医学信号处理实验报告——两路信号关系衡量

电子科技大学生命科学与技术学院标准实验报告

(实验)课程名称生物医学信号处理

2018-2019-第2学期

电子科技大学教务处制表

一、实验室名称:品学楼B302

二、实验名称:两路信号间的关系衡量

三、实验学时:2

四、实验原理:

1.信噪比(signal-to-noise ratio):是描述信号中有效成分与噪声成分的比例关系参数,单位为dB。假设不含噪声的信号为,外加噪声

以后的信号为,则信号的信噪比定义为

其中代表信号的方差

在给定信噪比的情形下,要求解系数,则其计算公式为

2.皮尔逊相关系数

在统计学中,皮尔逊相关系数(Pearson correlation coefficient),通常用R或表示,是用来度量两个变量X和Y之间的相互关系(线性相关)的,取值范围在[-1,+1] 之间。它在学术研究中被广泛应用来度量两个变量线性相关性的强弱。在作为衡量线性回归效果时,常使用

对于随机变量X和Y,皮尔森相关系数的求解公式为:

其中代表X与Y的协方差,和分别代表X 和Y的方差。当相关性为1 时,X与Y的关系可以表示为,其中a>0;当相关性为-1 时,X与Y的关系可以表示为,其中a<0。如果X与Y相互独立,那么相关性为0。两个变量为正相关,则皮尔逊相关系数在0与1之间,两个变量为负相关,则皮尔逊相关系数在-1与0之间。

3.自相关检测含噪信号周期:

若为周期性的随机信号,为随机噪声信号,为实际接收到的信号,则。

因此

因此接收到的信号自相关可以分解为四个与发送信号和噪声有关的自相关函数,其中,的自相关函数只在零点处有最大值,其余点可大致认为0。而由于信号和噪声的独立性,

而噪声信号的期望值为0,所以在零点之外,=0,因而,由于是周期信号

所以有

因此自相关函数的周期与原始信号一致。

4.延时相关:

5.频域相干

设有两个信号、,它们的频域相干函数(幅值平方相干函数)定义如下

式中, 表示两个信号之间的互功率谱,即这两个信号的循环互相关函数的离散傅里叶变换, 为各自的功率谱,这里的 代表频率, 的取值范围为0~1之间。当它等于1时,说明两个信号是完全相干的,即一个信号可以完全由另一个信号决定;当它等于0时,说明这两个信号完全不相干,即这两个信号完全独立;当它在0~1之间时,说明这两个信号存在部分相干性,即非线性关系或有外界的干扰存在。

6.线性相关

设有离散信号 、 ,则其线性相关函数为

[]0

0(0)(1)(1)0(0)

(1)(2)

0(0)(1)

(1)(1)

(2)

00(1)

(0)

(2)(1)0

0y y y N y y y x x x N y y y N y y N y N -??

???

??

?

=-??-????--??

7.Mscohere 函数

1.使用mscohere 函数的时候为了使图像更平滑,可以使用更短的窗(其实也代表着分段周期图法分段长度更短),主瓣更宽窗函数。

2.Noverlap 的作用

因为加窗丢失了两端的信息,所以分段时相邻段之间要有重复的

部分,一般为1/2或1/3的窗长。效果如下图:

五、实验目的:

理解相关系数,序列相关,频率相干的方法,应用:

1.了解噪声对信号检测的影响。

2.了解利用延时相关估计距离的方法。

3.利用频率相干分析波形频率成分。

4.了解线性相关的计算。

六、实验内容:

上机题1:成对相关

1、在波形产生函数中选sinc波形发生器(s)和randn白噪声发生器(n),叠加成一个信号(x=s+weight*n),请改变白噪声信号的加权值,使得信噪比约为10,5,0,-5,-10 dB,求得5个weight 值。画出s和x信号(一张图),观察。

2、用s信号与五个x信号,求他们的成对相关,corr或用corrcoef 函数,画出相关系数与信噪比的关系图,文字描述图说明了什么。

3、用s信号与x=weight*n-s做成对相关,画出相关系数与信噪比的关系图,观察s与x信号,文字描述图说明了什么。

4、结合上述结果,请问相关系数为正和负分别代表了什么含义?相关系数值大小代表了什么含义?

