九年级数学一元二次方程根与系数的关系练习题
新冀教版九年级上《24.3一元二次方程根与系数的关系》练习题含答案

24.3 一元二次方程根与系数的关系习题一、单项选择题:1.关于x 的方程0122=+-x ax 中,如果0<a ,那么根的情况是( B )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定a 4)2(2--=∆ 解: 04>-∴a 实数根。
原方程有两个不相等的∴a 44-= 044>-∴a0<a 0>∆即2.设21,x x 是方程03622=+-x x 的两根,则2221x x +的值是( C )(A )15 (B )12 (C )6 (D )321x x ,方程两根为解: 2122122212)(x x x x x x -+=+∴2332121==+x x x x , 623232=⨯-=3.下列方程中,有两个相等的实数根的是( B )(A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=0)0(”的方程即可本题为找出“=∆4.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是( B )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=0,则:,解:设方程两根为21x x 0)3)(2()]3()2[(2=--+-+--y y322121-=-=+x x x x , 0652=++y y 即::为根的一元二次方程为和以32--∴5.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x ∙等于(D )(A )2 (B )-2 (C ) 1 (D )-11212222121=-=-x x x x ,解: 的两根12221=-∴x x x x 可看作是方程, 121-=∴x x二、填空题:1、如果一元二次方程0422=++k x x 有两个相等的实数根,那么k =2±。
九级数学一元二次方程根的判别式及根与系数关系探究(一元二次方程)基础练习-4页精选文档

九年级数学一元二次方程根的判别式及根与系数关系探究(一元二次方程)基础练习试卷简介:全卷共4个选择题,9个填空题,1个证明题,6个解答题,分值120,测试时间60分钟。
本套试卷在课本的基础上,对题目稍做一定难度的拔高,主要考察了学生对元二次方程根的判别式及根与系数的关系的灵活运用。
各个题目难度类似,但考察方式不同。
学生在做题过程中要立足课本,对题目考虑全面,做到认真细心。
学习建议:本章主要内容是二元一次方程根的判别式及根与系数的关系,不仅是中考重点考察的内容之一,更是整个数学学科的重要内容之一。
本章题目要求同学们在做题时要考虑全面,千万不能粗心马虎,否则很容易遗漏某些条件或忘记舍去不合适的结果。
一、单选题(共4道,每道3分)1.方程x2-kx-1=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.根的情况与k的取值有关2.已知方程2x2+4x=3,则下列说中,正确的是()A.方程两根和是-4B.方程两根积是2C.方程两根和是-2D.方程两根积是两根和的2倍3.若一元二次方程ax2+bx+c =0(a≠0)的两根之比为2:3,那么a、b、c间的关系应当是()A.3b2=8acB.C.6b2=25acD.不能确定4.若c为实数,方程x2-3x+c=0的一个根的相反数是方程x2+3x-c=0的一个根,那么方程x2-3x+c=0的根是()A.1,2B.-1,-2C.0,3D.0,-3二、填空题(共9道,每道4分)1.分别以x2+3x-2=0的两根和与两根积为根的一元二次方程是______2.已知关于x的方程ax2+bx+c=0(a>0)有一个正根和一个负根,则这个方程的判别式b2-4ac______0,常数项c______03.已知关于x的方程x2+m2x+m=0的两个实数根是x1、x2,y1、y2是方程y2+5my+7=0的两个实数根,且x1- y1=2,x2- y2=2,则m= ______.4.关于x的方程2x2+(m2–9)x+m+1=0,当m=______时,两根互为倒数;当m=______时,两根互为相反数.5.如果把一元二次方程 x2-3x-1=0的两根各加上1作为一个新一元二次方程的两根,那么这个新一元二次方程是______6.已知a2=1-a,b2=1-b,且a≠b,则(a-1)(b-1)=______7.若p2–3p–5=0,q2-3q–5=0,且p≠q,则______8.设x1、x2是方程3x2+4x–5=0的两根,则______ ;______9.若方程kx2–6x+1=0有两个实数根,则k的取值范围是______三、解答题(共6道,每道11分)1.已知a、b、c为三角形三边长,且方程b(x2-1)-2ax+c(x2+1)=0有两个相等的实数根.试判断此三角形形状,说明理由2.如果关于x的方程kx2-(2k+1)x+(k+2)=0有实数根,求k的取值范围3.已知关于x的方程 3 x2-10 x + k = 0有实数根,求满足下列条件的k 的值:(1)有两个实数根,(2)有两个正数根,(3)有一个正数根和一个负数根4.已知x1,x2是关于x的方程x2-2(m+2)x+2m2-1=0的两个实根,且满足,求m值.5.设x 1,x 2是方程2x 2+4x-3=0的两个根,利用根与系数的关系,求下列各式的值.(1)(x 1+ 1)(x 2+ 1); (2)x 12x 2+ x 1x 22;(3); (4)(x 1-x 2)2.6.已知关于x 的方程x 2+2(m -2)x+m 2+4=0有两个实数根,且这两根的平方和比两根的积大21,求m 值并解此方程四、证明题(共1道,每道6分)1.求证:不论k 取什么实数,方程x 2-(k+6)x+4(k-3)=0一定有两个不相等的实数根九年级数学暑期预习领先班(九年级上、下册知识一网打尽+全面系统、夯实基础) 东区总校:郑州市文化路与黄河路交叉口中孚大厦7楼B 室 电话:65335902 西区总校:郑州市陇海路与桐柏路交叉口凯旋门大厦B 座405室 电话:68856662希望以上资料对你有所帮助,附励志名言3条:1、理想的路总是为有信心的人预备着。
苏科版初中数学九年级上册《1.3 一元二次方程的根与系数的关系》同步练习卷

苏科新版九年级上学期《1.3 一元二次方程的根与系数的关系》同步练习卷一.选择题(共6小题)1.若x1,x2是方程x2+x﹣1=0的两根,则(x1﹣2)•(x2﹣2)的值为()A.2B.4C.5D.﹣22.m为有理数,且方程2x2+(m+1)x﹣(3m2﹣4m+n)=0的根为有理数,则n的值为()A.4B.1C.﹣2D.﹣63.已知实数a、b满足a+8b﹣2b2=7,当b在1≤b≤4的范围内取值时,a可取的整数值有()个.A.6B.7C.8D.94.关于x的一元二次方程x2﹣5x+p=0的两实根都是整数,则整数p的取值可以有()A.2个B.4个C.6个D.无数个5.方程的正整数解的组数是()A.0B.1C.2D.36.以x为未知数的方程2007x+2007a+2008b=0(a,b为有理数,且b>0)有正整数解,则ab是()A.负数B.非负数C.正数D.零二.填空题(共13小题)7.已知实数α,β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,且α≠β,则+=.8.一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为.9.一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),则x1﹣x2=.10.若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是.11.设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;12.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是.13.如果m、n为整数,且|m﹣2|+|m﹣n|=1,那么m+n的值为.14.当整数m=时,关于x的一元二次方程x2﹣4mx+4m2﹣4m﹣5=0与mx2﹣6x+9=0的根都是整数.15.设方程x2+px+q=0的两根x1,x2均为正整数,若p+q=28,则(x1﹣1)(x2﹣1)=.16.方程6(6a2+3b2+c2)=5n2的所有整数解是.17.a、b是整数,且满足|a﹣b|+|ab|=2,则ab=.18.方程的整数解有组.19.试证:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c 中至少有一个偶数.三.解答题(共12小题)20.已知a、b是方程x2+2x﹣5=0的两根,不解方程求:(1)+的值;(2)a2+3a+b的值.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.22.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣3=0有两个实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1,x2,且满足x12+x22=23,求k的值.23.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.24.已知x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求实数a的取值范围;(2)若x1、x2满足x1x2﹣x1=4+x2,求实数a的值.25.已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足+=﹣,求k的值.26.m是什么整数时,方程(m2﹣1)x2﹣6(3m﹣1)x+72=0有两个不相等的正整数根.27.试确定一切有理数r,使关于x的二次方程rx2+(r+2)x+3r﹣2=0有根且只有整数根,求r的值.28.若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?29.若二次方程x2+2px+2q=0有实根,其中p、q为奇数,证明:此方程的根是无理数.30.设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个不相等的整数根,求m的值及方程的根.31.若关于x的方程(k2﹣2k)x2﹣(6k﹣4)x+8=0的解都是整数,试求实数k 的值.苏科新版九年级上学期《1.3 一元二次方程的根与系数的关系》同步练习卷参考答案与试题解析一.选择题(共6小题)1.若x1,x2是方程x2+x﹣1=0的两根,则(x1﹣2)•(x2﹣2)的值为()A.2B.4C.5D.﹣2【分析】由根与系数的关系可求得(x1+x2)和x1x2的值,再把所求代数式化为两根和与两根积的式子即可求得答案.【解答】解:∵x1,x2是方程x2+x﹣1=0的两根,∴x1+x2=﹣1,x1x2=﹣1,则原式=x1x2﹣2x1﹣2x2+4=x1x2﹣2(x1+x2)+4=﹣1﹣2×(﹣1)+4=﹣1+2+4=5,故选:C.【点评】本题主要考查根与系数的关系,把所求代数式化为两根和与两根积的形式是解题的关键.2.m为有理数,且方程2x2+(m+1)x﹣(3m2﹣4m+n)=0的根为有理数,则n的值为()A.4B.1C.﹣2D.﹣6【分析】运用一元二次方程根的判别式,确定m与n的关系,结合已知求出.【解答】解:由求根公式可知当一元二次方程根为有理根时判别式的算术平方根比为有理数,△=(m+1)2+4×2×(3m2﹣4m+n)=25m2﹣30m+1+8n,要使对任意有理数m,均为有理数,△必须是m的完全平方式,此方程必定有两个相等的根.∴△=302﹣4×25×(1+8n)=0,解得n=1.故选:B.【点评】此题主要考查了一元二次方程根的判别式,以及数的规律,有一定综合性.3.已知实数a、b满足a+8b﹣2b2=7,当b在1≤b≤4的范围内取值时,a可取的整数值有()个.A.6B.7C.8D.9【分析】先对原方程进行变形,将其转化为a与b的函数关系式,然后根据自变量b的取值范围来确定a的取值.【解答】解:由a+8b﹣2b2=7,得a=2(b﹣2)2﹣1,∵1≤b≤4,∴﹣1≤b﹣2≤2,∴﹣1≤2(b﹣2)2﹣1≤7,即﹣1≤a≤7,∴a可取的整数值有:﹣1、0、1、2、3、4、5、6、7共9个.故选:D.【点评】本题主要考查了一元二次方程的整数根与有理根的知识点,在解答此题时,首先将a转化成关于b的一元二次方程的关系式,然后再根据定义域来确定值域.4.关于x的一元二次方程x2﹣5x+p=0的两实根都是整数,则整数p的取值可以有()A.2个B.4个C.6个D.无数个【分析】求得和为﹣5,积为p的所有整数解,也就求得了p的个数.【解答】解:∵﹣5+0=﹣5;﹣4+(﹣1)=﹣5;﹣3+(﹣2)=﹣5;1+(﹣6)=﹣5;2+(﹣7)=﹣5;3+(﹣8)=﹣5;4+(﹣9)=﹣5…∴p=﹣5×0=0或﹣4×(﹣1)=4或﹣3×(﹣2)=6或1×(﹣6)=﹣6或2×(﹣7)=﹣14;或3×(﹣8)=﹣24;或4×(﹣9)=﹣36….故选:D.【点评】本题考查求有整数解的一元二次方程系数的问题;用到的知识点为:有整数解的一元二次方程的常数项分解的2个数的和应等于一次项是系数.5.方程的正整数解的组数是()A.0B.1C.2D.3【分析】利用已知条件将方程变形,整理为平方差形式,分析两数相乘所有的可能.【解答】解:∵,可变形为:(x﹣7)(y﹣7)=49∵x,y为整数,当x=14时,y=14,当x=8时,y=56,当x=56时,y=8,∴其他数据都在不符合要求,符合要求的只有三组.故选:D.【点评】此题主要考查了分式方程的解法,整理为整式方程后再进行分析解决,题目比较简单.6.以x为未知数的方程2007x+2007a+2008b=0(a,b为有理数,且b>0)有正整数解,则ab是()A.负数B.非负数C.正数D.零【分析】首先把方程变形2007(x+a)=﹣2008b,根据b>0可得x+a<0,进而得到x<﹣a,再根据方程有正整数解可得:﹣a>1,即有a<﹣1,继而得到ab<0.【解答】解:原方程可化为:2007(x+a)=﹣2008b,∵b>0,∴﹣2008b<0,∴x+a<0,∴x<﹣a,若方程有正整数解,则须使得:﹣a>1,即有:a<﹣1,∴ab<0故选:A.【点评】此题主要考查了一元一次方程整数根的解法,以及整数的奇偶性,题目比较简单.二.填空题(共13小题)7.已知实数α,β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,且α≠β,则+=﹣.【分析】由α、β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,可得α,β是方程x2﹣3x﹣11=0的两个根,根据根与系数的关系,求出α2+β2,代入变形后的代数式得结果.【解答】解:∵实数α、β分别满足α2﹣3α﹣11=0,β2﹣3β﹣11=0,∴实数α,β是方程x2﹣3x﹣11=0的两个根,∴α+β=3,α•β=﹣11.∵α2+β2=(α+β)2﹣2αβ=9+22=31∴+==﹣.故答案为:﹣【点评】本题考查了根与系数的关系、一元二次方程解的定义.解决本题的关键是:根据α、β分别满足两个方程而得到α、β是同一个方程的两个根.8.一元二次方程x2+4x﹣5=0的两根分别为a和b,则a2+b2的值为26.【分析】根据韦达定理得a+b=﹣4,ab=﹣5,代入a2+b2=(a+b)2﹣2ab计算可得.【解答】解:∵方程x2+4x﹣5=0的两根分别为a和b,∴a+b=﹣4,ab=﹣5,则a2+b2=(a+b)2﹣2ab=16+10=26,故答案为:26.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.9.一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),则x1﹣x2=﹣4.【分析】利用根与系数的关系求出所求即可.【解答】解:∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4,故答案为:﹣4【点评】此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.10.若一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,则x12+x22﹣x1•x2的值是15.【分析】由根与系数的关系可分别求得x1+x2和x1•x2的值,代入求值即可.【解答】解:∵一元二次方程x2﹣3x﹣2=0的两个实数根为x1,x2,∴x1+x2=3,x1•x2=﹣2,∴x12+x22﹣x1•x2=(x1+x2)2﹣3x1x2=32﹣3×(﹣2)=15,故答案为:15.【点评】本题主要考查根与系数的关系,熟练掌握一元二次方程两根之和等于﹣、两根之积等于是解题的关键.11.设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为2018;【分析】根据根与系数的关系和一元二次方程的解得出a+b=﹣1,a2+a﹣2019=0,变形后代入,即可求出答案.【解答】解:∵设a,b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,a2+a﹣2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(﹣1)=2018,故答案为:2018.【点评】本题考查了根与系数的关系和一元二次方程的解,能求出a+b=﹣1和a2+a=2019是解此题的关键.12.设整数a使得关于x的一元二次方程5x2﹣5ax+26a﹣143=0的两个根都是整数,则a的值是18.【分析】首先将方程组5x2﹣5ax+26a﹣143=0左右乘5得25x2﹣25ax+(130a﹣262)﹣39=0,再分解因式.根据39为两个整数的乘积,令两个因式分别等于39分解的整因数.讨论求值验证即可得到结果.