现代电力电子技术的发展趋势探析
电力电子技术的应用研究及发展趋势

电力电子技术的应用研究及发展趋势电力电子技术是一种应用极广的技术,它涉及到包括电力系统、工业、交通、家电等领域的许多方面。
随着社会经济的发展和科技不断进步,电力电子技术的应用越发普遍,其应用领域也在不断扩大。
在这篇文章中,我将从电力电子技术的分类、应用研究和未来发展三个方面来谈谈电力电子技术的应用研究及发展趋势。
一、电力电子技术的分类电力电子技术根据其不同的功率等级、用途和原理等因素,可以分为多种不同的类别。
其中比较常见的主要有以下几种:1、直流-直流变换器直流-直流变换器可以将直流电压转换、升压或降压,常见的应用有开关电源、电动机驱动系统等。
直流-直流变换器具有简单的控制、高效率和稳定性,目前在交通、能源、石化、冶金等领域中得到了广泛的应用。
2、交流-直流变流器交流-直流变流器可以将交流电转换为直流电供电使用,常见的应用有风力发电、光伏发电等。
这种变换器具有高效、可靠和可控的特点,是现代电力系统中最重要的组成部分之一。
3、交流-交流变换器交流-交流变换器可以改变交流电的频率和电压等参数,常见的应用有电动机驱动系统、变频空调、UPS等。
交流-交流变换器在工业、家电等领域中应用广泛,目前已经成为了工业发展的关键技术之一。
二、电力电子技术的应用研究随着电力电子技术的不断发展和进步,其应用领域也在不断拓展。
在应用研究方面,电力电子技术主要有以下几个方向:1、高电压高功率应用随着电力系统的发展和能源消费增长,电力电子技术在高电压高功率领域的应用范围也在不断扩大。
高电压高功率应用主要包括超高压输电、逆变器、脉冲电源、高压直流输电等。
电力电子技术在这些领域中的应用,可以提高电力系统的可靠性、效率和稳定性,同时也可以改善电力系统的质量和环境问题。
2、新能源发电系统新能源发电系统是近年来最热门的电力电子技术应用之一。
新能源发电系统包括太阳能发电、风力发电、潮汐能发电等。
电力电子技术在新能源发电系统中的应用,可以将风、光等无法控制的能源转化为易于控制的电能,提高了整个发电系统的效率。
电力电子的发展方向

电力电子的发展方向请根据自己的实际情况对本文进行修改:电力电子作为现代电力系统的重要组成部分,关系到我国能源战略的实施和电力行业的可持续发展。
随着科技的不断进步和电力市场的日益繁荣,电力电子技术的发展方向也日益明确。
以下是我对未来电力电子技术发展方向的一些思考。
一、提高电力电子器件的性能1. 发展高性能、低损耗的电力电子器件。
随着硅基电力电子器件性能逐渐接近其理论极限,新型宽禁带半导体材料如碳化硅(SiC)、氮化镓(GaN)等逐渐成为研究热点。
未来发展方向应着重于提高这些材料的晶体质量、降低成本,并实现批量生产。
2. 研究新型电力电子器件拓扑结构。
通过创新器件结构,进一步提高电力电子器件的性能,降低损耗,减小体积,降低成本。
二、提升电力电子装置的智能化水平1. 发展具有自适应、自诊断、自优化功能的电力电子装置。
利用现代通信技术、大数据分析、人工智能等手段,实现对电力电子装置的实时监测、故障诊断和性能优化。
2. 推动电力电子装置与电网的深度融合。
通过智能化技术,实现电力电子装置与电网的协同优化,提高电力系统的稳定性和经济性。
三、拓展电力电子技术的应用领域1. 电力电子技术在新能源发电领域的应用。
随着可再生能源的快速发展,电力电子技术在光伏、风能、储能等新能源发电领域的应用将更加广泛。
研究方向包括:高效光伏逆变器、风力发电变流器、储能系统等。
2. 电力电子技术在电力系统中的应用。
电力电子技术在电力系统中的应用包括:柔性直流输电、无功补偿、电力电子变压器等。
未来发展方向应关注这些技术的可靠性、经济性和适用性。
四、促进电力电子技术的标准化和产业化1. 加强电力电子技术的标准化工作。
制定和完善电力电子器件、装置和系统的相关标准,推动产业链上下游的协同发展。