上机题2:相关——信号的检测

1、任意产生一个白噪信号(w) 和一个双频率的信号(s) (for example, s = 2sin(w1n)+4sin(w2n))

2、信号s的周期是多少?仿真 s, w, and x, (x=s+a*w,a=1) , 计算三个信号的线性相关,并画出时间信号和线性相关结果。

3、你能否从线性相关函数中检测出有用信号的周期?报导周期值。

4、改变a的大小,报导x与s的相关系数的变化情况,也即改变信噪比(信号能量除以噪声能量),相似程度变化情况图。

上机题3:延时相关——估计距离的一种方法

两个拾音器接收到的声波信号,分别来自一个独立声源的两条路径:直达声和反射声。声传播的速度为,衰减系数参数为,系统的两个输出分别描述为:

X(t) = p(t)+ A1*p(t -)

y(t) = A*p(t - )+ A2*p(t - )

预测:R xy(τ)在 、 、、出现极大值如下图:

上机题4:频域相干——脑电信号的频域相干

1、学习使用mscohere函数,估计两个信号频域的关系。

2、任意产生两个信号,画出两个信号分别的功率谱,及他们的频域相干图,观察相干大小和两个信号功率谱之间的关系,请描述。

3、用睁眼和闭眼脑电信号(数据文件eegclose.mat 和eegopen.mat ,Fs=250 Hz,幅度单位:微伏),用自己信号(学号

*班号)与其他任意一路信号做频域相干,观察睁眼和闭眼的频域相干的差异(4个频段,列表方式),并描述。

4、计算自己信号的闭眼和睁眼信号的频域相干(4个频段,列表方式),描述结果。

5、总结睁眼闭眼脑电信号的频域关系?

上机题5:编制函数实现两个随机序列的线性相关与MATLAB 自带函数xcorr 结果进行比较。

1

()()()

N xy n r m x n y n m -==+∑

七、实验器材(设备、元器件): matlab2014b

八、实验步骤:构思,写代码,写报告,修改代码,完成报告。 九、实验数据及结果分析: (一)程序: t=linspace(-5,5,1000); s = sinc(t);

n = randn(1,length(t)); snr = linspace(10,-10,5); snr2 = linspace(50,-50,101); snr_len = length(snr); snr_len2 = length(snr2); snrt = zeros(1,snr_len); weight = zeros(1,snr_len);

x = zeros(1000,snr_len);

y = zeros(1000,snr_len2);

corr_sx = zeros(snr_len2,1);

for i = 1:length(snr)

weight(i) = sqrt(var(s)/(var(n)*10^(snr(i)/10)));

x(:,i) = s + weight(i)*n ;

figure(1)

subplot(5,1,i)

plot(x(:,i)); hold on;plot(s);hold on;

title(['信噪比为',num2str(snr(i))])

snrt(i) = 10*log10(var(s)/var(n)/(weight(i)^2));

corr_sx(i) = corr(s',x(:,i));

hold on

end

weight

for i = 1:length(snr2)

weight(i) = sqrt(var(s)/(var(n)*10^(snr2(i)/10)));

y(:,i) = weight(i)*n-s ;

snrt(i) = 10*log10(var(s)/var(n)/(weight(i)^2));

corr_sx(i) = corr(s',y(:,i));

hold on

end

figure(2)

plot(snr2,corr_sx)

xlabel('信噪比/dB')

ylabel('相关系数')

结果:

Weight:0.0906 0.1610 0.2864 0.5093 0.9056 (对应10 ,5 ,0 ,-5 ,-10)

图1 不同信噪比的波形

图2 相关系数随信噪比变化图1

图3 相关系数随信噪比变化图2 (二)

程序:

clear all

clc

t=linspace(-5,5,1000);

s = 2*sin(2*pi*t)+4*sin(pi*t);

T = 2*pi/pi*100;

n = randn(1,length(t));

a = linspace(0,30,31);

a_len = length(a);

a_t = zeros(1,a_len);

weight = zeros(1,a_len);

x = zeros(1000,a_len);

corr_sx = zeros(a_len,1);

xcorr_x = zeros(2*1000-1,a_len);

for i = 1:length(a)

x(:,i) = s + a(i)*n ;

corr_sx(i) = corr(s',x(:,i));

if a(i)==1

figure(1)

plot(x(:,i),'y');

hold on;

plot(s,'r');

hold on;

figure(2)

xcorr_x(:,i) = xcorr(x(:,i),s,'biased')';

[pks,locs]=findpeaks(xcorr_x(:,i));

lo_cs = find(pks>0.1);

locs = locs(lo_cs);

T_c = mean(diff(locs));

plot( xcorr_x(:,i));

end

end

figure(3)

plot(0:30,corr_sx,'o');

disp('实际周期为:');disp(T);

disp('相关测出周期为:');disp(T_c);

