网优参数解释讲解

网优参数解释讲解
网优参数解释讲解

网优基础参数解释

1、小区类:ADD CELL

CSG指示:该参数表示小区是否是CSG(Closed Subscriber Group封闭用户组)小区。CSG小区是一种接入受限小区,它会在系统消息中广播一个指定的CSG ID,只有归属于该CSG的用户才允许接入该小区。枚举值BOOLEAN_FALSE表示小区不是CSG小区,BOOLEAN_TRUE 表示小区是CSG小区。目前产品不支持CSG小区。

上行循环前缀长度:该参数表示小区的上行循环前缀长度,分为普通循环前缀和扩展循环前缀,扩展循环前缀主要用于一些较复杂的环境,如多径效应明显、时延严重等。同一小区,上下行循环前缀长度配置可以不同,小基站目前只支持普通循环前缀。

LTE为了克服多径干扰引入了循环前缀cp,来保证子载波的正交性。cp就是把OFDM子载波后面的一部分移到子载波前面来。CP在OFDM中可以简单总结为两个作用:1)消除ISI 2)消除ICI。

下行循环前缀长度:该参数表示小区的下行循环前缀长度,分为普通循环前缀和扩展循环前缀,扩展循环前缀主要用于一些较复杂的环境,如多径效应明显、时延严重等。同一小区,上下行循环前缀长度配置可以不同,小基站目前只支持普通循环前缀。修改此项参数会导致基站复位。

上下行子帧配比:D、E、F 频段都为SA2:

特殊子帧配比:D、E频段都为SSP7、F频段为SSP5:

服务小区偏置:该参数表示服务小区的小区偏移量。用于控制服务小区与邻区触发切换的难易程度,该值越小越容易触发测量报告上报。取值范围:-24---24 dB,一次调整2dB

服务小区频率偏置:该参数表示服务小区频点的特定频率偏置。在测量控制中下发,用于控制服务小区与邻区触发切换的难易程度。

前导格式:该参数表示小区所使用的前导格式。

随机接入信号是由CP(长度为T CP)、前导序列(长度为T SEQ)和GT (长度为 )三个部分组成,前导序列与PRACH时隙长度的差为GT,用于对抗多径干扰的保护,以抵消传播时延。一般来说较长的序列,能获得较好的覆盖范围,但较好的覆盖范围需要较长的CP和GT来抵消相应的往返时延,即小区覆盖范围越大,传输时延越长,需要的GT越大,为适应不同的覆盖要求,36.211协议规定了五种格式的PRACH 循环前缀长度、序列长度、以及GT长度如下表3。

Preamble格式和小区覆盖范围的关系约束原则为:小区内边缘用户的传输时延需要在GT内部,才能保证PRACH能正常接收,且不干扰其他的子帧。即需要满足的关系为,

其中,TT CP 为循环前缀CP的长度;

T GT为保护间隔;

2、邻区关系

异频相邻频点添加ADD EUTRANINTERNFREQ 上行频点配置指示:

该参数表示是否需要配置上行频点。如果不配置上行频点,FDD配置下,上行频点默认为下行频点加18000;TDD配置下,上行频点与下行频点相同。

取值范围:NOT_CFG(不配置), CFG(配置)

推荐值:NOT_CFG

异频频点小区重选优先级配置指示:

该参数表示是否配置EUTRAN异频邻区重选优先级参数。如果不配置EUTRAN异频邻区重选优先级参数,UE将不会对该目标频点的邻区进行重选。

取值范围:NOT_CFG(不配置), CFG(配置)

推荐值:NOT_CFG(不配置)

EUTRAN异频重选时间(秒):

该参数表示EUTRAN异频邻区重选时间。异频邻区信号质量在重选时间内始终优于服务小区且UE在当前服务小区驻留超过1秒时,UE才会向该异频邻区发起重选。在系统消息SIB5中下发,参考3GPP TS 36.331。

取值范围:0~7(s)

推荐值:1

速度相关重选参数配置指示:

该参数表示是否配置基于速率的重选参数。速率重选参数未配置时,则默认不支持基于速率的小区重选。

取值范围:NOT_CFG(不配置), CFG(配置)

推荐值:NOT_CFG

测量带宽(兆赫):

该参数表示UE当前驻留频点的测量带宽,应用于小区重选同频测量和RRC连接态同频测量。参数为可选配置,如果不配置,默认使用服务小区下行系统带宽。

取值范围:MBW6(1.4M), MBW15(3M), MBW25(5M), MBW50(10M), MBW75(15M), MBW100(20M)

推荐值:MBW6 现网设置为:MBW100

频率偏置(分贝):

该参数表示EUTRAN异频频点下邻区的频率偏置。在系统消息SIB5中和测量控制中下发,用于UE小区重选和测量事件(包括A3、A4及A5事件)的进入和退出判断,参考3GPP TS 36.331。

取值范围:6(-6dB), dB-5(-5dB), dB-4(-4dB), dB-3(-3dB), dB-2(-2dB), dB-1(-1dB), dB0(0dB), dB1(1dB), dB2(2dB), dB3(3dB), dB4(4dB), dB5(5dB), dB6(6dB), dB8(8dB), dB10(10dB), dB12(12dB), dB14(14dB), dB16(16dB), dB18(18dB), dB20(20dB), dB22(22dB), dB24(24dB)

推荐值:dB0

异频频点高优先级重选门限(2分贝):

该参数表示异频频点高优先级重选门限值,在目标频点的小区重选优先级比服务小区的小区重选优先级要高时,作为UE从服务小区重选至目标频点下小区的接入电平门限。

取值范围:0~31

推荐值:13 现网设置为:11

其它条件不变,增加该值,则增加该重选触发难度,反之亦然。

异频频点低优先级重选门限(2分贝):

该参数表示异频频点低优先级重选门限值,在目标频点的绝对优先级低于服务小区的绝对优先级时,作为UE从服务小区重选至目标频点下小区的接入电平门限。

UE启动对目标频点下小区的小区重选测量后,如果在重选延迟时间内,服务小区的接入电平低于重选门限,目标频点下小区的接入电平一直高于该门限,则UE可以重选至该小区。详细介绍参见协议3GPP TS 36.331。

取值范围:0~31

推荐值:11

其它条件不变,增加该值,则增加选择该小区难度,反之亦然。

最低接收电平(2毫瓦分贝):

该参数表示同频E-UTRA邻区重选需要的最低接收电平。对应系统消息SIB3中的q-RxLevMin,应用于小区重选准则(R准则)的判决公式,参数使用细节参见3GPP TS 36.304。

