正方体体对角线的截面
专题02 正四面体模型(解析版)

专题02 正四面体模型(解析版)一、解题技巧归纳总结1.正四面体如图,设正四面体ABCD的的棱长为a,将其放入正方体中,则正方体的棱长为22a,显然正四面体和正方体有相同的外接球.正方体外接球半径为236224R a a=⋅=,即正四面体外接球半径为64R a=.二、典型例题例1.棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如图,则图中三角形(正四面体的截面)的面积是().A.22B.32C.2D.3【解析】如图球的截面图就是正四面体中的∆ABD,已知正四面体棱长为2,所以=3AD=1AC,所以=2CD2故选:C.例2.正四面体的棱长为1,则其外接球的表面积为 . 【解析】解析:依题意,正四面体的外接球半径64R =,其表面积为23=42S R ππ=,故答案为32π. 三、配套练习1.棱长为1的正四面体的外接球的半径为( ) A .64B .34C .1D .33【解析】已知正四面体A BCD -的棱长为1,过B 作BE CD ⊥,交CD 于E ,A 作AF ⊥平面BCD ,交BE 于F ,连结AE ,设球心为O ,则O 在AF 上,连结BO ,22131()22BE AE ==-=,2333BF BE ==,1336EF BE ==, 22336()()263AF =-=, 设球半径为R ,则BO AO R ==, 22236()()33R R ∴=+-, 解得64R =. 故选:A .2.棱长为a的正四面体的外接球和内切球的体积比是()A.9:1B.4:1C.27:1D.8:1【解析】把棱长为a的正四面体镶嵌在棱长为x的正方体内,∴外接球和内切球的球心重合,为正方体的中心O,∴外接球的球半径为:23322x x=,22113(2)634x x h=⨯⨯⨯,33xh=,内切球的半径为:3333 2236x x x xh-=-=,∴外接球和内切球的半径之比为:33:3:1 26x x=,∴正四面体的外球和内切球的体积比是27:1,故选:C.3.如图所示,在正四面体A BCD-中,E是棱AD的中点,P是棱AC上一动点,BP PE+的最小值为7,则该正四面体的外接球的体积是()A6πB.6πC 36D.32π【解析】将侧面ABC∆和ACD∆展成平面图形,如图所示:设正四面体的棱长为a则BP PE+的最小值为22172cos120742aBE a a a=+-︒==,2a∴=.在正四面体A BCD -的边长为2, 外接球的半径6642R a ==外接球的体积3463V R ππ==.故选:A .4.表面积为83( ) A .43πB .12πC .8πD .6π【解析】表面积为8322将正四面体补成一个正方体,则正方体的棱长为2,正方体的对角线长为3 正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为24(3)12ππ=.故选:B .5.一个正四面体的棱长为2,则这个正四面体的外接球的表面积为( ) A .6πB .8πC 6πD .11π【解析】26, 正四面体的外接球的直径为正方体的对角线长,∴外接球的表面积的值为264()62ππ=. 故选:A .6.在棱长为2的正四面体的外接球中,相互垂直的两个平面分别截球面得两个圆.若两圆的圆心距为2,则两圆的公共弦长是( )A .34B .34C .1D .12【解析】正四面体扩展为正方体,它们的外接球是同一个球,正方体的对角线长就是球的直径,正方体的棱长为:1;对角线长为:3, 所以球的半径为:32R =, 设相互垂直两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E , 则12OO EO 为矩形,于是对角线12O O OE =, 而222232()22OE OA AE AE =-=-=, 12AE ∴=,则1AB =; 故选:C .7.如图所示,正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为14,则该正四面体的外接球表面积是( )A .12πB .32πC .8πD .24π【解析】将三角形ABC 与三角形ACD 展成平面,BP PE +的最小值,即为BE 两点之间连线的距离,则14BE =设2AB a =,则120BAD ∠=︒,由余弦定理221414222a a a a+--=,解得2a =, 则正四面体棱长为22,因为正四面体的外接球半径是棱长的64倍, 所以,设外接球半径为R ,则62234R ==, 则表面积244312S R πππ===. 故选:A .8.已知正四面体的棱长为4,则此四面体的外接球的表面积是( ) A .24πB .18πC .12πD .6π【解析】将正四面体补成一个正方体,则正方体的棱长为26 6,∴外接球的表面积的值为24(6)24ππ=.故选:A .9.一个棱长为6的正四面体内部有一个任意旋转的正方体,当正方体的棱长取得最大值时,正方体的外接球的表面积是( ) A .4πB .6πC .12πD .24π【解析】正方体可以在正四面体纸盒内任意转动,∴正方体在正四面体的内切球中,∴正方体棱长最大时,正方体的对角线是内切球的直径,点O 为内切球的圆心,连接PO 并延长交底面ABC 与点D , 点D 是底面三角形ABC 的中心,PD ∴⊥底面ABC ,OD ∴为内切球的半径,连接BO ,则BO OP =,在Rt BDP ∆中,236233BD ==2226PD PB BD -在Rt BDO ∆中,2222222()OD BD OB BD OP BD OP OD =+=+=+-,代入数据得62OD =,令正方体棱长为a ,则236a =,解得2a =, ∴正方体棱长的最大值为2,此时正方体的外接球半径:36222r =⨯=. ∴当正方体的棱长取得最大值时,正方体的外接球的表面积是:22644()62S r πππ==⨯=. 故选:B .10.如图,在棱长为1的正四面体ABCD 中,G 为BCD ∆的重心,M 是线段AG 的中点,则三棱锥M BCD -的外接球的表面积为( )A .