计算机视觉技术中的目标跟踪算法研究

合集下载

《2024年目标跟踪算法综述》范文

《2024年目标跟踪算法综述》范文

《目标跟踪算法综述》篇一一、引言目标跟踪作为计算机视觉领域中的一项关键技术,近年来在安防、无人驾驶、医疗影像处理等领域得到了广泛的应用。

其目的是通过一系列的图像处理和计算方法,实时准确地检测并跟踪特定目标。

本文将对当前主流的目标跟踪算法进行全面而详细的综述。

二、目标跟踪算法的发展历程早期的目标跟踪算法主要是基于滤波的跟踪算法,如均值漂移法等。

这些算法简单易行,但难以应对复杂多变的场景。

随着计算机技术的进步,基于特征匹配的跟踪算法逐渐兴起,如光流法、特征点匹配法等。

这些算法通过提取目标的特征信息,进行特征匹配以实现跟踪。

近年来,随着深度学习技术的发展,基于深度学习的目标跟踪算法成为了研究热点。

三、目标跟踪算法的主要分类与原理1. 基于滤波的跟踪算法:该类算法主要利用目标在连续帧之间的运动信息进行跟踪。

常见的算法如均值漂移法,通过计算当前帧与模板之间的差异来寻找目标位置。

2. 基于特征匹配的跟踪算法:该类算法通过提取目标的特征信息,在连续帧之间进行特征匹配以实现跟踪。

如光流法,根据相邻帧之间像素运动的光流信息来计算目标的运动轨迹。

3. 基于深度学习的跟踪算法:该类算法利用深度学习技术,通过大量的训练数据学习目标的特征信息,以实现准确的跟踪。

常见的算法如基于孪生网络的跟踪算法,通过学习目标与背景的差异来区分目标。

四、主流目标跟踪算法的优缺点分析1. 优点:基于深度学习的目标跟踪算法能够学习到目标的复杂特征信息,具有较高的准确性和鲁棒性。

同时,随着深度学习技术的发展,该类算法的跟踪性能不断提升。

2. 缺点:深度学习算法需要大量的训练数据和计算资源,且在实时性方面存在一定的挑战。

此外,当目标与背景相似度较高时,容易出现误跟或丢失的情况。

五、目标跟踪算法的应用领域及前景目标跟踪技术在安防、无人驾驶、医疗影像处理等领域具有广泛的应用前景。

例如,在安防领域,可以通过目标跟踪技术实现对可疑目标的实时监控;在无人驾驶领域,可以通过目标跟踪技术实现车辆的自主导航和避障;在医疗影像处理领域,可以通过目标跟踪技术实现对病灶的实时监测和诊断。

《2024年基于YOLOv5和DeepSORT的多目标跟踪算法研究与应用》范文

《2024年基于YOLOv5和DeepSORT的多目标跟踪算法研究与应用》范文

《基于YOLOv5和DeepSORT的多目标跟踪算法研究与应用》篇一一、引言随着计算机视觉技术的不断发展,多目标跟踪技术已成为众多领域研究的热点。

多目标跟踪算法在智能监控、无人驾驶、行为分析等领域有着广泛的应用。

近年来,基于深度学习的多目标跟踪算法取得了显著的进展,其中,YOLOv5和DeepSORT算法的结合在多目标跟踪领域表现出强大的性能。

本文将介绍基于YOLOv5和DeepSORT的多目标跟踪算法的研究与应用。

二、YOLOv5算法概述YOLO(You Only Look Once)是一种实时目标检测算法,而YOLOv5是该系列中最新的版本。

该算法通过将目标检测任务转化为单次前向传递的回归问题,实现了较高的检测速度和准确率。

YOLOv5采用卷积神经网络(CNN)进行特征提取,通过非极大值抑制(NMS)等后处理技术,实现了对多个目标的准确检测。

三、DeepSORT算法概述DeepSORT是一种基于深度学习的多目标跟踪算法,它通过结合深度学习和SORT(Simple Online and Realtime Tracking)算法,实现了对多个目标的准确跟踪。

DeepSORT利用深度神经网络进行特征提取,并采用匈牙利算法进行数据关联,从而实现了对目标的稳定跟踪。

四、基于YOLOv5和DeepSORT的多目标跟踪算法基于YOLOv5和DeepSORT的多目标跟踪算法将两种算法的优势相结合,实现了对多个目标的实时检测和跟踪。

