②,得3x -5(3-2x)=11.解得x =2.将x =2代入①,得y =-1.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.2.解方程组:⎩⎪⎨⎪⎧a =2b +8,①a =-b -1.② 解:把①代入②,得2b +8=-b -1,解得b =-3.把b =-3代入②,得a =-(-3)-1=2.∴这个方程组的解是⎩⎪⎨⎪⎧a =2,b =-3.3.解方程组:⎩⎪⎨⎪⎧x +y =6,①2x -y =9.② 解:①+②,得3x =15.∴x =5.将x =5代入①,得5+y =6.∴y =1.∴原方程组的解为⎩⎪⎨⎪⎧x =5,y =1.4.解方程组:⎩⎪⎨⎪⎧y =2x ,①3y +2x =8.②解:把①代入②,得6x +2x =8,解得x =1.把x =1代入①,得y =2.∴原方程组的解是⎩⎪⎨⎪⎧x =1,y =2.5.解方程组:⎩⎪⎨⎪⎧3m -2n =-13,①5m +8n =1.② 解:由①,得2n =3m +13.③把③代入②,得5m +4(3m +13)=1.解得m =-3.把m =-3代入③,得2n =3×(-3)+13.解得n =2.∴原方程组的解是⎩⎪⎨⎪⎧m =-3,n =2.6.解方程组:⎩⎪⎨⎪⎧x +0.4y =40,①0.5x +0.7y =35.② 解:①×0.5,得0.5x +0.2y =20.③②-③,得0.5y =15.解得y =30.把y =30代入①,得x +0.4×30=40.解得x =28.∴原方程组的解为⎩⎪⎨⎪⎧x =28,y =30. 7.解方程组:⎩⎪⎨⎪⎧x -2y =3,①3x +4y =-1.② 解:①×2+②,得5x =5.解得x =1.把x =1代入①,得y =-1.∴原方程组的解为⎩⎪⎨⎪⎧x =1,y =-1.8.解方程组:⎩⎪⎨⎪⎧5x +4y =6,①2x +3y =1.②解:①×2,得10x +8y =12.③②×5,得10x +15y =5.④④-③,得7y =-7.解得y =-1.把y =-1代入②,得2x +3×(-1)=1.解得x =2.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =-1.9.解方程组:⎩⎪⎨⎪⎧x =y -52,①4x +3y =65.②解:把①代入②,得4×y -52+3y =65. 解得y =15.把y =15代入①,得x =15-52=5. ∴原方程组的解为⎩⎪⎨⎪⎧x =5,y =15.10.解方程组:⎩⎪⎨⎪⎧3x +5y =19,①8x -3y =67.② 解:①×3,得9x +15y =57.③②×5,得40x -15y =335.④③+④,得49x =392.解得x =8.把x =8代入①,得3×8+5y =19.解得y =-1.∴原方程组的解为⎩⎪⎨⎪⎧x =8,y =-1.11.解方程组:⎩⎨⎧x -y 2=9,①x 3-y 2=7.② 解:①-②,得2x 3=2.解得x =3. 把x =3代入①,得3-y 2=9.解得y =-12. ∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =-12.12.解方程组:⎩⎪⎨⎪⎧x 2=y 3,①3x +4y =18.②解:由①,得x =2y 3.③ 把③代入②,得2y +4y =18.解得y =3.把y =3代入③,得x =2×33=2.∴原方程组的解为⎩⎪⎨⎪⎧x =2,y =3.13.解方程组:⎩⎪⎨⎪⎧x 4+y 3=13,3(x -4)=4(y +2).解:整理,得⎩⎪⎨⎪⎧3x +4y =4,①3x -4y =20.② ①+②,得6x =24.解得x =4.把x =4代入①,得3×4+4y =4.解得y =-2.∴原方程组的解为⎩⎪⎨⎪⎧x =4,y =-2.14.解方程组:⎩⎪⎨⎪⎧x +2y +12=4(x -1),3x -2(2y +1)=4.解:整理,得⎩⎪⎨⎪⎧6x -2y =9,①3x -4y =6.② ①×2,得12x -4y =18.③③-②,得x =43. 把x =43代入①,得6×43-2y =9.解得y =-12. ∴原方程组的解为⎩⎨⎧x =43,y =-12.15.解方程组:⎩⎪⎨⎪⎧2x -y =5,①x -1=12(2y -1).② 解:原方程组可化为⎩⎪⎨⎪⎧y =2x -5,①2x -2y =1.② 将①代入②,得2x -2(2x -5)=1,解得x =92. 将x =92代入①,得y =4.∴原方程组的解为⎩⎪⎨⎪⎧x =92,y =4.16.阅读材料:善于思考的小军在解方程组⎩⎪⎨⎪⎧2x +5y =3,①4x +11y =5②时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5, 即2(2x +5y)+y =5,③把方程①代入③,得2×3+y =5.∴y =-1.把y =-1代入①,得x =4.∴原方程组的解为⎩⎪⎨⎪⎧x =4,y =-1. 请你解决以下问题:(1)模仿小军的“整体代换法”解方程组:⎩⎪⎨⎪⎧3x -2y =5,①9x -4y =19;② (2)已知x ,y 满足方程组⎩⎪⎨⎪⎧3x 2-2xy +12y 2=47,①2x 2+xy +8y 2=36,②求x 2+4y 2的值. 解:(1)将方程②变形:9x -6y +2y =19,即3(3x -2y)+2y =19,③把方程①代入③,得3×5+2y =19.∴y =2.把y =2代入①,得x =3.∴原方程组的解为⎩⎪⎨⎪⎧x =3,y =2. (2)①+②×2,得(3x 2+12y 2)+(4x 2+16y 2)=47+72,整理得7x 2+28y 2=119,即7(x 2+4y 2)=119,两边同时除以7,得x 2+4y 2=17.培优专题(三)__二元一次方程组的同解、错解、参数问题__[学生用书P39]1.关于方程组同解问题的字母系数的求法:当两个二元一次方程组同解时,可利用两个已知的二元一次方程(不含字母系数的方程)组成方程组,并求出方程组的解,然后利用这个解得到关于字母系数的方程组,进而求出字母系数.2.求二元一次方程组中的字母参数的一般步骤:(1)把字母系数看作已知数并解方程组;(2)根据方程组的特点,得到关于字母系数的方程;(3)解方程求得字母系数.[学生用书P39]类型之一 方程组的同解问题[2018春·巴州区期末]已知方程组⎩⎪⎨⎪⎧4x -3y =19,ax -by =-6和⎩⎪⎨⎪⎧bx -ay =-6,5x +3y =-10的解相同,求代数式(4a -3b )2018的值.解:联立,得⎩⎪⎨⎪⎧4x -3y =19,①5x +3y =-10.② ①+②,得9x =9,解得x =1.把x =1代入①,得y =-5.把⎩⎪⎨⎪⎧x =1,y =-5代入⎩⎪⎨⎪⎧ax -by =-6,bx -ay =-6,得⎩⎪⎨⎪⎧a +5b =-6,5a +b =-6, 解得a =b =-1.则原式=[4×(-1)-3×(-1)]2 018=1.【变式跟进】1.[2017·杭州一模]若关于x 、y 的方程组⎩⎪⎨⎪⎧mx +2ny =4,x +y =1与⎩⎪⎨⎪⎧x -y =3,nx +(m -1)y =3有相同的解. (1)求这个相同的解;(2)求m 、n 的值.解:(1)联立,得⎩⎪⎨⎪⎧x +y =1,x -y =3,解得⎩⎪⎨⎪⎧x =2,y =-1. (2)把⎩⎪⎨⎪⎧x =2,y =-1.代入⎩⎪⎨⎪⎧mx +2ny =4,nx +(m -1)y =3. 得⎩⎪⎨⎪⎧m -n =2,2n -m =2, 解得⎩⎪⎨⎪⎧m =6,n =4. 