πB .32πC 6D 6 【解析】连接BG ,四面体ABCD 中,由G 为BCD ∆的重心, 可得AG ⊥面BCD ,M 是线段AG 的中点,3BG ,226AG AB BG =-M 为线段AG 的中点,6MG ∴=设三棱锥M BCD -外接球的半径为R ,则23(R =226)(R +, 6R ∴=, ∴三棱锥M BCD -外接球的表面积为2342R ππ=. 故选:B .11.正四面体(四个面均为正三角形的四面体)的外接球和内切球上各有一个动点P 、Q ,若线段PQ 长463,则这个四面体的棱长为 4 . 【解析】设这个四面体的棱长为a , 则它的外接球与内切球的球心重合,且半径64R a =外,612r a =内, 依题意得66464123a a +=, 4a ∴=.故答案为:4.12.已知正四面体ABCD 的棱长为1,M 为棱CD 的中点,则二面角M AB D --的余弦值为 63;平面MAB 截此正四面体的外接球所得截面的面积为 .【解析】如图,M 为棱CD 的中点,AM CD ∴⊥,BM CD ⊥,又AMBM M =,CD ∴⊥平面AMB ,则AMB ∠为二面角A CD B --的平面角,由对称性,可知二面角C AB D --的平面角等于AMB ∠. 由正四面体ABCD 的棱长为1,可得3AM BM ==则2231()()1622cos()23AMB -∠==平面AMB 平分二面角C AB D --,∴二面角M AB D --的余弦值16cos()2AMB =∠;设BCD ∆的外心为G ,连接AG ,求得233BG BM ==,22361()3AG =-= 设正四面体ABCD 的外接球的半径为R ,则22263()(R R -+=,解得6R =平面MAB 过正四面体ABCD 的外接球的球心,∴平面MAB 截此正四面体的外接球所得截面的面积为263(8ππ⨯=.故答案为:63;38π. 13.已知某正四面体的内切球体积是1,则该正四面体的外接球的体积是 27 . 【解析】正四面体的外接球和内切球的半径之比为3:1,∴正四面体的外接球和内切球的体积比是27:1,正四面体的内切球体积是1,∴该正四面体的外接球的体积是27.故答案为:27.14.一个正四面体的展开图是边长为22的正三角形,则该四面体的外接球的表面积为 3π . 【解析】如图,一个正四面体的展开图是边长为2∴2,设底面三角形的中心为G ,则22162332AG AD ==-=, 正四面体的高2323PG =-. 再设正四面体外接球的球心为O ,连接OA , 则22263(()R R =+,解得3R =. ∴该四面体的外接球的表面积为234(3ππ⨯=. 故答案为:3π.15.如图所示,正四面体ABCD 中,E 是棱AD 的中点,P 是棱AC 上一动点,BP PE +的最小值为14,则该正四面体的外接球的体积是 3π .【解析】将侧面ABC ∆和ACD ∆展成平面图形,如图所示: 设正四面体的棱长为a ,则BP PE +的最小值为2272cos12014422a a BE a a a =+-︒==, 22a ∴=.在棱锥A BCD -中,设底面三角形BCD 的中心为M ,外接球的球心为O ,F 为BC 的中点,则362DF a ==, 22633DM DF ∴==,22433AM AD DM =-=. 设外接球的半径OA OD r ==,则433OM r =-, 在Rt OMD ∆中,由勾股定理可得:2224326()()33r r =-+, 解得:3r =.∴外接球的体积为34433r ππ=.故答案为:43π.。
长方体和正方体知识点汇总

长方体和正方体知识点汇总一、长方体长方体是一种具有六个面,每个面均为长方形的立体图形。
它的特点是长宽高不相等,分别对应着长方体的三条棱。
下面总结一些长方体的基本知识:1. 长方体的表面积公式为:S=2×(ab+bc+ac),其中a、 b、 c 分别为长方体的三个面的长宽高。
2. 长方体的体积公式为:V=abc,其中a、b、c分别为长方体的三个面的长宽高。
3. 长方体的对角线长度公式为:d=√(a²+b²+c²),其中a、b、c 分别为长方体的三个面的长宽高。
4. 长方体的中心对称轴是一条连接长方体两面中心点的直线,它与长方体的三条棱垂直。
5. 长方体的垂直截面是长方形,水平截面是正方形或长方形。
6. 长方体的立体对称轴有3条:一条是连接对角面中心的对称轴,另外两条是互相垂直的,分别连接相对边中心的对称轴。
7. 长方体的顶点个数为8个。
顶点是立方体的八个角。
二、正方体正方体是一种有六个面,每个面均为正方形的立体图形。
它具有的特点是长宽高相等,都是边长,下面总结一些正方体的基本知识:1. 正方体的表面积公式为:S=6a²,其中a为正方体的边长。
2. 正方体的体积公式为:V=a³,其中a为正方体的边长。
3. 正方体的对角线长度公式为:d=√3a,其中a为正方体的边长。
4. 正方体的中心对称轴是一条连接正方体两面中心点的直线,它与正方体的任何一边垂直。
5. 正方体的垂直截面和水平截面都是正方形。
6. 正方体的立体对称轴有4条:一条是连接对角面中心的对称轴,另外三条是互相垂直的,分别连接相对边中心的对称轴。
7. 正方体的顶点个数为8个。
顶点是正方体的八个角。
总结:长方体和正方体相比,长方体的三条棱长度不相等,而正方体的三条棱长度相等。
在实际生活中,我们可以用长方体来描述一些长宽高不相同的物品,例如房屋、柜子等;而正方体通常用来描述一些长宽高相同的物品,例如小盒子等。
北师大版数学七年级上册第一章丰富的图形世界截一个几何体

图形编号
①
②
③
截面形状
图形编号
⑤
⑥
⑦
截面形状
答案 ①圆 ②三角形(等腰三角形) ③圆 ④长方形 ⑤三角形 ⑥梯形 ⑦三角形 ⑧长方形
栏目索引 ④ ⑧
3 截一个几何体
栏目索引
1.用一个平面去截①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆面的 是 ( ) A.①②③ B.①②④ C.②③④ D.①③④
答案 D 几何体共有几个面,截面最多是几边形.四棱柱共六个面,五 棱柱共七个面,圆柱共三个面,它们都截不出八边形,七棱柱共九个面,能 截出八边形.