取值范围:-70~-22

推荐值:-64

增加某小区的该值,使得该小区更难符合S规则,更难成为Suitable Cell,选择该小区的难度增加,反之亦然。应使得被选定的小区能够提供基础类业务的信号质量要求。

最大发射功率指示:

该参数表示EUTRAN异频频点的UE最大发射功率参数是否配置。如果不配置,则UE的最大发射功率由UE自己的能力决定。

取值范围:NOT_CFG(不配置), CFG(配置)

推荐值:NOT_CFG

异频邻区配置信息:

该参数表示服务小区异频邻区配置情况。

BitString00:表示部分邻区具有相同的MBSFN子帧。

取值范围:BitString00(00), BitString01(01), BitString10(10), BitString11(11)

推荐值:BitString01

本地小区异频邻区双发射天线配置指示:

该参数表示本地小区中该异频频点下的所有邻区是否配置为两个及以上天线端口。

如果该频点下本地小区所有异频邻区均配置为两个及以上天线端口时,该参数配置为TRUE。如果该频点下本地小区所有异频邻区中有一个邻区配置为单天线端口时,该参数配置为FALSE。

取值范围:BOOLEAN_FALSE(否), BOOLEAN_TRUE(是)

推荐值:BOOLEAN_FALSE

异频切换触发事件类型:

该参数表示异频切换的触发事件类型,仅用于基于覆盖的场景。参数选项包括A3、A4和A5。若频点与服务小区频点在同一频段的情况下,建议使用A3事件触发方式,使用A3事件触

发方式将提高切换性能;不在同一频段的情况下,需要使用A4或者A5事件触发方式。

取值范围:EventA3(A3事件), EventA4(A4事件), EventA5(A5事件)

推荐值:EventA4

若选择A3事件,可以增加同频段异频切换的性能,及时切换,减小干扰;若选择A4事件则可以减小异频段异频切换的切换次数。

异频频点RSRQ高优先级重选门限(分贝):

该参数表示异频频点RSRQ高优先级重选门限值,在目标频点的小区RSRQ重选优先级比服务小区的小区RSRQ重选优先级要高时,作为UE从服务小区重选至目标频点下小区的接入电平门限。

取值范围:0~31

推荐值:0

异频频点RSRQ低优先级重选门限(分贝):

该参数表示异频频点低优先级重选门限值,在目标频点的绝对优先级低于服务小区的绝对优先级时,作为UE从服务小区重选至目标频点下小区的接入电平门限。

UE启动对目标频点下小区的小区重选测量后,如果在重选延迟时间内,服务小区的接入电平低于重选门限,目标频点下小区的接入电平一直高于该门限,则UE可以重选至该小区。详细介绍参见协议3GPP TS 36.331。

取值范围:0~31

推荐值:11

最小接收信号质量配置指示:

该参数表示是否配置最小接收信号质量。

取值范围:NOT_CFG(不配置), CFG(配置)

推荐值:NOT_CFG

3、小区重选LST CELLREL

小区重选迟滞值:该参数表示UE在小区重选时,服务小区RSRP测量量的迟滞值,该参数和小区所在环境的慢衰落特性有关,慢衰落方差越大,迟滞值应越大,迟滞值越大,服务小区的边界越大,则越难重选到邻区。影响:其它小区重选相关参数一定的情况下,增加迟滞,即可以增加同频或者同优先级小区重选的难度,掉话率将增加;反之,减小迟滞,即可以减小同频或者同优先级小区重选的难度,但乒乓重选的次数将增加。

异频/异系统测量启动门限配置指示:该参数表示是否配置异频/异系统小区重选测量启动门限。如果异频/异系统测量启动门限配置指示为不配置,不管当前服务小区的信号质量如何,UE都会对异频小区和异系统小区进行测量。(对于空闲模式UE,该参数发生变化将影响UE 小区重选)

服务频点低优先级重选门限:该参数表示服务频点向低优先级异频或异系统重选时的门限值,应用于UE向低优先级异频或异系统重选判决场景,该场景出现的条件是:与服务频率相同的小区以及高优先级频率的小区均不满足异频或异系统重选准则一。

小区重选优先级:该参数表示服务频点的小区重选优先级,0表示最低优先级。该参数是网规参数,需要在各频率层之间统一规划。不同制式间的小区重选优先级不能重复。增大该值,减小UE重选到其它频点小区的概率,反之亦然。

公共参数:最低接收电平:该参数表示同频E-UTRA邻区重选需要的最低接收电平。对应系统消息SIB3中的q-RxLevMin,应用于小区重选准则(R准则)的判决公式。

接入:该参数表示小区最低接收电平,应用于小区选择准则(S准则)的判决公式。增加某小区的该值,使得该小区更难符合S规则,更难成为适当小区,UE选择该小区的难度增加,反之亦然。该参数的取值应使得被选定的小区能够提供基础类业务的信号质量要求。

公共参数:最低接收电平:该参数表示EUTRAN异频邻区最低接收电平,应用于小区选择准则(S准则)的判决。在进行重选判决时,使用UE测得的目标频点下小区的RSRP测量量减去本参数值和功率补偿值,得到Srxlev,如果Srxlev在重选延迟时间内,总是大于重选目标小区的电平门限,则UE重选至该目标小区。增加某小区的该值,使得该小区更难符合S规则,更难成为适合的小区,选择该小区的难度增加,反之亦然。应使得被选定的小区能够提供基础类业务的信号质量要求。

公共参数:最低接收电平:该参数表示异系统GERAN相邻频点组的最低接入电平,应用于小区选择准则(S准则)的判决。在进行重选判决时,使用UE测得的目标频点下小区的RSSI 测量量减去本参数值和功率补偿值,得到Srxlev,如果Srxlev在重选延迟时间内,总是大于