2. 推动电力电子技术的产业化进程。
加大政策支持力度,培育具有竞争力的电力电子企业,推动产业技术创新和产业升级。
五、加强人才培养和国际合作1. 培养电力电子领域的高端人才。
电力电子技术的新进展及其应用

电力电子技术的新进展及其应用电力电子技术是当今社会中非常重要的一个领域。
近年来,随着科技的不断进步和人们对环保、节能和高效的需求不断提高,电力电子技术也在不断发展与创新。
本文旨在介绍电力电子技术的新进展以及其在现代社会中的应用。
一、电力电子技术的新进展1、新型IGBT模块的研发IGBT(Insulated Gate Bipolar Transistor)是电力电子技术中非常重要的一种器件,广泛应用于交流变直流、电机控制、变频调速等领域。
为提高IGBT模块的效率和稳定性,在多项研究中,人们开始关注IGBT模块的结构、工艺和材料等方面的改进。
一种新的IGBT模块是全极面键合技术(full-surface wire bonding technology)制造的。
与传统机械键合技术相比较,全极面键合技术能够提供更大的可靠性和更强的耐久性,其结构也更为简单,更容易集成其他模块或器件。
同时,全极面键合技术也能够提供更高的解决方案种类,以及单一模块上高达12个IGBT芯片的压缩。
这种新型IGBT模块的问世极大程度地提高了电力电子设备的效率与可靠性。
2、新型功率半导体器件的应用功率半导体器件是电力电子技术中最常用的器件之一。
最近在这方面的研究中,可以看到针对某些特殊的应用场合,出现了一些新型的功率半导体器件。
例如,一款新型的硅基氮化镓(GaN)晶体管已经被研制出来,该器件相比传统硅制器件具备更高的开关速度、更高的工作频率、更低的开关噪声、更高的开关效率和更低的导通电阻等优点。
这种器件还能够在800V DC电压、15A的高压、高温环境下稳定工作。
这种新型功率半导体器件的应用,大大提高了电力电子设备的创新能力和发展速度。
二、电力电子技术的应用1、交流变直流电源在交流变直流电源的应用方面,在工业制造和家庭用电方面都有广泛的应用。
利用交流斩波技术,交流电源可以转化成稳定的直流电源,从而为电子设备的正常功能提供电力支持。
电力电子的发展趋势

电力电子的发展趋势
1. 高功率密度和高效率
电力电子的发展趋势是朝高功率密度和高效率的方向发展。
这可以通过使用新型的半导体材料和拓扑结构、优化的控制算法和散热技术等手段实现。
2. 多功能性和智能化
电力电子系统的应用领域越来越广泛,需要具备多种不同的功能。
同时,随着智能电网的发展,电力电子系统在协调能源的调度和优化方面也需要具备更高的智能化水平。
3. 集成化和模块化
随着电力电子系统的功能和复杂度不断提高,对系统集成化和模块化的需求也越来越强烈。
这可以加快系统开发和调试的速度,降低整体成本和维护难度。
4. 新能源技术的应用
随着新能源技术的不断发展,电力电子系统在太阳能、风能、储能等方面应用越来越广泛。
未来电力电子系统将需要更好地适应这些新能源技术的要求。
5. 绿色环保和可持续发展
在电力电子系统的设计和应用中,环保和可持续发展的考虑也越来越重要。
这包括降低系统的能耗、减少对环境的影响等方面。
现代电力电子技术的发展、现状与未来展望综述

课程报告现代电力电子技术的发展、现状与未来展望综述学院:电气工程学院姓名: *********学号: 14*********专业: *****************指导教师: *******老师0 引言电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。
随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。
毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。