具体而言,该算法首先利用YOLOv5进行目标检测,得到每个目标的边界框和类别信息;然后,利用DeepSORT进行数据关联和目标跟踪,实现了对多个目标的稳定跟踪。

在特征提取方面,该算法采用深度神经网络进行特征提取,从而提高了对目标的识别能力。

在数据关联方面,该算法采用匈牙利算法进行最优匹配,从而实现了对目标的稳定跟踪。

此外,该算法还采用了级联匹配和轨迹管理等技术,进一步提高了跟踪的准确性和稳定性。

《运动目标检测和跟踪算法的研究及实现》

《运动目标检测和跟踪算法的研究及实现》

《运动目标检测和跟踪算法的研究及实现》一、引言运动目标检测和跟踪是计算机视觉领域中的一项重要技术,广泛应用于智能监控、自动驾驶、人机交互等众多领域。

本文旨在研究并实现一种高效、准确的运动目标检测和跟踪算法,为相关领域的研究和应用提供参考。

二、运动目标检测算法研究1. 背景及意义运动目标检测是计算机视觉中的一项基础任务,其目的是从视频序列中提取出感兴趣的运动目标。

传统的运动目标检测方法主要包括帧间差分法、背景减除法等,但这些方法在复杂场景下往往存在误检、漏检等问题。

因此,研究一种适用于复杂场景的、高效的、准确的运动目标检测算法具有重要意义。

2. 算法原理及实现本文采用基于深度学习的运动目标检测算法。

该算法利用卷积神经网络(CNN)提取视频帧中的特征,并通过区域生成网络(RPN)生成候选目标区域。

接着,利用分类网络对候选区域进行分类,确定是否为运动目标。

最后,通过边界框回归和NMS (非极大值抑制)等技术对检测结果进行优化。

在实现过程中,我们采用了PyTorch等深度学习框架,利用GPU加速计算,提高了算法的运算速度。

同时,我们还针对不同场景的实际情况,对算法进行了优化和改进,提高了算法的准确性和鲁棒性。

三、运动目标跟踪算法研究1. 背景及意义运动目标跟踪是在检测出运动目标的基础上,进一步对目标进行跟踪和定位。

传统的运动目标跟踪方法主要包括基于特征的方法、基于模型的方法等,但这些方法在复杂场景下往往存在跟踪不准确、易丢失等问题。

因此,研究一种适用于复杂场景的、稳定的、准确的运动目标跟踪算法具有重要意义。

2. 算法原理及实现本文采用基于深度学习的Siamese网络进行运动目标跟踪。

Siamese网络通过学习目标模板和搜索区域的特征表示,实现目标的快速定位和跟踪。

在实现过程中,我们采用了离线训练和在线更新的方式,提高了算法的准确性和适应性。

同时,我们还结合了光流法等技术,进一步提高了算法的稳定性和准确性。

多目标跟踪算法及实现研究

多目标跟踪算法及实现研究

多目标跟踪算法及实现研究一、本文概述Overview of this article随着计算机视觉技术的快速发展,多目标跟踪算法已成为该领域的研究热点之一。

多目标跟踪旨在从视频序列中识别并持续跟踪多个目标对象,是许多实际应用如智能监控、人机交互、自动驾驶等不可或缺的关键技术。

本文旨在深入研究和探讨多目标跟踪算法的原理、发展现状以及实际应用。

With the rapid development of computer vision technology, multi-objective tracking algorithms have become one of the research hotspots in this field. Multi object tracking aims to identify and continuously track multiple target objects from video sequences, and is an indispensable key technology in many practical applications such as intelligent monitoring, human-computer interaction, and autonomous driving. This article aims to conduct in-depth research and exploration on the principles, current development status, and practical applications of multi-objective tracking algorithms.本文将对多目标跟踪算法的基本框架和关键技术进行概述,包括目标检测、数据关联、轨迹预测等核心组件。