类型之二 方程组的错解问题[2018春·绍兴期末]已知方程组⎩⎪⎨⎪⎧ax +by =3,5x -cy =1,甲正确地解得⎩⎪⎨⎪⎧x =2,y =3,而乙粗心地把c 看错了,得⎩⎪⎨⎪⎧x =3,y =6.试求出a 、b 、c 的值. 解:根据题意,得⎩⎪⎨⎪⎧2a +3b =3,3a +6b =3, 解得⎩⎪⎨⎪⎧a =3,b =-1.把⎩⎪⎨⎪⎧x =2,y =3代入方程5x -cy =1,得10-3c =1, 解得c =3.故a =3,b =-1 c =3.【变式跟进】2.甲、 乙两人共同解关于x 、y 的方程组⎩⎪⎨⎪⎧ax +5y =15,①4x -by =-2.②由于甲看错了方程①中的a ,得到方程组的解为⎩⎪⎨⎪⎧x =-3,y =-10;乙看错了方程②中的b ,得到方程组的解为⎩⎪⎨⎪⎧x =5,y =4.试计算a 2 020+(-b )2 019的值. 解:将⎩⎪⎨⎪⎧x =-3,y =-10代入方程组中的4x -by =-2,得-12+10b =-2,解得b =1. 将⎩⎪⎨⎪⎧x =5,y =4代入ax +5y =15,得5a +20=15,解得a =-1. 则a 2 020+(-b )2 019=1-1=0.3.由于粗心,在解方程组⎩⎪⎨⎪⎧□x -2y =5,7x -4y =△时,小明把系数□抄错了,得到的解是⎩⎨⎧x =-13,y =-103;小亮把常数△抄错了,得到的解是⎩⎪⎨⎪⎧x =-9,y =-16.请找出错误,并写出□和△原来的数字,再求出正确的解. 解: 由题意,得7×⎝⎛⎭⎫-13-4×⎝⎛⎭⎫-103=△, 解得△=11;-9×□-2×(-16)=5,解得□=3.则原方程组是⎩⎪⎨⎪⎧3x -2y =5, ①7x -4y =11.② ①×2-②,得-x =-1,解得x =1.把x =1代入①,得3×1-2y =5,解得y =-1.所以原方程组的解是⎩⎪⎨⎪⎧x =1,y =-1.4.甲、乙两人同时解方程组⎩⎪⎨⎪⎧ax +by =8,cx -3y =-2,甲正确解得⎩⎪⎨⎪⎧x =1,y =-1;乙因为抄错c 的值,解得⎩⎪⎨⎪⎧x =2,y =-6.求a 、b 、c 的值.解:根据题意,得⎩⎪⎨⎪⎧a -b =8,c +3=-2,2a -6b =8,解得⎩⎪⎨⎪⎧a =10,b =2,c =-5.类型之三 方程组的参数问题如果2x +3y -z =0,且x -2y +z =0,那么xz(z ≠0)的值为( A )A .-17B .-15C.12D .-3 【解析】 联立,得⎩⎪⎨⎪⎧2x +3y -z =0,①x -2y +z =0.②∵要求x z 的值,∴可以消去y .由①×2+②×3,得7x +z =0.③∵z ≠0,∴将③两边都除以z ,得7x z +1=0,解得x z =-17. 【变式跟进】5.已知|a -2b +7|+(2c +a -7)2=0,若b ≠0,求a +c b的值. 解:依题意,得⎩⎪⎨⎪⎧a -2b =-7,①2c +a =7.② 由①得b =a +72, 由②得c =7-a 2. 则a +c b =a +7-a 2a +72=a +7a +7=1.6.阅读以下内容:已知实数x 、y 满足x +y =2,且⎩⎪⎨⎪⎧3x +2y =7k -2,①2x +3y =6,② 求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x 、y 的方程组⎩⎪⎨⎪⎧3x +2y =7k -2,2x +3y =6, 再求k 的值.乙同学:先将方程组中的两个方程相加,再求k 的值.丙同学:先解方程组⎩⎪⎨⎪⎧x +y =2,2x +3y =6,再求k 的值. 你最欣赏甲、乙、丙哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路,运算的简洁性,以及你依此可以总结什么解题策略等等)解:(答案不唯一)我最欣赏乙同学的解题思路,解答如下:⎩⎪⎨⎪⎧3x +2y =7k -2,①2x +3y =6.② ①+②,得5x +5y =7k +4,∴x +y =7k +45. ∵x +y =2,∴7k +45=2, 解得k =67. 评价:乙同学观察到了方程组中未知数x 、y 的系数,以及与x +y =2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x 、y 的值就能解决问题,思路比较灵活,计算量小.二元一次方程组的实际应用专题练习专题1 和、差、倍、分问题1.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4 000元,那么当日售出成人票50张.2.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为⎩⎪⎨⎪⎧5x +2y =102x +5y =8.3.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40 kg ,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各多少千克? (2)这些采摘的黄瓜和茄子可赚多少元?解:(1)设采摘黄瓜x 千克,茄子y 千克.根据题意,得⎩⎪⎨⎪⎧x +y =40,x +1.2y =42.解得⎩⎪⎨⎪⎧x =30,y =10. 答:采摘的黄瓜和茄子各30千克、10千克.(2)30×(1.5-1)+10×(2-1.2)=23(元). 答:这些采摘的黄瓜和茄子可赚23元.4.有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍.”乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”两个牧童各有多少只羊?解:设两个牧童分别有x 只羊,y 只羊.根据题意,得⎩⎪⎨⎪⎧x +1=2(y -1),x -1=y +1.解得⎩⎪⎨⎪⎧x =7,y =5. 答:两个牧童各有7只、5只羊.5.2018年某市“奥博园丁杯”篮球赛前四强积分榜如下:队名 比赛场次胜 负 积分 坏小子 7 7 0 14 后街男孩 7 6 1 13 极速 7 5 2 12 小小牛74311注:平局后出现加时赛,一定比出胜负.问:(1)某队的负场总积分能等于它的胜场总积分的2倍吗? (2)某队的胜场总积分能等于它的负场总积分的5倍吗? 解:(1)从表中可知胜一场得2分,负一场得1分.设一个队胜的场次为x 场,负的场次为y 场,由题意,得⎩⎪⎨⎪⎧x +y =7,y =2×2x.解得⎩⎨⎧x =75,y =285.因为胜的场次不可能为分数,所以某队的负场总积分不能等于它的胜场总积分的2倍. (2)设一个队胜的场次为a 场,负的场次为b 场,由题意得⎩⎪⎨⎪⎧a +b =7,2a =5b.解得⎩⎪⎨⎪⎧a =5,b =2. 答:某队的胜场总积分能等于它的负场总积分的5倍.专题2 按比例分配、原料的混合与配套问题1.把浓度分别为90%和60%的甲、乙两种酒精溶液,配制成浓度是75%消毒酒精溶液500克,求甲、乙两种酒精溶液各多少克?解:设甲种酒精溶液x 克,乙种酒精y 克,可得方程组⎩⎪⎨⎪⎧x +y =500,90%x +60%y =75%×500.解得⎩⎪⎨⎪⎧x =250,y =250. 答:甲种酒精溶液250克,乙种酒精250克.2.某种仪器由1个A 部件和1个B 部件配套构成,每个工人每天可以加工A 部件1 000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?解:设安排生产A 部件和B 部件的工人分别为x 人,y 人.根据题意,得⎩⎪⎨⎪⎧x +y =16,1 000x =600y.