1 电力电子技术的发展[1]电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。
电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。
1.1半控型器件(第一代电力电子器件)上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。
此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。
但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。
另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。
由于以上这些原因,使得晶闸管的应用受到很大限制。
1.2全控型器件(第二代电力电气器件)随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。
全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。
电子电力技术的发展趋势探讨

电子电力技术的发展趋势探讨电子电力技术是指通过电子技术手段实现对电力的传输、转换、控制和保护的技术。
随着科技的不断进步,电子电力技术也在不断发展,具有以下几个趋势:一、智能化发展:随着人工智能、物联网技术的快速发展,电子电力技术正朝着智能化方向发展。
智能电网系统可以实现对电网的智能监控和管理,实现负荷预测、优化调度等功能,提高电网的智能化水平。
二、高效节能:电能是一种非常宝贵的资源,高效利用电能成为了电力技术发展的重要方向。
高效变频器技术可以提高电机的能效,减少能量的损耗;节能灯具的普及和LED 技术的发展可以降低照明能耗等。
电子电力技术的发展要更加注重节能的方向,提高能源利用效率。
三、可再生能源的加速应用:随着可再生能源技术的发展,如太阳能、风能等,电子电力技术在可再生能源的应用方面也将迎来巨大的发展机遇。
将太阳能光伏发电系统和电网连接起来,通过电子电力技术实现对太阳能电能的高效利用。
四、电力电子器件的发展:电力电子器件是电子电力技术的核心部分,其性能的提升将推动整个电子电力技术的发展。
功率半导体器件的发展,如功率MOS管、绝缘栅双极型晶体管(IGBT)等,其带宽和功率能力的提高,将有助于电力电子器件的集成度提高、体积减小等方面的技术进步。
五、综合化系统的集成:随着电力系统规模的不断扩大,电子电力技术将会越来越多地应用于电力系统的各个环节,包括输电、配电、供电等。
电子电力技术应注重综合化系统的集成,实现不同环节间的数据共享和交互,提高整体运行效率。
电子电力技术的发展将会朝着智能化、高效节能、可再生能源应用、电力电子器件技术和综合化系统集成等方向不断前进。
这些趋势都将大大促进电力技术的发展,提高电力系统的安全性、可靠性、经济性和环保性。
电力电子技术的发展趋势及应用
电力电子技术的发展趋势及应用半导体的出现成为20世纪现代物理学的一项最重大的突破,标志着电子技术的诞生。
而由于不同领域的实际需要,促使半导体器件自此分别向两个分支快速发展,其中一个分支即是以集成电路为代表的微电子器件,而另一类就是电力电子器件,特点是功率大、快速化。
自20世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装置,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。
电子电力技术包括电力电子器件、变流电路和控制电路3部分,是以电力为处理对象并集电力、电子、控制三大电气工程技术领域之间的综合性学科。