3 截一个几何体
栏目索引
4.如图1-3-3,观察下列几何体,用平面分别截这些几何体,请在表中填写 各图形截面(阴影部分)的形状.
图1-3-3
3 截一个几何体
答案 B 经过圆锥顶点且垂直于底面的截面是等腰三角形.
3 截一个几何体
栏目索引
2.用一个平面去截一个几何体,截面形 状为三角形,则这个几何体可能为 ①正方体;②圆柱;③圆锥;④正三棱柱.
.(写出所有正确结果的序号)
答案 ①③④
解析 ①截去一角,截面形状为三角形;②用任何平面截圆柱都不能截 出三角形;③沿竖截面截,截面形状为三角形;④用与底面平行的面截,截 面形状为三角形.
3 截一个几何体
栏目索引
图1-3-4①是一个正六面体,把它按图1-3-4②中所示方法切割,可以得 到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是 ()
图1-3-4
3 截一个几何体
栏目索引
答案 C 截面没有过立方体的任何一个顶点,只有C选项符合.故选C.
3 截一个几何体
栏目索引
截面问题专题(有详细答案)

截面问题专题(有详细答案)1.正方体的截面不可能是( )①钝角三角形;②直角三角形;③菱形;④正五边形;⑤正六边形. A .①②⑤ B .①②④C .②③④D .③④⑤2.过正方体外接球球心的截面截正方体所得图形可能是①三角形,②梯形,③五边形,④六边形中的( ).A .①③B .③④C .②④D .以上都不对3.在棱长为6的正方体ABCD A B C D ''''-中,,E F 分别是棱,C D B C ''''的中点,过,,A E F 三点作该正方体的截面,则该截面周长为____________4.已知球O 是棱长为1的正方体ABCD A B C D ''''-的内切球,求平面1ACD 截球O 的截面面积.5.在棱长为2的正方体ABCD A B C D ''''-中,E 是棱C D ''的中点,过,A E 作平行于直线BD 的平面α,则平面α与该正方体ABCD A B C D ''''-各面交线的长度之和为____________6.正方体的棱长为1,平面α与其每条棱所在直线所成角都相等,则平面α截此正方体所得截面面积的最大值为____________7.如图,正四面体P ABC -的体积为V ,底面积为S ,O 是高PH 的中点,过O 的平面α与棱PA 、PB 、PC 分别交于D 、E 、F ,设三棱锥P DEF -的体积为0V ,截面三角形DEF 的面积为0S ,则( )A .08V V ≤,04S S ≤B .08V V ≤,04S S ≥C .08V V ≥,04S S ≤D .08V V ≥,04S S ≥8.已知正四面体ABCD 的表面积为123,E 为棱AB 的中点,球O 为该正四面体的外接球,则过点E 的平面被球O 所截得的截面面积的最小值为______.9.【1989高中数学联赛(第01试)】已知正三棱锥S -ABC 的高SO =3,底面边长为6,过点A 向它所对的侧面SBC 作垂钱,垂足为O',在AO'上取一点P ,使,求经过点P 且平行于底面的截面的面积.10.如图,已知在四面体中,棱两两垂直,作平行于底面的截面,使与底面的距离为1,类似作其他三个截面求四个截面交成的小四面体的体积.11.【2020高中数学联赛A 卷(第01试)】正三棱锥的所有棱长均为1,L ,M ,N 分别为棱的中点,则该正三棱锥的外接球被平面所截的截面面积为.12.【2020高中数学联赛A 卷(第01试)】正三棱锥的所有棱长均为1,L ,M ,N 分别为棱的中点,则该正三棱锥的外接球被平面所截的截面面积为.13.【2005高中数学联赛(第01试)】如图,ABCD -A'B'C'D'为正方体.任作平面与对角线AC'垂直,使得与正方体的每个面都有公共点,记这样得到的截面多边形的面积为S ,周长为l.则( ). A .S 为定值,不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值D .S 与l 均不为定值14.【2020安徽合肥一六八中学高三模拟】球面上有三点,,A B C 组成这个球的一个截面的内接三角形的三个顶点,其中18AB =,24BC =,30AC =,球心到这个截面的距离为球半径的一半,则该球的表面积为A .1200πB .1400πC .1600πD .1800π15.【2020重庆八中高三三模】用一根长为18cm 的铁丝围成正三角形框架,其顶点为,,A B C ,将半径为2cm 的球放置在这个框架上(如图).若M 是球上任意一点,则四面体MABC 体积的最大值为A 333 B 33cm C .333cm D .393cm16.【2020湖北宜昌高三二模】已知正方体1111ABCD A B C D -的棱长为2,点M 为棱1DD 的中点,则平面ACM 截该正方体的内切球所得截面面积为 A .3π B .23π C .πD .43π 17.【2020四川南充高三三模】已知圆锥1SO 的顶点和底面圆周均在球O 的球面上,且该圆锥的高为8,母线12SA =,点B 在SA 上,且3SB BA =,则过点B 的平面被该球O 截得的截面面积的最小值为 A .27π B .36πC .54πD .81π18.【2020福建泉州高三调研】在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为6的正方形,点E 在线段AD 上,且满足2AE ED =,过点E 作直四棱柱1111ABCD A B C D -外接球的截面,所得的截面面积的最大值与最小值之差为19π,则直四棱柱1111ABCD A B C D -外接球的半径为 A 3B .3C .33D .4319.【2020山西师大附中高三质检】设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面,αβ截球O 的两个截面圆的半分别为13,二面角l αβ--的平面角为150︒,则球O 的表面积为 A .112πB .28πC .16πD .4π20.【2020广东惠州高三三模】已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,该四棱锥的五个面所在的平面截球面所得的圆大小相同,若正四棱锥P ABCD -的高为2,则球O 的表面积为 A .8π B .9π C .12π D .16π21.1.【答案】B【解析】正方体的截平面可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;对四边形来讲,可以是等腰梯形、平行四边形、菱形、矩形,但不可能是直角梯形;对五边形来讲,其中必有两条边平行,故不可能是正五边形;对六边形来讲,可以是正六边形.故答案为B2.【答案】D【解析】由对称性知截得的图形只能为四边形或六边形,而四边形的两组对边分别在两组相对的面上,因而,四边形必为平行四边形,但可以截得六边形.