解得⎩⎪⎨⎪⎧x =6,y =10. 答:安排生产A 部件和B 部件的工人分别为6人,10人.3.在“某地大地震”灾民安置工作中,某企业捐助了一批板材24 000 m 2,某灾民安置点用该企业捐助的这批板材全部搭建成A ,B 两种型号的板房,供2 300名灾民临时居住.已知建一间A 型板房和一间B 型板房所需板材及能安置的人数如下表所示:问:该灾民安置点搭建A 型板房和B 型板房各多少间?解:设该灾民安置点搭建A 型板房x 间,B 型板房y 间.由题意得,⎩⎪⎨⎪⎧5x +8y =2 300,54x +78y =24 000.解得⎩⎪⎨⎪⎧x =300,y =100. 答:该灾民安置点搭建A 型板房300间,B 型板房100间.4.为迎接新年,某工艺厂准备生产A 、B 两种礼盒.这两种礼盒主要用甲、乙两种原料,已知生产一套A 礼盒需要甲原料和乙原料分别为4盒和3盒;生产一套B 礼盒需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20 000盒和30 000盒,如果所进原料全部用完,求该厂能生产A 、B 两种礼盒各多少套?解:设生产A 礼盒x 套,生产B 礼盒y 套,则⎩⎪⎨⎪⎧4x +5y =20 000,3x +10y =30 000.解得⎩⎪⎨⎪⎧x =2 000,y =2 400.答:该厂能生产A 礼盒2 000套,B 礼盒2 400套.5.已知甲、乙两种食物的维生素A 、B 的含量如下表:现有50万单位的维生素A 和40万单位的维生素B ,请你算一算,能制成甲、乙两种食物各多少千克? 解:设能制成甲、乙两种食物分别为x 千克和y 千克.则⎩⎪⎨⎪⎧600x +700y =500 000,800x +400y =400 000.解得⎩⎪⎨⎪⎧x =250,y =500. 答:制成甲、乙两种食物分别为250千克和500千克.专题3 行程问题与顺逆流(风)问题1.甲、乙两人在400米的环形跑道上练习赛跑.如果两人同时同地反向跑,经过25秒第一次相遇;如果两人同时同地同向跑,经过250秒甲第一次追上乙.求甲、乙两人的平均速度.解:甲、乙每秒分别跑x 米,y 米,则根据题意,得⎩⎪⎨⎪⎧25(x +y )=400,250(x -y )=400.解得⎩⎪⎨⎪⎧x =8.8,y =7.2. 答:甲、乙每秒分别跑8.8米、7.2米.2.甲、乙两码头相距60千米,某船往返两地,顺流时用3小时,逆流时用4小时,求船在静水中的航速及水流速度.解:船在静水中的速度是x 千米/时,水流速度为y 千米/时,则⎩⎪⎨⎪⎧3(x +y )=60,4(x -y )=60.解得⎩⎪⎨⎪⎧x =17.5,y =2.5. 答:船在静水中的速度是17.5千米/时,水流速度为2.5千米/时.3.小华从家里到学校的路是一段平路和一段下坡路,假设他始终保持平路每分钟走60 m ,下坡路每分钟走80 m ,上坡路每分钟走40 m ,则他从家里到学校需10 min ,从学校到家里需15 min .问:从小华家到学校的平路和下坡路各有多远?解:设平路有x m ,下坡路有y m ,则⎩⎨⎧x 60+y80=10,x 60+y40=15.解得⎩⎪⎨⎪⎧x =300,y =400. 答:小华家到学校的平路和下坡路各为300 m ,400 m .4.A 、B 两地相距176 km ,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分别从A ,B 两地同时出发赶往滑坡点疏通公路.10时,甲队赶到,半小时后乙队赶到.若滑坡受损公路长1 km ,甲队行进的速度是乙队的32倍多5 km ,求甲、乙两队赶路的速度.解:设甲队的速度为x 千米/时,则乙队为y 千米/时.由题意得⎩⎪⎨⎪⎧x =32y +5,2x +2.5y =176-1.解得⎩⎪⎨⎪⎧x =50,y =30.答:甲队赶路的速度为50 km /h ,乙队赶路的速度为30 km /h .5.一辆汽车从A 地驶往B 地,前13路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60 km /h ,在高速公路上行驶的速度为100 km /h ,汽车从A 地到B 地一共行驶了2.2 h .请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.解:答案不唯一,问题:普通公路和高速公路各为多少千米?解:设普通公路长为x km ,高速公路长为y km .根据题意,得⎩⎪⎨⎪⎧2x =y ,x 60+y100=2.2.解得⎩⎪⎨⎪⎧x =60,y =120. 答:普通公路长为60 km ,高速公路长为120 km .问题:汽车在普通公路和高速公路上各行驶了多少小时?解:设汽车在普通公路上行驶了x h ,高速公路上行驶了y h .根据题意,得⎩⎪⎨⎪⎧x +y =2.2,60x×2=100y.解得⎩⎪⎨⎪⎧x =1,y =1.2. 答:汽车在普通公路上行驶了1 h ,高速公路上行驶了1.2 h .专题4 几何问题1.一副三角板按如图方式摆放,且∠1比∠2大50°,若设∠1=x°,∠2=y°,则可得到的方程组为(D )A .⎩⎪⎨⎪⎧x =y -50x +y =180 B .⎩⎪⎨⎪⎧x =y +50x +y =180 C .⎩⎪⎨⎪⎧x =y -50x +y =90 D .⎩⎪⎨⎪⎧x =y +50x +y =902.如图,10块相同的小长方形墙砖拼成一个长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程正确的是(B )A .⎩⎪⎨⎪⎧x +2y =75y =3xB .⎩⎪⎨⎪⎧x +2y =75x =3yC .⎩⎪⎨⎪⎧2x +y =75y =3xD .⎩⎪⎨⎪⎧2x +y =75x =3y3.如图1,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20,则图2中Ⅱ部分的面积是100.4.根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在的高度为x m ,长颈鹿现在的高度为y m .根据题意,得⎩⎪⎨⎪⎧y -x =4,y =3x +1.解得⎩⎪⎨⎪⎧x =1.5,y =5.5.答:梅花鹿现在的高度为1.5 m ,长颈鹿现在的高度为5.5 m .5.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm ,放入一个大球水面升高3cm ; (2)如果要使水面上升到50 cm ,应放入大球、小球各多少个?解:设应放入x 个大球,y 个小球.由题意得⎩⎪⎨⎪⎧3x +2y =50-26,x +y =10.解得⎩⎪⎨⎪⎧x =4,y =6. 答:应放入4个大球,6个小球.6.一个长方形的养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米,谁的设计符合实际,按照他的设计,鸡场的面积多大?解:根据小王的设计可以设垂直于墙的一边长为x 米,平行于墙的一边长为y 米.根据题意得⎩⎪⎨⎪⎧2x +y =35,y -x =5.解得⎩⎪⎨⎪⎧x =10,y =15.又因为墙的长度只有14米,所以小王的设计不符合实际.根据小赵的设计可以设垂直于墙的一边长为a 米,平行于墙的一边长为b 米.根据题意得⎩⎪⎨⎪⎧2a +b =35,b -a =2.解得⎩⎪⎨⎪⎧a =11,b =13.又因为墙的长度有14米,显然小赵的设计符合要求.此时鸡场的面积为11×13=143(平方米).答:小赵的设计符合实际,按照他的设计,鸡场的面积为143平方米.。