电力技术涉及发电、输电、配电及电力应用,电子技术涉及电子器件和由各种电子电路所组成的电子设备和系统,控制技术是指利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数按照预定的规律运行。
电力电子器件是电力电子技术的基础,电力电子器件对电能进行控制和转换就是电子电力技术的利用。
在21世纪已经成为一种高新技术,影响着人们生活的各种领域,因此对对电子电力技术的研究具有时代意义。
传统电力电子技术是以低频技术处理的,现代电力电子的发展向着高频技术处理发展。
其发展先后经历了整流器时代、逆变器时代和变频器时代,在不断的发展中促进了现代电力电子技术的广泛应用。
电力电子技术在1947年晶体管诞生开始形成,接着1956的晶闸管的出现标志电力电子技术逐渐形成一门学科开始发展,以功率MOS-FET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件的出现,表明已经进入现代电子电力技术发展时代。
1.整流器时代在60年代到70年代被称为电力电子技术的整流时代。
该期间主要是大功率硅整流管和晶闸管的开发与应用。
1948年的晶体管的出现引发了电子工业革命,半导体器件开始应用与通信领域,1957年,晶闸管的诞生扩展了半导体器件功率控制范围,属于第一代电力电子器件。
电力电子技术的现状及发展
电力电子技术的现状及发展随着高新技术的发展,电力电子技术的发展也为电力行业带来了新鲜血液,为电力行业朝着更高方向发展提供了基础。
但它不仅仅只是应用于电力行业,由于时代科技的发展,各学科间的边缘越来越模糊,由此也决定了电力电子技术并不是一个完全独立的学科技术,与它关联的有材料科学、微电子技术及控制理论等,也就是说电力电子技术已经慢慢地渗透进各个工业部门。
1、电力电子技术的发展历程如果说晶体管的诞生标志着固态电子时代的来临,那么晶闸管的问世就把电子技术带上了飞速发展的轨道。
随着高技术的发展,电力电子技术发展速度也越来越快,更多的领域开始应用这一技术,其作用可以从我国经济的发展看出。
纵观电力电子技术的发展史,我们可以看出其经历了三个阶段:晶闸管时代、逆变时代、变频时代。
接下来,笔者将从这三个阶段分别进行描述。
1.1 晶闸管时代晶闸管时代也称晶闸管整流时代,晶闸管整流管在20世纪60和70年代得到了长足的发展,当时都是通过50HZ的交流发电机来提供较大功率的工业用电,其中直流形式的电能消费占了百分之二十。
在当时,我国很多电厂都需要把交流电转化为直流电,这就催生了大功率硅整流器和晶闸管,它能高效的完成直流电的转变。
这也造就了晶闸管整流时代。
1.2 逆变时代到七十年代以后,自关断器件登上了历史舞台,随之也带来了电力电子技术逆变时代。
所谓“逆变”即是将直流电转换成交流电。
世界范围内的能源危机,普遍提高了人们的节能意识,大众普遍使用交流电机,因为更加节能。
所以电力器件包括GTO、GTR,还有就是大功率的逆变晶闸管。
1.3 变频器时代上述的逆变时代,虽然完成了逆变和整流的功能,但是其工作频率相对来说比较低,满足不了人们逐渐扩大的需求。
所以,到80年代后期出现了集成电路。
这种大规模的集成电路主要特点是将高压大电流技术和精细加工技术融为一体,标志着现代电力电子变频器时代的到来,标志着传统电力电子技术的升级。
这时期的电力电子器件走复合化的道路,各器件的结构也越来越紧密,因为结合了各类器件的优点,显得功能也越来越强大。
现代电力电子技术的发展趋势及应用分析
现代电力电子技术的发展趋势及应用分析摘要:科技在迅猛发展,社会在不断进步,随着智能电网的发展与进步,使得信息化、自动化以及数字化的技术应用空间越来越大。
电力电子是建设智能化电网的基础所在,也是满足NB-IoT市场经济发展的重要技术所在。
因此,为了满足社会的发展,就需要对电力系统进行全面改革,使先进的电力电子技术应用到智能电网中。