【解答】解:∵5x2﹣5ax+26a﹣143=0⇒25x2﹣25ax+(130a﹣262)﹣39=0,即(5x﹣26)(5x﹣5a+26)=39,∵x,a都是整数,故(5x﹣26)、(5x﹣5a+26)都分别为整数,而只存在39=1×39或39×1或3×13或13×3或四种情况,①当5x﹣26=1、5x﹣5a+26=39联立解得a=2.8不符合,②当5x﹣26=39、5x﹣5a+26=1联立解得a=18,③当5x﹣26=3、5x﹣5a+26=13联立解得a=8.4不符合,④当5x﹣26=13、5x﹣5a+26=3联立解得a=12.4不符合,∴当a=18时,方程为5x2﹣90x+325=0两根为13、﹣5.故答案为:18.【点评】本题考查因式分解的应用、一元二次方程的整数根与有理根.解决本题的关键是巧妙利用39仅能分解为整数只存在39=1*39或39*1或3*13*13*3或四种情况,因而讨论量,并不大.13.如果m、n为整数,且|m﹣2|+|m﹣n|=1,那么m+n的值为3,或5,或6,或2.【分析】根据条件|m﹣2|+|m﹣n|=1,分情况讨论①|m﹣2|=0时,|m﹣n|=1;②|m﹣2|=1时,|m﹣n|=0;然后分别可以求出m的值,进而得到n的值,最后分别计算m+n的值.【解答】解:当|m﹣2|=0时,|m﹣n|=1,∴m=2,n=1或n=3,∴m+n=3或5.当|m﹣2|=1时,|m﹣n|=0,∴m=3或m=1,n=m,∴m+n=6或2.综上,m+n=3,或5,或6,或2.故答案为:3或5或6或2.【点评】此题主要考查了有理数的绝对值和数学中的分类讨论思想的运用,分类讨论时要考虑全面,此题比较简单,基础性较强.14.当整数m=1时,关于x的一元二次方程x2﹣4mx+4m2﹣4m﹣5=0与mx2﹣6x+9=0的根都是整数.【分析】方程若有解,则方程根的判别式△≥0,求出满足条件的m的取值范围,并求两个解集的公共部分.【解答】解:若关于x的一元二次方程mx2﹣6x+9=0,则△=36﹣36m≥0,解得m≤1,若关于x的一元二次方程x2﹣4mx+4m2﹣4m﹣5=0,则△=16m+20≥0,m≥﹣,故﹣≤m≤1,∵m为整数,m=﹣1,0,1,m=0时方程mx2﹣6x+9=0不是一元二次方程,故应舍去,当m=﹣1时方程mx2﹣6x+9=0即x2+6x﹣9=0,解得:x=﹣3±3,方程的解不是整数,当m=1时,x2﹣6x+9=0解得:x1=x2=3,两方程的解都为整数,故答案为:m=1.【点评】本题主要考查一元二次方程根与系数的关系和根的判别式等知识点,题目比较典型.15.设方程x2+px+q=0的两根x1,x2均为正整数,若p+q=28,则(x1﹣1)(x2﹣1)=29.【分析】首先利用根与系数的关系得出有关x1,x2的方程,利用质数的性质得出方程的解.【解答】解.x1+x2=﹣p,x1x2=q,p+q=x1x2﹣x1﹣x2=28,X1==1+,因为两根均为正整数,且29为质数,所以x2=2 或x2=30,即方程可化为(x ﹣2)(x﹣30)=0,∴方程的两根分别为2,30,(x1﹣1)(x2﹣1)=29.故填:29.【点评】此题主要考查了一元二次方程根与系数的关系以及质数的性质,题目比较典型.16.方程6(6a2+3b2+c2)=5n2的所有整数解是a=b=c=m=0.【分析】先观察,易得a=b=c=n=0是方程6(6a2+3b2+c2)=5n2(1)的一组解,根据(1)可推知b和d具有相同的奇偶性,然后根据若b和d同为奇数与b和d同为偶数两种情况讨论,最终得知只有a=b=c=m=0一组解.【解答】解:显然,a=b=c=n=0是方程6(6a2+3b2+c2)=5n2(1)的一组解.为求(1)的整数解,只须求出它的正整数解即可,而对于正整数解,只要求出a,b,c,n互质的解即可,为此设(a,b,c,n)=1.由方程(1)可知,6是5n2的约数,因为6与5互质,所以6是n2的约数,从而6是n的约数,进一步5n2有约数36,因此6又是6a2+3b2+c2的约数,即6是3b2+c2的约数,所以3是c2的约数,故可设n=6m,c=3d,代入(1)得2a2+b2+3d2=10m2(2)b2+3d2=10m2﹣2a2所以b和d具有相同的奇偶性.①若b和d同为奇数,考察用8除以(2)式两边所得的余数:式(2)左边被8除的余数为2+1+3=6或0+1+3+4;式(2)右边被8除的余数为0或2.此时方程(2)无解,从而方程(1)无解.②若b和d同为偶数,由a,b,d,n互质可知,a为奇数,(2)式左边被8除的余数为2+(0或4)+(0或3)≠8,所以(2)的左边不能被8整除,从而(2)的右边10m2不能被8整除,m一定为奇数;这样可设a=2a1﹣1,b=2b1,d=2d1,m=2m1﹣1,其中a1,b1,d1,m1都是正整数,则方程(2)化为2a1(a1﹣1)﹣10m1(m1﹣1)﹣2=﹣(b12+3d12),10m1(m1﹣1)﹣2a1(a1﹣1)+2=b12+3d12(3)由于m1(m1﹣1)及a1(a1﹣1)为偶数,则(3)式左边为偶数,且被4除余2,而右边b1和d1不能同为偶数,否则(3)式右边能被(4)整除,(3)式不能成立,然而b1和d1同为奇偶时,(3)式右边仍能被4整除,(3)式不能成立,于是,方程(2)无解,从而方程(1)无解.综上讨论知,方程只有一组解a=b=c=m=0.【点评】此题考查了方程的解的推理过程,体现了探索发现的过程,通过反证法得出矛盾,逐步去掉多余的信息是解题的关键.17.a、b是整数,且满足|a﹣b|+|ab|=2,则ab=0.【分析】首先根据|a﹣b|+|ab|=2分情况讨论,可以分成三种情况;(1)|ab|=0,|a﹣b|=2;(2)|ab|=1,|a﹣b|=1;(3)|ab|=2,则|a﹣b|=0再根据条件a、b是整数分别讨论即可.【解答】解:(1)若|ab|=0,则|a﹣b|=2则ab之中必有一个为0若a=0,则|b|=2,则b=±2若b=0,则|a|=2,则a=±2∴ab=0(2)若|ab|=1,则|a﹣b|=1∵a、b是整数∴不存在(3)若|ab|=2,则|a﹣b|=0∵|a﹣b|=0∴a=b又∵|ab|=2∴不存在综上:ab=0【点评】此题主要考查了求方程整数解与分类讨论数学思想的综合运用,主要根据条件考虑全面,不要漏掉每一种符合条件的情况,此题综合难度较大.18.方程的整数解有4组.【分析】首先将y用x表示,平方后根据已知条件分析各项数据,得出所有的可能.【解答】解:∵,∴=x=1998+y﹣2已知x,y为非负整数,所以1998y是个完全平方数,∵1998=2×3×3×3×37,y=2×3×37=222,x=888 或者y=2×3×37×2×2=888,x=222,0也是整数,0也有平方根.∴整数解有(888,222),(222888,),(0,1998)和(1998,0)共4组.故答案为:4.【点评】此题主要考查了方程整数解的有关知识,以及完全平方数,题目比较简单.19.试证:如果整系数二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c 中至少有一个偶数.【分析】先假设a、b、c全是奇数,根据根与系数的关系,利用判别式求得x的值x=,可见存在有理根,即设为有理数n,假设n为偶数,与已知矛盾,从而得到n只能为偶数,进一步证得a,b,c中至少有一个是偶数.【解答】证明:假设a、b、c全为奇数△=b2﹣4ac≥0有:x=,可见存在有理根,即设为有理数n,∴b2﹣4ac=n2,∴(b﹣n)(b+n)=4ac,∵若n为偶数,(b﹣n)(b+n)=奇数×奇数=奇数≠4ac,∴n只能为奇数,b﹣n为偶数b+n为偶数,∴(b﹣n)(b+n)=偶数×偶数=2a×2c(a≤c),即b﹣n=2a,b+n=2c,解得:b=a+c,此时b=奇数+奇数=偶数,与原假设矛盾,∴原假设不成立.∴如果整系数二次方程ax2+bx+c=0存在有理根,那么a、b、c至少有一个是偶数.【点评】本题考查了一元二次方程的整数根与有理根、整数的奇偶性问题,注意对于不能直接证明的问题,采用反证法往往是一种不错的方法.三.解答题(共12小题)20.已知a、b是方程x2+2x﹣5=0的两根,不解方程求:(1)+的值;(2)a2+3a+b的值.【分析】根据根与系数的关系结合一元二次方程的解可得出:a2+2a=5,a+b=﹣2,ab=﹣5.(1)将a+b=﹣2、ab=﹣5代入+=中即可求出结论;(2)将a2+2a=5、a+b=﹣2代入a2+3a+b=(a2+2a)+(a+b)中即可求出结论.【解答】解:∵a、b是方程x2+2x﹣5=0的两根,∴a2+2a=5,a+b=﹣2,ab=﹣5.(1)+===﹣;(2)a2+3a+b=(a2+2a)+(a+b)=5﹣2=3.【点评】本题考查了根与系数的关系以及一元二次方程的解,利用根与系数的关系结合一元二次方程的解找出a2+2a=5、a+b=﹣2、ab=﹣5是解题的关键.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.(1)当m取何值时,方程有两个不相等的实数根?(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.【分析】(1)计算其判别式,由方程根的情况可得到关于m的不等式,则可求得m的取值范围;(2)由根与系数的关系可用m表示出两根之和、两根之积,则可得到关于m的方程,可求得m的值.【解答】解:(1)△=[﹣2(m+1)]2﹣4(m2﹣3)=8m+16,当方程有两个不相等的实数根时,则有△>0,即8m+16>0,解得m>﹣2;(2)根据一元二次方程根与系数之间的关系,得x1+x2=2(m+1),x1x2=m2﹣3,∵x12+x22=22+x1x2=(x1+x2)2﹣2x1x2,∴[2(m+1)]﹣2(m2﹣3)=6+(m2﹣3),化简,得m2+8m﹣9=0,解得m=1或m=﹣9(不合题意,舍去),∴实数m的值为1.【点评】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.22.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣3=0有两个实数根.(1)求k的取值范围;(2)设方程两实数根分别为x1,x2,且满足x12+x22=23,求k的值.【分析】(1)根据方程有实数根得出△=[﹣(2k﹣1)]2﹣4×1×(k2﹣3)=﹣8k+5≥0,解之可得.(2)利用根与系数的关系可用k表示出x1+x2和x1x2的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣3=0有两个实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2﹣3)=﹣4k+13≥0,解得k≤.(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2﹣3,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2﹣3)=2k2﹣4k+7,∵x12+x22=23,∴2k2﹣4k+7=23,解得k=4,或k=﹣2,∵k≤,∴k=4舍去,∴k=﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.以及根与系数的关系.23.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根.(1)求k的取值范围;(2)若此方程的两实数根x1,x2满足x12+x22=11,求k的值.【分析】(1)根据方程有实数根得出△=[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解之可得.(2)利用根与系数的关系可用k表示出x1+x2和x1x2的值,根据条件可得到关于k的方程,可求得k的值,注意利用根的判别式进行取舍.【解答】解:(1)∵关于x的一元二次方程x2﹣(2k﹣1)x+k2+k﹣1=0有实数根,∴△≥0,即[﹣(2k﹣1)]2﹣4×1×(k2+k﹣1)=﹣8k+5≥0,解得k≤.(2)由根与系数的关系可得x1+x2=2k﹣1,x1x2=k2+k﹣1,∴x12+x22=(x1+x2)2﹣2x1x2=(2k﹣1)2﹣2(k2+k﹣1)=2k2﹣6k+3,∵x12+x22=11,∴2k2﹣6k+3=11,解得k=4,或k=﹣1,∵k≤,∴k=4(舍去),∴k=﹣1.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.24.已知x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)求实数a的取值范围;(2)若x1、x2满足x1x2﹣x1=4+x2,求实数a的值.【分析】(1)根据一元二次方程根的判别式、一元二次方程的定义计算;(2)根据一元二次方程根与系数的关系列出方程,解方程即可.【解答】解:(1)∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴(2a)2﹣4(a﹣6)×a≥0,a﹣6≠0,解得,a≥0且a≠6;(2)∵x1、x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴x1+x2=,x1•x2=,∵x1x2﹣x1=4+x2,∴x1x2=4+x2+x1,即=4+,解得,a=24.【点评】本题考查的是一元二次方程根的判别式、根与系数的关系,x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=,反过来也成立.25.已知关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)若方程的两个实数根x1,x2满足+=﹣,求k的值.【分析】(1)由根的情况,根据根的判别式,可得到关于k的不等式,则可求得k的取值范围;(2)由根与系数的关系可用k表示出两根之和、两根之积,由条件可得到关于k的方程,则可求得k的值.【解答】解:(1)∵关于x的方程x2﹣(2k+1)x+k2﹣2=0有两个实数根,∴△≥0,即[﹣(2k+1)]2﹣4(k2﹣2)≥0,解得k≥﹣;(2)由根与系数的关系可得x1+x2=2k+1,x1x2=k2﹣2,由+=﹣可得:2(x1+x2)=﹣x1x2,∴2(2k+1)=﹣(k2﹣2),∴k=0或k=﹣4,∵k≥﹣,∴k=0.【点评】本题主要考查根的判别式及根与系数的关系,熟练掌握根的个数与根的判别式的关系是解题的关键.26.m是什么整数时,方程(m2﹣1)x2﹣6(3m﹣1)x+72=0有两个不相等的正整数根.【分析】首先根据已知条件可得m2﹣1≠0,进而得到m≠±1,然后根据根的判别式△>0,可得m≠3;再利用求根公式用含m的式子表示x,因为,方程有两个不相等的正整数根,所以分情况讨论m的值即可.【解答】解:∵m2﹣1≠0∴m≠±1∵△=36(m﹣3)2>0∴m≠3用求根公式可得:x1=,x2=∵x1,x2是正整数∴m﹣1=1,2,3,6,m+1=1,2,3,4,6,12,解得m=2.这时x1=6,x2=4.【点评】此题主要考查了一元二次方程的二次项系数不能为0,根的判别式和求方程的整数解的综合运用,还用到了数学中的分类讨论思想,综合性较强.27.试确定一切有理数r,使关于x的二次方程rx2+(r+2)x+3r﹣2=0有根且只有整数根,求r的值.【分析】由于方程的类型已经确定,则r≠0,由根与系数关系得到关于r的两个等式,利用因式(数)分解先求出方程两整数根.【解答】解:由题意可得:r≠0时,设方程的整数根为x1,x2,不妨设x1≤x2,由根据系数关系可得:x1+x2==﹣1﹣①,x1x2==3﹣②,②﹣①得:x1x2﹣(x1+x2)=4,则x1x2﹣(x1+x2)+1=5,(x1﹣1)(x2﹣1)=5,由x1≤x2得:x1﹣1≤x2﹣1,5=1×5=(﹣5)×(﹣1),∴或,解得:或,将上述x1,x2的值代入②得:12=3﹣或0=3﹣解得:r=﹣或,故存在有理数r的值为:﹣或.【点评】本题主要考查了一元二次方程的整数根与有理根.在解答此题时,利用了一元二次方程的根与系数的关系.28.若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?【分析】(1)假设出装卸工作需要小时数,表示出第一人与最后一人所用时间,再由10小时装卸完毕,列出方程;(2)从装卸时间入手列出方程.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.【点评】此题主要考查了一元一次方程的应用,以及不定方程的解法,综合性较强.29.若二次方程x2+2px+2q=0有实根,其中p、q为奇数,证明:此方程的根是无理数.【分析】分别假设方程的根为奇数、偶数、分数,然后将方程变形,得出矛盾,进而根据有理数的概念可判断出方程x2+2px+2q=0此方程的根是无理数.【解答】解:①首先,方程的根不可能是奇数;若x为奇数,则x2为奇数,而2px+2q是偶数,因此x2+2px+2q取奇数值,不可能是0;②其次,方程的根不可能是偶数;若x为偶数,则x2+2px能被4整除,而这时常数项2q被4除时余2,因此不能满足x2+2px+2q≠0;③最后,方程的根不可能是分数;若x为分数,则x+p也是分数,而方程可以变为(x+p)2=p2﹣2q,等号右端的p2﹣2q是一个整数,左端是一个分数,这是一个矛盾!综上可知,当p,q是两个奇数时,方程x2+2px+2q=0不可能有有理根,即此方程的根是无理数.【点评】此题考查了一元二次方程的整数根与有理根的知识,注意运用假设法解题,得出矛盾,然后判断假设正确与否,有一定难度.30.设m为整数,且4<m<40,方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0有两个不相等的整数根,求m的值及方程的根.【分析】根据求根公式可知:x==(2m﹣3)±,根据4<m<40可知m的值为12或24,再把m值代入求解即可.【解答】解:解方程x2﹣2(2m﹣3)x+4m2﹣14m+8=0,得,∵原方程有两个不相等的整数根,∴2m+1为完全平方数,又∵m为整数,且4<m<40,2m+1为奇数完全平方数,∴2m+1=25或49,解得m=12或24.∴当m=12时,,x1=26,x2=16;当m=24时,.【点评】本题考查了解一元二次方程的方法,求根公式法适用于任何一元二次方程.方程ax2+bx+c=0的解为x=.要注意根据实际意义进行值的取舍.31.若关于x的方程(k2﹣2k)x2﹣(6k﹣4)x+8=0的解都是整数,试求实数k 的值.【分析】(1)根据k2﹣2k=0得出k的值,进而求出x的值;(2)当k2﹣2k≠0进行分析,利用代入消元法求出k的值.【解答】解:(1)当k2﹣2k=0,即k=0或k=2,①若k=0时,原方程化为4x+8=0,即x=﹣2符合题意;②若k=2时,原方程化为﹣8x+8=0,则x=1符合题意;(2)当k2﹣2k≠0,即k≠0且k≠2时,原方程可化为:(k2﹣2k)x2﹣(6k﹣4)x+8=0,解得x1=,x2=,将k=,代入x2=得x1x2+2x1﹣x2﹣2=﹣2,∴或或或∴或或或(舍去),或或,解得:k=1或﹣2或,综上:k的值为1,﹣2,【点评】此题主要考查了一元二次方程整数根的求法和代入消元法解方程,题目难度不大.。