二元一次方程应用题分类复习(整理)

二元一次方程应用题分类复习(整理)

- 1 -二元一次方程应用题分类复习日期: 2月 8日1、知道用方程组解决实际问题的一般步骤2、读懂并能找出实际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.列二元一次方程组解应用题(1)列二元一次方程组解应用题的一般步骤 ①设出题中的两个未知数; ②找出题中的两个等量关系;③根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组; ④解这个方程组,求出未知数的值;⑤检验所得结果的正确性及合理性并写出答案. (2)用方程解决实际问题的几个注意事项①先弄清题意,找出相等关系,再按照相等关系来选择未知数和列代数式,比先设未知数,再找出含有未知数的代数式,再找相等关系更为合理.②“文字”与“图表”转换:有的应用题,用文字语言表达较难,就可以用表格或图形来分析,这样既直观,也易理解题意.③所列方程两边的代数式的意义必须一致,单位要统一,数量关系一定要相等. ④要养成“验”的好习惯,即所求结果要使实际问题有意义. ⑤不要漏写“答”,“设”和“答”都不要丢掉单位名称. ⑥分析过程可以只写在草稿纸上,但一定要认真.⑦对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程,即未知数的个数应与方程组中方程的个数相等.例1:配套问题1. 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x 人生产螺栓,y人生产螺母,则每天可生产螺栓25x 个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套- 2 -成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a 件甲产品和b 件乙产品配成一套,那么甲产品数的b 倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a 件,乙产品b件,丙产品c 件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数.跟踪练习1、木工厂有28个工人,每个工人一天加工桌子数与加工椅子数的比是9:20,现在如何安排劳动力,使生产的一张桌子与4只椅子配套?2、某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?3、现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,用多少张铁皮做盒身,多少张铁皮做盒底可以使盒身与盒底正好配套? 例2、数字问题2.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x ,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:十位上的数个位上的数对应的两位数相等关系 原两位数xy10x +y10x+y=x +y+9- 3 -解方程组109101027x y x y y x x y +=++⎧⎨+=++⎩,得14x y =⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x 的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.跟踪练习1、一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.2、一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数.某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克?2、某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?- 4 -3、学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,信封个数分别为多少个?4、为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?1.在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B的距离为120千米,B到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.2.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得- 5 -()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.跟踪练习1、甲、乙二人相距6km,二人同向而行,甲3小时可追上乙;相向而行,1小时相遇。