文章将重点介绍当前主流的多目标跟踪算法,如基于滤波的方法、基于深度学习的方法等,并分析它们的优缺点和适用场景。

基于计算机视觉的运动目标检测与追踪研究

基于计算机视觉的运动目标检测与追踪研究

基于计算机视觉的运动目标检测与追踪研究摘要:随着计算机视觉和人工智能的快速发展,基于计算机视觉的运动目标检测和追踪成为了当前研究的热点。

本文将介绍运动目标检测和追踪的概念,并详细探讨了一些常见的方法和技术,如基于深度学习的目标检测算法和多目标追踪。

最后,本文还对未来的研究方向进行了展望。

1. 引言随着计算机视觉和人工智能技术的进步,运动目标检测和追踪在许多领域中都具有重要应用。

例如,在视频监控和智能交通系统中,准确地检测和追踪运动目标可以提供更安全和高效的服务。

因此,研究如何利用计算机视觉的方法来实现运动目标检测和追踪变得尤为重要。

2. 运动目标检测运动目标检测是指通过计算机视觉技术识别图像或视频中的运动目标。

传统的方法主要基于图像处理和特征提取技术,如背景减除、边缘检测和目标轮廓提取。

然而,这些方法往往对光照变化和背景复杂的场景效果不佳。

近年来,基于深度学习的目标检测算法如Faster R-CNN、YOLO和SSD等取得了显著的进展。

这些算法能够自动学习目标的特征,从而在复杂场景下表现出更好的性能。

3. 运动目标追踪运动目标追踪是指跟踪运动目标在连续帧中的位置和运动状态。

与运动目标检测相比,追踪更具挑战性,因为目标在不同帧之间可能会发生形变、遮挡或运动模式的变化。

针对这些问题,研究者提出了各种追踪算法,如基于相关滤波器的方法、粒子滤波和深度学习方法等。

其中,多目标追踪是一种更复杂的问题,需要同时追踪多个运动目标。

针对多目标追踪,常见的方法有多目标跟踪器的设计和融合方法等。

4. 挑战和解决方案运动目标检测和追踪中存在一些挑战,例如复杂背景、目标形变、光照变化和目标遮挡等。

为了解决这些问题,研究者提出了一系列解决方案。

例如,对于复杂背景,可以采用自适应背景建模和深度学习方法来提高检测和追踪的准确性。

对于目标形变和光照变化,可以使用形变估计和颜色模型来进行调整。

另外,目标遮挡问题可以使用多目标追踪和深度学习等方法来解决。

基于YOLOv5和DeepSORT的多目标跟踪算法研究与应用

基于YOLOv5和DeepSORT的多目标跟踪算法研究与应用

基于YOLOv5和DeepSORT的多目标跟踪算法研究与应用一、本文概述随着计算机视觉技术的飞速发展,多目标跟踪(Multi-Object Tracking, MOT)作为其中的一项关键技术,已广泛应用于智能监控、自动驾驶、人机交互等领域。

本文旨在研究基于YOLOv5(You Only Look Once version 5)和DeepSORT(Deep Simple Online and Realtime Tracking)的多目标跟踪算法,并探讨其在实际应用中的性能表现。

本文将对YOLOv5算法进行详细介绍。

作为一种先进的实时目标检测算法,YOLOv5凭借其高效的速度和优异的检测性能,在众多目标检测算法中脱颖而出。

本文将对YOLOv5的基本原理、网络结构、训练过程等进行深入剖析,为后续的多目标跟踪算法研究奠定基础。

本文将重点研究DeepSORT算法在多目标跟踪中的应用。

DeepSORT算法结合了深度学习和SORT(Simple Online and Realtime Tracking)算法的优点,通过提取目标的深度特征并进行数据关联,实现了对多个目标的准确跟踪。

本文将详细介绍DeepSORT算法的实现过程,包括特征提取、目标匹配、轨迹管理等关键步骤,并分析其在实际应用中的优势与不足。

本文将探讨基于YOLOv5和DeepSORT的多目标跟踪算法在实际应用中的性能表现。

通过设计实验,对比不同算法在不同场景下的跟踪效果,评估所提算法在准确性、鲁棒性、实时性等方面的性能。

本文将结合具体的应用场景,对所提算法进行实际应用案例分析,展示其在智能监控、自动驾驶等领域的应用潜力。

本文旨在深入研究基于YOLOv5和DeepSORT的多目标跟踪算法,通过理论分析和实验验证,评估其在实际应用中的性能表现,为推动多目标跟踪技术的发展和应用提供有益的参考。