仪器分析名词解释及简答题

仪器分析复习资料 名词解释与简答题 名词解释 1.保留值:表示试样中各组分在色谱柱中的滞留时间的数值。通常用时间或用将各组分带 出色谱柱所需载气的体积来表示。 2.死时间:指不被固定相吸附或溶解的气体(如空气、甲烷)从进样开始到柱后出现浓度 最大值时所需的时间。 3.保留时间:指被测组分从进样开始到柱后出现浓度最大值时所需的时间。 4.相对保留值:指某组分2的调整保留值与另一组分1的调整保留值之比。 5.半峰宽度:峰高为一半处的宽度。 6.峰底宽度:指自色谱峰两侧的转折点所作切线在基线上的截距。 7.固定液: 8.分配系数:在一定温度下组分在两相之间分配达到平衡时的浓度比。 9.分配比:又称容量因子或容量比,是指在一定温度、压力下,在两相间达到平衡时,组 分在两相中的质量比。 10.相比:VM与Vs的比值。 11.分离度:相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值。 12.梯度洗提:就是流动相中含有多种(或更多)不同极性的溶剂,在分离过程中按一定的 程序连续改变流动相中溶剂的配比和极性,通过流动相中极性的变化来改变被分离组分的容量因子和选择性因子,以提高分离效果。梯度洗提可以在常压下预先按一定的程序将溶剂混合后再用泵输入色谱柱,这种方式叫做低压梯度,又叫外梯度,也可以将溶剂用高压泵增压以后输入色谱系统的梯度混合室,加以混合后送入色谱柱,即所谓高压梯度或称内梯度。 13.化学键合固定相:将各种不同有机基团通过化学反应共价键合到硅胶(担体)表面的游 离羟基上,代替机械涂渍的液体固定相,从而产生了化学键合固定相。 14.正相液相色谱法:流动相的极性小于固定相的极性。 15.反相液相色谱法:流动相的极性大于固定相的极性。 16.半波电位:扩散电流为极限扩散电流一半时的电位。 17.支持电解质(消除迁移电位):如果在电解池中加入大量电解质,它们在溶液中解离为 阳离子和阴离子,负极对所有阳离子都有静电吸引力,因此作用于被分析离子的静电吸引力就大大的减弱了,以致由静电力引起的迁移电流趋近于零,从而达到消除迁移电流的目的。 18.残余电流:在进行极谱分析时,外加电压虽未达到被测物质的分解电压,但仍有微小的 电流通过电解池,这种电流称为残余电流。 19.迁移电流:由于静电吸引力而产生的电流称为迁移电流。 20.极大:在电解开始后,电流随电位的增加而迅速增大到一个很大的数值,当电位变得更 负时,这种现象就消失而趋于正常,这种现象称为极大或畸峰。 21.光谱分析:就是指发射光谱分析,或更确切地讲是原子发射光谱。 22.色散力:非极性分子间虽没有静电力和诱导力相互作用,但其分子却具有瞬间的周期变 化的偶极矩,只是这种瞬间偶极矩的平均值等于零,在宏观上显示不出偶极矩而已。这种瞬间偶极矩有一个同步电场,能使周围的分子极化,被极化的分子又反过来加剧瞬间偶极矩变化的幅度,产生所谓色散力。

变压器主要技术参数及含义

变压器主要技术参数的含义 说明:读书时,很多人对变压器、电机很难理解,当你有工作经验后,再来看下这些知识,你会有更深的理解。 (1)额定容量SN:指变压器在铭牌规定条件下,以额定电压、额定电流连续运行时所输送的单相或三相总视在功率。 (2)容量比:指变压器各侧额定容量之间的比值。 (3)额定电压UN.指变压器长时间运行,设计条件所规定的电压值(线电压)。 (4)电压比(变比):指变压器各侧额定电压之间的比值。 (5)额定电流IN:指变压器在额定容量、额定电压下运行时通过的线电流。 (6)相数:单相或三相。 (7)连接组别:表明变压器两侧线电压的相位关系。 (8)空载损耗(铁损)Po:指变压器一个绕组加上额定电压,其余绕组开路时,变压器所消耗的功率。变压器的空载电流很小,它所产生的铜损可忽略不计,所以空载损耗可认为是变压器的铁损。铁损包括励磁损耗和涡流损耗。空载损耗一般与温度无关,而与运行电压的高低有关,当变压器接有负荷后,变压器的实际铁芯损耗小于此值。 (9)空载电流Io%:指变压器在额定电压下空载运行时,一次侧通过的电流。不是指刚合闸瞬间的励磁涌流峰值,而是指合闸后

的稳态电流。空载电流常用其与额定电流比值的百分数表示,即 Io%=Io/I

N×100% (10)负荷损耗Pk(短路损耗或铜损):指变压器当一侧加电压而另一侧短接,使电流为额电流时(对三绕组变压器,第三个绕组应开路),变压器从电源吸取的有功功率。按规定,负荷损耗是折算到参考温庋(75℃)下的数值。因测量时实为短路状态,所以又称为短路损耗。短路状态下,使短路电流达额定值的电压很低,表明铁芯中的磁通量很少,铁损很小,可忽略不计,故可认为短路损耗就是变压组(绕组)中的损耗。 对三绕组变压器,有三个负荷损耗,其中最大一个值作为该变压器的额定负荷损耗。负荷损耗是考核变压器性能的主要参数之一。实际运行时的变压器负荷损耗并不是上述规定的负荷损耗值,因为负荷损耗不仅取决于负荷电流的大小,而且还与周围环境温度有关。 负荷损耗与一、二次电流的平方成正比。 (11)百分比阻抗(短路电压):指变压器二次绕组短路,使一次侧电压逐渐升高,当二次绕组的短路电流达到额定值时,此时一次侧电压与额定电压的比值(百分数)。 变压器的容量与短路电压的关系是:变压器容量越大,其短路电压越大。 (12)额定频率:变压器设计所依据的运行频率,单位为赫兹(Hz),我国规定为50H。 (13)额定温升TN:指变压器的绕组或上层油面的温度与变

无线网络优化入门

无线网络优化 GSM无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 简介 近几年,随着移动用户的迅猛增长,用户对网络通信质量的要求越来越高,移动运营商也都大规模开展了以提高用户感知度为目标的网络优化工作,并提出了对各项主要指标的考核标准。2003年,伴随着CDMA网络的扩容建设,联通关于GSM的建设思想已经由大规模的网络建设转为以网络的优化、挖潜作为主要目标,满足全网用户的快速增长。对于带宽本来就极其有限的GSM网络,这其实是对网络优化提出了更严格的要求。 流程 GSM无线网络优化是一个闭环的处理流程,循环往复,不断提高。随着近两年优化工作的不断深入,各分公司的优化工作实际上已进入一个较深层次的分析优化阶段。即在保证充分利用现有网络资源的基础上,采取种种措施,解决网络存在的局部缺陷,最终达到无线覆盖全面无缝隙、接通率高、通话持续、话音清晰且不失真,保证网络容量满足用户高速发展的要求,让用户感到真正满意。 GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和

CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法 OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试) 在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度 是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。 3.CQT