第八章二元一次方程组解法复习课课件

第八章二元一次方程组解法复习课课件
当X=4,y=15 当X=7,y=24 15=4k+b 24=7x+b
k 3 解得: b 3
2.在y= ax bx c 中,当 x 0 时y的值是-7, x 1 时y的值是-9, x 1 时y的值是-3,求 a、b、c 的 值 当x=0 y=7 -7= c
2
当x=1 y=-9
x 1 x 2 x 3 y 16 y 12 y 8
x 4 y 4
1、方程x+2y=7在正整数范围内的解有( C ) A 1个 B 2个 C 3个 D 无数个
解后语:二元一次方程一般有无数个解,但它的解 若受到限制往往是有限个解。
y 1 z 17 y 2 z 14 y 3 z 11 y 4 z 8 y 5 z 5 y 6 z 2 y 1 z 7 y 2 z 1

3(09黑)13题一宾馆有二人间、三人间、四人间三种客房供游客租住, 某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满, x 2 x 3 C 租房方案有( ) x y z 7 y 4 y 2 z 2 A4种 B3种 C2种D1种 z 1 2 x 3 y 4 z 20
解:设新建1个地上停车位为x元,一个个地下停车位为y元
x y 0.5 3 x 2 y 1.1
x 0.1 解得: y 0.4
练习:
2 不是 1、 -1=3y 是不是二元一次方程?答: x
4、当方程组中两个方程的某个未知数 的系数相等或互为相反数时, 把方程的两边分别相减或相加来消去这个 未知数,得到一个一元一次方程。 当方程组中两个未知数系数的绝对值均不相 等,可以把两个方程的两边各自乘以一个适 当的数,使某一个未知数的绝对值相等。

二元一次方程整章复习

二元一次方程整章复习

{
y=2x-3 2x+4y=9 3x -y= -8 x+4y= 5
① ②
(2)方程组中某一未知数的系数是 1 或 -1. )方程组中某一未知数的系数是
{
① ②
2. 加减消元法
同一未知数的系数相等或相反数. (1)方程组中同一未知数的系数相等或相反数 )方程组中同一未知数的系数相等或相反数
{
3x -y= -8 x +y= 5
说明:要判断结果是否正确,应像解一元一次方程 说明:要判断结果是否正确, 那样进行检验,检验时, 那样进行检验,检验时,注意要把未知数的值代入 方程组中的每一个方程, 方程组中的每一个方程,能使每一个方程都成立的 一对数才是方程组的解。 一对数才是方程组的解。
1.解二元一次方程组的基本思路是
消元
2x-5y=7① 2.用加减法解方程组{ 由①与② 2x+3y=2② 相减 直接消去—— x ———— 3.用加减法解方程组{ 由 6x-5y=12② ①与②——,可直接消去——— 4x+5y=28①
第八章 二元一次方程组 主要习题整理
类型题1 类型题1 1 m − n +3 m−2 2 = 0是关于 x, y P54的第11题:已知方程4 x − 3 y 的二元一次方程,求 m − 6n + 1的值。 解:依题意可得:
m − 2 = 1 1 2 m − n + 3 = 1
m = 3 解得: n = 3.5 所以 m − 6n + 1 = 3 − 6 × 3.5 + 1 = −17
实际问题与二元一次方程组
列方程组解应用题的基本步骤: 列方程组解应用题的基本步骤:
1、审题,设未知数。 、审题,设未知数。 2、找等量关系。 、找等量关系。 3、列出方程组,并解答。 、列出方程组,并解答。 4、检验并答。 、检验并答。

二元一次方程组复习

二元一次方程组复习

累计运货吨数 15.5 35 (吨) 现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如 果按每吨付运费30元计算,问货主应付运费多少元?
24、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个 盒身与两个盒底配成一套罐头盒。现有36张白铁皮,用多少张制盒身, 多少张制盒底才能恰好配套?
A.由①得x=,代入② B.由①得y=,代入② C.由②得y=-,代入① D.由②得x=3+2y,代入① 12、方程3y+5x=27与下列的哪个方程所组成的方程组的解是( ) A.4x+6y=-6 B.4x+7y-40=0 C.2x-3y=13 D.以上答案都不对 13、若方程组的解互为相反数,则m的值等于( ) A.-7 B.10 C.-10 D.-12 14、二元一次方程组的解满足方程x-2y=5,那么k的值为( ) A. B. C.-5 D.1 15、如果一个两位数的十位数字与个位数字之和为6,那么这样的两位数 的个数是( ) A.3 B.6 C.5 D.4 16、已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两 数.设甲数为x,乙数为y,由题意可得方程组( ) A. B. C. D. 17、已知有含盐20%与含盐5%的盐水,若配制含盐14%的盐水200千 克,设需含盐20%的盐水x千克,含盐5%的盐水y千克,则下列方程组中 正确的是( ) A. B. C. D. 18、甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船 用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水 流速度为y千米/时,则下列方程组中正确的是( ) A. B. C. D. 19、甲、乙两条绳共长17 m,如果甲绳减去,乙绳增加1 m,两条绳长相 等,求甲、乙两条绳各长多少?若设甲绳长x m,乙绳长y m,则得方程组 ( ) A. B. C. D. 20、一条船的顺流航速是逆流航速的3倍,这条船在静水中的航速与河 水的流速之比是( ) A.3∶1 B.2∶1 C.1∶1 D.5∶2 21、甲、乙两个两位数,若把甲数放在乙数的左边,组成的四位数是乙