故答案为:D3.π4.65.6.47.1.A【分析】AB=,取EF与BC重合时的情况,计算出0S以及0V的值,利用排除法可得出正确选项.设2【详解】如图所示,利用排除法,取EF与BC重合时的情况.不妨设2AB =,延长MD 到N ,使得//PN AM .PO OH =,PN MH ∴=,2AH MH =,33AM MH PN ∴==,则13PD AD =, 由余弦定理得22222331132cos 22232224BD AB AD AB AD π⎛⎫=+-⋅=+-⨯⨯⨯= ⎪⎝⎭,2232DM BD BM =-=,01332222S =⨯⨯=, 又23234S =⨯=042313S S ∴==>, 当平面//DEF 平面ABC 时,04S S =,04S S ∴≤,排除B 、D 选项; 因为13PD AD =,014V V ∴=,此时,0821V V=>, 当平面//DEF 平面ABC 时,08V V =,08V V ∴≥,排除C 选项. 故选:A. 【点睛】本题考查平行线分线段成比例定理、余弦定理、勾股定理、三棱锥的体积计算公式、排除法,考查了空间想象能力、推理能力与计算能力,属于难题. 8.2.3π 【分析】根据题意,根据正四面体的表面积求出棱长和正方体的边长,再利用正方体的体对角线等于外接球的直径,即可求出球的半径R ,当过点E 的截面到球心O 的距离最大距离6d =时,截面圆的面积达最小值,最后利用球的截面的性质求出截面圆的半径,即可求出截面圆的面积最小值. 【详解】解:如图所示,球O 为正四面体ABCD 的外接球,即为正方体的外接球,正四面体ABCD 的表面积为设正四面体ABCD 的棱长为a ,则21422a ⨯⨯⨯=,解得:a =所以正方体的棱长为:(22=设正四面体ABCD 的外接球的半径为R ,则2R ==2R =, E 为棱AB 的中点,过点E 作其外接球的截面,当截面到球心O 的距离最大值时,截面圆的面积达最小值,此时球心O 到截面距离等于正方体棱长的一半,即d =,可得截面圆的半径为:r ===所以截面圆的面积最小值为:223S r πππ===.故答案为:3π.【点睛】本题考查正四面体的外接球截面圆面积的最小值,着重考查正方体、正四面体的性质和球的截面圆的性质等知识,考查空间想象能力和运算能力.9.【答案】【解析】如图,因S-ABC是正三棱锥,所以O是△ABC的重心,联结AO并延长交BC于D,因为D是B C的中点,所以BC⊥平面SAD,而,所以AO′在平面SAD上,从而O′必在DS上,于是,,..而,则.设过点P且平行于底面的截面与SD的交点为O",则.即,,.即所求截面的面积为.10.【答案】【解析】如图,设截面交于一点.类似地定义点.于是,四面体与四面体相似.设相似比为,四面体、四面体的体积分别为.记则解得所以,又,故点到平面的距离则所以,点到平面的距离为从而,点到平面的距离为则故11.【答案】【解析】由条件知平面LMN与平面ABC平行,且点P到平面LMN,ABC的距离之比为1:2.设H为正三棱锥P -ABC的面ABC的中心,PH与平面LMN交于点K,则PH⊥平面ABC,PK⊥平面LMN,故.正三棱锥P-ABC可视为正四面体,设O为其中心(即外接球球心),则O在PH上,且由正四面体的性质知.结合可知OK=OH,即点O到平面LMN,ABC等距.这表明正三棱锥的外接球被平面LMN,ABC所截得的截面圆大小相等.从而所求截面的面积等于ΔABC的外接圆面积,即.12.【答案】【解析】由条件知平面LMN与平面ABC平行,且点P到平面LMN,ABC的距离之比为1:2.设H为正三棱锥P -ABC的面ABC的中心,PH与平面LMN交于点K,则PH⊥平面ABC,PK⊥平面LMN,故.正三棱锥P-ABC可视为正四面体,设O为其中心(即外接球球心),则O在PH上,且由正四面体的性质知.结合可知OK=OH,即点O到平面LMN,ABC等距.这表明正三棱锥的外接球被平面LMN,ABC所截得的截面圆大小相等.从而所求截面的面积等于ΔABC 的外接圆面积,即.13.【答案】B【解析】将正方体切去两个正三棱锥A -A 'BD 与C -D 'B 'C 后,得到一个以平行平面A 'BD 与D 'B 'C 为上、下底面的几何体V ,V 的每个侧面都是等腰直角三角形,截面多边形W 的每一条边分别与V 的底面上的一条边平行,将V 的侧面沿棱AB 剪开,展平在一个平面上,得到一个平行四边形A 'B 'B 1A 1,而多边形W 的周界展开后便成为一条与A 'A 1平行的线段(如图中E 'E 1),显然,故l 为定值.当E '位于A 'B '中点时,多边形W 为正六边形,而当E '移至A '处时,W 为正三角形,易知周长为定值l 的正六边形与正三角形面积分别为与,故S 不为定值. 故选B .14.【答案】A【解析】设所求球的球心为O ,半径为,R AC 中点为1O ,连1,OO OA ,18AB =,24BC =,30AC =,222,AB BC AC AB BC ∴+=∴⊥,1O ∴为过,,A B C 三点截面圆的圆心,1OO ∴⊥平面1,ABC OO AC ∴⊥,在1Rt OO A ∆中,22222211154R AO R OO AO ==+=+,解得2300R =,球O 的表面积为241200R ππ=.故选:A.【名师点睛】本题考查球的表面积,利用球的性质是解题的关键,属于中档题.15.【答案】D【解析】设球的圆心为O ,半径为R ,ABC 内切圆圆心为1O ,由题意知ABC 三边长为6cm , 则ABC 内切圆半径1cos3033r AB cm =⋅⋅︒=,则2211OO R r =-=, 所以四面体MABC 的高max 13h OO R =+=.因为223934ABCS AB cm =⋅=, 所以四面体MABC 体积的最大值3max max 1933ABCV S h cm =⋅=.故选:D.【名师点睛】本题考查了三棱锥体积的求解.本题的难点是求出球心到三角形所在平面的距离.16.【答案】A 【解析】如图所示:设内切球球心为O ,O 到平面ACM 的距离为d ,截面圆的半径为r , 因为内切球的半径等于正方体棱长的一半,所以球的半径为1, 又因为O AMC M AOC V V --=,所以1233AMCAOCd SS ⨯⨯=⨯,又因为()()221122526,221222AMCAOCSS=⨯⨯-==⨯⨯=, 所以12633d ⨯=,所以63d =,所以截面圆的半径22313r d =-=,所以截面圆的面积为2333S ππ⎛⎫=⋅= ⎪ ⎪⎝⎭.故选:A. 【名师点睛】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算.17.【答案】A 【解析】如图所示:设球的球心为O ,半径为R ,则228,,45SM OA R AM SA SM ===-=,所以222OA OM AM =+, 即()(222845RR =-+,解得9R =,取SA 的中点N ,则3BN =, 所以225ON R AN =-=2236OB ON BN =-=设点C 为截面圆周上一点,若截面面积最小,则 OB ⊥截面,此时截面圆半径为 223r BC R OB ==-=所以截面面积的最小值为227r ππ=.