结果:

实际周期为:200 相关测出周期为:199.8750

图4 双频信号与含有噪声的双频信号

图5 含有/不含有噪声的信号线性相关结果(有偏)

图6 相关系数与系数a关系图

(三)

程序:

clear all;

N=1000; %长度

Fs=50; %采样频率

n=0:N-1; t=n/Fs; %时间序列

A=0.4;A1=0.5;A2=0.6; %衰减系数

c0=340; %c0

d1=620

d2=500 %请自己给两个距离的参数,不要太小即可t1=d1/c0;

t2=(d1+2*d2)/c0;

tc=2*(d1+d2)/c0;

Lag=500; %最大延迟样点数

pt=sinc(2*pi*t); %原信号

xt = pt + A1*sinc(2*pi*(t-tc)) ;

figure(1)

plot((1:N)/Fs,xt);

yt = A*sinc(2*pi*(t-t1))+ A2*sinc(2*pi*(t-t2));

figure(2)

plot((1:N)/Fs,yt);

[Rpp,lags] = xcorr(pt,'biased'); %p(t)自相关[Rxx,lagx] = xcorr(xt,'biased'); %x(t)自相关[Ryy,lagt] = xcorr(yt,'biased'); %y(t)自相关[Rxy,lagy] = xcorr(xt,yt,'biased'); %x(t)与y(t)互相关

rts=lags/Fs;rtx=lagx/Fs;rtt=lagt/Fs;rty=lagy/Fs;

figure(3)

[pks,locs]=findpeaks(Rxy);

lo_cs = find(pks>1E-3);

locs = (locs(lo_cs)-999)/Fs;

pks = pks(lo_cs);

plot(locs,pks,'o');

hold on;

plot(rty,Rxy);

figure(4)

subplot(2,2,1)

plot(rts,Rpp)

title('%p(t)自相关')

xlabel('时间/s')

subplot(2,2,2)

plot(rtx,Rxx)

title('x(t)自相关')

xlabel('时间/s')

subplot(2,2,3)

plot(rtt,Ryy)

title('%y(t)自相关')

xlabel('时间/s')

subplot(2,2,4)

plot(rty,Rxy)

title('%x(t)与y(t)互相关')

xlabel('时间/s')

d1_c = (locs(3) * c0 - locs(2) * c0)/2

d2_c = ((locs(4) * c0 - d1_c)/2 + (-locs(1) * c0 - d1_c)/2)/2 结果:

图7 三个信号自相关及x,y互相关图

表1 d1,d2测量情况表

(四)

程序:

clear all ;

close=load('eegclose');

open=load('eegopen');

close1 = close.eegclose(:,8*2);

close2 = close.eegclose(:,9*2);

open1 = open.eegopen(:,8*2);

open2 = open.eegopen(:,9*2);

fs = 1000;

t = -5:1/fs:5;

s1 = sin(50*2*pi*t) + 2*sin(250*2*pi*t) + randn(1,length(t)); s2 = sin(150*2*pi*t) + 4*sin(250*2*pi*t) + randn(1,length(t)); figure(1)

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名:

实验一 基于MATLAB 的语音信号时域特征分析(2学时) 1) 短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2) ,legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 024 N=3200.5 1 1.5 2 2.5 3x 10 4 05 N=6400.5 1 1.5 2 2.5 3x 10 4 0510 N=12800.5 1 1.5 2 2.5 3x 10 4 01020 N=2560 0.5 1 1.5 2 2.5 3x 10 4 02040 N=512 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32;

for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2), legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 012 N=3200.5 1 1.5 2 2.5 3x 10 4 024 N=6400.5 1 1.5 2 2.5 3x 10 4 024 N=12800.5 1 1.5 2 2.5 3x 10 4 0510 N=2560 0.5 1 1.5 2 2.5 3x 10 4 01020 N=512 2) 短时平均过零率 a=wavread('mike.wav'); a=a(:,1); n=length(a); N=320; subplot(3,1,1),plot(a); h=linspace(1,1,N); En=conv(h,a.*a); %求卷积得其短时能量函数En subplot(3,1,2),plot(En); for i=1:n-1 if a(i)>=0 b(i)= 1;