关键词:电子技术;发展趋势;应用引言开展电力电子化新一代电力系统动态问题研究是保障电网安全稳定运行的重大需求。
装备是构成电力系统的基本要素,装备变革意味着客观研究对象的变革。
装备动态特性的变化意味着电力系统动力学现象及机理的变化,传统电力系统动态问题基础理论和关键技术的适应性面临重大挑战,装备替代的量变势将引起系统动态问题的质变。
开展新一代电力系统动态问题的研究是电网运行的迫切和重大的需求。
1基本概念首先针对电子技术,该项技术主要依靠电子设备对电力进行控制,可实现电力开闭控制、转换控制等,故在不同的控制要求下,电子技术又可以分为多种形式,诸如电力技术、转换器技术等。
因此本质上可以将电子技术视作一种元件控制技术,能够通过电力供给与切断、电力类型转换、电力强弱调整等方式使元件作出对应的动作,促使电气装置依照用户需求运作,实现控制目的。
同时电子技术在元件控制中会生成对应的数据,即电力数据,依照电力数据可知当前电力运作是否正常,也能判断电力的故障、安全水平等,便于及时处理异常,保障电力运作稳定。
其次针对电气控制,此概念的主要意义在于开发电气能源的利用价值,诸如利用弱电控制强电,再通过强电控制设备,最后设备运作满足需求,且随着控制技术的发展,电气控制不仅实现了自动化运作,控制对象也越来越多,故电气控制能够满足人们在生活或工作中的多种需求。
关于电气控制的自动化原理,从当前技术角度出发,主要是利用信号收发装置连接计算机与电气控制系统,用户可以从计算机上拟定指令,并发出信号,信号将被收发装置接收,随即发送给电气控制系统的控制单元,该单元将依照信号指令逐步控制设备,待指令执行完毕,控制目的达成。
综述现代电力电子技术在电力系统中的发展现状
综述现代电力电子技术在电力系统中的发展现状【摘要】现代电力电子技术在电力系统中扮演着重要的角色,其应用范围和深度不断扩大,对电力系统的稳定性、效率和可靠性产生了深远影响。
本文通过介绍现代电力电子技术的基本概念和电力系统的发展背景,探讨了电力电子技术在电力系统中的应用以及电力电子器件的发展现状。
分析了电力电子技术在电力系统中的优势和面临的挑战,展望了其未来的发展方向。
总结了电力电子技术对电力系统的影响和其发展前景。
随着科技的不断进步,电力电子技术将继续发挥着重要作用,推动电力系统的现代化和智能化发展。
【关键词】关键词:现代电力电子技术、电力系统、应用、器件、优势、挑战、发展方向、影响、发展前景1. 引言1.1 现代电力电子技术的基本概念现代电力电子技术是一种以电子器件和数字控制技术为基础,利用变流器、整流器、逆变器等设备实现电能转换和调节的技术。
在电力系统中,电力电子技术可以实现电能的高效转换、稳定控制和灵活调节,从而提高电力系统的运行效率和稳定性。
电力电子技术的基本概念包括以下几个方面:首先是功率器件,如晶闸管、场效应管、绝缘栅双极型晶体管等,这些器件可以实现电能的无级调节和快速开关;其次是控制技术,如PWM调制技术、谐波抑制技术、闭环控制技术等,这些技术可以实现对电能转换过程的精确控制;此外还包括电力电子拓扑结构设计、热管理技术等方面。
现代电力电子技术的发展使得电力系统具备了更高的智能化、灵活性和稳定性,为电力系统的高效运行和接入可再生能源提供了重要支撑。
随着电力需求的不断增加和新能源的大规模接入,电力电子技术在电力系统中的应用前景十分广阔。
1.2 电力系统的发展背景随着工业化和城市化的进程,电力需求逐渐增长,传统的电力系统已经不能满足日益增长的电力需求。
为了提高电力系统的效率和可靠性,同时减少对环境的影响,人们开始寻求新的技术手段来改善电力系统。
电力系统的发展背景可以追溯到19世纪末的工业革命时期,当时人们开始使用电力来驱动工厂和机器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代电力电子技术的发展趋势探析