故选:A【名师点睛】本题主要考查球的截面面积的求法以及截面的性质,还考查了空间想象和运算求解的能力,属于中档题.18.【答案】C【解析】因为四棱柱1111ABCD A B C D -是直棱柱,且底面是正方形, 所以其外接球的球心位于直四棱柱的中心,记作O , 过点O 向底面ABCD 作垂线,垂足为G ,则112OG AA =, 连接BD ,因为底面ABCD 是边长为6的正方形,所以点G 为BD 的中点, 取AD 中点为F ,连接OF ,OE ,OB ,设12AA a =,则OG a =,所以外接球的半径为2221182R OB OG BD a ⎛⎫==+=+ ⎪⎝⎭, 因为点E 在线段AD 上,且满足2AE ED =,则116EF DF DE AB =-==, 又132FG AB ==,所以29OF a =+, 因为直四棱柱中,AB ⊥侧面11ADD A ,//FG AB ,所以FG ⊥侧面11ADD A , 所以FG AD ⊥,又OG ⊥底面ABCD ,所以OG AD ⊥, 又FG OG G ⋂=,所以OF AD ⊥, 则22210OE OF EF a =+=+;根据球的特征,过点E 作直四棱柱1111ABCD A B C D -外接球的截面, 当截面过球心时,截面圆面积最大,此时截面面积为2S R π=; 当OE ⊥截面时,此时截面圆半径为22R OE -, 所以此时截面圆面积为()()222221S R OER OE ππ=-=-;又截面面积的最大值与最小值之差为19π, 所以()2222119S S R R OEOEππππ-=--=⋅=,因此21019a +=,即29a =,所以2182733R a =+==.故选:C.【名师点睛】本题主要考查求几何体外接球的半径,熟记直四棱柱以及球的结构特征即可,考查空间想象能力,属于常考题型.19.【答案】A【解析】过P 与O 作直线l 的垂面如图所示,设球的半径为r ,,OE QP OF PM ⊥⊥,垂足为,E F ,则有1,3EP PF ==设5,6OPE OPF απα∠=∴∠=-,所以有cos 1sin 33cos 53cos()6r r αααπα⋅=⇒=⋅-, 而22sin cos 1αα+=,所以21cos 28α=,所以228r =,因此球O 的表面积等于:24112r ππ=.故选:A【名师点睛】本题考查了二面角的有关知识,考查了球的表面积公式,考查了空间想象能力.20.【答案】A【解析】如图所示,圆O '是正方形ABCD 和等腰△PAB 的外接圆,设圆O '的半径为r ,则2,2O E AE BE r O P r ''====,所以212PE r ⎛⎫=+ ⎪ ⎪⎝⎭ 所以2222(22)AP AE PE r =+=+设点O 是四棱锥P - ABCD 的外接球的球心,F 为正方形ABCD 的中心,如图,则PF ⊥平面ABCD ,所以在Rt AFP 中有2222(22)4AF AP PF r =-=+-又因为AF 的长度为圆O '的半径r ,所以22(24r r +-=所以221)AF r ===设四棱锥P - ABCD 的外接球的半径为R ,在Rt AFO 中,222OF OA AF =-,所以221)OF R =-, 因为OF PF OP =-,所以22(2)OF R =-所以221)(2)R R -=-解得R =所以四棱锥P - ABCD 的外接球的表面积为248S R ππ==,故选:A【名师点睛】本题主要考查了四棱锥的外接球,球的性质,三角形、正方形外接圆的性质,考查了空间想象力,属于难题. 21.。
正方体的六组线面垂直关系

窑 窑 摇 渊圆园员园 年第 源 期窑高中版冤摇 摇 摇 摇 摇 摇 摇
数学探究
正方体的六组线面垂直关系
猿远源园园园摇 福建省龙岩第一中学摇 胡寅年
摇 摇 正方体是空间图形中特殊且内涵丰富的几何图形 之 一袁 在 正 方 体 中 能 反 映 空 间 基 本 的 线 线 关 系尧线 面 关 系尧面面关系渊 尤其是平行垂直关系冤援 通过对正方体的 截割袁可以得到多种多样的 柱体尧锥体尧台体噎噎援 可以 说袁正方体是 研 究 空 间 线 面 位 置 关 系 的 一 个 重 要 载 体袁 也是展开空间想象的一个重要依托援 那么袁哪些是正方 体丰富的线线尧线面尧面面平行垂直关系钥 哪些方面体 现了正方体与其他几何体之间的内在关系钥 对此袁历年 全国高考试题都作了很好的诠释袁它对于立体几何的复 习也是一个很好的导向援
面角的大小袁求 贼葬灶兹援
窑数学探究窑摇 摇 摇 摇 摇 摇
摇 渊圆园员园 年第 源 期窑高中版冤
缘怨
解摇 渊员冤略
渊圆冤 如图 苑袁郧酝彝月云袁又 月酝彝月悦袁
所以
蚁月郧酝 越 蚁悦云月袁
月酝 越 月郧窑贼葬灶蚁月郧酝 越 月郧窑贼葬灶蚁悦云月
越 月郧窑月悦 越
圆
猿 窑
越 员袁
悦云 猿 圆
因为 粤耘椅月酝袁粤耘 越 月酝袁所以四边形 粤月酝耘 为平行
陌生的情境袁考查正方体线面垂直关系的直接运用援
由图形 员袁圆袁在一个正方体中袁一个表面有四条棱与
之垂直袁正方体的六个表面构成了 圆源 个野 正交线面对冶 曰
而正方体的六个对角面中袁每个对角面又有两条面对角
线与之垂直袁正方体的六个对角面构成了 员圆 个野 正交线
面对冶 袁所以共有 猿远 个野正交线面对冶 援
历年高考真题专题04立体几何

专题04 立体几何【2020年】1.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 51-B. 51-C. 51+D. 51+ 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).2.(2020·新课标Ⅰ)已知A 、B 、C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC , 222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.3.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E。