中考数学专题训练一元二次方程系数与根的关系(含解析)

2019 中考数学专题训练-一元二次方程系数与根的关系(含解析)一、单选题1.、是一元二次方的两根,的值是()A.-2B. 2C. 3D. 12.一元二次方程x2+3x﹣a=0 的一个根为﹣1,则另一个根为()A.﹣2B. 2C. 4D.﹣33.已知方程x2-5x+2=0 的两个解分别为m,n,则m+n-mn 的值是()A.-7B.-3C.7D. 34.若关于x 一元二次方程x2﹣x﹣m+2=0 的两根x1 , x2 满足(x1﹣1)(x2 ﹣1)=﹣1,则m 的值为()A. 3B.-3C. 2D.-25.下列方程中:①x2-2x-1=0,②2x2-7x+2=0,③x2-x+1=0 两根互为倒数有()A.0 个B.1 个C.2 个D.3 个6.设x1 , x2 是一元二次方程-2x-3=0 的两根,则=()A. 6第 1 页B.8C.10D.127.一元二次方程x2+x-2=0 的两根之积是( )A.-1B.-2C. 1D. 28.方程x2+2x-4=0 的两根为x1 , x2 ,则x1+x2 的值为()A. 2B.-2C.D. -9.若矩形的长和宽是方程x2﹣7x+12=0 的两根,则矩形的对角线之和为()A. 5B.7C.8D.1010.如果 a,b 是一元二次方程 x2﹣2x﹣4=0 的两个根,那么 a3b﹣2a2b 的值为()A.-8B.816 C. -16D.11.如是一元二次方的两个实数根,那的值是()A.B.C.D.第 2 页二、填空题12.设x1、x2 是方程x2-4x+3=0 的两根,则x1+x2= .13.定义新运算“*”,规则:a*b= ,如1*2=2,* .若x2+x﹣1=0 的两根为x1 , x2 ,则x1*x2= .14.若x1、x2 是方程2x2﹣3x﹣4=0 的两个根,则x1•x2+x1+x2的值为.15.若a、b 是一元二次方程x2+2x﹣1=0 的两个根,则的值是.16.写出一个以2 和3 为两根且二项系数为1 的一元二次方程,你写的是.17.若方程x2﹣3x+1=0 的两根分别为x1 和x2 ,则代数式x1+x2﹣x1x2= .18.若一个一元二次方程的两个根分别是1、3,请写出一个符合题意的一元二次方程.三、计算题19.已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值.20.已知一元二次方程 x2﹣6x+4=0 的两根分别是 a,b,求(1)a2+b2(2)a2﹣b2 的值.四、解答题21.已知关于 x 的方程 x2+x+a﹣1=0 有一个根是 1,求 a 的值及方程的另一个根.22.阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1 , x2 ,则两根与方程系数之间有如下关系,.请根据该材料解题:已知x1 , x2 是方程x2+6x+3=0 的两实数根,+和x12x2+x1x22 的值.答案解析部分一、单选题1.【答案】C【考点】根与系数的关系【解析】【分析】∵一元二次方的两根分别、,∴==3.故选 C.2.【答案】A【解析】【解答】解:设 x1、x2 是关于 x 的一元二次方程 x2+3x﹣a=0 的两个根,则x1+x2=﹣3,又﹣x2=﹣1,解得:x1=﹣2.即方程的另一个根是﹣2.故选:A.【分析】根据一元二次方程根与系数的关系x1+x2=﹣求另一个根即可.3.【答案】D【考点】根与系数的关系【解析】【分析】利用根与系数的关系求出 m+n 与mn 的值,代入所求式子中计算即可求出值.【解答】∵x2-5x+2=0 的两个解分别为 m,n,∴m+n=5,mn=2,则m+n-mn=5-2=3.故选 D【点评】此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.4.【答案】A【考点】根与系数的关系【解析】【解答】解:根据题意得 x1+x2=1,x1x2=﹣m+2,∵(x1﹣1)(x2﹣1)=﹣1,∴x1x2﹣(x1+x2)+1=﹣1,∴﹣m+2﹣1+1=﹣1,∴m=3.故选 A.【分析】根据根与系数的关系得到 x1+x2=1,x1x2=﹣m+2,再变形等式(x1﹣1)(x2﹣1)=﹣1 得到x1x2﹣(x1+x2)+1=﹣1,则有﹣m+2﹣1+1=﹣1,然后解此一元一次方程即可.5.【答案】B【考点】一元二次方程的根与系数的关系【解析】【解答】两根互为倒数则说明两根之积为1 且△≥0,即,则a=c,∴只有②是正确的,③没有实数根.故答案为:B【分析】由两根互为倒数则说明两根之积为 1 且△≥0,可得出答案。
初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)

初中数学一元二次方程根与系数的关系专项训练题三(附答案详解)1.先阅读,再回答问题:如果x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,那么x1+x2,x1x2与系数a,b,c的关系是:x1+x2=-,x1x2=.例如:若x1,x2是方程2x2-x-1=0的两个根,则x1+x2=-=-=,x1x2===-.若x1,x2是方程2x2+x-3=0的两个根,(1)求x1+x2,x1x2(2)求+的值.(3)求(x1-x2)22.如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式4m2﹣5mn+n2的值;(3)若关于x的一元二次方程ax2+bx+c=0(a≠0)是“倍根方程”,求a,b,c之间的关系.3.已知关于的一元二次方程.若是此方程的一个根,求的值和它的另一个根;若方程有两个不相等的实数根,试判断另一个关于的一元二次方程的根的情况.4.已知关于的一元二次方程.若方程有实数根,求的取值范围;如果是满足条件的最大的整数,且方程一根的相反数是一元二次方程的一个根,求的值及这个方程的另一根.5.根据下列命题完成以下问题。
(命题)若、是关于的一元二次方程的两个实数根,则有,。
〖问题1〗若、是关于的一元二次方程的两个实数根,则有____________,___________。
〖问题2〗若、是一元二次方程的两个实数根,则有____________,___________。
〖问题3〗甲、乙两同学解同一道一元二次方程时,甲看错了一次项系数,得两根为2和7,乙看错了常数项,得两根为1和-10。
初中数学一元二次方程根与系数关系专项复习题3(附答案详解)

初中数学一元二次方程根与系数关系专项复习题3(附答案详解)1.一元二次方程x 2+3x =0的解是( )A .x =3B .x 1=0,x 2=3C .x 1=0,x 2=-3D .x =-32.关于x 的一元二次方程x 2+bx ﹣1=0的判别式为( )A .1﹣b 2B .b 2﹣4C .b 2+4D .b 2+13.下列方程中,两实数根之和等于2的方程是( )A .x 2+2x ﹣3=0B .x 2﹣2x+3=0C .2x 2﹣2x ﹣3=0D .3x 2﹣6x+1=0 4.关于x 的一元二次方程x 2-2x +2k =0有实数根,则k 得范围是( )A .k <B .k >C .k≤D .k≥5.方程x 2﹣3x +4=0和2x 2﹣4x ﹣3=0所有实数根的和是( )A .3B .5C .1D .26.方程2270x ax -+=,有一根是12,则另一根为( ) A .7 B .7.5C .-7D .15 7.已知关于x 的方程()2a 1x 2x 10--+=有实数根,则a 的取值范围是()n nA .a 2≤B .a 2>C .a 2≤且a 1≠D .a 2<-8.x=1是关于x 的一元二次方程2x 2+mx−1=0的一个根,则此方程的两根之和为A .−1B .1C .12D .−129.关于x 的方程220x x k +-=有两个相等的实数根,则k 的值为( )A .12 B .12- C .1? D . 1-10.甲、乙两个同学分别解一道二次项系数是1的一元二次方程,甲因把一次项系数看错了,而解得方程两根为﹣3和5,乙把常数项看错了,解得两根为2和2,则原方程是....( )A .x 2+4x ﹣15=0B .x 2﹣4x ﹣15=0C .x 2+4x+15=0D .x 2﹣4x+15=011.若x=3是一元二次方程x 2﹣2x+c=0的一个根,则这个方程的另一个根为_____. 12.设x 1、x 2是方程2x 2+4x-3=0的两个根,则(x 1+1)(x 2+1)=_______.13.已知关于x 的方程230x x k ++=的一个根是1-,则k =________;另一根为________.14.若关于x 的一元二次方程2430kx x -+=有两个不相等的实数根,则k 的取值范围15.若关于x 的一元二次方程()()21220m x mx m --++=有两个不等的实数根,则m 的取值范围是________.16.方程x 2-2x -3=0,两根分别为3,-1,记为[3,-1],请写出一个根为[-2,3]的一元二次方程________________________.17.方程(2x +1)(x +2)=6化为一般形式是______,b 2—4ac ____,用求根公式求得x 1=______,x 2=______,x 1+x 2=______,12x x =______,18.关于x 的一元二次方程2310kx x --=有实数根,则k 的取值范围是________. 19.如果关于x 的方程2420x x m -+=有实数根,则m 的取值范围是_______________.20.已知实数a 、b 满足a b ¹,且222018a a b b -=-=-,则11a b+的值为_______. 21.(1)不解方程,求方程5x 2﹣1=2x 的两个根x 1、x 2的和与积;(2)求证:无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根.22.如果x 1,x 2是一元二次方程ax 2+bx+c=0的两根,那么有x 1+x 2=-b a ,x 1x 2=c a.这是一元二次方程根与系数的关系,我们可以利用它来解题,例如:x 1,x 2是方程x 2+6x-3=0的两根,求x 12+x 22的值.解法可以这样:因为x 1+x 2=-6,x 1x 2=-3,所以x 12+x 22=(x 1+x 2)2-2x 1x 2=(-6)2-2×(-3)=42. 请你根据以上解法解答下题:设x 1,x 2是方程2x 2-x-15=0的两根,求: (1)11x +21x 的值; (2)(x 1-x 2)2的值.23.关于x 的方程3x 2﹣2x+m=0的一个根为﹣1,求方程的另一个根及m 的值.24.关于x 的一元二次方程()21210k x x +++=的实数解是1x 和2x . ()1求k 的取值范围;()2如果12121x x x x k +-=-,求k 的值.25.已知2x 2﹣4x+c=0的一个根,求方程的另一个根和c 的值.26.已知:关于x 的方程x 2+2ax+a 2﹣1=0(1)不解方程,判列方程根的情况; (2)若方程有一个根为2,求a 的值.27.已知关于x 的一元二次方程2220x x k -+-=有两个不相等的实数根1x ,2x . (1)求k 的取值范围;(2)若1x ,2x 满足211212325x x x x x ---<,且k 为整数,求k 的值.28.阅读材料:①韦达定理:设一元二次方程ax 2+bx+c=0(且a≠0)中,两根12x x 、有如下关系: 12b x x a +=-,12c x x a⋅=. ②已知p 2﹣p ﹣1=0,1﹣q ﹣q 2=0,且pq≠1,求1pq q+ 的值. 解:由p 2﹣p ﹣1=0及1﹣q ﹣q 2=0,可知p≠0,q≠0.又∵pq≠1,∴1p q≠ ; ∴1﹣q ﹣q 2=0可变形为21110q q⎛⎫--= ⎪⎝⎭的特征.所以p 与1q是方程x 2﹣x ﹣1=0的两个不相等的实数根. 则p+1q=1, ∴1pq q+=1. 根据阅读材料所提供的方法,完成下面的解答.已知:2m 2﹣5m ﹣1=0,21520n n +-=,且m≠n .求:11m n+ 的值.29.已知关于x 的方程:2244(3)x m x m --=(1)求证:无论m 取什么实数值,这个方程总有两个相异实根.(2)若这个方程的两个实数根1x 、2x 满足211x x -=,求m 的值及相应的1x 、2x .30.学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程的两个根为x 1,x 2,就能快速求出11x +21x ,x 12+x 22,…的值了.比如设x 1,x 2是方程x 2+2x -3=0的两个根,则x 1+x 2=-2,x 1x 2=-3,得11x +21x =1212x x x x +=23.” (1)小亮的说法对吗?简要说明理由;参考答案1.C【解析】分析:分解因式得到x (x+3)=0,转化成方程x=0,x+3=0,求出方程的解即可.详解:x 2+3x=0,x(x+3)=0,x=0,x+3=0,x 1=0,x 2=−3,故选:C.点睛:此题考查了解一元二次方程-因式分解法,用因式分解法解方程的一般步骤是:移项、化积、转化、求解.2.C【解析】【分析】将一元二次方程的各项系数代入根的判别式24b ac ∆=-中,即可得出答案.【详解】在一元二次方程x 2+bx ﹣1=0中,∵a =1,b =b ,c =-1,∴222441(1)4b ac b b ∆=-=-⨯⨯-=+.故选C.【点睛】本题考查了一元二次方程根的判别式.找出一元二次方程中各项的系数并准确进行计算是解题的关键.3.D【解析】【分析】先根据根的判别式,判断有无实数根的情况,再根据根与系数的关系,逐一判断即可.【详解】A. x 2+2x ﹣3=0,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;B. ∵x 2﹣2x+3=0 ,∴△=b²-4ac=-8<0,∴此方程没有实数根,故此选项错误;C. ∵2x 2﹣2x ﹣3=0,∴△=b²-4ac=32>0,∴此方程有实数根, 根据根与系数的关系可求12212b x x a -+=-=-= , 故此选项错误;D. ∵3x 2﹣6x+1=0,∴△=b²-4ac=24>0,∴此方程有实数根, 根据根与系数的关系可求12623b x x a -+=-=-=, 故此选项正确.故选D.【点睛】本题考查了根的判别式及根与系数的关系,若1x ,2x 是一元二次方程ax²+bx+c=0(a≠0)的两根时12b x x a +=-,12c x x a=. 4.C【解析】【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有实数根下必须满足△=b 2-4ac≥0.【详解】因为关于x 的一元二次方程有实根,所以解得故选:C.【点睛】考查一元二次方程根的判别式,当时,方程有两个不相等的实数根.当时,方程有两个相等的实数根.当时,方程没有实数根.5.D【解析】解:在方程x2﹣3x+4=0中,△=(﹣3)2﹣4×1×4=﹣7<0,∴方程x2﹣3x+4=0无实数根;在方程2x2﹣4x﹣3=0中,△=(﹣4)2﹣4×2×(﹣3)=40>0,∴方程2x2﹣4x﹣3=0有两个不等的实数根.设x1、x2是方程2x2﹣4x﹣3=0的实数根,∴x1+x2=2.故选D.6.A【解析】【分析】由韦达定理即可求解.【详解】解:令另一根为x,由韦达定理可知1722x ,解得x=7,故选择A.【点睛】本题考查了一元二次方程的韦达定理.7.A【解析】【分析】分两种情况进行讨论,即一元一次方程和一元二次方程,从而得出答案.【详解】当方程为一元一次方程时,a=1,方程有实数根;当方程为一元二次方程时,a≠1且4-4(a-1)≥0,解得:a≤2且a≠1;综上所述,a≤2.故选A.【点睛】考查的是方程的解得情况以及分类讨论的思想,属于中等题型.解决这个问题的关键就是分类讨论,很多同学会把这个方程当做一元二次方程来解.8.C【解析】设方程的另一根为x1,∵x=1是关于x的一元二次方程2x2+mx−1=0的一个根,根据根与系数的关系可得:x1·1=−12,∴x1=−12,∴x1+1=12.故选C.9.D【解析】【分析】利用一元二次方程根的判别式,得出△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,代入公式求出即可.【详解】∵关于x的方程x2+2x-k=0有两个相等的实数根,∴△=b2+4ac=4+4k=0,解得;k=-1,故选:D.【点睛】考查了一元二次方程根的判别式,一元二次方程ax²+bx+c=0(a≠0)的根与根的判别式24b ac∆=-有如下关系:①当∆>0时,方程有两个不相等的实数根;②当∆=0时,方程有两个相等的实数根;③当∆<0时,方程无实数根.10.B【解析】甲的常数项是对的,所以常数项为:-3×5 = -15,乙的一次项系数是对的,所以是一次项系数为:-(2+2)= -4,原方程是x2 - 4 x -15 = 0,故选D.【点睛】本题主要考查了根与系数的关系,牢记根与系数的关系是解决此类问题的关键.【解析】【分析】由根与系数的关系,设另一个根为x ,再根据两根之和为b a -,代入计算即可. 【详解】由根与系数的关系,设另一个根为x ,则3+x =2,解得:x =−1.故答案为:x =−1.【点睛】 本题主要考查一元二次方程根与系数的关系,熟记公式1212,,b c x x x x a a +=-= 是解决本题的关键.12.52-; 【解析】【分析】根据(x 1+1)(x 2+1)=1212()1x x x x +++,依据一元二次方程的根与系数的关系,可得两根之积或两根之和,代入数值计算即可.【详解】∵x 1、x 2是方程2x 2+4x-3=0的两个根, ∴121232,2x x x x +=-=-, 又∵(x 1+1)(x 2+1)=121235()12122x x x x +++=--+=-, 故填空答案:52-. 