二、YOLOv5目标检测算法介绍YOLOv5,全称为You Only Look Once version 5,是一种先进的实时目标检测算法。

计算机视觉中的人脸识别与目标追踪算法

计算机视觉中的人脸识别与目标追踪算法人脸识别与目标追踪是计算机视觉领域中最为重要的技术之一。

随着深度学习的快速发展,在人工智能领域取得了巨大的突破,人脸识别与目标追踪技术也不断提高,广泛应用于各个领域。

首先,我们来说说人脸识别技术。

人脸识别是一种将数字图像或视频中的人脸与已知的人脸模型进行比较并匹配的技术。

它通过提取人脸的特征信息,如眼睛、鼻子、嘴巴等,然后与数据库中的人脸数据进行比对,从而确定身份。

人脸识别技术广泛应用于安全领域,如门禁系统、人脸支付等。

它不仅能提高安全性,还能提供便利性。

人脸识别算法的核心是特征提取和模式匹配。

特征提取是通过计算机视觉技术从人脸图像中提取与身份相关的信息。

常用的特征提取方法有主成分分析(PCA)和线性判别分析(LDA)等。

模式匹配是将提取到的特征与数据库中的模型进行比对,从而找到最好的匹配。

常用的模式匹配方法有最近邻算法(K-NN)和支持向量机(SVM)等。

除了人脸识别,目标追踪也是计算机视觉领域中的重要技术之一。

目标追踪是指在连续的图像或视频中跟踪特定目标的过程。

它通过计算目标的运动轨迹和外观特征,实现目标在图像中的实时定位和跟踪。

目标追踪技术广泛应用于视频监控、智能交通等领域。

它不仅能提供实时的目标位置信息,还能实现目标的行为分析和预测。

目标追踪算法主要包括运动模型和外观模型。

运动模型用于描述目标的运动规律,如匀速运动、加速运动等。

常用的运动模型有卡尔曼滤波和粒子滤波等。

外观模型用于描述目标的外观特征,如颜色、纹理等。

常用的外观模型有相关滤波和深度学习等。

虽然人脸识别和目标追踪技术在各自领域都取得了较好的成果,但仍然存在一些挑战。

首先是光照、姿态和表情变化等因素对人脸识别的影响。

这些因素会导致人脸图像的特征发生变化,从而影响人脸识别的准确性。

其次是目标遮挡和背景杂乱等因素对目标追踪的影响。

这些因素会导致目标在图像中的识别和跟踪变得困难。

为了应对这些挑战,研究人员不断改进和优化人脸识别和目标追踪算法。

计算机视觉中的目标跟踪与姿态估计算法

计算机视觉中的目标跟踪与姿态估计算法计算机视觉(Computer Vision)是一门研究如何使机器“看”的科学与技术,它旨在通过模拟人类视觉系统,使计算机能够理解和解释图像和视频数据。

在计算机视觉领域中,目标跟踪(Object Tracking)和姿态估计(Pose Estimation)是两个重要且紧密相关的问题,涉及到许多重要的应用领域,如自动驾驶、视频监控、增强现实等。

目标跟踪是指在一个视频序列中,识别和定位特定目标的过程。

在目标跟踪中,我们需要判断目标的位置、大小、形状以及目标和背景之间的关系。

目标跟踪算法可以分为基于特征的方法和基于深度学习的方法。

基于特征的方法主要利用目标的颜色、纹理、形状等特征,通过计算目标与背景之间的相似性来进行跟踪。

而基于深度学习的方法则通过神经网络从大规模的标注数据中学习目标的表示,并利用学到的表示来进行目标跟踪。

常用的深度学习模型包括卷积神经网络(Convolutional Neural Network,简称CNN)和循环神经网络(Recurrent Neural Network,简称RNN)。