4.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是()2233【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为2根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.5.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A . 63+ B. 623+C. 123+D. 1223+ 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形, 则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭. 6.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.7.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A. 12π B. 24π C. 36π D. 144π【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.8.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143C. 3D. 6【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 9.(2020·山东卷)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E 3=,111D E B C ⊥, 又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥, 因为球的半径为5,13D E =,所以2211||||||532EP D P D E =-=-=, 所以侧面11B C CB 与球面的交线上的点到E 的距离为2,因为||||2EF EG ==,所以侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2222FG ππ=⨯=. 10.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 11.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【解析】正六棱柱体积为23622=123⨯;圆柱体积为21()222ππ⋅=;所求几何体体积为1232π 12.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.2【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC ,设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()1332222r =⨯++⨯=,解得:22r ,其体积:34233V r ππ==. 【2019年】1.【2019·全国Ⅰ卷】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .2.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .3.【2019·全国Ⅲ卷】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线;B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线;D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .4.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B.5.【2019·浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.6.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.7.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.8.【2019·北京卷】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.9.【2019·天津卷】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 10.【2019·江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【2018年】1.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B2.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33 B .23 C .324D .3【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D -中, 平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理,平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间,且过棱的中点的正六边形,且边长为22,所以其面积为232336424S ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .4.【2018·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 5.【2018·全国Ⅲ卷】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2393ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯⨯=,故选B.6.【2018·全国Ⅱ卷】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5C .5 D .2 【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115cos 2545DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则()()((110,0,0,1,0,0,3,3D A B D ,所以()(111,0,3,3AD DB =-=, 因为1111115cos ,25AD DB AD DB AD DB ⋅===⨯, 所以异面直线1AD 与1DB 所成角的余弦值为55,故选C. 7.【2018·浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.8.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】439.