【点睛】 本题考查了根与系数的关系,解题的关键是将根与系数的关系与代数式变形.13.2 -2【解析】把x=-1代入已知方程列出关于k 的新方程,通过解新方程来求k 的值;然后利用根与系数的关系来求方程的另一根.【详解】依题意,得(−1)2+3×(−1)+k =0,解得,k =2.设方程的另一根为t ,则−1×t =2, 解得t =−2.故答案是:2;−2.【点睛】考查一元二次方程()200++=≠ax bx c a 根与系数的关系, 熟记公式1212,,b c x x x x a a+=-=是解决本题的关键. 14.43k <且0k ≠ 【解析】由题意可得:016430k k ≠⎧⎨∆=-⋅⋅>⎩, ∴43k <且0k ≠. 点睛:本题考查了一元二次方程ax 2+bx +c =0(a≠0)的定义和根的判别式∆=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.15.2m <且1m ≠【解析】【详解】根据题意得:△=b 2﹣4ac=4m 2﹣4()()1?2m m -+>0, 解得m <2,∵方程为一元二次方程,∴m ﹣1≠0,即m≠1,则m 的取值范围是2m <且1m ≠. 故答案为2m <且1m ≠. 16.x 2-x -6=0(答案不唯一) 【解析】 【分析】根据一元二次方程的一般形式ax 2+bx+c=0,利用一元二次方程根与系数的关系可以求出该方程. 【详解】设该方程为ax 2+bx+c=0, x 1+x 2=-b a ,x 1•x 2=c a, 方程的两根为-2和3, 则-ba=-(-2+3)=-1, ca=(-2)×3=-6, 如果a=1,则b=-1,c=-6, 则该方程为x 2-x-6=0. 答案不唯一. 故可以填x 2-x-6=0.故答案为:x 2-x -6=0(答案不唯一) 【点睛】此题主要考查了根与系数的关系,先设出一元二次方程的一般形式,利用根与系数的关系可求出方程.17.2x 2+5x —4=0, 57, 154x -±=, 254x -=, 52-, —2【解析】 【分析】一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0),据此可得出方程(2x+1)(x+2)=6的一般形式;把一般形式中a ,b ,c 的值代入计算,即可求出b 2-4ac 的值;将a ,b ,c 的值代入求根公式x =中进行计算,即可得出x 1,x 2的值;根据一元二次方程根与系数的关系即可得出x 1+x 2,x 1•x 2的值. 【详解】方程(2x +1)(x +2)=6化为一般形式是22540x x +-=; 在方程22540x x +-=中,∵a =2,b =5,c =−4,∴()2245424253257b ac -=-⨯⨯-=+=,∴x ==∴1x =,2x =,∵12x x 、是方程22540x x +-=的两根,∴121252.2x x x x +=-⋅=-,故答案为:25254057 2.2x x +-=--;, 【点睛】考查了一元二次方程的一般形式,求根公式以及根与系数的关系,属于基础题,比较简单. 18.94k ≥-且0k ≠ 【解析】 【分析】先求出∆的值,然后根据∆的值与一元二次方程根的关系列式求解即可. 【详解】 由题意得,∆=(-3)2-4×k×(-1)≥0,且k≠0,∴94k ≥-且0k ≠ 故答案为:94k ≥-且0k ≠.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 19.2m ≤ 【解析】分析:根据方程的系数结合根的判别式,即可得出△=16-8m≥0,解之即可得出m 的取值范围. 详解:∵关于x 的方程2420x x m -+=有实数根, ∴△=(-4)²-4×2m=16-8m≥0, 解得:m≤2 故答案为:m≤2点睛:本题考查了根的判别式,根的判别式大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根. 20.12018-【解析】 【分析】由于实数a≠b ,且a ,b 满足a-a 2=b-b 2=-2018,则a ,b 可看着方程x 2-x-2018=0的两根,根据根与系数的关系得a+b=1,ab=-2018,然后把11a b+通分后变形,再利用整体代入的方法计算. 【详解】∵a ,b 满足222018a a b b -=-=-, ∴a ,b 可看着方程x 2−x −2018=0的两根, ∴a +b =1,ab =−2018,∴111.2018a b a b ab ++==- 故答案为:1.2018-【点睛】考查一元二次方程根与系数的关系,熟记根与系数的关系式是解题的关键.21.(1)x 1+x 2=25,x 1x 2=﹣15;(2)见解析. 【解析】 【分析】(1)先把右边的项移到左边,然后根据一元二次方程根与系数的关系求解即可; (2)先整理成一元二次方程的一般形式,然后求出∆的值即可判断. 【详解】(1)方程可化为5x 2﹣2x ﹣1=0, ∴x 1+x 2=25,x 1x 2=﹣15; (2)方程可化为x 2﹣3x+2﹣p 2=0, ∴△=(﹣3)2﹣4(2﹣p 2)=4p 2+1>0,∴无论p 取何值,方程(x ﹣2)(x ﹣1)﹣p 2=0总有两个不相等的实数根. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根的判别式及根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅= . 22.(1)115;(2)1214【解析】分析:(1)根据根与系数的关系得出12x x + 和12x x ⋅的值,再把要求的式子进行通分,然后代值计算即可;(2)把要求从的式子变形为21212()4x x x x +-,再把12x x +=12,12152x x =-代入进行计算即可.详解:x 1+x 2=12,x 1x 2=-152. (1)1211x x +=2112x x x x +=12152-=- 115;(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=(12)2-4×(-152)=1214. 点睛:此题主要考查了根与系数的关系,根据题意得出12=bx x a +-和12c x x a=的值是解决问题的关键.23.-5,53【解析】试题分析:把x =−1代入方程2320x x m -+=得关于m 的方程,可求出m =−5,然后利用根与系数的关系求方程的另一根.试题解析:把x =−1代入方程2320x x m -+=得3+2+m =0,解得m =−5, 设方程的另一个根为t ,则13m t -⋅=-, 所以5.3t =即方程的另一个根为5.324.:()1k 的取值范围是0k ≤,且1k ≠-;()2 k 的值为2-. 【解析】 【分析】(1)根据题意可知,一元二次方程有两个实数根,故△≥0,且方程为一元二次方程,可知二次项系数不为0,据此解答即可;(2)根据一元二次方程根与系数的关系,得x 1+x 2=﹣21k -+,x 1x 2=11k +,根据x 1+x 2﹣x 1x 2=1﹣k 列出等式,解答即可. 【详解】(1)△=22﹣4×(k ﹣1)×1=﹣4k . ∵方程有实数根,∴△≥0且k +1≠0,解得:k ≤0且k ≠﹣1,k 的取值范围是k ≤0且k ≠﹣1; (2)根据一元二次方程根与系数的关系,得:x 1+x 2=﹣21k -+,x 1x 2=11k +. 由x 1+x 2﹣x 1x 2=1﹣k ,得:21k -+﹣11k +=1﹣k ,解得:k 1=2,k 2=﹣2. 经检验,k 1、k 2是原方程的解.又由(1)k ≤0且k ≠﹣1,故k 的值为﹣2. 【点睛】本题考查了一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根. 25.,c=-1 【解析】试题分析:设出方程另一根,利用根与系数的关系建立方程求解即可得出结论. 试题解析:解:设方程的另一根为m ,由题意得:24(2m m c ⎧-=⎪⎨-=⎪⎩①②,解得:21m c ⎧=⎪⎨=-⎪⎩ 答:方程的另一根为:xc 的值为﹣1.点睛:本题主要考查了一元二次方程的根与系数的关系,解答本题的关键是求出方程的另一根.26.(1)证明见解析;(2)-1或-3.【解析】分析: (1)根据根的判别式可得△=4a 2-4(a 2-1)=4即可判断根的情况; (2)由题意可知把x=2代入原方程求得a 的值,然后再把a 的值代入原方程求得方程的另外一个根即可.详解: :(1)∵关于x 的方程x 2-2ax+a 2-1=0, ∴△=4a 2-4(a 2-1)=4>0,即△>0, ∴方程有两不相等的实数根; (2)∵x=2是方程的一个根,∴把x=2代入原方程中得:4-4a+a 2-1=0, ∴a=-1或a=-3,点睛: 本题主要考查了根的判别式的知识和一元二次方程的解的知识,解答此题要掌握一元二次方程根的情况与判别式△的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根 27.(1)k <3(2)0,1,2 【解析】试题分析:(1)根据判别式的意义得到△=(-2)2-4(k-2)>0,然后解不等式即可;(2)由根的定义知: 211220x x k -+-= ,由一元二次方程根与系数的关系,得x 1+x 2=2,x 1x 2=k-2,再代入不等式211212325x x x x x ---<,即可求得k 的取值范围,然后根据k 为整数,求出k 的值.试题解析:(1)依题意可知:()()22420k --->,解得3k <;(2)由根的定义知: 211220x x k -+-= ,∴ 21122x x k -=-,由根与系数的关系知:122x x +=, 122x x k =- ,若1x ,2x 满足211212325x x x x x ---<, 则 2111212225x x x x x x ----<,∴ ()2111212225x x x x x x --+-<, ∴ ()22225k k ----<,∴ 13k >- ,又由(1)知3k <,∴ 133k -<< ,Q k 为整数,∴ k 的值为 0,1, 2.28.-5. 【解析】 【分析】类比材料中所给的方法解答即可. 【详解】 由21520n n+-=得2n 2﹣5n ﹣1=0, 根据2m 2﹣5m ﹣1=0与2n 2﹣5n ﹣1=0的特征,且m≠n , ∴m 与n 是方程2x 2﹣5x ﹣1=0的两个不相等的实数根 ∴m+n=52,mn=12- ,∴11m n +=5212m nmn +=-=-5. .【点睛】本题是阅读理解题,根据题目中所给的解题方法解决问题是解决本题的关键.29.(1)证明见解析(2)①112x -=,212x --=②1x =,2x =【解析】试题分析:(1)求出b 2-4ac>0,即可判断方程总有两个实数根;(2)根据根与系数的关系求得123x x m +=-,21204m x x ⋅=-≤,即可得1x 、2x 异号或有1个为0.再根据211x x -=,分①10x ≥,20x <和②10x ≤,2>0x 两种情况求m 的值及相应的1x 、2x .试题解析:(1)()2216316m m ∆=-+23296144m m =-+2332722m ⎛⎫=-+ ⎪⎝⎭72≥.∴无论m 取何值,方程有两个异根. (2)()224430x m x m ---=.∵4a =,124b m =-,2c m =-. ∴123x x m +=-,21204m x x ⋅=-≤,∴1x 、2x 异号或有1个为0.211x x -=,①10x ≥,20x <,211x x --=即121x x +=-,31m -=-,∴2m =.24440x x +-=.115x -+=,215x --=.②10x ≤,2>0x .211x x +=,4m =. 244160x x --=. 240x x --=.11172x +=,21172x -=. 30.(1) 小亮的说法不对,理由见解析;(2)答案不唯一,详见解析 【解析】 【分析】根据:如果方程ax 2+bx +c =0(a ≠0)有两个实数根x 1,x 2,那么x 1+x 2=-b a ,x 1x 2=ca. 注意分式的分母不能等于0. 【详解】(1)小亮的说法不对.若有一根为零时,就无法计算+的值了,因为零作除数无意义 (2)答案不唯一,如:一元二次方程x 2-5x -6=0.设方程的两个根分别为x 1,x 2,则x 1+x 2=5,x 1·x 2=-6. 又∵x 12+x 22+2x 1x 2-2x 1x 2=(x 1+x 2)2-2x 1x 2,将x 1+x 2=5,x 1·x 2=-6代入, 得x 12+x 22=52-2×(-6)=37 【点睛】本题考查了根与系数的关系,属于基础题,关键掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,那么x 1+x 2=-b a ,x 1x 2=ca.。
苏科版九年级数学上册 一元二次方程的根与系数的关系- 专题培优训练【含答案】
苏科版九年级数学上册 一元二次方程的根与系数的关系- 专题培优训练一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .162、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣33、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数4、已知关于x 的一元二次方程x 2+mx +n=0的两个实数根分别为x 1=﹣2,x 2=4,则m +n 的值是( )A .﹣10B .10C .﹣6D .2 5、若关于x 的方程x 2+3x +a=0有一个根为﹣1,则另一个根为( )A .﹣2B .2C .4D .﹣36、已知实数x 1,x 2满足x 1+x 2=7,x 1x 2=12,则以x 1,x 2为根的一元二次方程是( )A .x 2﹣7x +12=0B .x 2+7x +12=0C .x 2+7x ﹣12=0D .x 2﹣7x ﹣12=07、若一元二次方程x 2﹣x ﹣2=0的两根为x 1,x 2,则(1+x 1)+x 2(1﹣x 1)的值是( )A .4B .2C .1D .﹣28、若方程x 2﹣2x ﹣4=0的两个实数根为α,β,则α2+β2的值为( )A .12B .10C .4D .﹣4 9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于( ) A .﹣2 B .﹣3 C .2 D .310、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根; ②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个二、填空题11、若方程x 2﹣3x +2=0的两根是α、β,则α+αβ+β= .12、若方程240x x c -+=的一个根为23+,则方程的另一个根为 ,c = .13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 15、已知x 1,x 2是关于x 的一元二次方程x 2+2x +k ﹣1=0的两个实数根,且x 12+x 22﹣x 1x 2=13,则k 的值为 .16、已知关于x 的一元二次方程x 2﹣4x +m ﹣1=0的实数根x 1,x 2,满足3x 1x 2﹣x 1﹣x 2>2,则m 的取值范围是 .17、已知α,β是关于x 的一元二次方程(m ﹣1)x 2﹣x +1=0两个实根,且满足(α+1)(β+1)=m +1,则m 的值为 .18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值一、选择题1、若x 1,x 2是一元二次方程x 2+10x +16=0的两个根,则x 1+x 2的值是( )A .﹣10B .10C .﹣16D .16【分析】根据一元二次方程的根与系数的关系得到两根之和即可.解:∵x 1,x 2一元二次方程x 2+10x +16=0两个根,∴x 1+x 2=﹣10.故选:A .2、一元二次方程x 2+4x ﹣3=0的两根为x 1、x 2,则x 1•x 2的值是( )A .4B .﹣4C .3D .﹣3【分析】根据根与系数的关系求解.解:x 1•x 2=﹣3. 故选D .3、已知x 1,x 2是一元二次方程2x 2﹣3x +1=0的两个根,下列结论正确的是( )A .x 1+x 2=-23B .x 1•x 2=1C .x 1,x 2都是有理数D .x 1,x 2都是无理数【分析】利用根与系数的关系对A 、B 进行判断;根据根的判别式对C 、D 进行判断. x 1+x 2=23,x 1x 2=21,所以A 、B 选项错误,因为△=(﹣3)2﹣4×2×1=1,所以x1,x2都是有理数,则C选项正确,D选项错误.故选:C.4、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10 B.10 C.﹣6 D.2【分析】根据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.解:∵关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=﹣2,x2=4,∴﹣2+4=﹣m,﹣2×4=n,解得:m=﹣2,n=﹣8,∴m+n=﹣10,故选A.5、若关于x的方程x2+3x+a=0有一个根为﹣1,则另一个根为()A.﹣2 B.2 C.4 D.﹣3【分析】根据一元二次方程根与系数的关系,利用两根和,两根积,即可求出a的值和另一根.解:设一元二次方程的另一根为x1,则根据一元二次方程根与系数的关系,得﹣1+x1=﹣3,解得:x1=﹣2.故选A.6、已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是()A.x2﹣7x+12=0 B.x2+7x+12=0 C.x2+7x﹣12=0 D.x2﹣7x﹣12=0【分析】根据以x1,x2为根的一元二次方程是x2﹣(x1+x2)x+x1,x2=0,列出方程进行判断即可.解:以x1,x2为根的一元二次方程x2﹣7x+12=0,故选:A.7、若一元二次方程x2﹣x﹣2=0的两根为x1,x2,则(1+x1)+x2(1﹣x1)的值是()A.4 B.2 C.1 D.