无线网络优化参数调整

无线网络优化的BSC和小区参数调整1.1 一致性检查 ?小区参数是网络最佳性能的基础。优化过程中,不断地进行一致性检查以发现不一致设置的存在。总体上进行了以下检查: 1.1.1 小区定义单向 ?在别的BSC 中发现有相邻关系定义,在反向却没有,这意味着切换只能单向进行,除了特殊情况外反向相邻关系都应添加。 1.1.2 NCCPERM设置 ?如果NCCPERM的设置与NCC不同,则没有切换能进入这些小区。 NCCPERM是以8位BIT MAP的形式编码,0为不允许,1为允许。 例如: 允许NCC=1,编码为二进制00000010,NCCPERM=2(十进制) 允许NCC=0和1,编码为二进制00000011,NCCPERM=3(十进制) 1.1.3 MBCCHNO设置 ?相邻小区的MBCCHNO没有定义,会使得这些小区的切换也无法进行;而MBCCHNO定义过多,又会影响小区的切换准确性和及时性。 1.1.4 BCCH, BSIC, CGI定义有误 ?外部小区的参数定义正确性对外部切出切换成功率至关重要。如果BCCH, BSIC 和CGI其中一个定义有误, 对这些小区的切换同样无法进行。 1.1.5 邻小区同BCCH同BSIC ?这将严重影响切换成功率和随机接入性能(在同一BSC内最好不要存在相同BCCHNO和BSIC的小区)。 1.1.6 本小区与邻小区同BCCH ?产生BCCH干扰,会造成掉话高,并影响切换指标。 1.1.7 BCCH与TCH或TCH与TCH间的同邻频干扰 ?会造成掉话高,并影响切换指标(内切换频繁),影响网络的总体性能。 2 无线功能参数 和小区数据调整 2.1 空闲模式行为的参数调整 ?空闲模式是指手机开机但没有分配专用信道 ?空闲模式行为主要是小区重选 2.1.1 ACCMIN ?ACCMIN定义手机接入网络的最低下行接受电平。ACCMIN设置为–110 即-110dBm或低于,许多手机可以接入网络确不能建立有效链接,以致浪费SDCCH资源并增加SDCCH及TCH掉话。如果

照明类常用专业名词解释

照明类常用专业名词解释 照明类常用专业名词解释 来源:HCB照明网作者:HCB 1、光(light) 光是一种电磁波,是整个电磁波谱中极小范围的一部分光是能量的一种形态;光是电磁波辐射到人的眼睛,经视觉神经转换为光线,即能被肉眼看见的那部份光谱。这类射线的波长范围在360到830nm之间,仅仅是电磁辐射光谱非常小的一部份。温度远远高于50Hz工作时的温度,从而产生更高色温的白色色表和更好的显色性。 可见光:由光源发出的辐射能中的一部分,即能产生视觉的辐射能.常被称作为“可见光”。 可见光的波长:从380nm----780nm 紫外线的波长:从100nm---380nm,肉眼看不见。 红外线的波长:从780nm---1mm,肉眼看不见。 2、色温(CT-color temperature) 是将一标准黑体加热,温度升高至某一程度时,颜色开始由红—浅红-橙黄-白-蓝白-蓝,逐渐变化,利用这种光色变化的特性,某光源的光色与黑体在某一温度下呈现的光色相同时,我们将黑体当时的绝对温度称为该光源的相关色温,用绝对温度 K(kelvim)表示。黑体辐射理论是建立在热辐射基础上的,所以白炽灯一类的热辐射光源的光谱功率分布与黑体在可见区的光谱功率分布比较接近,都是连续光谱,用色温的概念完全可以描述这类光源的颜色特性。 3、显色指数(Ra) 衡量光源显现被照物体真实颜色的能力参数。 显色指数(0-100)越高的光源对颜色的再现越接近自然原色。 3.1、色温与感觉 3.2、显色性的效果与用途

4、光通量(流明Lm)Φ (luminous flux ) 光源发射并被人的眼睛接收的能量之和即为光通量。流明是光通量的单位。一般情况下,同类型的灯的功率越高,光通量也越大。例如:一只 40W的普通白炽灯的光通量为350---470lm,而一只40W的普通直管形荧光灯的光通量为2800lm左右,为白炽灯的6--8倍。(发光愈多流明数愈大) 5、光效(luminous efficacy of light source) 光源所发出的总光通量与该光源所消耗的电功率(瓦)的比值,称为该光源的光效。单位:流明 /瓦(lm/W) 光源将电能转化为可见光的效率,即光源消耗每一瓦电能所发出的光,数值越高表示光源的效率越高。从经济(能效)方面考虑,光效是一个重要的参数。 白炽灯:8-14lm/W 单端荧光灯:55-80 lm/W 自镇流荧光灯:50-70 lm/W 高压钠灯:80-140 lm/W 金卤灯:60-90 lm/W 卤钨灯: 15-20 lm/W 6、平均寿命(average life) 指一批灯燃点,当其中有50%的灯损坏不亮时所燃点的小时数。单位:小时( h) 7、经济寿命(economic life) 在同时考虑灯泡的损坏以及光束输出衰减的状况下,其综合光束输出减至一特定比例的小时数。此比例用于室外的光源为百分之七十,用于室内的光源如日光灯为百分之八十。 8、光强(luminous intensity ) 光源在某一给定方向的单位立体角内发射的光通量称为光源在该方向的发光强度,简称光强。单位:坎德拉cd 9、照度(illuminance) 单位:勒克斯 (Lux, lx) 照度是光通量与被照面之比值。照度是用来说明被照面(工作面)上被照射的程度,通常用其单位面积内所接受的光通量来表示,单位为勒克斯(lx)或流明每平方米(lm/m2)。1 lux之照度为1 lumen之光通量均匀分布在面积为一平方米之区域。单位被照面上接收到的光通量称为照度。如果每平方米被照面上接收到的光通量为 1(1m),则照度为1(1x)。单位:勒克斯(1x)。 1勒克斯(1x)相当于被照面上光通量为1流明(1m)时的照度。夏季阳光强烈的中午地面照度约5000 1x,冬天晴天时地面照度约为2000 1x,晴朗的月夜地面照度约0.2 1x。 10、亮度( luminance)