信号处理实验指导

目录 绪论 (1) 1离散时间信号和系统分析 1.1 离散时间信号产生与运算 (2) 1.2 离散时间系统的时域分析 (9) 1.3 离散时间系统的频域分析 (13) 1.4 离散时间系统频响的零极点确定 (14) 2快速傅立叶变换的应用 2.1 FFT的计算 (17) 2.2 利用FFT进行谱分析 (18) 2.3利用FFT实现快速卷积 (19) 3数字滤波器的设计 3.1数字滤波器的结构 (23) 3.2无限冲激响应(IIR)数字滤波器的设计 (25) 3.3有限冲激响应(FIR)数字滤波器的设计 (27) 4综合应用举例 4.1 语音信号处理 (32) 4.2 电话拨号音的合成与识别 (32)

绪论 数字信号处理主要研究如何对信号进行分析、变换、综合、估计与识别等加工处理的基本理论和方法。随着计算机技术和大规模集成电路技术的发展,数字信号处理以其方便、灵活等特点引起人们越来越多的重视。在40多年的发展过程中,这门学科基本形成了一套完整的理论体系,其中也包括各种快速、优良的算法,而且数字信号处理的理论和技术也在不断、快速地丰富和完善,新理论和新技术也层出不穷。学习这门课程的过程中,容易使人感到数字信号处理的概念抽象难懂,其中的分析方法与基本理论不容易很好地理解与掌握。因此,如何理解与掌握课程中的基本概念、基本原理、基本分析方法以及综合应用所学知识解决实际问题的能力,是本课程学习中所要解决的关键问题。 Matlab是一种面向科学和工程的高级语言,现已成为国际上公认的优秀的科技界应用软件,在世界范围内广为流行和使用。在欧美高等院校里,Matlab已成为大专院校学生、教师的必要基本技能,广泛应用于科学研究、工程计算、教学等。上世纪90年代末和本世纪初Matlab在我国也被越来越多地应用于科研和教学工作中。Matlab是一套功能强大的工程计算及数据处理软件,在工业,电子,医疗和建筑等众多领域均被广泛运用。它是一种面向对象的,交互式程序设计语言,其结构完整又具有优良的可移植性。它在矩阵运算,数字信号处理方面有强大的功能。另外,Matlab提供了方便的绘图功能,便于用户直观地输出处理结果。 本文通过Matlab系列仿真,旨在掌握基本的数字信号处理的理论和方法,提高综合运用所学知识,提高Matlab计算机编程的能力。进一步加强独立分析问题、解决问题的能力、综合设计及创新能力的培养,同时注意培养实事求是、严肃认真的科学作风和良好的实验习惯。

医学信号处理作业

1. 设)(n x 和)(n y 是有限长的序列,]1.0,1,1.0,1[)(-=↑n x ,]1,1.0,1,1.0[)(-=↑ n y ,箭头所指位置表示n =0的序列值,箭头右边依次是n =1、2、3 ┉,箭头左边依次是n =- 1、- 2、-3 ┉。求这两个序列的线性相关函数。(分布使用直接计算法和表格法求解) 2. 试采用傅里叶变换对一段医学信号进行处理。 要求:有原信号波形、源代码和处理结果。 肌电原始信号: 做傅里叶变换: N=10000; M=1; y1=fft(x1,N); subplot(4,1,1) ; plot(f(1:N/2),y1(1:N/2)); axis([0 500 0 20]); grid on;

3.试采用频谱分析对一段医学信号进行处理。 要求:有原信号波形、源代码和处理结果。 肌电原始信号: 做频谱分析: clear; close all; %fft 频率分析 a=load('EMG.txt'); y=fft(a,10000); %做10000点福利叶变换fs=1000; N=length(y); mag=abs(y); f=(0:N-1)/N*fs; figure; plot(f,mag);%做幅频谱 xlabel('频率'); ylabel('幅值'); title('肌电幅频 N=10000'); figure; plot(f,angle(y));% 做相频谱 xlabel('频率'); ylabel('相位'); title('肌电相频 N=10000'); grid on;

频率幅值 频率相位肌电相频 N=10000 做功率谱分析: clear; close all; a=load('EMG.txt'); y=fft(a,10000); %做10000点傅里叶叶变换 fs=1000; N=length(y); mag=abs(y); f=(0:N-1)/N*fs; power1=(mag.^2)/10000;%周期图法求功率谱 figure; plot(f,power1); xlabel('频谱'); ylabel('功率谱'); title('肌电信号功率谱'); grid on;

数字信号处理-实验报告

学生实验报告 (理工类) 课程名称:数字信号处理专业班级:通信(4)班学生学号:学生姓名: 所属院部:网络与通信工程学院指导教师: 20 16 ——20 17 学年第一学期 金陵科技学院教务处制