“二元一次方程组”复习指导

“二元一次方程组”复习指导

“二元一次方程组”复习指导一、复习目标1.能说出什么是二元一次方程(组)及它的解,会检验某对数值是不是某个二元一次方程(组)的解;2.会灵活运用代入法和加减法解二元一次方程组;3.会根据给出的实际问题,列出二元一次方程组,从而求得问题的解,并能检验所列方程组的解是否正确、合理.二、重点难点重点:二元一次方程组的解法和列二元一次方程组解决实际问题.难点:列二元一次方程组解决实际问题.四、知识要点1.二元一次方程:含有两个未知数,并且未知项.的最高次数为1的整式方程叫做二元一次方程.2.二元一次方程的一个解:适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解.3.二元一次方程的正整数解:适合二元一次方程的每对未知数的值都是正整数,一般是有限个.4.二元一次方程的一般式:c by ax =+ (a 、b 不为0)5.二元一次方程组:含有两个未知数的两个一次方程所组成的方程组叫做二元一次方程组.6.二元一次方程组的解:二元一次方程组中两个方程的公共解叫做二元一次方程组的解.7.二元一次方程组的解法:①代入消元法(简称代入法);②加减消元法(简称加减法)8.列方程组解应用题的一般步骤:(1)审题,找出题目中的相等关系;(2)设求知数;(3)根据题目中的相等关系列方程,并组成方程组;(4)解方程组;并检验解的正确性;(5)检验作答.9.列方程组解应用题要领:(1)善于将生活语言代数化;(2)掌握一定的设元技巧(直接设元,间接设元,辅助设元);(3)善于寻找数量间的等量关系.10.掌握化归思想在本章内容中,蕴涵着一个重要的数学思想——化归思想.化归思想的突出运用有:①化二元为一元;②化复杂为简单;③化实际问题为数学问题.把实际问题化为数学问题来处理,这是利用数学知识解决实际问题的基本途径.五、考点透视解二元一次方程组和用二元一次方程组解决实际问题是中考中的重要考点,题型多以选择、填空、计算和应用题出现,且近几年常与函数(将在八年级学习)等题结合起来,综合性强,能解决实际问题,符合社会发展的需要,需引起同学们的注意.例1 解方程组⎩⎨⎧=-=+.52,4y x y x 分析:此题可以用两种方法求解,若用代入法,则可将①变形,得到x y -=4③,把③代入②,消去y ;若用加减法,则可直接用①+②,消去y .解法一:由①得x y -=4,③将把③代入②,得5)4(2=--x x ,解得3=x .把3=x 代入③,得1=y .∴原方程组的解是⎩⎨⎧==13y x . 解法二:①+②,得93=x ,解得3=x .把3=x 代入②,得1=y .∴原方程组的解是⎩⎨⎧==13y x . 例2 今年第8号台风“莫拉克”给台湾同胞造成巨大的经济损失.某学校积极组织捐款支援灾区,七年级(1)班55名同学共捐款500元,捐款情况如下表.表中捐款8元和10元的人数不小心被墨水污染已看不清楚,请你帮助确定表中数据,并说明理由.① ②分析:本题中存在着两个等量关系:(1)学生人数共55人;(2)捐款钱数共500元.根据这两个等量关系,不难列出方程组求解.解:设捐款8元的有x 人,捐款10元的有y 人,根据题意,得⎩⎨⎧⨯-⨯-=+--=+.71265500108,7655y x y x 解得⎩⎨⎧==.25,17y x 答:捐款8元的同学有17人,捐款10元的同学有25人.点评:这既是一道残缺型试题,又是一道说理型试题.本题以向灾区捐款为背景,巧设墨水污染为悬念,使问题富有探索性.。

高三复习-二元一次方程的解法和公式有哪些

二元一次方程的解法和公式有哪些认识二元一次方程组的概念:一些把简单实际的问题中的数量关系,用二元一次方程组的形式来计算,学会用含有其中一个未知数的代数式表示另一个的方法,成立于一元一次方程之上。

二元一次方程公式x=(-b±√(b²-4ac))/2a。

设一个一元二次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为一元二次方程所以a 不能等于0。

求根公式为:x=(-b±√(b²-4ac))/2a。

二元一次方程常用解法代入消元法①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边). 加减消元法①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);③解这个一元一次方程,求出未知数的值;④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;⑤用“{”联立两个未知数的值,就是方程组的解;⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

第十章二元一次方程组复习课

第十章 二元一次方程组 ---- ( 教案) 课 题 练习课 教学目标 重 难 点 点
课时 分配
本课(章节)需 1 课时 本 节 课 为 第 1 课时 为 本 学期总第 课时
1.这一章的学习,使学生掌握二元一次方程组的解法. 2.学会解决实际问题,分析问题能力有所提高. 这一章的知识点,数学方法思想. 实际应用问题中的等量关系. 讲练结合、探索交流 活 动 课型 新授课 教具 投影仪
1 边的差等与第三边的 3 ,求这个三角形的各边长。
设三边的长分别是 xcm,ycm,zcm
x y z 18 x y 2z 1 x y z 3 那么
你会解这个方程组吗? 方案〈三〉 1.有甲、乙两种铜银合金,甲种含银 25%,乙种含银 37.5%,现在要熔成 含银 30%的合金 100 千克,这两种合金各取多少千克? 2.甲、乙两地之间路程为 20km,A,B 两人同时相对而行,2 小时后相遇,相 遇后 A 就返回甲地,B 仍向甲地前进,A 回到甲地时,B 离甲地还有 2km, 求 A,B 两人速度。 3.小亮在匀速行驶的汽车里,注意到公路里程碑上的数是两位数;1h 后看
x
y=3x y
3 2 1 0 -1 x -2
9 6
y-2x=1
yLeabharlann 3 2 1 0 -1 2.写出一个二元一次方程,使得 -2
7
1
x 1 y 1
x 2 y 2 都是它的解,并且求出 x=3 时的方程的解。
3.已知三角形的周长是 18cm,其中两边的和等于第三边的 2 倍,而这两
作业 板 方案一 解题过程 练习




ax 5 y 15 4 x by 2 时,由于粗心,甲看错了方程组中的 a,而得 2.在解方程组 x 3 x 5 y 1 ,乙看错了方程组中的 b,而得解为 y 4 , 解为