网络参数调整保障方案

网络参数调整保障方案 参数调整方案概述 为避免在春节期间大型活动等人口聚集,造成话务量激增对BSC的巨大冲击(寻呼成功 率、指配成功率、话务量等KPI 下降现象,用户感觉呼叫困难等),制定本应急方案,应对网 络节日突发的话务激增问题,保障网络正常运行。 注:BSC忙时话务量超过3000Erl的,需要重点关注。 1、节前数据检查修改,目的:保证BSC资源和处理能力最大化; 2、发现话务量异常下降、呼叫困难后需要采取的应急处理措施; 3、性能问题相关判定指标,列出关键KPI ,用于判断网络是否发生异常。发现指标异常后, 立即在BSCF进行做网内主叫和被叫呼叫测试(至少20次以便准确判断),确认出现呼叫困难后,根据15分钟话统统计的话务量下降情况判断目前问题所处的故障级别,并根据相应的问题严重级别执行对应的应急处理措施。 节前数据检查修改 目的:保证BSC资源和处理能力最大化 1.1.1备份配置数据为了保证节日话务高峰过后能够将调整的数据恢复原状,需要将配置 数据备份下 来。 或将节前各参数调整记录下来,以便节后进行数据恢复。 1.1.2寻呼相关参数 修改步骤 MSC侧寻呼只重发一次; MSC侧首次寻呼与重发的寻呼间隔为8秒; MSC侧首次寻呼按TMSI,二次寻呼按IMSI,都不携带Channel Needed信元,按位 置区寻呼,严重时关闭全网寻呼; 无线资源允许的情况下,尽量使用非组合的BCCH言道; 设置小区参数“小区属性参数〉空闲模式参数〉空闲基本参数〉接入允许保留块数”为1 ; 设置小区参数“小区属性参数〉空闲模式参数〉空闲基本参数〉相同寻呼间帧 数编码”为2 ; 设置小区参数“小区属性参数〉其他属性参数〉高级参数〉公共信道控制〉C C C H

光学名词解释大全

光学名词解释大全 aperture stop(孔径阑)-限制进入光学系统之光束大小所使用的光阑。astigmatism(像散)-一个离轴点光源所发出之光线过透镜系统后,子午焦点与弧矢焦点不在同一个位置上。 marginal ray(边缘光束)-由轴上物点发出且通过入射瞳孔边缘的光线。 chief ray(主光束)-由离轴物点斜向入射至系统且通过孔径阑中心的光线。chromatic aberration(色像差)-不同波长的光在相同介质中有不的折射率,所以轴上焦点位置不同,因而造成色像差。 coma(慧差)-当一离轴光束斜向入射至透镜系统,经过孔径边缘所成之像高与经过孔径中心所成之像高不同而形成的像差。 distortion(畸变)-像在离轴及轴上的放大率不同而造成,分为筒状畸变及枕状畸变两种形式。 entrance pupil(入射瞳孔)-由轴上物点发出的光线。经过孔径阑前的组件而形成的孔径阑之像,亦即由轴上物点的位置去看孔径阑所成的像。 exit pupil(出射瞳孔)-由轴上像点发出的光线,经过孔径阑后面的组件而形成的孔径阑之像,亦即由像平面轴上的位置看孔径阑所成的的像。 field curvature(场曲)-所有在物平面上的点经过光学系统后会在像空间形成像点,这些像点所形成的像面若为曲面,则此系统有场曲。 ; field of view(视场、视角)-物空间中,在某一距离光学系统所能接受的最大物体尺寸,此量值以角度为单位。 f-number(焦数)-有效焦距除以入射瞳孔直径的比值,其定义式如下:有时候f-number也称为透镜的速度,4 f 的速度是2 f 速度的两倍。 meridional plane(子午平面)-在一个轴对称系统中,包含主光线与光轴的平面。numerical aperture(数值孔径)-折射率乘以孔径边缘至物面(像面)中心的半夹角之正弦值,其值为两倍的焦数之倒数。数ˋ值孔径有物面数值孔径与像面数值孔径两种。sagittal plan(弧矢平面、纬平面)-包含主光线,且与子午平面正交的平面。sagittal ray(弧矢光束、纬光束)-所有由物点出发而且在弧矢平面上的斜光线。 ray-intercept curve(光线交切曲线)-子午光线截在像平面上的高度相对于经过透镜系统后发出之光线的斜率之关系图;或是定义为经过透镜系统后的光线位移相对于孔径坐标的图。此两种定义法可依使用者需要选择,在OSLO 中采用后者。 spherical aberration(球面像差)-近轴光束与离轴光束在轴上的焦点位置不同而产生。vignetting(渐晕、光晕)-离轴越远(越接近最大视场)的光线经过光学系统的有效孔径阑越小,所以越离轴的光线在离轴的像面上的光强度就越弱,而形成影像由中心轴向离轴晕开。 孔径光阑:限制进入光学系统的光束大小所使用的光阑。 ※球差:近轴光束与离轴光束在轴上的焦点位置不同而产生的像差。 ※像散:一个离轴点光源所发出光线经过系统后,子午焦点与弧矢焦点不在同一位置上。※边缘光束:由轴上物点发出且通过入瞳边缘的光线。 ※主光束:由离轴物点斜向入射至系统且通过孔径光阑中心的光线。 ※色像差:不同波长的光在相同介质中有不同的折射离,所以轴上焦点位置不同,因而造成色像差。 ※角放大率:近轴像空间主光线角与近轴物空间主光线角的比率叫做角放大率,角的测量与

网络优化参数介绍

RSRP: Reference signal receive power. 衡量某扇区的参考信号的强度,在一定频域和时域上进行测量并滤波。可以用来估计UE离扇区的大概路损,LTE系统中测量的关键对象。在小区选择中起决定作用。 SINR:信号与干扰加噪声比(Signal to Interference plus Noise Ratio)是指:信号与干扰加噪声比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。 信号与干扰加噪声比最初出现在多用户检测。假设有两个用户1,2,发射天线两路信号(cdma里采用码正交,ofdm里采用频谱正交,这样用来区分发给两个用户的不同数据);接收端,用户1接收到发射天线发给1的数据,这是有用的信号signal,也接收到发射天线发给用户2的数据,这是干扰interference,当然还有噪声。 RSSI(Received Signal Strength Indicator)是接收信号的强度指示 过接收到的信号强弱测定信号点与接收点的距离,进而根据相应数据进行定位计算的一种定位技术 如无线传感的ZigBee网络CC2431芯片的定位引擎就采用的这种技术、算法。 接收机测量电路所得到的接收机输入的平均信号强度指示。这一测量值一般不包括天线增益或传输系统的损耗。 RSRQ(ReferenceSignalReceivingQuality)表示LTE参考信号接收质量,这种度量主要是根据信号质量来对不同LTE候选小区进行排序。这种测量用作切换和小区重选决定的输入。 RSRQ被定义为N*RSRP/(LTE载波RSSI)之比,其中N是LTE载波RSSI测量带宽的资源快(RB)个数。RSRQ实现了一种有效的方式报告信号强度和干扰相结合的效果。 [1] PL为传播路径损耗(Pathloss),单位为dB采用0kumura_Hata模型来分析WCDMA系统的无线传播:PL=69.55+26.16lgF-13.82lgH+(44.9-6.55lgH)×lgD-C(F)其中,PL为传播路径损耗,单位为dB;F为系统工作频点,单位为Hz;D为小区半径,单位为m;H为基站天线高度,单位为m;C(F)为地物校正因子,一般取值:代入模型后,得到以CS64k业务为例,基站侧接收灵敏度为115.3dBm,假定90%地区覆盖,慢衰落储备为5.6dB,网络负荷为50%,干扰储备为3dB,软切换增益为5dB,汽车穿透损耗为8dB,直放站天线增益为18dBi,馈线损耗为3dB,直放站总输出功率为20W,控制信道为 5.2W,话务信道可用功率为14.8W,则每信道平均发射功率为14.8W/6=2.47W=33.9dBm,则PL=33.9-5.6-3+5-8+18-3+115.3=152.6dBm 通过计算得到:城市D=3km;郊区D=6.8km;农村D=25.6km。 power headroom 功率上升空间