﹣2A解:根据题意得x1+x2=1,x1x2=﹣2,所以(1+x1)+x2(1﹣x1)=1+x1+x2﹣x1x2=1+1﹣(﹣2)=4.故选:A.8、若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12 B.10 C.4 D.﹣4A解:∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12;故选:A .9、若α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,且βα11+=﹣32,则m 等于() A .﹣2 B .﹣3 C .2 D .3B解:α,β是关于x 的一元二次方程x 2﹣2x +m =0的两实根,∴α+β=2,αβ=m ,∵+===﹣,∴m =﹣3; 故选:B .10、关于x 的一元二次方程x 2+2mx +2n=0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m ﹣1)2+(n ﹣1)2≥2; ③﹣1≤2m ﹣2n ≤1, 其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个【考点】根与系数的关系;根的判别式.【分析】①根据题意,以及根与系数的关系,可知两个整数根都是负数;②根据根的判别式,以及题意可以得出m2﹣2n≥0以及n2﹣2m≥0,进而得解;③可以采用根与系数关系进行解答,据此即可得解.解:①两个整数根且乘积为正,两个根同号,由韦达定理有,x1•x2=2n>0,y1•y2=2m>0,y1+y2=﹣2n<0,x1+x2=﹣2m<0,这两个方程的根都为负根,①正确;②由根判别式有:△=b2﹣4ac=4m2﹣8n≥0,△=b2﹣4ac=4n2﹣8m≥0,∵4m2﹣8n≥0,4n2﹣8m≥0,∴m2﹣2n≥0,n2﹣2m≥0,m2﹣2n+n2﹣2m+2=m2﹣2m+1+n2﹣2n+1≥2,(m﹣1)2+(n﹣1)2≥2,②正确;③由根与系数关系可得2m﹣2n=y1y2+y1+y2=(y1+1)(y2+1)﹣1,由y1、y2均为负整数,故(y1+1)•(y2+1)≥0,故2m﹣2n≥﹣1,同理可得:2n﹣2m=x1x2+x1+x2=(x1+1)(x2+1)﹣1,得2n﹣2m≥﹣1,即2m﹣2n≤1,故③正确.故选:D.二、填空题11、若方程x2﹣3x+2=0的两根是α、β,则α+αβ+β=.【分析】利用根与系数的关系可得出α+β=3,αβ=2,将其代入α+αβ+β中即可求出结论.∵方程x2﹣3x+2=0的两根是α、β,∴α+β=3,αβ=2,∴α+αβ+β=α+β+αβ=3+2=5.故5.12、若方程240x x c -+=的一个根为2+,则方程的另一个根为 ,c = .2-1c =根据韦达定理,124x x +=,因为12x =+22x =-所以(12221c x x =⋅==13、设1x 、2x 是方程()222120x k x k -+++=的两个不同的实根,且()()12118x x ++=,则k 的值是 .1k =由根与系数的关系得()1221x x k +=+,2122x x k ⋅=+.且有()()224142840k k k ∆=+-+=->,即12k >. 所以()()12118x x ++=.从而2230k k +-=,解之得3k =-或1k =.又12k >,所以1k =.14、已知关于x 的方程x 2+(a ﹣2)x +a +1=0的两实根x 1、x 2满足42221=+x x ,则实数a = . 3﹣11解:∵关于x的方程x2+(a﹣2)x+a+1=0的两实根为x1、x2,∴△=(a﹣2)2﹣4(a+1)≥0,即a(a﹣8)≥0,∴当a≥0时,a﹣8≥0,即a≥8;当a<0时,a﹣8<0,即a<8,所以a<0.∴a≥8或a<0,∴x1+x2=2﹣a,x1•x2=a+1,∵x12+x22=4,(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,∴(x1+x2)2﹣2x1•x2=(2﹣a)2﹣2(a+1)=4,解得a=3±11.∵3<11<4,∴6<3+<7(不合题意舍去),3﹣<0;∴a=3﹣.故a=3﹣11.15、已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为.—2解:根据题意得:x1+x2=﹣2,x1x2=k﹣1,x12+x22﹣x1x2=13=﹣3x1x2=4﹣3(k﹣1)=13,k=﹣2,故﹣2.16、已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.3<m≤5解:依题意得:,解得3<m≤5.故答案是:3<m≤5.17、已知α,β是关于x的一元二次方程(m﹣1)x2﹣x+1=0两个实根,且满足(α+1)(β+1)=m+1,则m的值为.—1解:根据题意可得α+β=﹣=﹣=,αβ==,∴(α+1)(β+1)=αβ+α+β+1=++1=m+1,即m2﹣m﹣2=0,解得m=﹣1或m=2,∵m﹣1≠0,∴m≠1,当m=2时,△=b2﹣4ac=﹣3<0,无实数根,故m≠2,当m=﹣1时,△=b2﹣4ac=9>0,有实数根,故m=﹣1.故答案是﹣1.18、关于x 的方程(a ﹣1)x 2+2x ﹣a ﹣1=0的根都是整数,则整数a = .【分析】分两种情况讨论:当a =1时,x =1;当a ≠1时,△=4a 2≥0,x 1+x 2=a -12,再由已知,可得1﹣a =±1,1﹣a =±2,求出a 的值即可.当a =1时,2x ﹣2=0,解得x =1;当a ≠1时,(a ﹣1)x 2+2x ﹣a ﹣1=0,△=4a 2≥0,x 1+x 2=a -12,x 1•x 2=a a -+11=-112--a , ∵根都是整数,∴1﹣a =±1,1﹣a =±2,∴a =0或a =2或a =﹣1或a =3,故答案为0或1或﹣1或2或3.19、已知x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,且满足(x 1﹣1)(x 2﹣1)=8k 2,则k 的值为 .1解:∵x 1,x 2是关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个实数根,∴x 1+x 2=﹣(3k +1),x 1x 2=2k 2+1.∵(x 1﹣1)(x 2﹣1)=8k 2,即x 1x 2﹣(x 1+x 2)+1=8k 2,∴2k 2+1+3k +1+1=8k 2,整理,得:2k 2﹣k ﹣1=0,解得:k 1=﹣,k 2=1.∵关于x 的方程x 2+(3k +1)x +2k 2+1=0的两个不相等实数根,∴△=(3k +1)2﹣4×1×(2k 2+1)>0,解得:k <﹣3﹣2或k >﹣3+2, ∴k =1.故1.20、已知a ,b 是一元二次方程x 2+x ﹣1=0的两根,则3a 2﹣b 22a +的值是 . 【分析】根据根与系数的关系即可求出答案.由题意可知:a +b =﹣1,ab =﹣1, a 2=1-a ,∴原式=3(1﹣a )﹣b +a -12=3﹣3a ﹣b+a -12=3﹣2a ﹣(a +b )+a-12 =3﹣2a +1+a -12=4﹣2a+a-12=4+a a a -+-12222 =4+aa a -+--122)1(2=4+4=8, 故8.三、解答题21、已知于x 的元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2.(1)求a 的取值范围;(2)若x 12+x 22﹣x 1x 2≤30,且a 为整数,求a 的值.(1)a <2(2)a 的值为﹣1,0,1解:(1)∵关于x 的一元二次方程x 2﹣6x +2a +5=0有两个不相等的实数根x 1,x 2,∴△>0,即(﹣6)2﹣4(2a +5)>0,解得a <2;(2)由根与系数的关系知:x 1+x 2=6,x 1x 2=2a +5,∵x 1,x 2满足x 12+x 22﹣x 1x 2≤30,∴(x 1+x 2)2﹣3x 1x 2≤30,∴36﹣3(2a +5)≤30,∴a ≥﹣,∵a 为整数,∴a 的值为﹣1,0,1.22、已知关于x 的方程222(2)50x m x m +++-=有两个实数根,并且这两个根的平方和比这两个根的积大16,求m 的值.-1有实数根,则△≥0,且22121216x x x x +=+,联立解得m 的值.依题意有:12212221212222(2)5164(2)4(5)0x x m x x m x x x x m m +=-+⎧⎪=-⎪⎨+=+⎪⎪∆=+--≥⎩由①②③解得:1m =-或15m =-,又由④可知m ≥94- ∴15m =-舍去,故1m =-23、已知关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根.(1)求m 的取值范围;(2)若该方程的两个实数根为x 1、x 2,且|x 1﹣x 2|=4,求m 的值.(1)m ≤2 (2)m=1解:(1)∵关于x 的一元二次方程x 2﹣6x +(4m +1)=0有实数根,∴△=(﹣6)2﹣4×1×(4m +1)≥0, 解得:m ≤2.(2)∵方程x 2﹣6x +(4m +1)=0的两个实数根为x 1、x 2,∴x 1+x 2=6,x 1x 2=4m +1,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2=42,即32﹣16m =16,解得:m =1.24、已知关于x 的方程24280x x m --+=的一个根大于1,另一个根小于1,求m 的取值范围.52m > 设1x ,2x 是方程的两根,且11x >,21x <,即110x ->,210x -<,因此1212121212(1)(1)()10284164(28)0x x x x x x x x m x x m --=-++<⎧⎪=-+⎪⎨+=⎪⎪∆=+->⎩,解得52m >.25、已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值. (1)k ≤49 ;(2)k=1 解:(1)当k =0时,原方程为﹣3x +1=0,解得:x =,∴k =0符合题意;当k ≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k ×1≥0,解得:k ≤49. 综上所述,k 的取值范围为k ≤.(2)∵x 1和x 2是方程kx 2﹣3x +1=0的两个根,∴x 1+x 2=,x 1x 2=.∵x 1+x 2+x 1x 2=4,∴+=4,解得:k =1, 经检验,k =1是分式方程的解,且符合题意.∴k 的值为1.26、如果实数,a b 分别满足222a a +=,222b b +=,求11a b+的值 当a b ≠时,111a b +=;当a b =时,当13a b ==-+1131a b +, 当13a b ==-1113a b+= 由题意知:,a b 为方程2220x x +-=的两个根,且0,0a b ≠≠,解方程2220x x +-=得:11x =-+21x =--⑴当a b ≠时,有2a b +=-,2ab =-,11212a b a b ab +-∴+===-;⑵当a b =时,方程的根为11x =-+21x =--当1a b ==-+1121a b a ∴+===+;当1a b ==--1121a b a ∴+==-。
人教版九年级数学上册《一元二次方程的根与系数的关系》基础练习
《一元二次方程的根与系数的关系》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)一元二次方程x2+mx+n=0的两根为﹣1和3,则m的值是()A.﹣3B.3C.﹣2D.22.(5分)一元二次方程x2+3x=0的两根分别为x1和x2,则x1•x2是()A.﹣3B.﹣2C.3D.03.(5分)已知方程x2﹣3x﹣k=0的一个根为﹣2,那么它的另一个根为()A.5B.1C.3D.﹣24.(5分)方程x2﹣2x+3=0的根的情况是()A.两实根的和为﹣2B.两实根的积为3C.有两个不相等的正实数根D.没有实数根5.(5分)以2和4为根的一元二次方程是()A.x2+6x+8=0B.x2﹣6x+8=0C.x2+6x﹣8=0D.x2﹣6x﹣8=0二、填空题(本大题共5小题,共25.0分)6.(5分)设a、b是方程x2+x﹣2018=0的两实数根,则a2+3a+ab+2b=.7.(5分)设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=.8.(5分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.9.(5分)如果关于x的一元二次方程x2+bx+c=0的两根分别为1和﹣2,则b•c=.10.(5分)若x1,x2是一元二次方程3x2﹣x﹣3=0的两根,则x1+x2的值是.三、解答题(本大题共5小题,共50.0分)11.(10分)方程x2﹣2x+m﹣5=0是关于x的一元二次方程,该方程的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若(x1+x2)2+x1•x2+10=0,求m的值.12.(10分)已知x1、x2是方程x2+2x﹣3=0的两个根,(1)求x1+x2;x1x2的值;(2)求x12+x22的值.13.(10分)已知x1、x2是关于x的一元二次方程x2+3x+k﹣3=0的两个实数根.(1)求k的取值范围;(2)若x12+2x1+x2+k=3,试求k的值.14.(10分)关于x的一元二次方程ax2﹣5x+a2+a=0的一个根是0,求a的值及另一根.15.(10分)已知关于x的方程mx2﹣(m+2)x+2=0.(1)求证:方程总有实数根;(2)已知方程有两个实数根α,β满足+=2,求m的值.《一元二次方程的根与系数的关系》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)一元二次方程x2+mx+n=0的两根为﹣1和3,则m的值是()A.﹣3B.3C.﹣2D.2【分析】根据根与系数的关系得到﹣1+3=﹣m,然后解关于m的方程即可,【解答】解:根据题意得﹣1+3=﹣m,所以m=﹣2.故选:C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.2.(5分)一元二次方程x2+3x=0的两根分别为x1和x2,则x1•x2是()A.﹣3B.﹣2C.3D.0【分析】直接利用根与系数的关系求解.【解答】解:根据题意得x1•x2==0.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.3.(5分)已知方程x2﹣3x﹣k=0的一个根为﹣2,那么它的另一个根为()A.5B.1C.3D.﹣2【分析】首先根据根与系数的关系可以得到两根之和,然后利用两根之和,可以求出另一个根.【解答】解:设x1,x2是方程x2﹣3x﹣k=0的两根,由题意知x1+x2=﹣2+x2=3,解得x2=5.故选:A.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.4.(5分)方程x2﹣2x+3=0的根的情况是()A.两实根的和为﹣2B.两实根的积为3C.有两个不相等的正实数根D.没有实数根【分析】利用判别式的意义进行判断.【解答】解:∵△=(﹣2)2﹣4×3<0.∴方程没有实数解.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了判别式的意义.5.(5分)以2和4为根的一元二次方程是()A.x2+6x+8=0B.x2﹣6x+8=0C.x2+6x﹣8=0D.x2﹣6x﹣8=0【分析】根据已知两根确定出所求方程即可.【解答】解:以2和4为根的一元二次方程是x2﹣6x+8=0,故选:B.【点评】此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)设a、b是方程x2+x﹣2018=0的两实数根,则a2+3a+ab+2b=﹣2.【分析】根据一元二次方程的解及根与系数的关系可得出a2+a=2018,a+b=﹣1,ab=﹣2018,将其代入a2+3a+ab+2b=(a2+a)+2(a+b)+ab中即可求出结论.【解答】解:∵a、b是方程x2+x﹣2018=0的两实数根,∴a2+a=2018,a+b=﹣1,ab=﹣2018,∴a2+3a+ab+2b=(a2+a)+2(a+b)+ab=2018﹣2﹣2018=﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.7.(5分)设α、β是方程x2+2018x﹣2=0的两根,则(α2+2018α﹣1)(β2+2018β+2)=4.【分析】根据一元二次方程的解的定义得出α2+2018α=2,β2+2018β=2,再代入(α2+2018α﹣1)(β2+2018β+2),计算即可得出结论.【解答】解:∵α、β是方程x2+2018x﹣2=0的两根,∴α2+2018α=2,β2+2018β=2,∴(α2+2018α﹣1)(β2+2018β+2)=(2﹣1)(2+2)=4.故答案为:4.【点评】本题考查了一元二次方程的解,代数式求值,根据一元二次方程的解得出α2+2018α=2,β2+2018β=2是解题的关键.8.(5分)已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=﹣1.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.9.(5分)如果关于x的一元二次方程x2+bx+c=0的两根分别为1和﹣2,则b•c=﹣2.【分析】根据根与系数的关系得到1+(﹣2)=﹣b,1×(﹣2)=c,然后分别求出b、c的值,再计算bc的值.【解答】解:根据题意得1+(﹣2)=﹣b,1×(﹣2)=c,所以b=1,c=﹣2,所以bc=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根,x1+x2=﹣,x1x2=.也考查了根的判别式.10.(5分)若x1,x2是一元二次方程3x2﹣x﹣3=0的两根,则x1+x2的值是.【分析】直接利用根与系数的关系求解.【解答】解:∵x1,x2是一元二次方程3x2﹣x﹣3=0的两根,∴x1+x2=.