【2018·全国II 卷】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,l 所以22115515,802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos ,42r l ==因此圆锥的侧面积为22ππ402π.2rl l == 【2017年】1.【2017·全国Ⅱ卷】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A 3B 15C 10D 3【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C . 2.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B . 3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .2B .3C .2D .2【解析】几何体是四棱锥P ABCD -,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l =++=,选B . 4.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B. 6.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .7.【2017·浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .8.【2017·全国I 卷】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 154854415V =⨯⨯-=.9.【2017·山东卷】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为.【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆的半径为1,所以2π1π21121242V⨯=⨯⨯+⨯⨯=+.10.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.【解析】设正方体的边长为a,则26183a a=⇒=,其外接球直径为233R a==,故这个球的体积34π3V R==4279ππ382⨯=.11.【2017·江苏卷】如图,在圆柱12O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12O O的体积为1V,球O的体积为2V,则12VV的值是.【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.12.【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,2AB AD ==,当直线AB 与a 成60°角时,60ABD ∠=,故2BD =,又在Rt BDE △中,2,2BE DE =∴=,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知2BF DE ==,ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【2016年】1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+(B )54185+(C )90 (D )81【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π 【解析】由三视图可知,2的半球,体积为31142223V =⨯π⨯=),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C . 7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为232,2,所以,该三棱锥的体积为113322132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,正确的有②③④.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0x <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅,所以30BPD ∠=. 由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△,12sin 302d x =⋅,解得d = 而△BCD的面积111sin )2sin 30(2)222S CD BC BCD x x=⋅∠=⋅=.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积111)332BCD V S d x=⨯=⨯△=.观察上式,易得)2x x x x +≤,当且仅当x x -,即x 时取等号,同时我们可以发现当x x PBCD 的体积最大,为1.211.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 (A)2(B )2(C)3 (D)13【解析】设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.。
专题38 立体几何中的距离、截面、折叠问题(解析版)
结合图1可知, 为 中点,故 ,从而
所以 ,所以二面角 的平面角的余弦值为 .
向量法:以 点为原点,建立空间直角坐标系 如图所示,
则 , , ,所以 ,
设 为平面 的法向量,则 ,即 ,
解得 ,令 ,得 ,由(Ⅰ)知, 为平面 的一个法向量,
所以 ,即二面角 的平面角的余弦值为 .
2、平面外一点P到平面α的距离:如图,已知平面α的法向量为n,A是平面α内的定点,P是平面α外一点,过点P作平面α的垂线l,交平面α于点Q,则n是直线l的方向向量,且点P到平面α的距离PQ= = =
基本题型:
1.(多选)已知正方体ABCD-A1B1C1D1的棱长为1,点E,O分别是A1B1,A1C1的中点,点P在正方体内部且满足 = + + ,则下列说法正确的是()
【解析二】由题意可知,该平面与在正方体的截面为对边平行的六边形,如图所示,则截面面积为
所以当 时,
7.(2017新课标Ⅰ)如图,圆形纸片的圆心为 ,半径为5 cm,该纸片上的等边三角形 的中心为 . 、 、 为圆 上的点, , , 分别是以 , , 为底边的等腰三角形。沿虚线剪开后,分别以 , , 为折痕折起 , , ,使得 、 、 重合,得到三棱锥。当 的边长变化时,所得三棱锥体积(单位: )的最大值为_______。
所以 , , , .
得 , .
设平面 的法向量 ,平面 的法向量 ,
平面 与平面 夹角为 ,则 ,得 ,取 ,
,得 ,取 ,从而 ,
即平面 与平面 夹角的余弦值为 .