网优参考信号功率设置说明

参考信号功率设置 实际优化过程中,根据覆盖调整需要经常要修改 RS POWER ,华为MML 对应修改命令 为MOD PDSCHCFG (修改PDSCH 配置信息),如下 W3D FDSCHCFG: LOCALCELL :D-1, REFERENCES! GHALFWR-5 2: Refere nceSig nalPwr 参考信号功率,含义:该参数表示每物理天线的小区参考信号的 功率值。注意是每物理天线的小区参考信号,默认配置为 9.2dBm ,具体公式如下: DL _RS_Power = 单天线发射功率-10log(Nsubcarriers)+ 10log(1+Pb) =(46-10log(8))-30.8+ 3=9.2dBm 10log(1+Pb)为RS 增强技术引入的增益 46dBm 为单小区发射功率,单天线发射功率 =46- 10log(8)=37dBm=5W Nsubcarriers 表示20M 带宽内子载波的数量,20M 带宽内总共100个RB ,每 个RB 包含12个子载波,100个RB 总共有1200个子载波 这样按照默认配置,现网单小区配置,小区功率为单天线功率 *8=5W*8=40W=46dBm 后台DSP CELL 查询小区状态时,能够查询到该小区 单天线发射功率。 号关断状态主基帯处理板信息小区拓扑结枸最犬发射功率心1毫瓦分贝) 启动 0-0-2 启动 0-0-2 NVLL MODPDSCHCFG 本堆小区标亡 1 ±1 基述:模式 65535 4ZiBm-15.05W

查询FESCWS信息本地小1K标识薑考信号功CO 1毫瓦分贝〕FE J":~I 2 ] 142 ] 3 92 黠果个敎=引 通过以上截图可以看出 设置为9.2dBm时,小区最大发射功率为5W*8=40W , 设置为14.2dBm时,小区最大发射功率为15.85W*8=126.8W , 所以提升RS POWER需考虑RRU功率,不能超过RRU发射总功率,特别是双模改造站点,还需要考虑TDS载波功率。 根据RS POWER设置值来计算小区发射功率 单天线发射功率=RS POWER - 10log(1+Pb) + 10log(Nsubcarriers) 发射功率计算附件:直接输入RS POWER,可直接计算出小区最大发射功率。 小区功率计算.xlsx

网优面试题目

中兴网优服务合同面世题目 一.前台优化人员 1.手机在空闲状态下一般可以接受到哪几种SIB,从这些SIB中可以提取哪些系统参数?SIB1包含非接入层信息,及UE在空闲和连接状态下的定时器信息。 SIB2主要包含URA标识。 SIB3包含小区选择和重选参数 SIB4 SIB4里也是包含小区选择和重选参数,在连接模式下使用。包含参数基本上和SIB3一样 SIB5包含公共物理信道的配置信息。 SIB6 SIB6的内容和SIB5基本一样,用于连接模式 SIB7主要包含上行干扰信息 SIB8和SIB9包含CPCH信息,不用; SIB10包含使用DRAC(动态资源分配控制)的UE所需的信息,不用 SIB12的内容和SIB11基本一样,用于连接模式。 SIB13及其系列均用于ANSI41系统,不用 SIB14用于TDD系统,不用 SIB15及其系列用于基于UE或UE辅助的定位方法,目前不用 SIB16包含一些预定义的无线承载,物理信道和传输信道参数,这些参数存储在UE中,用于系统间切换。 SIB17只用于TDD模式,不用 SIB18中包含了邻区的PLMN标识 2.请描述一下手机做主叫的信令流程?

下行异常干扰:主要表现为UE背景噪声抬升,SIR降低,BLER变大,功控不断提高功率,通信质量恶化,如果下行达到最大允许功率,就会掉话。 4.怎么判断邻区漏配现象?

5.测量报告中有哪些内容,在空闲状态下会有测量报告吗? 6.请说明一下什么是导频污染,怎么判断导频污染,导频污染会导致哪些问题,解决措施 有哪些? 导频污染定义为:当某个导频信号与最好小区信号质量差在一定范围内(一般取5dB)并且该信号不在激活集中,就形成导频污染 某测试点接收的小区导频信号差别不大(都很强或都很弱),而没有主导频。 其表现形式通常是接收的导频功率足够好,但各小区Ec/Io都较弱。 目前大部分WCDMA设备支持的最大激活集数目是3,如果不同小区相近的Ec/Io数目超过了3个,就可以看成是对激活集里面3个无线链路的干扰。 原因有以下几种:高站的越区覆盖、环形布站、街道效应、强反射体等原因导致的信号畸变。 解决导频污染的核心思想就是在有导频污染的地方形成主导频。常用的优化方法有以下几种: 调整天线工程参数,比如方位角、下倾角、天线挂高或安装位置。 调整小区的导频发射功率,包括增加某个小区的功率,降低其它小区的功率。 调整基站布局,在导频污染区域增加信源,引入一个强的主信号。 7.请说明一下远近效应,W网络中采取哪些技术来避免? 一个UE就能阻塞整个小区,信号被离基站近的UE的信号“淹没”,无法通信。 采用功控技术减少了用户间的相互干扰,提高了系统整体容量。 8.在空载覆盖拉远测试中,发现在掉话点无法重新接入,要回退一段距离才能接入,请问 发生这种现象的原因有哪些,可如何改善? 9.天线的选择是决定网络质量的一个很重要部分,应根据基站服务区内的覆盖,服务质量 要求,话务分布,地形地貌等条件,并综合考虑整网的覆盖,干扰情况来选择天线,请简要叙述市区,公路,隧道,室内四种场景天线选型原则? 天线的选择是决定网络质量的一个很重要部分,应根据基站服务区内的覆盖,服务质量要求,话务分布,地形地貌等条件,并综合考虑整网的覆盖,干扰情况来选择天线,请简要叙述市区,公路,隧道,室内四种场景天线选型原则? 城区 ●城区S111基站一般选用水平波瓣宽度为65?,垂直波瓣宽度为7?~10?的天线,天线的 增益在15~18dBi之间。对于S110或定向单扇区站点,可以选用水平波瓣宽度为65?、 90?甚至更宽的天线,根据实际情况选用;垂直波瓣及增益选择同S111站型。对全向站 点,选用增益较小、带电子下倾的天线。 公路、铁路等狭长地带 ●公路和铁路的天线选取应根据所要覆盖的公路和铁路的路线距离和形状来决定。 ●如果路线较直,可以选用水平波瓣宽度为20?~30?,垂直波瓣宽度为5?~7?的高增益天 线。