故答案为.【点评】本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1•x2=.三、解答题(本大题共5小题,共50.0分)11.(10分)方程x2﹣2x+m﹣5=0是关于x的一元二次方程,该方程的两个实数根分别为x1,x2.(1)求m的取值范围.(2)若(x1+x2)2+x1•x2+10=0,求m的值.【分析】(1)根据判别式的意义得到△=(﹣2)2﹣4(m﹣5)≥0,然后解关于m的不等式即可;(2)根据根与系数的关系得到x1+x2=2,x1x2=m﹣5,利用整体代入的方法得到∴22+m ﹣5+10=0,然后解关于m的方程即可.【解答】解:(1)根据题意得△=(﹣2)2﹣4(m﹣5)≥0,解得m≤6;(2)根据题意得x1+x2=2,x1x2=m﹣5,∵(x1+x2)2+x1•x2+10=0,∴22+m﹣5+10=0,∴m=﹣9.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=12.(10分)已知x1、x2是方程x2+2x﹣3=0的两个根,(1)求x1+x2;x1x2的值;(2)求x12+x22的值.【分析】(1)直接利用根与系数的关系求解;(2)先利用完全平方公式得到x12+x22=(x1+x2)2﹣﹣2x1x2,然后利用整体代入的方法计算.【解答】解:(1)x1+x2=﹣2,x1x2=﹣3;(2)x12+x22=(x1+x2)2﹣﹣2x1x2=(﹣2)2﹣2×(﹣3)=10.【点评】本题考查了一元二次方程根与系数的关系:若x1,x2是一元二次方程ax2+bx+c =0(a≠0)的两根,x1+x2=﹣,x1x2=.13.(10分)已知x1、x2是关于x的一元二次方程x2+3x+k﹣3=0的两个实数根.(1)求k的取值范围;(2)若x12+2x1+x2+k=3,试求k的值.【分析】(1)因为方程有两个实数根,得到△≥0,由此可求k的取值范围;(2)由一元二次方程的解的定义得出,x12=﹣3x1﹣k+3,将它代入x12+2x1+x2+k=3,得出x1=x2;那么△=32﹣4(k﹣3)=0,即可求出k的值.【解答】解:(1)∵关于x的一元二次方程x2+3x+k﹣3=0有两个实数根,∴△=32﹣4(k﹣3)≥0,解得k≤,∴当k≤时,关于x的一元二次方程x2+3x+k﹣3=0有两个实数根;(2)∵x1是关于x的一元二次方程x2+3x+k﹣3=0的根,∴x12+3x1+k﹣3=0,即x12=﹣3x1﹣k+3.∵x12+2x1+x2+k=3,∴x1=x2;∴△=32﹣4(k﹣3)=0,解得k=.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的解的定义.14.(10分)关于x的一元二次方程ax2﹣5x+a2+a=0的一个根是0,求a的值及另一根.【分析】代入x=0可求出a值,由一元二次方程的定义可确定a值,将其代入原方程利用根与系数的关系结合方程的一根,可求出方程的另一根,此题得解.【解答】解:当x=0时,a2+a=0,解得:a1=﹣1,a2=0.又∵原方程为一元二次方程,∴a=﹣1,∴原方程为﹣x2﹣5x=0,∴方程的另一根为﹣﹣0=﹣5.故a的值为﹣1,方程的另一根为x=﹣5.【点评】本题考查了根与系数的关系、一元二次方程的定义以及一元二次方程的解,代入x=0求出a值是解题的关键.15.(10分)已知关于x的方程mx2﹣(m+2)x+2=0.(1)求证:方程总有实数根;(2)已知方程有两个实数根α,β满足+=2,求m的值.【分析】(1)当二次项系数为零时,通过解一元一次方程可得出该方程有解;当二次项系数非零时,由根的判别式△=(m﹣2)2≥0可得出当m=0时方程有解.综上,此题得证;(2)根据根与系数的关系可得出α+β=,αβ=,结合+=2即可得出关于m 的方程,解之即可得出m的值.【解答】(1)证明:当m=0时,原方程为﹣2x+2=0,解得:x=1,∴当m=0时,方程有解;当m≠0时,△=[﹣(m+2)]2﹣4×2m=m2﹣4m+4=(m﹣2)2≥0,∴当m≠0时,方程mx2﹣(m+2)x+2=0有解.综上:无论m为何值,方程总有实数根;(2)解:∵方程有两个不相等的实数根α,β,∴α+β=,αβ=.∵+==2,即=2,解得:m=2.【点评】本题考查了根的判别式、根与系数的关系以及一元二次方程的定义,解题的关键是:(1)分二次项系数非零及二次项系数为零两种情况找出方程有解;(2)利用根与系数的关系结合+=2找出关于m的方程.。
一元二次方程根与系数的关系基础练习30题含详细答案
装…………○……_姓名:___________班级:__装…………○……一元二次方程根与系数的关系基础练习30题含详细答案一、单选题1.若12,x x 是一元二次方程²350x x +-=的两根,则12x x +的值是( ) A .3B .3-C .5D .5-2.已知方程22430x x +-=的两根分别为1x 和2x ,则12x x 的值等于( ) A .2B .-1.5C .-2D .43.已知α,β是方程2202010x x ++=的两个根,则(1+2022α+α2)(1+2022β+β2)的值为( ) A .1B .2C .3D .44.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A 、B 两点,与y 轴交于点C ,且OC =2OB 则下列结论:① 0abc <;②0a b c ++>;③240ac b -+=;④ cOA OB a⋅=-,其中正确的结论有( )A .1个B .2个C .3个D .4个5.★在Rt △ABC 中,∠C =90°,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,a ,b 是关于x 的方程x 2-7x +c +7=0的两根,那么AB 边上的中线长是( ) A .32B .52C .5D .2二、解答题6.关于x 的一元二次方程x 2+3x ﹣k =0有两个不相等的实数根. (1)求k 的取值范围.(2)若x 1+2x 2=3,求|x 1﹣x 2|的值.7.已知关于x 的方程x 2+(2m ﹣1)x +m 2=0有实数根. (1)若方程的一个根为1,求m 的值;在,请求出来,若不存在,请说明理由. 8.关于x 的一元二次方程x 2+mx+m ﹣2=0.(1)若﹣2是该方程的一个根,求该方程的另一个根;(2)求证:无论m 取任何实数,此方程总有两个不相等的实数根;(3)设该方程的两个实数根为x 1,x 2,若x 12+x 22+m (x 1+x 2)=m 2+1,求m 的值. 9.已知P 2222225a 3b 8a 1a b b a a b ab+⎛⎫=+÷⎪--+⎝⎭(a≠±b ,ab≠0) (1)化简P ;(2)若a 、b 是方程x 2+(12)x =0的两实根,求P 的值.10.已知关于x 的一元二次方程x 2+2(k ﹣1)x+k 2﹣1=0有两个不相等的实数根. (1)求实数k 的取值范围;(2)若方程的两根x 1,x 2满足x 12+x 22=16,求k 的值.11.已知关于x 的一元二次方程x 2﹣2(m+1)x+m 2+5=0有两个不相等的实数根. (1)求实数m 的最小整数值;(2)在(1)的条件下,若方程的实数根为x 1,x 2,求代数式(x 1﹣1)•(x 2﹣1)的值. 12.关于x 的一元二次方程x 2﹣(2k+1)x+2k =0. (1)求证:无论k 取任何实数,方程总有两个实数根;(2)若该方程的两个根x 1,x 2满足3x 1+3x 2﹣x 1x 2=6,求k 的值.13.阅读下列材料:法国数字家韦达在研究一元二次方程时有一项重大发现: 如果一元二次方程20(0)ax bx c a -+=≠在240b ac -≥的两根分别可表示为1x ,2x =1212,b c x x x x a a +=-⋅=这是一元二次方程根与系数的关系.利用一元二次方程根与系数的关系,回答下列问题:(1)已知方程25790x x +-=的两根分别为1x 、2x ,求12x x +与12x x ⋅的值.(2)已知方程25790x x +-=的两根分别1x 、2x ,若12x x >,求2212x x +与1211x x -的值.(3)已知一元二次方程2350x ax +-=的一根大于2,另一根小于2求a 的取值范围. 14.已知关于x 的方程()222360x m x m +-+-=.(1)求证:无论m 取什么实数,方程总有实数根;(2)如果方程的两个实数根1x 、2x 满足123x x =,求实数m 的值.15.关于x 的一元二次方程x 2+2(m-1)+m 2-1=0有两个不相等的实数根x 1,x 2. (1)求实数m 的取值范围;(2)是否存在实数m ,使得x 12+x 22=16+x 1x 2成立?如果存在,求出m 的值;如果不存在,请说明理由.16.如果1x ,2x 是一元二次方程20ax bx c ++=的两根,那么有12b x x a+=-,12cx x a=.这是一元二次方程根与系数的关系,我们可以利用它来解题,例如:1x ,2x 是方程2630x x +-=的两根,求2212x x +的值. 解法可以这样:因为126x x +=-,123x x =-,所以()()()2222121212262342x x x x x x +=+-=--⨯-=.请你根据以上解法解答下题:设1x ,2x 是方程22150x x --=的两根,求:(1)1211+x x 的值;(2)()212x x -的值.17.关于x 的一元二次方程2x -x +p -1=0有两实数根1x 、2x . (1)求p 的取值范围; (2)若p=0,求1221x x x x +的值; (3)若[2+1x (1-1x )][2+2x (1-2x )]=9,求p 的值.18.关于x 的一元二次方程x 2﹣2x ﹣m +2=0有两个不相等的实数根x 1,x 2. (1)求实数m 的取值范围;(2)若方程两实数根x 1,x 2满足x 12+2x 2=m 2,求m 的值.三、填空题19.已知函数3()()y x m x n =---,并且,a b 是方程3()()0x m x n ---=的两个根,则实数,,,m n a b 的大小关系可能是____. 20.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________. 21.若x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两个根,则x 1x 2的值=__. 22.已知实数m ,n 满足条件2720m m -+=,2720n n -+=,则n mm n+的值是______. 23.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.24.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=_________.25.已知一周长为11的等腰三角形(非等边三角形)的三边长分别为a 、b 、5,且a 、b 是关于x 的一元二次方程x 2﹣6x +k +2=0的两个根,则k 的值为__. 26.已知二次方程x 2+(2m +1)x +m 2﹣2m +32=0的两个实数根为α和β,若|α|+|β|=4,求m 的值__.27.已知x 2+2x +1=0的两根为x 1和x 2,则x 1•x 2的值为__.28.已知一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,则x 1•x 2=_____. 29.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 30.一元二次方程2310x x --=与230x x --=的所有实数根的和等于____.参考答案1.B 【分析】利用根与系数的关系即可得到x 1+x 2的值. 【详解】解:∵x 1、x 2是一元二次方程x 2+3x-5=0的两根, ∴x 1+x 2=-3. 故选:B . 【点睛】此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.B 【分析】根据一元二次方程的根与系数关系12cx x a=求解即可. 【详解】解:∵方程22430x x +-=的两根分别为1x 和2x ,且a=2,b=4,c=﹣3, ∴12c x x a==32-=﹣1.5, 故选:B . 【点睛】本题考查了一元二次方程的根与系数关系,熟记根与系数关系12cx x a=是解答的关键. 3.D 【分析】根据根与系数的关系及一元二次方程的解可得出:1αβ=,2202010αα++=,2 202010ββ++=,将其代入原式中即可求出结论.【详解】∵α,β是方程2202010x x ++=的两个根,∴1αβ=,220201αα+=-,220201ββ+=-,∴()()221202212022ααββ++++=()()22120202120202αααβββ++++++4αβ==4. 故选:D . 【点睛】本题考查了根与系数的关系以及一元二次方程的解,根据根与系数的关系及一元二次方程的解得出1αβ=,2202010αα++=,2202010ββ++=是解题的关键. 4.C 【分析】①根据抛物线的开口方向向上得a >0、对称轴在y 轴左侧得b >0、与y 轴的交点在y 轴负半轴得c <0,进而可得结论;②当x =1时,不能说明y 的值即a +b +c 是否大于还是小于0,即可判断;③设B 点横坐标为x 2,根据OC =2OB ,用c 表示x 2,再将B 点坐标代入函数解析式即可判断;④根据一元二次方程根与系数的关系即可判断. 【详解】解:①观察图象可知:抛物线的开口方向向上,对称轴在y 轴左侧,与y 轴的交点在y 轴负半轴∴a >0,b >0,c <0, ∴abc <0, 所以①正确;②当x =1时,y =a +b +c ,不能说明y 的值是否大于还是小于0, 所以②错误;③设A (x 1,0)(x 1<0),B (x 2,0)(x 2>0), ∵OC =2OB ,∴﹣2x 2=c , ∴212x c , ∴B (12c -,0)将点B 坐标代入y =ax 2+bx +c 中,211042c a bc c,∵0c ≠∴240ac b -+= 所以③正确;④当y =0时,ax 2+bx +c =0, 方程的两个根为x 1,x 2, 根据根与系数的关系,得12c x x a•=, 即1212•OA OBx x ax c x 所以④正确. 故选:C . 【点睛】本题考查了一元二次方程根与系数的关系,二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点,解决本题的关键是综合运用二次函数的图象和性质. 5.B 【分析】由于a 、b 是关于x 的方程x2−7x +c +7=0的两根,由根与系数的关系可知:a +b =7,ab =c +7;由勾股定理可知:222+=a b c ,则()222a b ab c +-=,即49−2(c +7)=2c ,由此求出c ,再根据直角三角形斜边中线定理即可得中线长. 【详解】解:∵a 、b 是关于x 的方程2x −7x +c +7=0的两根, ∴根与系数的关系可知:a +b =7,ab =c +7; 由直角三角形的三边关系可知:222+=a b c , 则()222a b ab c +-=, 即49−2(c +7)=2c , 解得:c =5或−7(舍去),再根据直角三角形斜边中线定理得:中线长为52.故选:B . 【点睛】本题考查三角形斜边中线长定理及一元二次方程根与系数的关系运用,勾股定理的运用,一元二次方程的解法的运用,解答时运用一元二次方程的根与系数的关系建立方程是关键. 6.(1)94k >-;(2)15. 【分析】(1)由关于x 的一元二次方程230x x k +-=有两个不相等的实数根,可得判别式△0>,则可求得k 的取值范围;(2)利用根与系数的关系可求出1x 、2x 的值,进而可求出求12||x x -的值 【详解】 (1)关于x 的一元二次方程230x x k +-=有两个不相等的实数根,∴△2341()940k k =-⨯⨯-=+>,94k ∴>-,即k 的取值范围为:94k >-; (2)1x 、2x 是一元二次方程230x x k +-=有两个不相等的实数根,123x x ∴+=-, 1223x x +=, 19x ∴=-,26x =,1215x x ∴-=.【点睛】此题考查了根的判别式以及根与系数的关系.注意由关于x 的一元二次方程230x x k +-=有两个不相等的实数根,可得△0>. 7.(1)0或-2;(2)存在,m 的值为-1. 【分析】(1)先根据∆=(2m-1)2-4m 2≥0求出m 的取值范围,把x=1代入原方程可得到关于m 的一元二次方程,然后解此一元二次方程即可;(2)根据根与系数的关系得到α+β=-(2m-1),αβ=m 2,利用α2+β2-αβ=6得到(α+β)2-3αβ=6,则(2m-1)2-3m 2=6,然后解方程后利用(1)中m 的范围确定m 的值. 【详解】解:(1)由题意得∆=(2m-1)2-4m 2≥0, 解得m ≤14. 把x =1代入方程得1+2m ﹣1+m 2=0, 解得m 1=0,m 2=﹣2, 即m 的值为0或﹣2; (3)存在.∵α、β是方程的两个实数根, ∴α+β=﹣(2m ﹣1),αβ=m 2, ∵α2+β2﹣αβ=6, ∴(α+β)2﹣3αβ=6, 即(2m ﹣1)2﹣3m 2=6,整理得m 2﹣4m ﹣5=0,解得m 1=5,m 2=﹣1, ∵m ≤14; ∴m 的值为﹣1. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12bx x a +=-,12c x x a⋅=.也考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式与根的关系.8.(1)方程的另一个根为0;(2)证明见解析;(3)m =﹣3或1 【分析】(1)利用待定系数法解决问题即可; (2)证明判别式大于0即可;(3)利用根与系数的关系,把问题转化为一元二次方程解决问题. 【详解】(1)解:由题意,得:4﹣2m+m ﹣2=0, 解得:m =2,∴方程为x 2+2x =0, 解得:x 1=﹣2,x 2=0, ∴方程的另一个根为0.