发表时间:
2017-03-10T10:33:50.573Z 来源:《电力设备》2017年第1期 作者: 魏文新1 丁钟江2
[导读] 电力电子技术发展至今,给我们的生活带来了诸多的好处,其应用广泛分布在生活中的各个领域。
(1身份证号码:42102219780901xxxx 广西;2身份证号码:33062319780506xxxx 北京)
摘要:电力电子技术发展至今,给我们的生活带来了诸多的好处,其应用广泛分布在生活中的各个领域,最常见的比如家中的电源开
关、电力输送技术以及电厂的发电技术等等,电力电子技术的身影遍布于我们生活中的每一个角落。电子电力技术在出现之初,就对人们
的生产活动产生了十分重大的影响,这一点可以追溯到
20世纪90年代初期,那个时候出现了功率半导体复合器,它的出现标志着现代电力
电子技术的体系的诞生。
关键词:现代;电力电子技术;发展趋势
1
引言
电力电子技术简单概括来说,就是一种集智力、信息与知识为一体的密集型技术,其特点是耗费的能源低,产生的污染少,基于此,
我们对于电力电子技术前景有着美好的展望,相信随着时代的进步与不断发展,电子电力技术同样能紧跟上时代的步伐不断的改善与发
展,不断创造新高。电子电力技术能广泛适用于各个领域,随着技术向着更高更好的方向发展,其适用领域必将得到进一步的拓展,更好
的为我国的现代化建设服务。
2
电力电子技术的发展进程
我国电力电子技术的发展主要表现在三个阶段,分别是整流器阶段、逆变器阶段、变频器阶段。
2.1
电力电子技术的整流器阶段
我国工业用电消耗非常大,根据这一情况,利用工频交流发电机来作为提供工业用电的一种途径。但是,工频交流发电机所提供的电
能只有
25%左右是用做直流形式的消耗,比如用于电解、牵引、直流传动等。
2.2
电力电子技术的逆变器阶段
随着人类社会的不断发展,许多行业对自然资源的需求越来越大,而自然资源是有限的,人类没有节制的进行开采,导致了全球能源
危机的产生,在这一情况下,如何节能成为了当时最为严峻的问题。因此,人们不断地对交流电机变频调速技术进行研究和探索,根据研
究的结果把直流电逆转变为
0~100Hz的交流电,并不断把研究的成果在实际生活中进行实践,取得了良好的节能功效。所以,当时变速调
速设备得到了快速发展和广泛应用。但是,在这个阶段,电力电子技术仍位于中低频的发展阶段,工作效率难以得到有效的提高。
2.3
电力电子技术的变频器阶段
随着科学技术不断发展,集成电路技术也呈现出良好的发展趋势。人们把精细加工技术和高压大电流技术合理地结合在一起,从中产
生了一些全控型功率器件,其中以
MOSFET和绝缘门极双晶管为代表,伴随着这些全控型功率器件的不断完善和应用,促进了大中型电源
向高频的发展,也是传统电力电子技术发展成为现代电力电子技术的一个转折点。全控型功率器件提升了交流电机变频调速的频率,使交
流电机在运行过程中能够高速稳定地运行,也加快了现代电力电子技术向高频化发展的进程。
3
电力电子技术的应用
随着电力电子技术的快速发展,它的功能不断被人们挖掘出来,并实际地运用到各个行业中,取得了较为不错的成效,以下对电力电
子技术的应用进行分析。
3.1
电力电子技术在工业中的应用
电力电子技术在工业中的应用主要表现在直流电动机的设计方面。目前,在变频技术不断发展的形势下,交流电机也会具备良好的调
试功能,因此,在工业中不管是轧钢机还是数控机床都会选择直流调速技术。变频调速技术节能功效十分明显,许多工业部门把鼓风机也
安装了变频设备,而且使用启动设备的许多电机,运用电力电子设备的功能合理地避免了在启动的一刹那来自电流的强烈冲击。另外,电
力电子技术在人们日常使用的电器中也被大量地运用,比如用于照明的节能灯管,具有体积小、效率高的特点,而且还能够合理地节约电
能。与此同时,日常使用的电器中电源部分也离不开电力电子技术,因此,电力电子技术和人们的生活密不可分。