ADC参数解释和关键指标

第五章ADC 静态电参数测试(一) 翻译整理:李雷 本文要点: ADC 的电参数定义 ADC 电参数测试特有的难点以及解决这些难题的技术 ADC 线性度测试的各类方法 ADC 数据规范(Data Sheet)样例 快速测试ADC 的条件和技巧 用于ADC 静态电参数测试的典型系统硬件配置 关键词解释 失调误差 Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。 增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。(在有些资料上增益误差又称为满刻度误差) 线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。(NS 公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。 信噪比(SNR): 基频能量和噪声频谱能量的比值。 一、ADC 静态电参数定义及测试简介 模拟/数字转换器(ADC)是最为常见的混合信号架构器件。ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。 测试ADC 器件的关键是要认识到模/数转换器“多对一”的本质。也就是说,ADC 的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC 有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。对于 ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC 的静态电参数(如:失调误差、增益误差,积分非线性等)。 本章主要介绍ADC 静态电参数的定义以及如何测试它们。 Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale. 1.ADC 的静态电参数规范

华为LTE网优基础整理-切换篇

本文档只代表个人看法,如有疑惑或者误导部分,请严明指正,多谢! 切换事件分为频内切换和异系统切换,其中A1是停止异频/异系统测量,A2是启动异频/异系统测量,A3 A4 A5都是启动异频切换的事件,B1 B2都是启动异系统切换的事件,现在我们就分别来说说这几个事件是怎么触发,是在什么情况下触发。 A1事件:Ms- Hys>A1_Thresh,停止异频测量 故名思议就是当本小区信号很好未低于门限时,启动该事件,由于在东莞这边都是A3 A4事件切换,所以看切换类型事件要分别看切往哪个事件的。 Ms:服务小区的测量结果 Hys:异频A1A2幅度迟滞(InterFreqHoA1A2Hyst) A1_Thresh:异频A1 RSRP触发门限(InterFreqHoA1ThdRsrp) 例:东莞汀山创科路F-HLH-1切往东莞汀山创科路D-HLH-1,这时我们先看该服务小区对D 频37900的切换事件是用的A3还是A4,从而用LST INTERFREQHOGROUP查出门限值A1_Thresh,如图:

现在已经知道东莞汀山创科路F-HLH-1切往东莞汀山创科路D-HLH-1是用的A4事件,那就可以用LST INTERFREQHOGROUP查出基于D频切换的门限(INTERFREQHOA1THDRSRP)和迟滞 Hys,如图 代入公式Ms- Hys>A1_Thresh 得出MS-2*0.5>-89 等于 MS>-88 结果:当小区的测量报告MS>-88时,小区不会启动对D频邻区的测量。 A2事件:Ms+ Hys

无线网络优化的bsc和小区参数调整

无线网络优化的bsc和小区参数调整 1.1一致性检查 小区参数是网络最佳性能的基础。优化过程中,不断地进行一致性检查以发现不一致设置的存在。总体上进行了以下检查: 1.1.1小区定义单向 在别的BSC 中发现有相邻关系定义,在反向却没有,这意味着切换只能单向进行,除了特殊情况外反向相邻关系都应添加。 1.1.2NCCPERM设置 如果NCCPERM的设置与NCC不同,则没有切换能进入这些小区。? ?NCCPERM是以8位BIT MAP的形式编码,0为不允许,1为允许。 ?例如:?允许NCC=1,编码为二进制00000010,NCCPERM=2(十进制)?允许NCC=0和1,编码为二进制00000011,NCCPERM=3(十进制) 1.1.3MBCCHNO设置 相邻小区的MBCCHNO没有定义,会使得这些小区的切换也无法进行;而MBCCHNO定义过多,又会影响小区的切换准确性和及时性。 1.1.4BCCH, BSIC, CGI定义有误 外部小区的参数定义正确性对外部切出切换成功率至关重要。如果BCCH, BSIC和CGI其中一个定义有误, 对这些小区的切换同样无法进行。 1.1.5邻小区同BCCH同BSIC 这将严重影响切换成功率和随机接入性能(在同一BSC内最好不要存在相同BCCHNO和BSIC的小区)。 1.1.6本小区与邻小区同BCCH 产生BCCH干扰,会造成掉话高,并影响切换指标。 1.1.7BCCH与TCH或TCH与TCH间的同邻频干扰 会造成掉话高,并影响切换指标(内切换频繁),影响网络的总体性能。 2 无线功能参数和小区数据调整 2.1 空闲模式行为的参数调整 空闲模式是指手机开机但没有分配专用信道 空闲模式行为主要是小区重选 C1 标准

仪器分析名词解释1

绪论 1 仪器分析: 是指通过测量物质是某些物理或者物理化学性质` 参数及其变化来确定物质的组成成分含量级化学结构的分析方法。仪器分析的产生与生产实践科学技术发展的迫切需要方法核心原理发现及相关技术产生等密切相关。 2 定性分析: 鉴定式样由哪些元素、离子、基团或化合物组成,即确定物质的组成。 3 定量分析: 测定试样中各种组分(如元素、根或官能团等)含量的操作。 4 精密度: 指同一分析仪器的同一方法多次测定所得到数据间的一致程度,是表征随机误差大小的指标,亦成为重复测定结果随测定平均值的分散度,即重现性。 5 灵敏度: 仪器或分析方法灵敏度是指区别具有微小浓度差异分析物能力的度量,它取决于两个因素:即校准曲线的斜率和仪器设备的重现性或精密度。 6 检出限: 又称检测下限或最低检出量,指一定置信水平下检出分析物或组分的最小量或最低浓度。它取决于分析物产生信号与本底空白信号波动或噪声统计平均值之比。 7 动态范围: 定量测定最低浓度(LOQ)扩展到校准曲线偏离线性响应(LOL)的浓度范围。 8 选择性: 一种仪器方法的选择性是指避免试样中含有其它组分干扰组分测定的程度。