二元一次方程组复习概念~zhu


考点三: 考点三:解的定义
x = −2, 1、已知 y = 3 是方程 是方程3x-3y=m和5x+y=n的公共 、 和 的公共 解,则m2-3n= 246.
关于解法
1、解二元一次方程组你有几种方法? 、解二元一次方程组你有几种方法? 两种: 两种:代入法和加减法 2、代入法和加减法解方程组,“代入”与“加 、代入法和加减法解方程组, 代入” 的目的是什么? 减”的目的是什么? 消元: 消元:把二元一次方程转化为一元一次方程 3、解二元一次方程组的步骤是什么? 、解二元一次方程组的步骤是什么?
关于应用
在列二元一次方程组解实际问题的过 程中,你认为最关键的是什么? 程中,你认为最关键的是什么?
找出等量关系, 找出等量关系,列出方程组
知识方法结“网络”
实际问题
数 方程组
数学问题 (二元一次方程组 二元一次方程组) 二元一次方程组
解 方 程 组 元
实际问题
数学问题 (二元一次方程 二元一次方程
1.解二元一次方程组的基本思路是 2.用加减法解方程组{ 2x-5y=7①
消元 .
相减 直接消去 x .
由①与② 2x+3y=2②
3.用加减法解方程组{ 由 6x-5y=12② ①与②相加 ,可直接消去
4x+5y=28①
y .
4.用加减法解方程组 用加减法解方程组 具体解法如下
(1) ①-②得x=1
D)
B、只有两个 、 D、有无数个 、
6、下列属于二元一次方程组的是 ( 、 A. B.
A

3 5 + =1 x y x− y = 0
x + y = 5 C. 2 2 x + y = 1

第7章 二元一次方程组复习--


求得另一个未知数的值,这样就得到了方程的解 x a

y

b
加减法解二元一次方程组的一般步骤:
1。把一个方程(或两个方程)的两边都乘以一个 适当的数,使两个方程的一个未知数的系数的绝 对值相等; 2。把一个未知数系数绝对值相等的两个方程的两边 分别相加(或相减),得到一个一元一次方程,求 得一个未知数的值;
它的解是唯一的
•4.二元一次方程组的解:适合二元一次方程组里 各个方程的一对未知数的值,叫做这个方程组里 各个方程的公共解,也叫做这个方程组的解
• 注意:
• ①书写方程组的解时,必需用“ ”把各个未知
数的值连在一起,即写成的
x y

a b
形式;
6.同解方程组:
如果第一个方程组的解都是第二个方程组的 解,而第二个方程组的解也都是第一个方程组的 解,即两个方程组的解集相等,就把这两个方程 组叫做同解方程组
①实际施肥 (6x) = 库存化肥 + 缺少化肥200千克
②实际施肥 (5x) = 库存化肥 - 剩余300千克
例例22、、用用白白铁铁皮皮做做罐罐头头盒盒。。每每张张铁铁皮皮可可制制 盒盒身身1166个个,,或或制制盒盒底底4433个个,,一一个个盒盒身身与与两两个个盒盒 底底配配成成一一套套罐罐头头盒盒。。现现有有115500张张白白铁铁皮皮,,用用多多 少少张张制制盒盒身身,,多多少少张张制制盒盒底底,,可可以以刚刚好好配配套套??
解:设第一车间有x人,第二车间有y人
根据题意得:
y = 4 x -30
3
5
( x-10) =
y+10
4
解得: x 250, y 170
经检验,符合题意.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复习二元一次方程
1. 已知4x+6y=1,若x=y的值均为__;若x+y=0,则x=__,y=__。
2. 若x=1,y=2是方程x—my=1的解,则m=__。
Ax+2y=5
3. 当x=1/2时,关于x,y的二元一次方程组 2x—by=5,的解互为相反数,则a=__,
b=__。

4. 已知方程8)6()2()4(22kykxkxk 是关于x,y的方程,则当k为何值
时,方程为元一次方程?当k为何值时,方程为二元一次方程?

5. 学校图书馆搬迁时,七年级三班学生参加搬运图书和整理图书的工作,开始时,搬运图
书的人数比整理图书的人数的2倍少5人,后来从搬运图书的学生中调出5人整理图书,
这是发现两部分学生的人数相等,则原来搬运图书、整理图书的学生各有多少人?

6. 解下列方程组
(1) 4x+3y=3 (2) 3241xy
3x—2y=15 2x—3y=1

(3) 143)(2yxyx (4) x+y=5
6(x+y)=4(2x—y)+16 (x—2)a+2(y—2)=x(a≠3)
7. 已知方程组 ax+by=3 甲正确地解得 x=2 而乙因粗心把c看错了,解得 x=3
5x—cy=1, y=3, y=6,
试求a,b,c的值。

8. 已知 x=3 是方程组 ax+by=1 的解,求200320032ba的值。
y=—2, ax—by=5,

9. 已知方程组 3x+5y=m+2, 的解适合方程x+y=8, 求m的值。
2x+3y=m

10. 已知关于x,y的方程组 x+2y=10, 与 2x—y=5,的解相同,求2007)(ba的值。
Ax+by=1, by+ay=6
11. 解方程组 17x+63y=97
63x+17y=143

12. 若 2004x+2005y=2003,求22)()(yxyx的值。
2005x+2004y=2006,

13. 已知 4x—3y—3z=0 ,(xyz≠0),求:
x—3y—z=0
(1)x :z的值;
(2)x :y :z的值;