实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求 实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:MATLAB语言工作环境和基本操作实验学时: 同组学生姓名:实验地点:工科楼A205 实验日期:实验成绩: 批改教师:批改时间: 一、实验目的和要求 目的: 1.初步了解MATLAB开发环境和常用菜单的使用方法; 2.熟悉MATLAB常用窗口,包括命令窗口、历史窗口、当前工作窗口、工作空间浏览器窗口、数组编辑器窗口和M文件编辑/调试窗口等; 3.了解MATLAB的命令格式; 4.熟悉MATLAB的帮助系统。 要求: 1. 简述实验原理及目的。 2. 记录调试运行情况及所遇问题的解决方法。 3. 简要回答思考题。 二、实验仪器和设备 微型计算机、Matlab6.5以上版本的编程环境。 三、实验过程 命令窗口(Command Window): (1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。 (2) 在提示符后输入运算指令和函数调用等命令(不带“;”),MATLAB将迅速显示出结果并 再次进入准备工作状态。 (3) 若命令后带有“;”,MATLAB执行命令后不显示结果。 (4) 在准备工作状态下,如果按上下键,MATLAB会按顺序依次显示以前输入的命令,若要执 行它,则直接回车即可。 工作空间(Workspace): (1) 显示计算机内存中现有变量的名称、类型、结构及其占用子节数等。 (2) 如果直接双击某变量,则弹出Array Editor窗口供用户查看及修改变量内容。 (3) 该窗口上有工具条支持用户将某变量存储到文件中或者从文件中载入某变量。 命令历史记录(Command History): (1) 保存并显示用户在命令窗口中输入过的命令,以及每次启动MATLAB的时间等信息 (2) 若双击某条命令记录,则MATLAB会再次执行该命令。 当前路径窗口(Current Directory):

数字信号处理实验五

实验五:FIR数字滤波器设计与软件实现 信息学院 10电本2班王楚炘 2010304224 10.5.1 实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示; 图10.5.1 具有加性噪声的信号x(t)及其频谱如图(3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,

调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:MATLAB函数fir1和fftfilt的功能及其调用格式请查阅本书 第7章和第?章; 采样频率Fs=1000Hz,采样周期T=1/Fs; 根据图10.6.1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止频率,通带最大衰为0.1dB,阻带截至频率,阻带最小衰为60dB。]实验程序框图如图10.5.2所示,供读者参考。 Fs=1000,T=1/Fs xt=xtg 产生信号xt, 并显示xt及其频谱 用窗函数法或等波纹最佳逼近法 设计FIR滤波器hn 对信号xt滤波:yt=fftfilt(hn,xt) 1、计算并绘图显示滤波器损耗函数 2、绘图显示滤波器输出信号yt End 图10.5.2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. 答:用窗函数法设计线性相位低通滤波器的设计步骤: a.根据对阻带衰减及过渡带的指标要求,选择窗函数的类型,并估计窗口的长度N; b.构造希望逼近的频率响应函数; c.计算h d(n); d.加窗得到设计结果h(n)=h d(n)w(n)。 (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为和,阻带上、下截止频率为和,试求理想带通滤波器的截止频率。 答:希望逼近的理想带通滤波器的截止频率分别为:

视频信号处理实验报告

中南大学 实验报告(实验一) 实验名称 JM代码编译与编解码参数配置 课程名称视频信号处理 姓名:杨慧成绩:__________________ 班级:电子信息工程1301班学号: 0903130117 日期: 2016.6.10 地点:综合实验楼 备注:

1.实验目的 1)掌握常用的编解码器参数及其用法,实现测试序列的编解码 2)初步了解H.264视频编解码的基本原理、熟开发工具的使用 3)学会使用相关的开发工具修改、调试参考软件,掌握使用相应软件实现视频编解码的经验与技巧,锻炼提高分析问题和解决问题的能力 4)调试、编译好相应的实验程序,正确配置测试参数,能预计可能出现的结果2.实验环境(软件、硬件及条件) Windows 7 3.实验方法 1)JM工作目录与文件设置 ①下载并解压JM源代码。 ②在源代码根目录下的bin文件夹中新建backup文件夹,将bin文件夹中所有文件移入该文件夹做备份。 ③在源代码根目录下新建encodtest文件夹,作为编码使用。将编码过程所需要的文件,例如:编码配置文件(encoder_baseline.cfg)、待编码视频序列文件(foreman_part_qcif.yuv,对应为编码配置文件中InputFile参数的值)复制到该文件夹中。 ④在源代码根目录下新建decodtest文件夹,作为解码使用。将解码过程所需要的文件,例如:解码配置文件(decoder.cfg)复制到该文件夹中。 ⑤检查实验用机安装的MS Visual C++版本,根据表3,本实验打开jm_vc10.sln 解决方案。