姿态估计是指从一个或多个输入图像中估计或恢复出目标的姿态信息,如位置、角度、形状等。

姿态估计是计算机视觉中的一个经典问题,其在许多应用场景中都具有重要的意义。

姿态估计算法可以分为基于模型的方法和基于深度学习的方法。

基于模型的方法通常通过建立目标的几何模型、运动模型或统计模型,利用图像特征与模型之间的匹配程度来估计目标的姿态。

而基于深度学习的方法则通过神经网络从大量的标注数据中学习目标的姿态信息,并利用学到的表示进行姿态估计。

常用的深度学习模型包括卷积神经网络(CNN)和生成对抗网络(Generative Adversarial Network,简称GAN)。

近年来,随着深度学习技术的快速发展,越来越多的基于深度学习的目标跟踪与姿态估计算法被提出。

这些算法通过深度神经网络的优秀特性,如自动学习、高鲁棒性、良好的泛化能力等,在目标跟踪与姿态估计任务上取得了令人瞩目的成果。

计算机视觉技术中的多目标跟踪算法研究及应用

计算机视觉技术中的多目标跟踪算法研究及应用随着人工智能和计算机视觉技术的不断发展,多目标跟踪算法在实际应用中的重要性越来越受到人们的关注。

多目标跟踪算法是利用计算机对视频流数据进行处理,通过对视频中的目标进行检测和跟踪,从而识别出目标的位置、大小、运动轨迹等关键信息。

一、多目标跟踪算法的研究现状目前,多目标跟踪算法可以分为两种类型:基于自适应模型和基于深度学习模型。

基于自适应模型的算法往往需要手动调整跟踪算法的参数,而基于深度学习模型的算法则可以通过机器学习技术自适应地学习目标轨迹的变化规律。

对于同一组测试数据,基于深度学习模型的算法往往具有更好的跟踪效果。

针对多目标跟踪算法的研究,人工智能领域全球顶尖的学术机构和科技公司都在争相发力。

例如,Facebook AI Research团队发布了一种称为“DeepSORT”的跟踪算法,可以同时跟踪多个目标,并对分组目标进行快速实时跟踪;Google研究院的团队也推出了一种名为“MDP-Net”的深度学习模型算法,可以有效地跟踪多个不同目标。

二、多目标跟踪算法的应用场景除了在计算机视觉技术领域广泛应用之外,多目标跟踪算法还被广泛应用于各种实际场景中。

例如,交通监控系统可以利用多目标跟踪算法对车辆、行人等交通物体进行跟踪,检测交通违规行为;医学领域可以利用多目标跟踪算法对医学影像进行图像分析,检测疾病的发展和变化情况,提高医学诊断精度。

另外,多目标跟踪算法还可以应用于智能家居领域,例如智能家居中的安防系统可以通过多目标跟踪算法实现对进出家门的人员进行跟踪和识别,从而提高房屋的安全性;还可以用于营销分析领域,通过对顾客的行为数据进行跟踪和分析,从而实现个性化推荐和增加消费者的满意度。

三、多目标跟踪算法的未来展望未来,随着计算机视觉技术的不断改进和智能化水平的提高,多目标跟踪算法在各个领域的应用也将得到进一步拓展。

在智能制造领域中,通过对生产过程中产品的跟踪和检测,可以大幅提升制造效率和质量;在自动驾驶领域中,多目标跟踪算法的应用可以有效地提高自动驾驶汽车的运行安全性。

视觉目标检测与跟踪算法

视觉目标检测与跟踪算法随着计算机视觉和人工智能的快速发展,视觉目标检测与跟踪算法成为了该领域的热门研究课题。

视觉目标检测与跟踪算法的应用十分广泛,包括自动驾驶、智能监控、机器人导航等领域。

对于实时场景中的目标检测与跟踪,准确性和实用性是评估算法性能的重要指标。

在本文中,我们将介绍几种常见的视觉目标检测与跟踪算法,并对其原理和应用进行详细的分析。

一、视觉目标检测算法1. Haar特征检测算法Haar特征检测算法是一种基于机器学习的目标检测算法,其原理是通过计算目标区域内的Haar-like特征来判断目标是否存在。