(2)证明:∵△=m 2﹣4(m ﹣2)=m 2﹣4m+8=(m ﹣2)2+4>0, ∴无论m 取任何实数,此方程总有两个不相等的实数根. (3)由根与系数的关系得:x 1+x 2=﹣m ,x 1x 2=m ﹣2, 由x 12+x 22+m (x 1+x 2)=m 2+1,得:(x 1+x 2)2﹣2x 1x 2+m (x 1+x 2)=m 2+1, ∴m 2﹣2(m ﹣2)﹣m 2=m 2+1, 整理得:m 2+2m ﹣3=0, 解得:m =﹣3或1. 【点睛】本题考查根与系数的关系、根的判别式、解一元二次方程、解一元一次方程等知识,解答的关键是熟练掌握基本知识的联系和运用,属于中考常考题型.9.(1)P =﹣3ab ;(2)P =﹣. 【分析】(1)先把括号里分式变成同分母的运算,再把除法变成乘法,再算乘法即可;(2)根据根与系数的关系得出ab =【详解】 解:(1)P =(22225a 3b 8aa b a b+---)•ab (a+b ) ()()5a 3b 8aa b a b +-=+-•ab (a+b) ()3a b a b--=-•ab=﹣3ab ;(2)∵a 、b 是方程x 2+(12)x =0的两实根,∴ab =∴P =﹣3ab =﹣【点睛】本题考查了分式的混合运算和求值,根与系数的关系等知识点,能正确根据分式的运算法则进行化简是解此题的关键.10.(1)k<1;(2)k=﹣1.【分析】(1)根据方程的系数结合根的判别式∆>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系及x12+x22=16,即可得出关于k的一元二次方程,解之即可得出k值,再结合(1)的结论即可确定k的值.【详解】解:(1)∵a=1,b=2(k﹣1),c=k2﹣1,∴∆=b2﹣4ac>0,即[2(k﹣1)]2﹣4×1×(k2﹣1)>0,∴k<1.(2)∵关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0的两根为x1,x2,∴x1+x2=﹣2(k﹣1),x1x2=k2﹣1.∵x12+x22=16,∴(x1+x2)2﹣2x1x2=16,即[﹣2(k﹣1)]2﹣2(k2﹣1)=16,整理,得:k2﹣4k﹣5=0,-+=k k(5)(1)0解得:k1=5,k2=﹣1.又∵k<1,∴k=﹣1.【点睛】本题考查了一元二次方程根与系数的关系、根的判别式等知识,是重要考点,难度较易,掌握相关知识是解题关键.11.(1)实数m的最小整数值是3;(2)(x1﹣1)•(x2﹣1)=7【分析】(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出m的取值范围,从而求得m的最小整数值;(2)根据根与系数的关系即可得出x1+x2=2(m+1)、x1•x2=m2+5,代入整理后的代数式即可得出得出m的值.【详解】解:(1)∵方程x2﹣2(m+1)x+m2+5=0有两个不相等的实数根,∴△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16>0,解得:m>2,∴实数m的最小整数值是3;(2)∵原方程的两个实数根为x1、x2,m=3,∴x1+x2=2(m+1)=8,x1•x2=m2+5=14,∴(x1﹣1)•(x2﹣1)=x1•x2﹣(x1+x2)+1=14﹣8+1=7.【点睛】本题考查了一元二次方程根与系数的关系、根的判别式、解一元一次不等式、代数式求值,解题的关键是:(1)根据方程有两个不相等的实数根找出△=8m﹣16>0;(2)掌握x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2ba=-,x1x2ca=.12.(1)证明见解析;(2)k3 4 =【分析】(1)计算判别式的值,再利用配方法得到△=(2k+1)2≥0,然后根据一元二次方程根的判别式与根的关系得到结论;(2)根据根与系数的关系得到x1+x2=2k+1,x1•x2=2k,而3(x1+x2)﹣x1•x2=6,所以3(2k+1)﹣2k=6,然后解关于k的方程即可.【详解】(1)证明:∵△=[﹣(2k+1)]2﹣4×1×2k=(2k﹣1)2≥0,∴无论k取何值,所以方程总有两个实数根;(2)解:根据题意得:x1+x2=2k+1,x1•x2=2k,∵3(x1+x2)﹣x1•x2=6,∴3(2k+1)﹣2k=6,∴k34 =.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c =0(a≠0)的两根时,x 1+x 2b a =-,x 1x 2ca=,也考查了根的判别式、配方法、解一元一次方程. 13.(1)1212,9575x x x x +=-⋅=-;(2)2212x x +=13925;1211x x -;(3)72a <- 【分析】(1)根据根与系数的关系即可求出结论;(2)根据完全平方公式的变形和分式减法变形,然后代入求值即可;(3)设一元二次方程2350x ax +-=的两根分别1x 、2x ,根据根与系数的关系可得1212,533x x x a x +=-⋅=-,根据题意可得()()122002x x ⎧⎨--<∆>⎩,代入即可求出a 的取值范围. 【详解】解:(1)∵方程25790x x +-=的两根分别为1x 、2x ∴1212,9575x x x x +=-⋅=-; (2)由(1)知:1212,9575x x x x +=-⋅=- ∴2212x x + =()212122x x x x +-=225579⎛⎫⎛⎫--⨯- ⎪ ⎪⎝⎭⎝⎭=13925∴()2221122122x x x x x x +-=-=25139925⎛⎫⨯- ⎝-⎪⎭=22925∵12x x > ∴210x x -<∴21x x -==∴1211x x - =2112x x x x -=955-; (3)设一元二次方程2350x ax +-=的两根分别1x 、2x , ∴1212,533x x x a x +=-⋅=- 由题意可得()()122002x x ⎧⎨--<∆>⎩∴()21212600240a x x x x +⎧⎪⎨-++<>⎪⎩∴2600335240a a ⎧⎪⎨⎛⎫-⨯+< +>--⎪⎪⎝⎭⎩②① ∵无论a 为何值,260a +恒为正,故①恒成立; 解②,得72a <-; 综上:72a <-. 【点睛】此题考查的是一元二次方程根与系数的关系,掌握根与系数的关系和完全平方公式的变形是解题关键.14.(1)见解析;(2)0或-4. 【分析】(1)证明一元二次方程根的判别式恒大于0,即可解答;(2)根据一元二次方程根与系数的关系x 1+x 2=4x 2=-2(2-m )=2m-4,以及x 1•x 2=3x 22=3-6m 即可求得m 的值. 【详解】解:(1)证明:∵关于x 的方程x 2+2(2-m )x+3-6m=0中,△=4(2-m )2-4(3-6m )=4(m+1)2≥0,∴无论m 取什么实数,方程总有实数根.(2)如果方程的两个实数根x 1,x 2满足x 1=3x 2,则x 1+x 2=4x 2=-2(2-m )=2m-4 ∴x 2=2m-1 ① ∵x 1•x 2=3x 22=3-6m , ∴x 22=1-2m ②,把①代入②得m (m+4)=0, 即m=0,或m=-4. 答:实数m 的值是0或-4 【点睛】解答此题的关键是熟知一元二次方程根的情况与判别式△的关系,及根与系数的关系: (1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.(4)若一元二次方程有实数根,则x 1+x 2=-b a ,x 1x 2=c a. 15.(1)m<1;(2)存在,m=-1 【分析】(1)由一元二次方程有两个不相等的实数根列得[]222(1)4(1)0m m --->,解不等式即可;(2)利用根与系数的关系得到122(1)x x m +=--=2-2m ,2121x x m =-,代入x 12+x 22=16+x 1x 2中求出m 的值,根据(1)中m 的取值范围确定m 的值. 【详解】(1)∵一元二次方程x 2+2(m-1)+m 2-1=0有两个不相等的实数根, ∴0∆>,∴[]222(1)4(1)0m m --->, 解得m<1; (2)存在,∵一元二次方程x 2+2(m-1)+m 2-1=0有两个不相等的实数根x 1,x 2,∴122(1)x x m +=--=2-2m ,2121x x m =-,若x 12+x 22=16+x 1x 2,则2121212()216x x x x x x +-=+,∴ 222(22)2(1)161m m m ---=+-,解得m=-1或m=9, ∵m<1, ∴m=9舍去, 即m=-1. 【点睛】此题考查一元二次方程根的判别式,根与系数的关系式,解一元二次方程,正确计算是解题的关键. 16.(1)115-;(2)1214【分析】(1)由根与系数的关系可得x 1+x 2=12,x 1x 2=152-,将其代入到12121211x x x x x x ++= 中,求出结果即可; (2)将x 1+x 2=12,x 1x 2=152-代入到(x 1-x 2)2=(x 1+x 2)2-4x 1x 2即可得. 【详解】(1)根据题意,可得x 1+x 2=12,x 1x 2=152-,∴12121211112=15152x x x x x x ++==--;(2)(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=211511214302244⎛⎫⎛⎫-⨯-=+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查根与系数的关系,解题关键是运用一元二次方程的两根为x 1,x 2,则有x 1+x 2=b a -,x 1•x 2=ca. 17.(1)54p ≤;(2)-3;(3)-4.【分析】(1)一元二次方程有实数根,0∆≥根据判别式的公式代入即可求p 的取值范围; (2)将p=0代入2x -x +p -1=0化简,再根据根与系数的关系得出1x 与2x 之间的关系,进一步可求得2212x x +的值,代入即可求解;(3)将等式变形,结合四个等式:21110x x p -+-=,22210x x p -+-=,代入求p ,结果要根据p 的取值范围进行检验. 【详解】 (1)x 的一元二次方程2x -x +p -1=0有两实数根0∴∆≥即()()2241410b ac p -=---≥ 解得:54p ≤∴p 的取值范围为:54p ≤; (2)将p=0代入2x -x +p -1=0, 即2x -x -1=0121x x ∴+=,121x x ⋅=-()2221212122123x x x x x x ∴+=+-=+=22121221123=31x x x x x x x x +∴+==-⋅- (3)由[2+1x (1-1x )][2+2x (1-2x )]=9,得()()221122229x x xx +-+-=1x 、2x 为一元二次方程2x -x +p -1=0有两实数根21110x x p ∴-+-=,22210x x p -+-= 2211221,1x x p x x p ∴-=--=-()()21219p p ∴+-+-=即()219p +=2p ∴=或4p =-54p ≤4p ∴=- 【点睛】本题考查了一元二次方程的根的判别式的运用,根与系数关系的运用以及等式变形的能力. 18.(1)m >1;(2)m =2. 【分析】(1)若方程有两个不相等的实数根,则根的判别式∆=b 2-4ac >0,建立关于m 的不等式,求出m 的取值范围;(2)根据题意x 12-2x 1-m+2=0,即可得到x 12=2x 1+m-2,代入x 12+2x 2=m 2,可得2x 1+2x 2+m ﹣2=m 2,根据根与系数的关系得到x 1+x 2=2,代入2x 1+2x 2+m ﹣2=m 2,得到关于m 的方程,解方程即可. 【详解】解:(1)∵关于x 的一元二次方程x 2﹣2x ﹣m +2=0有两个不相等的实数根x 1,x 2, ∴∆=(﹣2)2﹣4(﹣m +2)=4m ﹣4>0, ∴m >1;(2)∵x 1+x 2=2,x 12﹣2x 1﹣m +2=0, x 12=2x 1+m ﹣2,∴x 12+2x 2=2x 1+2x 2+m ﹣2=m 2,即2×2+m ﹣2=m 2, 解得:m =﹣1或m=2, ∵m >1, ∴m =2. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2﹣4ac 与根的关系,当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.也考查了一元二次方程根与系数的关系. 19.a m n b <<<,b m n a <<<,a n m b <<<或b n m a <<<. 【分析】首先把方程化为一般形式,由于a ,b 是方程的解,根据根与系数的关系即可得到m ,n ,a ,b 的关系,相互比较即可得出答案. 【详解】由3()()0x m x n ---=变形得:()()3x m x n --=, ∴0x m ->,x n ->0或0x m -<,0x n -<, ∴x m >,x n >或x m <,x n <, ∵a ,b 是方程的解,将a ,b 代入,得:a m >,a n >,b m <,b n <或a m <,a n <,b m >,b n >,综合可得:a m n b <<<,b m n a <<<,a n m b <<<或b n m a <<< 故答案为:a m n b <<<,b m n a <<<,a n m b <<<或b n m a <<<. 【点睛】本题考查了一元二次方程的根与系数的关系,难度较大,关键是m ,n ,a ,b 大小的讨论是此题的难点. 20.12; 【分析】根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n , ∴m +n =﹣1,mn =﹣2,111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca是解题的关键. 21.-3 【分析】根据根与系数的关系即可求解. 【详解】解:根据题意得x 1x 2=31c a -==﹣3. 故答案为﹣3. 【点睛】此题主要考查一元二次方程根与性质的关系,解题的关键是熟知x 1x 2=ca的运用. 22.2或452【分析】根据题意先将两个未知数理解为一元二次方程的两个根,再利用韦达定理求出两根关系,进而求得原式的答案即可. 【详解】由题意,实数m n ,是一元二次方程2720x x -+=的两个实数根, 此时题目并未告知m n ,是否相等,故作以下讨论: ①若m n =,则112n mm n+=+=; ②若m n ≠,则根据韦达定理,有72m n mn +==,,()222227224522m n mnn m m n m n mnmn+-+-⨯+====,故答案为:2或452. 【点睛】本题考查一元二次方程根的理解及根与系数的关系,灵活解读题意是解题关键.23.-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 24.6【分析】根据根与系数的关系得到x 1+x 2=2,x 1x 2=-1,再把2212x x +变形为21212()2x x x x +-,然后利用整体代入的方法计算出值即可.【详解】解:∵1x 、2x 是方程2210x x --=的两根,∴x 1+x 2=2,x 1x 2=-1,所以,2212x x +=21212()2x x x x +-=222(1)426-⨯-=+=.故答案为:6.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 25.3或7【分析】先根据一元二次方程根的判别式得出k的取值范围,再分5是等腰三角形的腰的长度和底边的长度两种情况,根据等腰三角形的周长得出另外两边的长度,最后利用根与系数的关系得出关于k的方程,解之得出答案.【详解】解:∵关于x的一元二次方程x2﹣6x+k+2=0有两个实数根,∴∆=(﹣6)2﹣4(k+2)≥0,解得k≤7;若5是等腰三角形的腰的长度,则另外两边分别为5、1,此时三角形三边为1、5、5,符合角形三边条件,所以关于x的一元二次方程x2﹣6x+k+2=0的两个根为1、5,则k+2=5,即k=3;若5是等腰三角形的底边长度,则另外两边的长度为3、3,此时三角形三边的长度为3、3、5符合三角形三边条件,则k+2=9,即k=7;综上,k的值为3或7,故答案为:3或7.【点睛】本题主要考查根的判别式、三角形三边关系、根与系数的关系及等腰三角形的定义,解题的关键是根据等腰三角形的性质分类讨论及一元二次方程根与系数的关系.26.3 2【分析】先由根与系数的关系得到2m+1=-(α+β),α•β=m2-2m+32=(m-1)2+12>0,那么α和β同号,再由|α|+|β|=4,分α+β=-4或α+β=4进行讨论即可.【详解】解:∵二次方程x2+(2m+1)x+m2﹣2m+32=0的两个实数根为α和β,∴α+β=﹣(2m+1),α•β=m2﹣2m+32,∴2m+1=﹣(α+β),α•β=m2﹣2m+32=(m﹣1)2+12>0,∴α•β>0,即α和β同号,∴由|α|+|β|=4得:α+β=﹣4或α+β=4.当α+β=﹣4时,2m +1=4,解得m =32; 当α+β=4时,2m +1=﹣4,解得m =﹣52. ∵△=(2m +1)2﹣4(m 2﹣2m +32) =4m 2+4m +1﹣4m 2+8m ﹣6=12m ﹣5≥0,∴m ≥512; ∴m =﹣52不合题意,舍去, 则m =32. 故答案为:32. 【点睛】本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必须满足△≥0的条件.27.1【分析】利用一元二次方程根与系数的关系即可解答.【详解】根据题意得x 1•x 2=1.故答案为1.【点睛】本题考查一元二次方程根与系数的关系“在一元二次方程20ax bx c ++=(0a ≠,a b c 、、都为常数)中,两根1x ,2x 与系数的关系为12b x x a +=-,12c x x a =”. 28.﹣12【分析】由根与系数的关系,即可求出答案.【详解】解:∵一元二次方程2x 2+3x ﹣1=0的两个根是x 1,x 2,∴x 1x 2=﹣12, 故答案为:﹣12. 【点睛】本题考查了根与系数的关系,解题的关键是掌握根与系数的关系进行解题.29.2【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可.【详解】解:一元二次方程()23112x -=整理为2230x x --=,∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根,∴x 1+x 2=2.故答案为:2.【点睛】 本题考查了根与系数的关系,牢记两根之和等于b a -是解题的关键. 30.4【分析】利用一元二次方程根于系数的关系式求出根的和即可.【详解】解:∵2310x x --=, ∴123b x x a+=-=, ∵230x x --=, ∴121b x x a +=-=, ∴所有实数根的和等于4.故答案是:4.【点睛】本题考查一元二次方程根于系数的关系,解题的关键是掌握一元二次方程根与系数的关系式.。