2)配置、编译、测试编码项目——lencod ①选中lencod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\encodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“-d encoder_baseline.cfg”,然后确定修改。 ②选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ③打开主菜单“生成--批生成”,勾选所有的lencod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序lencod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的encodtest文件夹中生成几个新文件,其中test.264(对应编码配置文件中OutputFile参数的值)即为压缩码流文件。 3)配置、编译、测试解码项目--ldecod ①选中ldecod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\decodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“ decoder.cfg”,然后确定修改。 ②将编码生成的压缩码流文件test.24复制到decodtest文件夹中。 ③选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ④打开主菜单“生成--批生成”,勾选所有的ldecod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序ldecod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的decodtest文件夹中生成几个新文件,其中test_dec.yuv(对应解码配置文

数字信号处理实验指导手册

数字信号处理实验指导手册 西安文理学院 机械电子工程系

目录 实验一离散时间信号 (2) 实验二时域采样定理 (7) 实验三离散时间系统 (10) 实验四线性卷积与圆周卷积 (13) 实验五用FFT作谱分析 (16) 实验六用双线性变换法设计IIR数字滤波器 (18) 实验七 FIR滤波器设计 (20)

实验一 离散时间信号 【实验目的】 用MATLAB 实现离散时间信号的表示和运算,掌握MATLAB 的基本命令和编程方法,为后续实验打基础。 【实验原理】 在数字信号处理中,所有的信号都是离散时间信号,因此应首先解决在MATLAB 中如何表示离散信号。 设一模拟信号经A/D 变换后,得到序列信号 }),1(),0(),1(,{)}({)( x x x n x n x -== 由于MATLAB 对下标的约定为从1开始递增,因此要表示)(n x ,一般应采用两个矢量,如: ]5,4,3,2,1,0,1,2,3[---=n ]1,2,5,4,0,2,3,1,1[-=y 这表示了一个含9个采样点的矢量: )}5(,),1(),2(),3({)(x x x x n y ---= 【实验内容】 熟悉下面序列(信号)的产生方法及相关运算 1、 单位采样序列 2、 单位阶跃序列 3、 信号翻转 4、 信号相加 5、 信号折叠 6、 信号移位 【参考程序】 单位采样序列 1、impluse1.m (图1-1) n=10; x=zeros(1,n); x(1)=1;

plot(x,'*'); 2、 impluse2.m (图1-2) n=-5:5; x=[n==0]; stem(x,'*'); 3、impluse3.m (图1-3) n=1:10; n0=3; x=[(n-n0)==1]; plot(x,'*'); 单位阶跃序列 1、steps1.m (图1-4) n=10; x=ones(1,n); plot(x,'*'); 2、steps2.m (图1-5) n=10; x=ones(1,n); x(1)=0; x(2)=0; 图1-1 单位采样序列1 图1-2 单位采样序列2 图1-3 单位采样序列3

医学信息系统

第1章医学信息系统概论 1.我国卫生信息化建设存在那些问题? 2.未来医药学专业大学生的IT知识结构中应包含哪些方面?3.信息处理包含哪些内容 4.医学信息系统的特点、作用和分类? 5.医院信息系统的体系结构和功能要求是什么? 6. 怎样划分医院信息系统处理信息的层次? 第2章医院信息系统 1、医院信息系统的定义是什么? 2、根据数据流量、流向及处理过程,说明医院信息系统结构。 3、简述医院信息系统的系统构成。 4、临床诊疗部分包括哪些内容? 5、药品管理部分包括哪些功能? 6、费用管理包括哪些系统? 7、综合管理和统计分析各有哪些分支? 8、简述HIS的开发过程。 9、HIS开发模式有哪几种?各有什么特点? 10、HIS开发的主要困难是什么? 11、说明远程医疗的系统结构。 第3章电子病历与病历信息标准化

1.什么是病历?什么是电子病历? 2.电子病历的特点有哪些? 3.电子病历的作用体现在哪些方面? 4.电子病历的组成元素有哪些?这些元素是如何分类的? 5.什么是医生工作站?医生工作站有哪些功能? 6.电子病历使用中应注意的事项有哪些? 7.如何实现电子病历的安全性? 8.国际疾病分类—ICD的分类原理与方法是什么? 第4章典型HIS系统需求分析 1.观访问您家附近的一所医院,参照本书图4-2某医院组织结构图,画出这家医院的组织结构图。 2.某病人在看过门诊后医生告诉他需要住院治疗,请读者设计一个病人从门诊到住院的系统工作流程。 第5章医院信息系统总体设计 1、医院信息系统与一般信息系统在系统的总体结构上有何异同? 2、描述医院信息系统设计的一般原则。 第6章医院信息系统开发 1.VB工程的文件组成包含有哪些类型? 2.VB访问数据库主要有哪些方法?