该算法在检测速度方面表现出色,但对目标外貌的变化和旋转不具有很好的鲁棒性。

2. HOG特征检测算法HOG特征检测算法通过计算图像局部梯度的方向直方图来描述目标的外貌特征,并通过支持向量机等分类器进行目标检测。

该算法在复杂背景下的目标检测效果较好,但对于目标遮挡和旋转等情况的处理能力较差。

3. 基于深度学习的目标检测算法基于深度学习的目标检测算法通常基于卷积神经网络(CNN)结构,如Faster R-CNN、YOLO、SSD等。

这些算法通过在网络中引入特定的层和损失函数,能够实现更高的目标检测准确性和实时性。

然而,由于网络结构复杂,算法的运行速度较慢。

二、视觉目标跟踪算法1. 卡尔曼滤波器卡尔曼滤波器是一种常用的目标跟踪算法,其基本原理是将目标的状态建模为高斯分布,并通过状态预测和观测更新两个步骤来实现目标跟踪。

该算法在实时性和鲁棒性方面表现出色,但对目标的运动模型假设较强。

2. 文件特征跟踪算法文件特征跟踪算法通过提取目标区域的特征信息,并通过计算特征匹配度来判断目标位置的变化。

该算法对于目标的尺度变化和旋转等问题有一定的鲁棒性,但对于目标确切形状的要求较高。

3. 基于深度学习的目标跟踪算法基于深度学习的目标跟踪算法通常基于卷积神经网络(CNN)结构,如SiameseRPN、SiamFC等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机视觉技术中的目标跟踪算法研究
随着计算机视觉技术的发展,目标跟踪算法的研究也日益受到人们的关注。

目标跟踪主要指在视频中对某一目标进行连续跟踪的技术,是计算机视觉领域的重要研究方向之一。

本文将从目标跟踪的定义、分类、研究现状和发展趋势等方面对目标跟踪算法进行深入研究。

一、目标跟踪的定义及分类
目标跟踪,顾名思义,就是在视频中对某个目标进行连续跟踪的技术。

目标跟踪技术通常由两部分组成:目标检测和目标跟踪。

目标检测主要是在视频序列中找到目标的位置,而目标跟踪则是在视频序列中跟踪目标的位置变化。

目标跟踪算法可以分为基于特征的跟踪方法和基于深度学习的跟踪方法两个方面。

基于特征的跟踪方法是指通过提取目标的特征来进行跟踪,比如颜色、形状、纹理等特征。

而基于深度学习的跟踪方法则是通过训练神经网络来进行目标跟踪。

二、目标跟踪算法的研究现状
目标跟踪算法的研究已经持续了多年,并且在计算机视觉领域中一直是一个活跃的研究领域。

随着计算机硬件性能和数据量的不断提升,目标跟踪算法也得到了不断的改进。

在基于特征的目标跟踪算法中,常用的有CAMShift、MeanShift、Particle Filter 等算法。

CAMShift(Continuously Adaptive Mean Shift)是基于颜色和灰度直方图的算法,该算法通过不断迭代计算目标的中心位置和大小;MeanShift(Mean Shift Tracking)是基于颜色直方图的算法,该算法通过计算颜色直方图的均值来实现目标跟踪;Particle Filter算法则是通过粒子滤波来实现目标跟踪。

在基于深度学习的目标跟踪算法中,YoloV5、SiamFC、SiamRPN等算法成为了热门算法。

YoloV5是一种端到端的目标检测算法,与传统的目标检测算法不同
的是,YoloV5通过引入更多的骨干网络和更多的数据来训练模型;SiamFC (Siamese Fully Convolutional Network)算法是一种基于卷积网络的目标跟踪算法,该算法通过学习目标的特征来实现目标跟踪;SiamRPN(Siamese Region Proposal Network)则是一种基于候选区域的目标跟踪算法,该算法通过区域生成网络来生
成候选区域,并通过判别子网络来判断目标的位置。

三、目标跟踪算法的发展趋势
随着计算机硬件性能和数据量的不断提升,基于深度学习的目标跟踪算法正在
成为主流。

未来,目标跟踪算法将更加注重深度学习技术的应用,通过引入更多数据和更多网络结构来提高算法的性能和准确率。

此外,目标跟踪算法也将更注重算法的实时性。

在实际应用中,往往需要目标
跟踪算法具备实时性,即在较短的时间内完成目标跟踪。

因此,未来的目标跟踪算法也将更注重算法的实时性。

总之,目标跟踪算法是计算机视觉领域的重要研究方向之一。

在未来的研究中,我们需要更注重算法的实时性和深度学习技术的应用,以便实现更高效、更准确的目标跟踪。

相关文档
最新文档