(3)2222zyxyzxy的值。
14. 解方程组 7332432yxyx
8232332
yxyx

8.3实际问题与二元一次方程组
一..列方程组解应用题的常见题型:
1.和差倍分问题,解这类问题的基本等量关系是:较大量=较小量+多余量
总量=倍数×一份的量
2.速度问题,解这类问题的基本等量关系是:路程=速度×时间
3.航速问题,此类问题分水中航行和风中航行两类,基本关系式:
顺流(顺风):速度=静水(无风)中的速度+水速(风速)
逆流(逆风):速度=静水(无风)中的速度—水速(风速)
4.工程问题,解这类问题的基本等量关系是:工作量=工作效率×工作时间
5.增长率问题,解这类问题的基本等量关系是:
原量×(1+增长率)=增长后的量;原量×(1—减少率)=减少后的量
6.银行利率问题,解这类问题的基本等量关系是:
本金和=本金+利息
免税利息=本金×利率×期数
税后利息=本金×利率×期数—本金×利率×期数×税率
7.利润问题,解这类问题的基本等量关系是:

利润=售价—进货价(成本),利润率=进货价进货价—售价×100%
8.数字问题,掌握自然数、奇数、偶数等有关概念。
两位数=十位数字×10+个位数字;三位数字=百位数字×100+十位数字×10+个位数字
9.几何问题,掌握有关几何图形的性质、周长、面积等计算公式
10.年龄问题,关键是抓住两个人年龄的增长数相等这一特征。
二、例题
1.速度问题
甲、乙两物体分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度比较快,
两物体在同一点出发,当两物体反向运动时,每15秒钟相遇一次,当两物体同向运动时,
每一分钟相遇一次,求两物体的速度。

2.速度问题
A、B两地相距20千米,甲从A地向B地前进,同时乙从B地向A地前进,两小时后
二人在途中相遇,相遇后,甲返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有
2千米,求甲、乙两人的平均速度。

3.航程问题
船在顺水中航行100km需2小时,在逆水中航行90km需3小时,求船在静水中的速
度和水速。

4.工程问题
入世后,国内各汽车企业展开价格大战,汽车价格在大幅度下降,有些型号的汽车供
不应求,某汽车生产厂接受了一份订单,要在规定日期内生产一批汽车,如果每天生产35
辆,则差10辆完成任务,如果每天生产40辆,则可提前半天完成任务,该订单要生产多少
辆汽车?规定日期是多少天?
5.工程问题
一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干天后离开,
再由乙完成,实际上甲只做了计划时间的一半便因事离去,然后由乙单独承担,而乙完成任
务的时间恰好是计划时间的2倍,则原计划甲、乙各做多少天?

6.利润问题
已知甲、乙两种商品的原单价和为100元,因市场变化,甲商品降价10%,乙商品提
价10%,调价后甲、乙两种商品的单价和比原单价提高了2%,则甲、乙两种商品的原单价
各是多少元?

7.利润问题
甲、乙两种服装的成本共500元,商品老板为获取利润,决定将甲服装按50%的利润
率定价,乙服装按40%的利润率定价,在实际出售时,应顾客需求,两件服装均按9折出
售,这样的商店共获利157元,求甲、乙两种服装的成本格式多少元。

8.银行利率问题
李红用甲、乙两种形式储蓄共储存了10000元人民币,其中甲种储蓄的年利率为7%,乙种
储蓄的年利率为6%,一年后得到本息共10680元,则李红用甲、乙两种形式各储存了多少
元?
9.数字问题
一个两位数的十位数字与各位数字的和是7,若把这个两位数加上45,则恰好成为个
位数字与十位数字对调后组成的两位数,求这个两位数。

10.几何问题
小明在拼图时发现,8个一样大小的小长方形恰好可以拼成一个大的长方形,如图(1)
所示,小红看见了,说:“我来试一试”,结果小红七拼八凑,拼成如图(2)所示的正方形,
可是中间还留下一个洞,这个洞恰好是边长为2mm的小正方形,你能算出小长方形的长和
宽各是多少吗?

11.增长率问题
某厂去年总产值比总支出多500万元,而今年计划的总产值比计划的总支出多950万
元,已知今年计划的总产值比去年增加15%,而计划的总支出比去年减少10%,则今年计
划的总产值和计划的总支出各是多少?
8.4三元一次方程
一.三元一次方程组的类型
1.如果三元一次方程组中有未知数系数的绝对值是1,则采用代入消元的方法把三元一次方
程组转化为二元一次方程组。
2.如果三元一次方程组中没有一个未知数系数的绝对值是1,通常用加减消元法,一般消去
系数比较简单的一个未知数,必须注意,在原方程组中两次消元应消去同一个未知数,这样
才能得到关于另外两个未知数的二元一次方程组。

二.例题
1.解下列方程组(代入消元法)
(1) x—2y+z=9 (2) x+y—z=0
2x+y+3z=10 2x+y+z=7
3x+2y—4z=—3 4x+3y+5z=25

(3) x+2y=4
2x+3z=13
3y+z=6

2解下列方程组(.加减消元法)
(1) 4x+2y+3z=1 (2) 2x+y+3z=1
10x—3y—5z=8 3x—2y+2z=2
18x+2y+6z=—1 —4x+4y—z=—1
(3) 5x+6y+2z=80
4x—3y+z=16
3x—2y+6z=92

3.解下列方程组(比例问题)
(1)x :y=3 :2 (2) x :y=5 :3
y :z=5 :4 x :z=7 :2
x+y+z=66 x—2y+3z=4

4.解下列方程组(特征:三个未知数的系数均为一)
(1)x+y=—1 (2) x+y=5 则x+y+z=__
y +z=—2 y+z=—2
z+x=7 z+x=3

(3) x+y=8 ,求mx+2y—1994z=10 中m的值
y+z=6
z+x=4
5.若∣a—b—1∣+2c)2a-(b+∣2c—b∣=0,求a,b,c的值。
6.某学校的篮球数比排球数的2倍少3个,足球数与排球数的比是2 :3,三种求共有41个,
求三种球各有多少个。

相关文档
最新文档