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

信号检测论有无法实验报告剖析

------------------------------------------------------------------------------- 实验报告信息栏 系别心理系年级 13级2班姓名魏晓芹同组成员杨思琪、张彤、韩永超 实验日期 2016年4月学号 120105510215 教师评定 ------------------------------------------------------------------------------- 信号检测论有无法实验报告 摘要本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC 曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。结果显示:(1)被试在先定概率为0.2、0.5、0.8的条件下,击中率分别为0.8、0.92、0.8625,虚报率分别为0.5125、0.56、0.75,辨别力d′分别为0.592、1.254、0.406,判定标准β分别为0.70、0.38、0.71。 关键词信号检测论;有无法;先定概率;辨别力d′;判定标准β 1引言 传统心理物理学对阈限的理解是有限的,不能将个体客观的感受性和主观的动机、反应偏好等加以区分,从而使研究者渐渐陷入到了由阈限概念本身所引发的僵局之中。而在1954年,坦纳和斯韦茨等人首次应用的信号检测论,正好解决了这个问题。 信号检测论的研究对象是信息传播系统中信号的接收问题。在心理学中,它是借助于数学的形式描述“接收者”在某一观察时间内将掺有噪音的信号从噪音中辨别出来。 信号检测论应用于心理学中的基本原理是:将人的感官、中枢分析综合过程看作是一个信息处理系统,应用信号检测论中的一些概念、原理对它进行分析。信号检测论在心理学中具体应用时,常把刺激变量当作信号,把对刺激变量起干扰作用的因素当作噪音,这样就可以把人接收外界刺激时的分辨问题等效于一个在噪音中检测信号的问题,从而便可以应用信号检测论来处理心理学中的实验结果。 信号检测论的理论基础是统计决策。信号检测论本身就是一个以统计判定为根据的理论。它的基本原理是:根据某一观察到的事件,从两个可选择的方面选

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

信号处理实验报告、

第一题 如何用计算机模拟一个随机事件,并估计随机事件发生的概率以计算圆周率π。 解: (一)蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看以这两个实数为横纵坐标的点是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和外切正方形面积之比为π:4),当随机点取得越多时,其结果越接近于圆周率。 代码: N=100000000; x=rand(N,1); y=rand(N,1); count=0; for i=1:N if (x(i)^2+y(i)^2<=1) count=count+1; end end PI=vpa(4*count/N,10) PI = 3.1420384

蒙特卡洛法实验结果与试验次数相关,试验次数增加,结果更接近理论值 (二)18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为l (l

matlab数字信号处理实验指导

电工电子实验中心实验指导书 数字信号处理 实验教程 二○○九年三月

高等学校电工电子实验系列 数字信号处理实验教程 主编石海霞周玉荣 攀枝花学院电气信息工程学院 电工电子实验中心

内容简介 数字信号处理是一门理论与实践紧密联系的课程,适当的上机实验有助于深入理解和巩固验证基本理论知识,了解并体会数字信号处理的CAD手段和方法,锻炼初学者用计算机和MATLAB语言及其工具箱函数解决数字信号处理算法的仿真和滤波器设计问题的能力。 本实验指导书结合数字信号处理的基本理论和基本内容设计了八个上机实验,每个实验对应一个主题内容,包括常见离散信号的MATLAB产生和图形显示、离散时间系统的时域分析、离散时间信号的DTFT、离散时间信号的Z变换、离散傅立叶变换DFT、快速傅立叶变换FFT及其应用、基于MATLAB的IIR和FIR数字滤波器设计等。此外,在附录中,还简单介绍了MATLAB的基本用法。每个实验中,均给出了实验方法和步骤,还有部分的MATLAB程序,通过实验可以使学生掌握数字信号处理的基本原理和方法。

目录 绪论 (1) 实验一常见离散信号的MATLAB产生和图形显示 (2) 实验二离散时间系统的时域分析 (6) 实验三离散时间信号的DTFT (9) 实验四离散时间信号的Z变换 (14) 实验五离散傅立叶变换DFT (18) 实验六快速傅立叶变换FFT及其应用 (24) 实验七基于MATLAB的IIR数字滤波器设计 (30) 实验八基于MATLAB的FIR数字滤波器设计 (33) 附录 (37) 参考文献 (40)