9.(2015浙江)如图,已知 , 是 的中点,沿直线 将 翻折成 ,所成二面角 的平面角为 ,则
10.(2012浙江)已知矩形 , , .将 沿矩形的对角线 所在的直线进行翻折,在翻折过程中,
知识点229 截一个几何体(解答题)
12.把一个正方体用刀切去一块,能否还得到正方体?长方体、三棱柱、三棱锥、四棱柱、五棱柱呢?考点:截一个几何体。
专题:应用题。
分析:当截面的角度和方向不同时,圆柱体的截面不相同.解答:解:不能得到正方体,当截面平行正方体一面截取正方形时可以截得长方体,把正方体按面对角线垂直截取正方体可以得到三棱柱,经过正方体三个相邻的顶点截取可以得到三棱锥,经过两个相对面棱上中点截取可以得到四棱柱,经过上下两面棱的中截取可以得到五棱柱.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.13.今有正方形蛋糕,切两刀把蛋糕分成形状相同的4块,请设计三种不同的方法.考点:截一个几何体。
专题:作图题。
分析:可沿正方形的两条对角线切;沿过正方形的对边中点的两条线切;由此推出只要经过正方形的对角线的交点且互相垂直的两条直线均可且成形状相同的4部分.解答:解:点评:用到的知识点为:经过正方形的中心且互相垂直的两条直线把正方形分成形状相同的4块.14.如图是一个三棱柱,把它一刀切去一部分,剩下的部分会是一个什么图形?先动手做做实验,然后得出结论.考点:截一个几何体。
专题:操作型。
分析:沿垂直于轴截面剪去,可得三棱柱;沿经过上底面的一个顶点及下底面相对的顶点的对边的面剪去,可得到三棱锥;沿平行于三棱柱的一个侧面面剪去,可得到的一个四棱柱.解答:解:可以切成三棱柱、三棱锥、四棱柱.点评:用到的知识点为:棱柱的侧面是四边形;棱锥的侧面是三角形;注意根据截面经过的不同位置得到相应的几何体的形状.15.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.如A(1、5、6);则B();C();D();E().考点:截一个几何体。
分析:分别分析其余四种图形的所有的截面情况,再写出答案.解答:解:B三棱锥,截面有可能是三角形,正方形,梯形C正方体,截面有可能是三角形,四边形(矩形,正方形,梯形),五边形,六边形D球体,截面只可能是圆E圆柱体,截面有可能是椭圆,圆,矩形,梯形因此应该写B(1、3、4);C(1、2、3、4);D(5);E(3、5、6).点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.16.附加题:(1)解方程:.(2)按图示切割正方体就可以切割出正六边形(正六边形的各顶点恰是其棱的中点),请你任意画出此正方体的两种平面展开图,并在展开图上画出所有的切割线.考点:截一个几何体;解一元一次方程。
经典高考立体几何知识点和例题(理科学生用)
高考立体几何知识点总结整体知识框架:一 、空间几何体 (一) 空间几何体的类型1 多面体:由若干个平面多边形围成的几何体。
围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。
其中,这条直线称为旋转体的轴。
(二) 几种空间几何体的结构特征 1 、棱柱的结构特征1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2 棱柱的分类棱柱四棱柱平行六面体直平行六面体长方体正四棱柱正方体性质:棱长都相等底面是正方形底面是矩形侧棱垂直于底面底面是平行四边形底面是四边形图1-1 棱柱Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式ch S =直棱柱侧(c 是底周长,h 是高)S 直棱柱表面 = c ·h+ 2S 底 V 棱柱 = S 底 ·h2 、棱锥的结构特征 2.1 棱锥的定义(1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。
2.2 正棱锥的结构特征Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1'2S ch =正棱椎(c 为底周长,'h 为斜高) 体积:13V Sh =棱椎(S 为底面积,h 为高) 正四面体:对于棱长为a 正四面体的问题可将它补成一个边长为a 22的正方体问题。
球的内切、外接、棱切
对角面
长方体的(体)对角线等于球直径
设长方体的长、宽、高分别为a、b、c,则 l a2 b2 c2 2R
求棱长为a的正四面体 外接球的半径R.
将正四面体放到正方体中, 得正方体的棱长为 2 a,
2 且正四面体的外接球 即正方体的外接球, 所以R= 6 a.
4
.正四面体的外接球还可利 用直角三角形勾股定理来求
R= 2 a 4
正四面体的外接球 和棱切球的球心重合。
正方体的内切球
o
O
Байду номын сангаас
2R a
球的直径等于正方体棱长
切点:各个面的中心 球心:正方体的中心 直径:相对两个面中心连线
如果一个长方体有内切球,
那么它一定是 正方体
一个球在长方体内部, 最多可以和该长方体的5个面相切
求棱长为a的正四面体
? 内切球的半径r.
P
.正四面体的内切 球还可利用截面三 角形来求 P
R A
R
O
A
C
M D
P
B
•O
A
D M
B
E
O
K
C
H D
A
B
13 O• F
O1 E 2
正方体的棱切球 球与正方体的棱相切
2R 2 a
球的直径等于正方体 一个面上的对角线长
切点:各棱的中点。 球心:正方体的中心。 直径: “对棱”中点连线
求棱长为a的正四面体 棱切球的半径R.
正方体的外接球的直径 =“体”对角
线
正方体的棱切球的直径 =“面”对角
线球体刚刚好卡在正方体框架内,
球会接触到每一条正方体的棱。 任取一条棱的中点,和其对棱的中点, 发现它们接触到球体最胖的位置。