9 分辨率: 指仪器鉴别由两相近组分产生信号的能力。不同类型仪器分辨率指标各不相同,光谱仪器指将波长相近两谱线(或谱峰)分开的能力;质谱仪器指分辨两相邻质量组分质谱峰的分辨能力;色谱指相邻两色谱峰的分离度;核磁共振波谱有它独特的分辨率指标,以临二氯甲苯中特定峰,在最大峰的半宽度为分辨率大小。 10 分析仪器的校正: 仪器分析中将分析仪器产生的各种响应信号值转变成被测物质的质量或浓度的过程称为校正。一般包括分析仪器的特征性能指标和定量分析方法校正。 光谱法导论 11 电磁辐射: 电场和磁场的交互变化产生的电磁波,电磁波向空中发射或汇聚的现象,叫电磁辐射举例说,正在发射讯号的射频天线所发出的移动电荷,便会产生电磁能量。 12 电磁辐射的吸收、发射、散射、折射、干涉、衍射: (1) 吸收物质选择性吸收特定频率的辐射能,并从低能级跃迁到高能级; (2) 发射将吸收的能量以光的形式释放出; (3) 散射丁铎尔散射和分子散射; (4) 折射折射是光在两种介质中的传播速度不同; (6) 干涉干涉现象; (7) 衍射光绕过物体而弯曲地向他后面传播的现象; 13 分子光谱、原子光谱 分子光谱:分子从一种能态改变到另一种能态时的吸收或发射光谱(可包括从

s参数的解释

S参数例子 Ur1 = S11 Ui1 + S12 Ui2 Ur2 = S21 Ui1 + S22 Ui2 Ui1,Ui2,Ur1,Ur2:分别是端口1和端口2的归一化入射电压和反射电压 S11:端口2匹配时,端口1的反射系数; S22:端口1匹配时,端口2的反射系数; S12:端口1匹配时,端口2到端口1的反向传输系数; S21:端口2匹配时,端口1到端口2的正向传输系数; S 参数(散射参数)用于评估DUT 反射信号和传送信号的性能。S 参数由两个复数之比定义,它包含有关信号的幅度和相位的信息。S 参数通常表示为: S输出输入 输出:输出信号的DUT 端口号 输入:输入信号的DUT 端口号 例如,S 参数S21 是DUT 上端口2 的输出信号与DUT 上端口1 的输入信号之比,输出信号和输入信号都用复数表示。 当启动平衡- 不平衡转换功能时,可以选择混合模S 参数。 S参数分析 微波系统主要研究信号和能量两大问题:信号问题主要是研究幅频和相频特性;能量问题主要是研究能量如何有效地传输。微波系统是分布参数电路,必须采用场分析法,但场分析法过于复杂,因此需要一种简化的分析方法。微波网络法被广泛运用于微波系统的分析,是一种等效电路法,在分析场分布的基础上,用路的方法将微波元件等效为电抗或电阻器件,将实际的导波传输系统等效为传输线,从而将实际的微波系统简化为微波网络,把场的问题转化为路的问题来解决。微波网络理论是在低频网络理论的基础上发展起来的,低频电路分析是微波电路分析的一个特殊情况。一般地,对于一个网络有Y、Z和S参数可用来测量和分析,Y称为导纳参数,Z称为阻抗参数,S称为散射参数;前两个参数主要用于集总电路,Z和Y参数对于集总参数电路分析非常有效,各参数可以很方便的测试;但是在微波系统中,由于确定非TEM波电压、电流非常困难,而且在微波频率测量电压和电流也存在实际困难。因此,在处理高频网络时,等效电压和电流以及有关的阻抗和导纳参数变得较抽象。与直接测量入射、反射及传输波概念更加一致的表示是散射参数,即S参数矩阵,它更适合于分布参数电路。S参数就是建立在入射波、反射波关系基础上的网络参数,适于微波电路分析,以器件端口的反射信号以及从该端口传向另一端口的信号来描述电路网络。同N端口网络的阻抗和导纳矩阵那样,用散射矩阵亦能对N端口网络进行完善的描述。阻抗和导纳矩阵

网络优化基本知识

无线网络优化是通过对现已运行的网络进行话务数据分析、现场测试数据采集、参数分析、硬件检查等手段,找出影响网络质量的原因,并且通过参数的修改、网络结构的调整、设备配置的调整和采取某些技术手段(采用MRP的规划办法等),确保系统高质量的运行,使现有网络资源获得最佳效益,以最经济的投入获得最大的收益。 二GSM无线网络优化的常规方法 网络优化的方法很多,在网络优化的初期,常通过对OMC-R数据的分析和路测的结果,制定网络调整的方案。在采用图1的流程经过几个循环后,网络质量有了大幅度的提高。但仅采用上述方法较难发现和解决问题,这时通常会结合用户投诉和CQT测试办法来发现问题,结合信令跟踪分析法、话务统计分析法及路测分析法,分析查找问题的根源。在实际优化中,尤其以分析OMC-R话务统计报告,并辅以七号信令仪表进行A接口或Abis接口跟踪分析,作为网络优化最常用的手段。网络优化最重要的一步是如何发现问题,下面就是几种常用的方法: 1.话务统计分析法:OMC话务统计是了解网络性能指标的一个重要途径,它反映了无线网络的实际运行状态。它是我们大多数网络优化基础数据的主要根据。通过对采集到的参数分类处理,形成便于分析网络质量的报告。通过话务统计报告中的各项指标(呼叫成功率、掉话率、切换成功率、每时隙话务量、无线信道可用率、话音信道阻塞率和信令信道的可用率、掉话率及阻塞率等),可以了解到无线基站的话务分布及变化情况,从而发现异常,并结合其它手段,可分析出网络逻辑或物理参数设置的不合理、网络结构的不合理、话务量不均、频率干扰及硬件故障等问题。同时还可以针对不同地区,制定统一的参数模板,以便更快地发现问题,并且通过调整特定小区或整个网络的参数等措施,使系统各小区的各项指标得到提高,从而提高全网的系统指标。 2.DT (驱车测试):在汽车以一定速度行驶的过程中,借助测试仪表、测试手机,对车内信号强度是否满足正常通话要求,是否存在拥塞、干扰、掉话等现象进行测试。通常在DT中根据需要设定每次呼叫的时长,分为长呼(时长不限,直到掉话为止)和短呼(一般取60秒左右,根据平均用户呼叫时长定)两种(可视情况调节时长),为保证测试的真实性,一般车速不应超过40公里/小时。路测分析法主要是分析空中接口的数据及测量覆盖,通过DT测试,可以了解:基站分布、覆盖情况,是否存在盲区;切换关系、切换次数、切换电平是否正常;下行链路是否有同频、邻频干扰;是否有小岛效应;扇区是否错位;天线下倾角、方位角及天线高度是否合理;分析呼叫接通情况,找出呼叫不通及掉话的原因,为制定网络优化方案和实施网络优化提供依据。

相关文档
最新文档