绪论 绪论 随着电子技术迅速地向数字化发展,《数字信号处理》越来越成为广大理工科,特别是IT领域的学生和技术人员的必修内容。 数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。数字信号处理的理论和技术一出现就受到人们的极大关注,发展非常迅速。而且随着各种电子技术及计算机技术的飞速发展,数字信号处理的理论和技术还在不断丰富和完善,新的理论和技术层出不穷。目前数字信号处理已广泛地应用在语音、雷达、声纳、地震、图象、通信、控制、生物医学、遥感遥测、地质勘探、航空航天、故障检测、自动化仪表等领域。 数字信号处理是一门理论和实践、原理和应用结合紧密的课程,由于信号处理涉及大量的运算,可以说离开了计算机及相应的软件,就不可能解决任何稍微复杂的实际应用问题。Matlab是1984年美国Math Works公司的产品,MATLAB 语言具备高效、可视化及推理能力强等特点,它的推出得到了各个领域专家学者的广泛关注,其强大的扩展功能为各个领域的应用提供了基础,是目前工程界流行最广的科学计算语言。早在20世纪90年代中期,MATLAB就己成为国际公认的信号处理的标准软件和开发平台。从1996年后,美国新出版的信号处理教材就没有一本是不用MATLAB的。 本实验指导书结合数字信号处理的基本理论和基本内容,用科学计算语言MATLAB实现数字信号处理的方法和实践,通过实验用所学理论来分析解释程序的运行结果,进一步验证、理解和巩固学到的理论知识,从而达到掌握数字信号处理的基本原理和方法的目的。

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

数字信号处理实验报告

实验一:信号的表示 1.实现单位采样序列、单位阶跃序列、矩形序列程序及绘图1.1代码部分 subplot(3,1,1); n1=-5:10; y1=[zeros(1,5),1,zeros(1,10)]; stem(n1,y1) axis([-5,10,0,2]); title(' 单位采样序列 ') subplot(3,1,2); n2=-5:10; y2=[zeros(1,5),ones(1,5),zeros(1 ,6)]; stem(n2,y2) axis([-5,10,0,2]) title(' 矩形序列 ') subplot(3,1,3); n3=-5:10; y3=[zeros(1,5),ones(1,11)]; stem(n3,y3,'r') axis([-5,10,0,2]) title(' 单位阶跃序列 ') 1.2仿真结果 2.实现三角波、方波、锯齿波、sinc函数及绘图2.1代码部分 %三角波 subplot(4,1,1); x=0:0.001:0.05; y1=sawtooth(2*pi*50*x,0.5);

plot(x,y1) %锯齿波 subplot(4,1,2); x=0:0.001:0.05; y2=sawtooth(2*pi*50*x); plot(x,y2) %方波 subplot(4,1,3); x=0:0.001:0.05; y3=square(2*pi*50*x,50); plot(x,y3) %sinc函数 subplot(4,1,4); t=-5:0.1:5; y=sinc(t); plot(t,y); xlabel('时间t');ylabel('幅值A'); title('Sa函数') 2.2仿真结果 实验二:FFT频谱分析及应用 1.用FFT函数分析某信号的频率成分和功率谱密度并绘图1.1代码部分 t=0:0.001:0.8; x=sin(2*pi*50*t)+cos(2*pi*120*t) ; y=x+1.5*randn(1,length(t)); subplot(3,1,1); plot(t,x); subplot(3,1,2); plot(t,y); Y=fft(y,512); P=Y.*conj(Y)/512;

新语音信号处理实验指导2015年秋

《语音信号处理》 实验指导书 哈尔滨理工大学 自动化学院 电子信息科学与技术系 2014.10

语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。同时,语言也是人与机器之间进行通信的重要工具,它是一种理想的人机通信方式,因而可为信息处理系统建立良好的人机交互环境,进一步推动计算机和其他智能机器的应用,提高社会的信息化程度。语音信号处理是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。虽然从事这一领域研究的人员主要来自信号与信息处理及计算机应用等学科,但是它与语音学、语言学、声学、认知科学、生理学、心理学等许多学科也有非常密切的联系。 20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。 为了深入理解语音信号数字处理的基础理论、算法原理、研究方法和难点,根据数字语音信号处理教学大纲,结合课程建设的需求,我们编写了本实验指导书。

相关文档
最新文档