2020年冀教版数学九年级上册 24.3 一元二次方程根与系数的关系(含答案)
拓展训练 2020年冀教版数学九年级上册 24.3 一元二次方程根与系数的关系 基础闯关全练1.关于x 的方程2x ²+mx+n=0的两个根是-2和1,则n ᵐ的值为 ( )A .-8B .8C .16D .-162.一元二次方程2x ²-mx +2=0有一根是x=1,则另一根是 ( )A.x=1B.x= -1C.x=2D.x=4能力提升全练1.若α,β是一元二次方程3x ²+2x -9=0的两根,则的值是 ( )A .B .C .D .2.已知x ₁,x ₂是方程2x ²-3x-1=0的两根,则____.3.已知关于x 的一元二次方程x ²-3x+m=0有两个不相等的实数根x ₁、x ₂.(1)求m 的取值范围;(2)当x ₁=1时,求另一个根x ₂的值.三年模拟全练一、选择题1.(2019河北石家庄新世纪外国语学校月考,4,★☆☆)若关于x 的方程x ²+3x+a=0有一个根为1,则另一个根为( )A .-3B .2C .4D .-42.(2019河北唐山乐亭期中,6,★☆☆)若矩形的长和宽是方程x ²-7x+12=0的两根,则矩形对角线的长度为 ( )A .5B .7C .8D .10二、填空题3.(2019河北衡水武邑中学月考,13,★☆☆)已知x ₁、x ₂是关于x 的方程x ²+ax -2b=0的两个实数根,且x ₁+x ₂=-2,x ₁·x ₂=1,则的值是_________.4.(2018河北保定定州期中,22,★☆☆)已知关于x 的方程 x ²+2x+a-2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.五年中考全练一、选择题1.(2018广西贵港中考,6,★☆☆)已知α,β是一元二次方程x ²+x -2=0的两个实数根,则α+β-αβ的值是 ( )A .3B .1 C.-1 D .-3二、填空题2.(2018江苏南京中考,12,★☆☆)设x ₁,x ₂是一元二次方程x ²-mx-6=0的两个根,且x ₁+x ₂=1,则x ₁=____,x ₂=____.三、解答题3.(2017湖北黄冈中考,17,★★☆)已知关于x 的一元二次方程x ²+( 2k+1)x+k ² =0①有两个不相等的实数根.(1)求k 的取值范围;(2)设方程①的两个实数根分别为x ₁,x ₂,当k=1时,求2221x x 的值4.(2014四川南充中考,20,★★☆)已知关于x 的一元二次方程x ²-x+m=0有两个不相等的实数根.(1)求实数m 的最大整数值;(2)在(1)的条件下,方程的实数根是x₁,x₂,求代数式的值.核心素养全练1.已知a为正整数,a=b-2 005,若关于x的方程x²-ax+b=0有正整数解,则a的最小值是多少?(温馨提示:先设方程的两根为x₁,x₂,然后……)2.(2017湖北孝感模拟)已知x₁,x₂是一元二次方程(a-6)x²+2ax+a=0的两个实数根.(1)求a的取值范围;(2)是否存在实数a,使-x₁+x₁x₂=4+x₂成立?若存在,求出a的值;若不存在,请说明理由.24.3 一元二次方程根与系数的关系基础闯关全练1.C由一元二次方程根与系数的关系得解得m=2,n=-4,故nᵐ=(-4)²=16,故选C.2.A设一元二次方程2x²-mx+2=0的一个根x₁=1,另一个根为x₂,则x₁x₂==1,解得x₂=1.故选A.能力提升全练1.C由一元二次方程根与系数的关系,得,∴.故选C.2.答案解析∵x₁,x₂是方程2x²-3x-1=0的两根,∴x₁+x₂=,x₁x₂=,∴,故答案为.3.解析(1) ∵原方程有两个不相等的实数根,∴(-3)²-4m>0,解得m<(2)由一元二次方程根与系数的关系,得x₁+x₂=3,∵x₁=1,∴x₂=2.三年模拟全练一、选择题1.D设x²+3x+a=0的另一个根为x’,由一元二次方程根与系数的关系得1+x'= -3,解得x’=-4,故选D.2.A设矩形的长和宽分别为a、b,根据一元二次方程根与系数的关系可得a+b=7,ab =12,所以矩形对角线的长度为.故选A.二、填空题3.答案解析∵x₁,x₂是关于x的方程x²+ax-2b=0的两个实数根,∴x₁+x₂= -a= -2,x₁·x₂=-2b=1,解得a=2,b=,∴.故答案为.三、解答题4.解析(1)依题意得原方程的根的判别式△=2²-4(a-2)>0,解得a<3.(2)依题意得1+2+a-2=0,解得a=-1.故原方程为x²+2x-3=0.设方程的另一个根为m,则m+1=-2.∴m=-3.∴a=-1,方程的另一根为-3.五年中考全练一、选择题1.B ∵α,β是方程x²+x-2=0的两个实数根,∴α+β= -1,αβ=-2,∴α+β-αβ= - 1+2=1,故选B.二、填空题2.答案-2;3解析∵x₁、x₂是一元二次方程x²-mx-6=0的两个根,且x₁+x₂=1,∴m=1.∴原方程为x²-x-6=0,即(x+2)(x-3)=0,解得x₁= -2,x₂=3.故答案为-2;3.三、解答题3.解析(1)∵方程①有两个不相等的实数根,∴△=(2k+1)²-4k²=4k+1>0,解得k>.∴k的取值范围是k>.(2)当k=1时,方程①为x²+3x+1=0.由根与系数的关系可得,∴.4.解析(1)由题意,得b²-4ac>0,即,解得m<2,∴m的最大整数值为1.(2)把m=1代入关于x的一元二次方程x²-x+m=0得x²-x+1=0.根据根与系数的关系得,∴.核心素养全练1.解析设方程的两根分别为x₁,x₂,则,∵x₁,x₂中有一个为正整数,则另一个也必为正整数,不妨设x₁≤x₂,则由上式,得x₁·x₂-(x₁+x₂)= b-a=2 005,∴(x₁-1)(x₂-1)=2 006= 2×17×59,∴x₁-1=2,x₂-1=17×59;x₁-1=2×17,x₂-1= 59;x₁-1= 17,x₂-1= 2×59,∴x₁+x₂的最小值是2×17+59+1+1= 95,即a的最小值是95.2.解析(1)∵一元二次方程(a-6)x²+2ax +a=0有两个实数根,∴( 2a) ²-4(a-6)a≥0且a-6≠0,解得a≥0且a≠6.故a的取值范围为a≥0且a≠6.(2)存在,∵x₁、x₂是一元二次方程(a-6)x²+2ax+a=0的两个实数根.∴由根与系数的关系得,由-x₁+x₁x₂= 4+x₂,得x₁x₂ =4+x₁+x₂,∴,解得a=24.经检验,a= 24是原方程的解,且当a= 24时,原方程中△>0.∴存在实数a,使-x₁+x₁x₂= 4+x₂成立,此时a= 24.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根与系数的关系1、如果方程ax 2+bx+c=0(a ≠0)的两根是x 1、x 2;那么x 1+x 2= ;x 1·x 2= 。
2、已知x 1、x 2是方程2x 2+3x -4=0的两个根;那么:x 1+x 2= ;x 1·x 2= ;2111x x + ;x 21+x 22= ;(x 1+1)(x 2+1)= ;|x 1-x 2|= 。
3、以2和3为根的一元二次方程(二次项系数为1)是 。
4、如果关于x 的一元二次方程x 2+2x+a=0的一个根是1-2;那么另一个根是 ;a 的值为 。
5、如果关于x 的方程x 2+6x+k=0的两根差为2;那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等;则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1;则q ∶p= 。
8、已知方程x 2-mx+2=0的两根互为相反数;则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数;则a= 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2;且x 1+x 2=-2;则m= ;(x 1+x 2)21x x ⋅= 。
11、已知方程3x 2+x -1=0;要使方程两根的平方和为913;那么常数项应改为 。
12、已知一元二次方程的两根之和为5;两根之积为6;则这个方程为 。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0;则以α、β为根的一元二次方程为 。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数;则m= ;若方程两根之和与两根积互为相反数;则m= 。
15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4;则α= ;β= ;m= 。
16、已知关于x 的方程x 2-3x+k=0的两根立方和为0;则k=17、已知关于x 的方程x 2-3mx+2(m -1)=0的两根为x 1、x 2;且43x 1x 121-=+;则m= 。
18、关于x 的方程2x 2-3x+m=0;当 时;方程有两个正数根;当m 时;方程有一个正根;一个负根;当m 时;方程有一个根为0。
19、若方程x 2-4x+m=0与x 2-x -2m=0有一个根相同;则m= 。
20、求作一个方程;使它的两根分别是方程x 2+3x -2=0两根的二倍;则所求的方程为 。
21、一元二次方程2x 2-3x+1=0的两根与x 2-3x+2=0的两根之间的关系是 。
22、已知方程5x 2+mx -10=0的一根是-5;求方程的另一根及m 的值。
23、已知2+3是x 2-4x+k=0的一根;求另一根和k 的值。
24、证明:如果有理系数方程x 2+px+q=0有一个根是形如A+B 的无理数(A 、B 均为有理数);那么另一个根必是A -B 。
25、不解方程;判断下列方程根的符号;如果两根异号;试确定是正根还是负根的绝对值大?0362)2(,053)1(22=+-=--x x x26、已知x 1和x 2是方程2x 2-3x -1=0的两个根;利用根与系数的关系;求下列各式的值: x 31x 2+x 1x 3227、已知x 1和x 2是方程2x 2-3x -1=0的两个根;利用根与系数的关系;求下列各式的值:2221x 1x 1+28、已知x 1和x 2是方程2x 2-3x -1=0的两个根;利用根与系数的关系;求下列各式的值: (x 21-x 22)229、已知x 1和x 2是方程2x 2-3x -1=0的两个根;利用根与系数的关系;求下列各式的值:x 1-x 230、已知x 1和x 2是方程2x 2-3x -1=0的两个根;利用根与系数的关系;求下列各式的值: 122x x31、已知x 1和x 2是方程2x 2-3x -1=0的两个根;利用根与系数的关系;求下列各式的值:x 51·x 22+x 21·x 52 32、求一个一元二次方程;使它的两个根是2+6和2-6。
33、已知两数的和等于6;这两数的积是4;求这两数。
34、造一个方程;使它的根是方程3x 2-7x+2=0的根;(1)大3;(2)2倍;(3)相反数;(4)倒数。
35、方程x 2+3x+m=0中的m 是什么数值时;方程的两个实数根满足:(1)一个根比另一个根大2;(2)一个根是另一个根的3倍;(3)两根差的平方是17。
36、已知关于x 的方程2x 2-(m -1)x+m+1=0的两根满足关系式x 1-x 2=1;求m 的值及两个根。
37、α、β是关于x 的方程4x 2-4mx+m 2+4m=0的两个实根;并且满足10091)1)(1(=---βα;求m 的值。
38、已知一元二次方程8x 2-(2m+1)x+m -7=0;根据下列条件;分别求出m 的值:(1)两根互为倒数;(2)两根互为相反数;(3)有一根为零;(4)有一根为1;(5)两根的平方和为641。
39、已知方程x 2+mx+4=0和x 2-(m -2)x -16=0有一个相同的根;求m 的值及这个相同的根。
40、已知关于x 的二次方程x 2-2(a -2)x+a 2-5=0有实数根;且两根之积等于两根之和的2倍;求a 的值。
41、已知方程x 2+bx+c=0有两个不相等的正实根;两根之差等于3;两根的平方和等于29;求b 、c的值。
42、设:3a 2-6a -11=0;3b 2-6b -11=0且a ≠b ;求a 4-b 4的值。
43、试确定使x 2+(a -b)x+a=0的根同时为整数的整数a 的值。
44、已知一元二次方程(2k -3)x 2+4kx+2k -5=0;且4k+1是腰长为7的等腰三角形的底边长;求当k 取何整数时;方程有两个整数根。
45、已知:α、β是关于x 的方程x 2+(m -2)x+1=0的两根;求(1+m α+α2)(1+m β+β2)的值。
46、已知x 1;x 2是关于x 的方程x 2+px+q=0的两根;x 1+1、x 2+1是关于x 的方程x 2+qx+p=0的两根;求常数p、q的值。
;47、已知x1、x2是关于x的方程x2+m2x+n=0的两个实数根;y1、y2是关于y的方程y2+5my+7=0的两个实数根;且x1-y1=2;x2-y2=2;求m、n的值。
48、关于x的方程m2x2+(2m+3)x+1=0有两个乘积为1的实根;x2+2(a+m)x+2a-m2+6m-4=0有大于0且小于2的根。
求a的整数值。
49、关于x的一元二次方程3x2-(4m2-1)x+m(m+2)=0的两实根之和等于两个实根的倒数和;求m的值。
50、已知:α、β是关于x的二次方程:(m-2)x2+2(m-4)x+m-4=0的两个不等实根。
(1)若m为正整数时;求此方程两个实根的平方和的值;(2)若α2+β2=6时;求m的值。
51、已知关于x的方程mx2-nx+2=0两根相等;方程x2-4mx+3n=0的一个根是另一个根的3倍。
求证:方程x2-(k+n)x+(k-m)=0一定有实数根。
52、关于x的方程22n41mx2x+-=0;其中m、n分别是一个等腰三角形的腰长和底边长。
(1)求证:这个方程有两个不相等的实根;(2)若方程两实根之差的绝对值是8;等腰三角形的面积是12;求这个三角形的周长。
53、已知关于x的一元二次方程x2+2x+p2=0有两个实根x1和x2(x1≠x2);在数轴上;表示x2的点在表示x1的点的右边;且相距p+1;求p的值。
54、已知关于x的一元二次方程ax2+bx+c=0的两根为α、β;且两个关于x的方程x2+(α+1)x+β2=0与x2+(β+1)x+α2=0有唯一的公共根;求a、b、c的关系式。
55、如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β;那么(α-1)2+(β-1)2的最小值是多少?56、已知方程2x2-5mx+3n=0的两根之比为2∶3;方程x2-2nx+8m=0的两根相等(mn≠0)。
求证:对任意实数k;方程mx2+(n+k-1)x+k+1=0恒有实数根。
57、(1)方程x2-3x+m=0的一个根是2;则另一个根是。
(2)若关于y的方程y2-my+n=0的两个根中只有一个根为0;那么m;n应满足。
58、不解方程;求下列各方程的两根之和与两根之积x2+3x+1=0;59、不解方程;求下列各方程的两根之和与两根之积3x2-2x-1=0;60、不解方程;求下列各方程的两根之和与两根之积-2x2+3=0;61、不解方程;求下列各方程的两根之和与两根之积2x2+5x=0。
62、已知关于x的方程2x2+5x=m的一个根是-2;求它的另一个根及m的值。
63、已知关于x的方程3x2-1=tx的一个根是-2;求它的另一个根及t的值。
64、设x1;x2是方程3x2-2x-2=0的两个根;利用根与系数的关系;求下列各式的值:(1)(x1-4)(x2-4);(2)x13x24+x14x23;(3)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛+12213131xxxx;(4)x13+x23。
65、设x 1;x 2是方程2x 2-4x+1=0的两个根;求|x 1-x 2|的值。
66、已知方程x 2+mx+12=0的两实根是x 1和x 2;方程x 2-mx+n=0的两实根是x 1+7和x 2+7; 求m 和n的值。
67、以2;-3为根的一元二次方程是 ( ) 22+x -6=02-2-x -6=068、以3;-1为根;且二次项系数为3的一元二次方程是 ( ) 2-2+2x -3=02-6x -9=0 2+6x -9=069、两个实数根的和为2的一元二次方程可能是 ( ) 2+2x -2-2x+3=022-2x -3=070、以-3;-2为根的一元二次方程为 ; 以213-;213+为根的一元二次方程为 ;以5;-5为根的一元二次方程为 ;以4;41为根的一元二次方程为 。
71、已知两数之和为-7;两数之积为12;求这两个数。
72、已知方程2x 2-3x -3=0的两个根分别为a ;b ;利用根与系数的关系;求一个一元二次方程 ;使它的两个根分别是:(1)a+1.b+1 (2)b a a b 2,2 73、一个直角三角形的两条直角边长的和为6cm ;面积为27cm 2;求这个直角三角形斜边的长 。
74、在解方程x 2+px+q=0时;小张看错了p ;解得方程的根为1与-3;小王看错了q ;解得方程的根为4与-2。
这个方程的根应该是什么?75、关于x 的方程x 2-ax -3=0有一个根是1;则a= ;另一个根是 。
76、若分式1322+--x x x 的值为0;则x 的值为 ( )A.-1B.3C.-1或3D.-3或177、若关于y 的一元二次方程y 2+my+n=0的两个实数根互为相反数;则 ( )A.m=0且n ≥0B.n=0且m ≥0C.m=0且n ≤0D.n=0且m ≤078、已知x 1;x 2是方程2x 2+3x -1=0的两个根;利用根与系数的关系;求下列各式的值:(1)(2x 1-3)(2x 2-3);(2)x 13x 2+x 1x 23。