3.2
电力电子技术在交通运输工具中的应用
据调查得知,我国电气机车类型中直流机车所使用的是整流设备,交流机车所使用的也是变频设备,直流斩波器也被大力地推荐到铁
道车辆的应用中,电力电子技术是我国在以后实现磁悬浮列车的重要部分。电动汽车的电机主要是运用电力电子设备把电力进行转换和控
制,而蓄电池作为电动汽车的主要构造部分也设计到电力电子技术的应用。任何一辆高级汽车中都必须要具备各种用于控制的电机,也需
要依靠变频器技术和斩波器驱动技术进行合理的控制。飞机和轮船也需要具备各种相关要求的电源,所以,不管是用于航空还是航海,电
力电子技术都是不可缺少的一部分。
3.3
电力电子技术在信息电子中的应用
各种各样的电子设备通常都需要根据电压等级的划分来提供直流电源。在人们日常使用的通信设备中,远程控制交换机所使用的直流
电源在以往都是选择晶闸管整流电源。但是,随着电力电子技术的不断发展,现在已经全部更换为全控型器件的高频开关电源。在各种各
样的电子设备中,在以往都是选择线性稳压电源提供用电,而现在高频开关一些优越的性能逐步代替了线性电源,如运用稳定且效率较高
等。
3.4
电力电子技术在家用电器中的应用
家用电器的种类繁多用途广泛,是生活不可或缺的部分,因为现代化电力电子技术的广泛应,为人们带来了便利与享受。
4
发展趋势与未来展望
就目前来看,现代电力电子技术未来的发展趋势有这几个方面的特点。①集成化与模块化,降低器件的电应力,从安全与可靠性两方
面对电力系统的使用性进行提升,就是其模块化发展的核心所在。②全控化与数字化,全控化突破了在功能方面的限制,降低了造成危险
的可能性,从根本上保证了使用过程中的安全性,数字化特征则是从弱电领域等方面拓展了电力电子技术的发展渠道,使得控制技术集成
化提前实现。③绿色化,既包括了对于环境污染的控制,同时还涉及到电网污染源,这是当前急需解决的重要问题。
在应用方面,则是表现出三大革新趋势:①太阳能发电技术的应用。太阳能是可再生资源,能为普通家庭提供足够的电能使用空间。
②交流输电技术的应用。交流输电技术作为一种新型电力系统,它的出现实现了对电网资源重新分配与利用,能够进一步保障电力系统稳
定性。③燃料电池发电技术,在节能省电的同时,几乎很少会对环境造成污染。
对于现代电力电子技术的未来应用展望,具体可体现在几个方面:①从节能性角度来说,急需提升的是电机系统的使用性能,这一点
可从专用电机的设计方面着手对系统的使用效率进行提升,或是从控制设备的完善等方面来看,同样可行。②中高压直流输电系统的运用
同样是需要重点关注的问题,这一系统本身就具备极大的先天优势,表现在低污染和低能耗两方面。③电动车辆的普等相关问题也逐渐成
为需要完善与改革的内容,而环保电力问题更是一个时代性的问题。④电能储备装置与超导线的使用也是需要解决的重要问题之一,若是
能从根本上将电能问题进行解决,对于电力系统的发展所产生的影响,无疑是积极而深远的。
5
结束语
在我国经济飞速发展的过程中,电力电子技术起着十分重要的作用,涉及到工业、交通运输工具、信息电子等多个领域的应用,因
此,电力电子行业的发展空间是巨大的,政府应该使用多种手段,促进电力电子行业的快速发展。另外,随着社会的不断发展,人们对电
力电子技术的要求会越来越高,所以还应该对电力电子技术不断地进行完善和创新。
参考文献
[1]
蒋天予.现代电力电子技术应用及发展探讨[J].科技创新与应用,2016,04:162.
[2]
熬扬浩.电力电子技术的发展及应用探究[J].电子测试,2016,06:127+121.
[3]
张伟.现代电力电子技术的发展趋势探析[J].商业故事,2016,03:100.
[4]
王勋.先进电力电子技术在智能电网中的应用[J].科技风,2016,13:118.
[5]
法官.电力电子技术的发展及应用[J].科技风,2016,08:182.